ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ"

Transcript

1 Θ.Ε. ΠΛΗ31 (2004-5) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #3 Στόχος Στόχος αυτής της εργασίας είναι η απόκτηση δεξιοτήτων σε θέματα που αφορούν τα Τεχνητά Νευρωνικά Δίκτυα και ποιο συγκεκριμένα θέματα εκπαίδευσης και υλοποίησης. Στην εργασία αυτή θα επικεντρώσουμε κυρίως στον αλγόριθμο Πίσω Διάδοσης του Λάθους (Error Back Propagation - EBP) σε πολύ-επίπεδα Νευρωνικά Δίκτυα (Multi-Layers Perceptrons - MLPs). Επίσης, θα αποκτηθεί εμπειρία στη χρήση ενός έτοιμου πακέτου (WEKA) που έχει υλοποιημένους αλγορίθμους Μηχανικής Μάθησης, μεταξύ των οποίων και τον αλγόριθμο EBP, για την εκπαίδευση πολυεπίπεδων Ν.Δ. Τέλος, θα γίνει εφαρμογή του παραπάνω αλγορίθμου στην επίλυση δύο προβλημάτων του πραγματικού κόσμου. Θέμα 1: Πολύ-επίπεδα Perceptrons Δίνεται το παρακάτω ΤΝΔ δύο επιπέδων με δύο κρυφούς νευρώνες και ένα νευρώνα εξόδου. Η συνάρτηση ενεργοποίησης που χρησιμοποιούν όλοι οι υπολογιστικοί νευρώνες (νευρώνες του κρυφού επιπέδου και του επιπέδου εξόδου) είναι η συνάρτηση κατωφλίου που δίνεται από τη σχέση: 1, υ j 0 f ( υ j ) = 0, υ j < 0 υ = w x και j ji i i Δείξτε ότι το παραπάνω δίκτυο επιλύει το πρόβλημα XOR (έχει μάθει δηλαδή τη συνάρτηση XOR): a. Συμπληρώνοντας τον παρακάτω πίνακα

2 x 1 x 2 y 1 y 2 y Όπου x 1 και x 2 είναι οι είσοδοι του δικτύου και b. Κατασκευάζοντας τις περιοχές απόφασης κάθε νευρώνα του δικτύου. Θέμα 2: Ο Αλγόριθμος Πίσω Διάδοσης του Λάθους για Πολύεπίπεδα Perceptrons Δίνεται το παρακάτω ΤΝΔ για την επίλυση του προβλήματος XOR. Για την εκπαίδευσή του χρησιμοποιείται η μέθοδος οπισθοδιάδοσης του σφάλματος με ρυθμό εκπαίδευσης n=1, χωρίς χρήση ορμής (momentum). Η συνάρτηση ενεργοποίησης σε όλους τους νευρώνες είναι η γνωστή σιγμοειδής συνάρτηση S, όπου: 1 S( x) = 1 + e x

3 Σε κάποια στιγμή εκπαίδευσής του για την εκμάθηση του προτύπου [0.0,1.0] τα βάρη των συνδέσεων μεταξύ των κόμβων έχουν πάρει τις παρακάτω τιμές: w 13 =0.1, w 14 =0.2, w 23 =0.2, w 24 =0.1, w 35 =-0.1 και w 45 = Ζητούνται αναλυτικά: a. Να υπολογιστεί η έξοδος του ΤΝΔ για το πρότυπο [0.0,1.0]. b. Να βρεθούν οι νέες τιμές των βαρών w για το αμέσως επόμενο κύκλο εκπαίδευσης βάσει της μεθόδου οπισθοδιάδοσης του λάθους. c. Με τις νέες τιμές των βαρών να υπολογίσετε εκ νέου την έξοδο του ΤΝΔ για το πρότυπο [0.0,1.0]. Τι παρατηρείτε; Να πραγματοποιήσετε τους υπολογισμούς με ακρίβεια 3 δεκαδικών ψηφίων. Θέμα 3: Υλοποίηση του Αλγόριθμου Πίσω Διάδοσης του Λάθους Στο αρχείο BackPropagation_PatternMode.c που επισυνάπτεται, υπάρχει ο κώδικας σε C που υλοποιεί τον αλγόριθμο Πίσω Διάδοσης του Λάθους, για πολύ-επίπεδα Νευρωνικά Δίκτυα εμπρόσθιας τροφοδότησης. Ο κώδικας είναι γενικός (μπορεί να χρησιμοποιηθεί για την επίλυση διαφόρων προβλημάτων). Στη συγκεκριμένη υλοποίηση επικεντρώνεται στην επίλυση του προβλήματος της Ίριδας. Το πρόβλημα ταξινόμησης των λουλουδιών της Ίριδας (Iris plant problem) είναι ίσως το πιο γνωστό πρόβλημα στο χώρο της αναγνώρισης προτύπων (pattern recognition). Περιέχει τρεις (3) κατηγορίες λουλουδιών, με κάθε κατηγορία να αποτελείται από πενήντα (50) δείγματα (άρα ο συνολικός αριθμός δειγμάτων είναι 150). Κάθε μια από τις κατηγορίες αναφέρεται και σε έναν τύπο του φυτού της Ίριδας (Iris-setosa, Irisversicolor, Iris-virginica). Κάθε κατηγορία είναι γραμμικά ανεξάρτητη από τις άλλες δύο, οι οποίες όμως δεν είναι γραμμικά ανεξάρτητες μεταξύ τους. Οι ιδιότητες, με βάση τις οποίες, γίνεται ο διαχωρισμός των λουλουδιών είναι 4 και παίρνουν πραγματικές τιμές. Τα δεδομένα του προβλήματος της Ίριδας υπάρχουν σε μορφή πίνακα στο αρχείο «IRIS Plant Problem.xls». Για την μεταγλώττιση του κώδικα έχει χρησιμοποιηθεί το σύστημα lcc που διατίθεται ελεύθερα από τον διαδικτυακό τόπο: Εκτός από αυτόν τον compiler μπορεί να χρησιμοποιηθεί και οποιοσδήποτε άλλος compiler που υποστηρίζει C. Στο αρχείο Οdigies_lcc.doc υπάρχουν οδηγίες για το πως μεταγλωττίζουμε και εκτελούμε ένα πρόγραμμα στον lcc. Θέμα 3α. Τεκμηρίωση κώδικα Μελετήστε προσεκτικά τον κώδικα και περιγράψτε τη λειτουργία του σε μορφή ψευδοκώδικα δίνοντας έμφαση στον αλγόριθμο Πίσω διάδοσης του Λάθους όπως αυτός υλοποιείται στον κώδικα. Δηλαδή στον ψευδοκώδικα που θα γράψετε θα πρέπει να περιγράφετε τον αλγόριθμο Πίσω Διάδοσης (όπως αυτός έχει υλοποιηθεί στον κώδικα) αγνοώντας δευτερεύουσες λειτουργίες του κώδικα (όπως για παράδειγμα το «διάβασμα» του συνόλου εκπαίδευσης κ.λπ.) Θέμα 3β. Εκπαίδευση σε batch mode

4 Όπως θα έχετε διαπιστώσει από τη μελέτη του κώδικα, αυτός έχει υλοποιηθεί για να υποστηρίζει εκπαίδευση σε pattern mode (δηλαδή τα βάρη του δικτύου ενημερώνονται μετά από την παρουσίαση κάθε δείγματος). Στο θέμα αυτό σας ζητείτε να προσθέσετε στον κώδικα τη δυνατότητα για εκπαίδευση του δικτύου και σε batch mode. Στην περίπτωση της εκπαίδευσης σε Batch Mode η ενημέρωση των βαρών γίνεται αφού έχει περάσει όλο το σύνολο εκπαίδευσης και όχι μετά από κάθε pattern. Συγκεκριμένα, θα υλοποιήσετε μια εκδοχή της εκπαίδευσης σε batch mode που λειτουργεί ως εξής: Για κάθε δείγμα του σύνολου εκπαίδευσης υπολογίζουμε το λάθος στην έξοδο (εμπρός πέρασμα Αλγορίθμου Πίσω διάδοσης). Στη συνέχεια διαδίδουμε το λάθος προς τα πίσω (προς τα πίσω πέρασμα) και υπολογίζουμε τις μεταβολές των βαρών (Δw) για το συγκεκριμένο δείγμα. Έως εδώ, δηλαδή, λειτουργούμε με τον ίδιο τρόπο όπως και στο pattern mode. Αυτές οι μεταβολές του βάρους που προκαλεί κάθε δείγμα του συνόλου εκπαίδευσης (training set) αθροίζονται και υπολογίζεται μια «συνολική» μεταβολή του βάρους (Δw) για όλο το δείγμα εκπαίδευσης. Τέλος ενημερώνονται τα βάρη του δικτύου σύμφωνα με τη σχέση: wt ( + 1) = wt ( ) +Δ wt ( )(Εδώ, για λόγους ευκολίας στην υλοποίηση δεν χρησιμοποιούμε momentum term). Θέμα 3γ. Σύγκριση pattern και batch mode Συγκρίνετε τις δύο μεθόδους εκπαίδευσης (pattern mode και batch mode) πραγματοποιώντας πειράματα χρησιμοποιώντας τις τιμές των παραμέτρων που υπάρχουν στον αλγόριθμο. Κάντε γραφική παράσταση του μέτρου του λάθους (του Mean Square Error) για το training set και για το test set ως προς τα βήματα εκπαίδευσης, για την περίπτωση της εκπαίδευσης σε pattern mode και για την περίπτωση της εκπαίδευσης σε batch mode. Τι παρατηρείτε από τις γραφικές παραστάσεις για τις δύο μεθόδους; Θέμα 4. Περιβάλλον προγραμματισμού WEKA To Weka είναι ένα περιβάλλον ανάπτυξης αλγορίθμων και εφαρμογών μηχανικής μάθησης που έχει αναπτυχθεί σε Java και διατίθεται ελεύθερα. Το Weka έχει αναπτυχθεί και συνεχίζει να αναπτύσσεται στο Πανεπιστήμιο του Waikato στη Νέα Ζηλανδία και το όνομά του προέρχεται από τα αρχικά των: Waikato Environment for Knowledge Analysis. Περιλαμβάνει υλοποιήσεις πολλών γνωστών αλγορίθμων μηχανικής μάθησης. Στην εργασία αυτή θα ασχοληθούμε μόνο με τους αλγορίθμους μηχανικής μάθησης που υλοποιούν Νευρωνικά Δίκτυα, και συγκεκριμένα με τα πολύεπίπεδα Perceptrons που εκπαιδεύονται με τον αλγόριθμο Πίσω-Διάδοσης του Λάθους. Στο αρχείο parasites.txt που επισυνάπτεται, υπάρχουν μετρήσεις που ελήφθησαν σε ζωντανούς παρασιτικούς οργανισμούς ενός είδους με τη βοήθεια μικροσκοπίου. Οι οργανισμοί αυτοί κατατάχθηκαν με τη βοήθεια έμπειρου παρασιτολόγου σε 5 υποκατηγορίες (cooperia, haemonchus, oesophagostomum, ostertagia, trichostrongylus). Για την ταξινόμησή τους στις αντίστοιχες υποκατηγορίες χρησιμοποιούνται 5 ποσοτικές μετρήσεις που πραγματοποιήθηκαν με λογισμικό

5 επεξεργασίας εικόνας. Οι μετρήσεις αυτές είναι: Εμβαδόν, περίμετρος, πλάτος σώματος, ολικό μήκος, μήκος ουράς. Στο θέμα αυτό καλείστε να εκπαιδεύσετε ένα Τεχνητό Νευρωνικό Δίκτυο για την ταξινόμηση του δοθέντος δείγματος με χρήση του λογισμικού WEKA. Θέμα 4α. Προετοιμασία και ανάλυση του δείγματος για εκπαίδευση Δημιουργείστε το κατάλληλο αρχείο *.arff για την εκπαίδευση του ΤΝΔ στο περιβάλλον του WEKA με βάση το αρχείο parasites.txt. Φορτώστε το αρχείο που δημιουργήσατε. Μπορεί το πρόβλημα αυτό να λυθεί με ένα ΤΝΔ απλού αισθητήρα (perceptron); Δικαιολογήστε την απάντησή σας αξιολογώντας τα διαγράμματα από την επιλογή visualize του WEKA. Θέμα 4β. Δοκιμαστικές εκπαιδεύσεις Μια συνήθης τακτική, όπως είδαμε και παραπάνω, στην εκπαίδευση των ΤΝΔ είναι να διαχωρίζουμε τα δείγματα που έχουμε σε σύνολο εκπαίδευσης (π.χ. 60% του ολικού δείγματος) και σε σύνολο δοκιμής (το υπόλοιπο 40%). Με τον τρόπο αυτό έχουμε τη δυνατότητα να δοκιμάσουμε το βαθμό εκπαίδευσης σε ένα σύνολο παρουσιάζοντας πρότυπα στα οποία δεν έχει εκπαιδευτεί. Για τις δοκιμαστικές εκπαιδεύσεις σε αυτό το θέμα θα ακολουθήσουμε την τεχνική αυτή. Ένα κριτήριο για το πόσο καλά έχει εκπαιδευτεί ένα ΤΝΔ είναι η τιμή RMSE (Root Mean Square Error) πρόκειται για την τετραγωνική ρίζα του Mean Squared Error. Το Weka δίνει σαν κριτήριο απόδοσης το RMSE, οπότε θα το χρησιμοποιήσουμε για την εκτίμηση εκμάθησης του προβλήματος από το Νευρωνικό μας Δίκτυο. Όσο πιο μικρή είναι αυτή η τιμή, τόσο καλύτερα έχει «μάθει» το δίκτυο το σύνολο των προτύπων στο οποία εκπαιδεύεται. Επιπλέον, η μήτρα σύγχυσης (confusion matrix) ή αλλιώς πίνακας ενδεχομένων συνοψίζει τα αποτελέσματα μετά τη παρουσίαση του συνόλου δοκιμής στο ΤΝΔ. Στην διαγώνιό της παρουσιάζονται τα πρότυπα που έχουν ταξινομηθεί σωστά ανά κλάση και στις υπόλοιπες θέσεις τα πρότυπα που έχουν ταξινομηθεί λανθασμένα. Το Weka παρουσιάζει τον πίνακα κατά τη διαδικασία δοκιμής ενός ΤΝΔ και διευκολύνει το χρήστη να αντιληφθεί την ταξινόμηση των προτύπων ανά κλάσεις. Με βάση τα παραπάνω: Δημιουργείστε ένα πολυ-επίπεδο ΤΝΔ με 4 νευρώνες στο μεσαίο επίπεδο με τις παρακάτω μεταβλητές εκπαίδευσης. Κύκλοι εκπαίδευσης Learning epoch=500, ρυθμό εκπαίδευσης learning rate=0.3, και σταθερά momentum m=0.2. Επιλέξτε χωρισμό του δείγματος ώστε το 66% να αποτελεί το σύνολο εκπαίδευσης και το υπόλοιπο 34% να είναι το σύνολο δοκιμής. (Επιλογή percentage split στο test options του WEKA). Με βάση τη μήτρα σύγχυσης (confusion matrix) και το Root mean squared error απαντήστε τα παρακάτω: 1.Τι αποτελέσματα έχουμε όσον αφορά την εκμάθηση του συνόλου εκπαίδευσης; Τι παρατηρείτε όσον αφορά τις κλάσεις;

6 2. Δοκιμάστε να αυξήσετε τον αριθμό που ορίζει τους κύκλους εκπαίδευσης στο 1000, 1500, 2500 κρατώντας τις υπόλοιπες παραμέτρους του αρχικού ΤΝΔ σταθερές. Τι παρατηρείτε όσον αφορά την εκπαίδευση του συνόλου; 3. Δοκιμάστε να αυξήσετε το ρυθμό εκπαίδευσης στο 0.5, 0.8, 1.0 κρατώντας τις υπόλοιπες παραμέτρους του αρχικού ΤΝΔ σταθερές. Τι παρατηρείτε όσον αφορά την εκπαίδευση του συνόλου; 4. Επαναλάβετε την εκπαίδευση όπως στο υποερώτημα 3 θέτοντας τώρα τη σταθερά momentum ίση με 0.9. Εξηγείστε τι συμβαίνει. Θέμα 4γ. ΤΝΔ για ταξινόμηση παρασιτικών οργανισμών Δημιουργήστε ένα ΤΝΔ στο περιβάλλον WEKA με ένα κρυφό επίπεδο που θα εκπαιδευτεί με τη μέθοδο οπισθοδιάδοσης του λάθους σε 500 κύκλους εκπαίδευσης, ώστε να αντιμετωπίζει το πρόβλημα κατάταξης των παρασίτων του δείγματός μας με ποσοστό επιτυχίας 100%. Να επιλέξετε χωρισμό του δείγματος ώστε το 66% να αποτελεί το σύνολο εκπαίδευσης και το υπόλοιπο 34% να είναι το σύνολο δοκιμής. Για να περιγράψετε ακριβώς το ΤΝΔ που θα δημιουργήσετε αρκεί να δώσετε τις παρακάτω παραμέτρους του: Αριθμό νευρώνων στο κρυφό επίπεδο, ρυθμό εκπαίδευσης και σταθερά momentum.

7 Κριτήρια αξιολόγησης: Θέμα 1. Πολύ-επίπεδα Perceptrons 15 1.α Συμπλήρωση Πίνακα 5 1.β Περιοχές Απόφασης 10 Θέμα 2. Ο Αλγόριθμος Πίσω Διάδοσης του Λάθους για Πολύ-επίπεδα Perceptrons 2.α Υπολογισμός εξόδου δικτύου 5 2.β Υπολογισμός βαρών 10 2.γ Υπολογισμός νέας εξόδου δικτύου 5 Θέμα 3. Υλοποίηση του Αλγορίθμου Πίσω Διάδοσης του Λάθους 35 3.α Τεκμηρίωση Κώδικα 10 3.β Εκπαίδευση σε Batch Mode 15 3.γ Σύγκριση Pattern Mode και Batch Mode 10 Θέμα 4. Περιβάλλον προγραμματισμού WEKA 30 4.α Προετοιμασία και ανάλυση του δείγματος για εκπαίδευση 10 4.β Δοκιμαστικές εκπαιδεύσεις 15 4.γ ΤΝΔ για ταξινόμηση παρασιτικών οργανισμών 5 ΣΥΝΟΛΟ 100 Ο συνολικός βαθμός θα διαιρεθεί δια 10, ώστε να προκύψει ο τελικός βαθμός της εργασίας. 20 Τρόπος Ημερομηνία Παράδοσης Η εργασία σας θα πρέπει να έχει φτάσει στον Καθηγητή-Σύμβουλό σας μέχρι την Κυριακή 27/03/2005 ώρα 23:00. Περιμένουμε όλες οι εργασίες να αποσταλούν μέσω και να είναι γραμμένες σε επεξεργαστή κειμένου MS Word. Τα τμήματα κώδικα θα βρίσκονται σε ξεχωριστά αρχεία και θα αναφέρονται στο κείμενο της εργασίας. Στον Καθηγητή-Σύμβουλό σας, σε κάθε περίπτωση, στέλνετε ΕΝΑ μόνο αρχείο (συμπιεσμένο) το οποίο θα περιέχει όλα τα αρχεία της εργασίας. Δεν θα δοθεί παράταση στην παράδοση της εργασίας πέραν της ως άνω αναφερόμενης ημέρας και ώρας, για κανένα λόγο. Την Τρίτη 29/03/2005 ώρα 13:00, θα δημοσιευθεί πρότυπη απάντηση για την επίλυση της εργασίας στο διαδίκτυο. Καλή Επιτυχία!

Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Μάθηση και Γενίκευση. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ Δ.Π.Μ.Σ: «Εφαρμοσμένες Μαθηματικές Επιστήμες» 2008

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 4: Μάθηση στον απλό τεχνητό νευρώνα (2)

Υπολογιστική Νοημοσύνη. Μάθημα 4: Μάθηση στον απλό τεχνητό νευρώνα (2) Υπολογιστική Νοημοσύνη Μάθημα 4: Μάθηση στον απλό τεχνητό νευρώνα (2) Ο κανόνας Δέλτα για συνεχείς συναρτήσεις ενεργοποίησης (1/2) Για συνεχείς συναρτήσεις ενεργοποίησης, θα θέλαμε να αλλάξουμε περισσότερο

Διαβάστε περισσότερα

Πληροφορική 2. Τεχνητή νοημοσύνη

Πληροφορική 2. Τεχνητή νοημοσύνη Πληροφορική 2 Τεχνητή νοημοσύνη 1 2 Τι είναι τεχνητή νοημοσύνη; Τεχνητή νοημοσύνη (AI=Artificial Intelligence) είναι η μελέτη προγραμματισμένων συστημάτων τα οποία μπορούν να προσομοιώνουν μέχρι κάποιο

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΑ σε ΝΕΥΡΩΝΙΚΑ

ΕΡΩΤΗΜΑΤΑ σε ΝΕΥΡΩΝΙΚΑ ηµήτρης Ψούνης ΠΛΗ3, Απαντήσεις Quiz σε ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΕΡΩΤΗΜΑΤΑ σε ΝΕΥΡΩΝΙΚΑ Μάθηµα 3. ΕΡΩΤΗΜΑ Ένας αισθητήρας µπορεί να µάθει: a. εδοµένα που ανήκουν σε 5 διαφορετικές κλάσεις. b. εδοµένα που ανήκουν

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. TMHMA ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ. Εξάμηνο 5ο Οικονόμου Παναγιώτης & Ελπινίκη Παπαγεωργίου. Νευρωνικά Δίκτυα.

Τεχνητή Νοημοσύνη. TMHMA ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ. Εξάμηνο 5ο Οικονόμου Παναγιώτης & Ελπινίκη Παπαγεωργίου. Νευρωνικά Δίκτυα. Τεχνητή Νοημοσύνη. TMHMA ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ Εξάμηνο 5ο Οικονόμου Παναγιώτης & Ελπινίκη Παπαγεωργίου. Νευρωνικά Δίκτυα. 1 ΤΕΧΝΗΤΑ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Χαρακτηριστικά Είδη εκπαίδευσης Δίκτυα

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί Ενδεικτικός Προγραμματισμός ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί 12 περίοδοι Δείκτες επιτυχίας: Ορίζουν την έννοια της νιοστής ρίζας ενός αριθμού α και αποδεικνύουν τις ιδιότητες ριζών, όταν ν N, ν 0, 1, α R

Διαβάστε περισσότερα

Νευρωνικά ίκτυα και Εξελικτικός. Σηµερινό Μάθηµα. επανάληψη Γενετικών Αλγορίθµων 1 η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές

Νευρωνικά ίκτυα και Εξελικτικός. Σηµερινό Μάθηµα. επανάληψη Γενετικών Αλγορίθµων 1 η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές Νευρωνικά ίκτυα και Εξελικτικός Προγραµµατισµός Σηµερινό Μάθηµα επανάληψη Γενετικών Αλγορίθµων η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές Κωδικοποίηση Αντικειµενική Συνάρτ Αρχικοποίηση Αξιολόγηση

Διαβάστε περισσότερα

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων Δρ. Ε. Χάρου Πρόγραμμα υπολογιστικής ευφυίας Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών ΕΚΕΦΕ ΔΗΜΟΚΡΙΤΟΣ exarou@iit.demokritos.gr Μηχανική

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΠΜΣ : ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΡΟΗ ΠΙΘΑΝΟΝΤΗΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΓΑΣΙΑ 08: ΕΙΡΗΝΗ ΛΥΓΚΩΝΗ 1 Ο ΣΤΑΔΙΟ: Πριν εφαρμόσουμε οποιοδήποτε αλγόριθμο

Διαβάστε περισσότερα

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση

Διαβάστε περισσότερα

Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα

Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Πολυεπίπεδες Perceptron Οαλγόριθµος

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Εισαγωγή στους Νευρώνες. Κυριακίδης Ιωάννης 2013

Εισαγωγή στους Νευρώνες. Κυριακίδης Ιωάννης 2013 Εισαγωγή στους Νευρώνες Κυριακίδης Ιωάννης 2013 Τι είναι τα Τεχνητά Νευρωνικά Δίκτυα; Είναι μια προσπάθεια μαθηματικής προσομοίωσης της λειτουργίας του ανθρώπινου εγκεφάλου. Είναι ένα υπολογιστικό μοντέλο

Διαβάστε περισσότερα

ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ

ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ Κατευθυνόμενη ταξινόμηση (supervsed cassfcaton) Μη-κατευθυνόμενη ταξινόμηση (unsupervsed cassfcaton) Γραμμική: Lnear Dscrmnant Anayss Μη- Γραμμική: Νευρωνικά δίκτυα κλπ. Ιεραρχική

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 (Α) Σημειώστε δίπλα σε κάθε πρόταση «Σ» ή «Λ» εφόσον είναι σωστή ή λανθασμένη αντίστοιχα. 1. Τα συντακτικά λάθη ενός προγράμματος

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΑΦΑΙΡΕΣΗ ΜΕ ΧΑΛΑΣΜΑ ΔΕΚΑΔΑΣ

ΕΝΟΤΗΤΑ 4 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΑΦΑΙΡΕΣΗ ΜΕ ΧΑΛΑΣΜΑ ΔΕΚΑΔΑΣ ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΑΦΑΙΡΕΣΗ ΜΕ ΧΑΛΑΣΜΑ ΔΕΚΑΔΑΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.11 Αναπαριστούν καταστάσεις πρόσθεσης, αφαίρεσης, πολλαπλασιασμού, τέλειας και ατελούς διαίρεσης,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ31 (2005-6) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 Στόχος Η εργασία επικεντρώνεται σε θέματα προγραμματισμού για Τεχνητή Νοημοσύνη και σε πρακτικά θέματα εξάσκησης σε Κατηγορηματική Λογική. Θέμα 1: Απλές Αναζητήσεις

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδημαϊκό έτος 2010-11 Χειμερινό Εξάμηνο Practice final exam 1. Έστω ότι για

Διαβάστε περισσότερα

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2012-2013

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2012-2013 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2012-2013 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α Α1. Το πρόβλημα των τεσσάρων χρωμάτων

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα & Περιβάλλον

Πληροφοριακά Συστήματα & Περιβάλλον ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Πληροφοριακά Συστήματα & Περιβάλλον Ενότητα 8: Τεχνητά Νευρωνικά Δίκτυα Παναγιώτης Λεφάκης Δασολογίας & Φυσικού Περιβάλλοντος Άδειες Χρήσης

Διαβάστε περισσότερα

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου;

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 5.1 Επίδοση αλγορίθμων Μέχρι τώρα έχουμε γνωρίσει διάφορους αλγόριθμους (αναζήτησης, ταξινόμησης, κ.α.). Στο σημείο αυτό θα παρουσιάσουμε ένα τρόπο εκτίμησης της επίδοσης (performance) η της αποδοτικότητας

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ ΣΤΟ ΕΝΙΑΙΟ ΛΥΚΕΙΟ

ΠΛΗΡΟΦΟΡΙΚΗ ΣΤΟ ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΠΛΗΡΟΦΟΡΙΚΗ ΣΤΟ ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΛΥΚΕΙΟΥ Σεπτέμβριος 2007 ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ - Α ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ Το μάθημα της Πληροφορικής στην Α Λυκείου έχει ως

Διαβάστε περισσότερα

1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩΓΗ (Προγραμματισμός & MATLAB)

1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩΓΗ (Προγραμματισμός & MATLAB) ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΜΕ Η/Υ 1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩΓΗ (Προγραμματισμός & MATLAB) Ν.Δ. Λαγαρός Μ. Φραγκιαδάκης Α. Στάμος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

J-GANNO. Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β, Φεβ.1998) Χάρης Γεωργίου

J-GANNO. Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β, Φεβ.1998) Χάρης Γεωργίου J-GANNO ΓΕΝΙΚΕΥΜΕΝΟ ΠΑΚΕΤΟ ΥΛΟΠΟΙΗΣΗΣ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΙΚΤΥΩΝ ΣΤΗ ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ JAVA Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β,

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ

ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ Η ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΟ ΛΥΚΕΙΟ Εισαγωγή Η μεγάλη ανάπτυξη και ο ρόλος που

Διαβάστε περισσότερα

Περι-γράφοντας... βρόχους

Περι-γράφοντας... βρόχους Όνομα(τα): Όνομα Η/Υ: Σ Τμήμα: Ημερομηνία: Περι-γράφοντας... βρόχους Ξεκινήστε το Χώρο Δραστηριοτήτων, επιλέξτε τη θεματική ενότητα: ΘΕ05: Επανάληψη και επιλέξτε την πρώτη δραστηριότητα (Περι-γράφοντας...

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 21 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες Το παρακάτω σύνολο

Διαβάστε περισσότερα

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός του μέτρου της στιγμιαίας ταχύτητας και της επιτάχυνσης ενός υλικού σημείου

Διαβάστε περισσότερα

53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η

53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η 53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η ΠΑΓΚΡΑΤΙ: Φιλολάου & Εκφαντίδου 26 : 210/76.01.470 210/76.00.179 ΘΕΜΑ Α [Α.1.1]. Από ποιους παράγοντες εξαρτάται η επιλογή της

Διαβάστε περισσότερα

1.1 Δραστηριότητα: Εισαγωγή στις άπειρες διαδικασίες

1.1 Δραστηριότητα: Εισαγωγή στις άπειρες διαδικασίες 1.1 Δραστηριότητα: Εισαγωγή στις άπειρες διαδικασίες Θέμα της δραστηριότητας Η δραστηριότητα αυτή είναι μια εισαγωγή στις άπειρες διαδικασίες. Η εισαγωγή αυτή επιτυγχάνεται με την εφαρμογή της μεθόδου

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (Θ.Ε. ΠΛΗ 12) 6Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ - ΕΝΗΜΕΡΩΜΕΝΗ ΜΟΡΦΗ Ημερομηνία Αποστολής της εργασίας στον Φοιτητή 5 Μαϊου 2014

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Δομές Δεδομένων. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος

Προγραμματισμός Η/Υ. Δομές Δεδομένων. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Προγραμματισμός Η/Υ Δομές Δεδομένων ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Δομές Δεδομένων Τα δεδομένα ενός προβλήματος αποθηκεύονται στον υπολογιστή,

Διαβάστε περισσότερα

«Τεχνογλωσσία VIII» Εξαγωγή πληροφοριών από κείμενα

«Τεχνογλωσσία VIII» Εξαγωγή πληροφοριών από κείμενα «Τεχνογλωσσία VIII» Εξαγωγή πληροφοριών από κείμενα Σεμινάριο 8: Χρήση Μηχανικής Μάθησης στην Εξαγωγή Πληροφορίας Ευάγγελος Καρκαλέτσης, Γεώργιος Πετάσης Εργαστήριο Τεχνολογίας Γνώσεων & Λογισμικού, Ινστιτούτο

Διαβάστε περισσότερα

ΑΕΠΠ Ερωτήσεις θεωρίας

ΑΕΠΠ Ερωτήσεις θεωρίας ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος

Διαβάστε περισσότερα

ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δρ. Κόννης Γιώργος Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής Προγραμματισμός Στόχοι 1 Να περιγράψουμε τις έννοιες του Υπολογιστικού Προβλήματος και του Προγράμματος/Αλγορίθμου

Διαβάστε περισσότερα

Tεχνητή Νοημοσύνη Εφαρμογές

Tεχνητή Νοημοσύνη Εφαρμογές ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΟΔΗΓΟΣ ΣΠΟΥΔΩΝ ΓΙΑ ΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Tεχνητή Νοημοσύνη Εφαρμογές ΠΛΗ31 ΠΑΤΡΑ 2003 Πριν αρχίσετε τη μελέτη του έντυπου αυτού, είναι απαραίτητο να διαβάσετε προσεκτικά τον

Διαβάστε περισσότερα

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5.1 Εισαγωγή στους αλγορίθμους 5.1.1 Εισαγωγή και ορισμοί Αλγόριθμος (algorithm) είναι ένα πεπερασμένο σύνολο εντολών οι οποίες εκτελούν κάποιο ιδιαίτερο έργο. Κάθε αλγόριθμος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΛΟΓΙΣΜΙΚΟΥ Η γλώσσα προγραμματισμού C ΕΡΓΑΣΤΗΡΙΟ 2: Εκφράσεις, πίνακες και βρόχοι 14 Απριλίου 2016 Το σημερινό εργαστήριο

Διαβάστε περισσότερα

Θερμοδυναμική - Εργαστήριο

Θερμοδυναμική - Εργαστήριο Θερμοδυναμική - Εργαστήριο Ενότητα 4: Σφάλματα περικοπής (truncation) και η σειρά Taylor Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος,

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος, . ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Τηλ 0676-7 /0600 Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Να συμπληρωθούν τα κενά ώστε στην κατακόρυφη στήλη να προκύψει το έτος γέννησης σας : +....= 9.. = ( -

Διαβάστε περισσότερα

Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού

Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού Κινητά Δίκτυα Επικοινωνιών Συμπληρωματικό υλικό Προσαρμοστική Ισοστάθμιση Καναλιού Προσαρμοστικοί Ισοσταθμιστές Για να υπολογίσουμε τους συντελεστές του ισοσταθμιστή MMSE, απαιτείται να λύσουμε ένα γραμμικό

Διαβάστε περισσότερα

3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON

3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON 3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPRON 3. ΕΙΣΑΓΩΓΗ: Το Perceptron είναι η απλούστερη μορφή Νευρωνικού δικτύου, το οποίο χρησιμοποιείται για την ταξινόμηση ενός ειδικού τύπου προτύπων, που είναι γραμμικά διαχωριζόμενα.

Διαβάστε περισσότερα

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 8: Πρόβλημα Βυζαντινών Στρατηγών ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Ορισμός Προβλήματος Τι θα δούμε σήμερα Συνθήκες Συμφωνίας κάτω από Βυζαντινό Στρατηγό Πιθανοτικοί αλγόριθμοι επίλυσης Βυζαντινής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 4 Ιουνίου 009 Θέμα (0 μονάδες) α) (7 μον) Για τις διάφορες τιμές του k R, να λυθεί το σύστημα y+ kz =

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ).

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ). ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 0 ΜΑΪΟΥ 016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ() ΘΕΜΑ

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ )

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ ) Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ. 25 48) Τι είναι αλγόριθμος; Γ ΛΥΚΕΙΟΥ Αλγόριθμος είναι μία πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρονικό διάστημα,

Διαβάστε περισσότερα

Πληροφορική ΙΙ Ενότητα 1

Πληροφορική ΙΙ Ενότητα 1 Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Πληροφορική ΙΙ Ενότητα 1: Εισαγωγή Θεματική Ενότητα: Εισαγωγή στον Προγραμματισμό Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΠΕΡΙΕΧΟΜΕΝΑ Μέτρα θέσης και διασποράς (Εισαγωγή) Μέση τιμή Διάμεσος Σταθμικός μέσος Επικρατούσα τιμή Εύρος Διακύμανση Τυπική απόκλιση Συντελεστής μεταβολής Κοζαλάκης

Διαβάστε περισσότερα

Κεφάλαιο 2.3: Προγραμματισμός. Επιστήμη ΗΥ Κεφ. 2.3 Καραμαούνας Πολύκαρπος

Κεφάλαιο 2.3: Προγραμματισμός. Επιστήμη ΗΥ Κεφ. 2.3 Καραμαούνας Πολύκαρπος Κεφάλαιο 2.3: Προγραμματισμός 1 2.3.1 Αναφορά σε γλώσσες προγραμματισμού και «Προγραμματιστικά Υποδείγματα» 2.3.1.1 Πρόγραμμα και Γλώσσες Προγραμματισμού Πρόγραμμα: σύνολο εντολών που χρειάζεται να δοθούν

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη και την επιστημονική μέθοδο

Εισαγωγή στην επιστήμη και την επιστημονική μέθοδο Εισαγωγή στην επιστήμη και την επιστημονική μέθοδο I. Τι είναι η επιστήμη; A. Ο στόχος της επιστήμης είναι να διερευνήσει και να κατανοήσει τον φυσικό κόσμο, για να εξηγήσει τα γεγονότα στο φυσικό κόσμο,

Διαβάστε περισσότερα

Ι. Preprocessing (Επεξεργασία train.arff):

Ι. Preprocessing (Επεξεργασία train.arff): Ονοματεπώνυμο: Κατερίνα Αργύρη Δ.Π.Μ.Σ: Εφαρμοσμένες Μαθηματικές Επιστήμες Ακαδ. Έτος: 2008-2009 1 Για την παρούσα εργασία διατίθενται τρία σύνολα δεδομένων: Δεδομένα Εκπαίδευσης (train set αρχείο train.arff):

Διαβάστε περισσότερα

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Μ ΑΪΟΥ 2002 2004 Δ ΕΥΤΕΡΟ ΜΕΡΟΣ Π ΕΡΙΛΗΨΗ: Η μελέτη αυτή έχει σκοπό να παρουσιάσει και να ερμηνεύσει τα ευρήματα που προέκυψαν από τη στατιστική

Διαβάστε περισσότερα

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης Μάθημα 4 ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Διευρυμένη Υπολογιστική Νοημοσύνη (ΥΝ) Επεκτάσεις της Κλασικής ΥΝ. Μεθοδολογίες

Διαβάστε περισσότερα

Νευρωνικά ίκτυα. Σηµερινό Μάθηµα

Νευρωνικά ίκτυα. Σηµερινό Μάθηµα Νευρωνικά ίκτυα Σηµερινό Μάθηµα Perceptron (Αισθητήρας) Aλγόριθµος µάθησης του Perceptron Οι εξισώσεις των Wiener-Hopf Μέθοδος Ταχύτερης Καθόδου (Steepest Descent) Οαλγόριθµος Ελάχιστου Μέσου Τετραγωνικού

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 27 ΜΑΪΟΥ 2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το

Διαβάστε περισσότερα

Ορολογία Αλγόριθμος, υπολογιστική σκέψη, αλγοριθμική σκέψη, αποδοτικότητα, δοκιμή.

Ορολογία Αλγόριθμος, υπολογιστική σκέψη, αλγοριθμική σκέψη, αποδοτικότητα, δοκιμή. Το παζλ ανταλλαγής Ηλικίες: 7 ενήλικες Προαπαιτούμενες δεξιότητες: Καμία Χρόνος: 50-60 λεπτά Μέγεθος ομάδας: 8 με 30 Εστίαση Τι είναι αλγόριθμος; Δοκιμή Αποδοτικότητα αλγορίθμων Υπολογιστική και αλγοριθμική

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα #2: Αναπαράσταση δεδομένων Αβεβαιότητα και Ακρίβεια Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Αναπαράσταση δεδομένων (Data Representation), Αβεβαιότητα

Διαβάστε περισσότερα

Η ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ. Περιμένης Κυριάκος Καθηγητής Τεχνολογίας Υπ/ντής 3 ου ΓΕΛ Κερατσινίου perimeniskiriakos@windowslive.

Η ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ. Περιμένης Κυριάκος Καθηγητής Τεχνολογίας Υπ/ντής 3 ου ΓΕΛ Κερατσινίου perimeniskiriakos@windowslive. Η ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ Περιμένης Κυριάκος Καθηγητής Τεχνολογίας Υπ/ντής 3 ου ΓΕΛ Κερατσινίου perimeniskiriakos@windowslive.com Ο Ρόλος του Εκπαιδευτικού Στηρίζει τους μαθητές στην αξιοποίηση

Διαβάστε περισσότερα

Σχεδιασµός βασισµένος σε συνιστώσες

Σχεδιασµός βασισµένος σε συνιστώσες Σχεδιασµός βασισµένος σε συνιστώσες 1 Ενδεικτικά περιεχόµενα του κεφαλαίου Ποια είναι τα "άτοµα", από τα οποία κατασκευάζονται οι υπηρεσίες; Πώς οργανώνουµε τις συνιστώσες σε ένα αρµονικό σύνολο; Τι είναι

Διαβάστε περισσότερα

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η (3 μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάση το συντελεστή συσχέτισης. (γράψτε ποιο

Διαβάστε περισσότερα

Άσκηση 4 Θεμελιώδης νόμος της Μηχανικής

Άσκηση 4 Θεμελιώδης νόμος της Μηχανικής Άσκηση 4 Θεμελιώδης νόμος της Μηχανικής Σύνοψη Η άσκηση αυτή διαφέρει από όλες τις άλλες. Σκοπός της είναι η πειραματική επαλήθευση του θεμελιώδους νόμου της Μηχανικής. Αυτό θα γίνει με τη γραφική ανάλυση

Διαβάστε περισσότερα

Σενάριο 13. Προγραμματίζοντας ένα Ρομπότ

Σενάριο 13. Προγραμματίζοντας ένα Ρομπότ Σενάριο 13. Προγραμματίζοντας ένα Ρομπότ Ταυτότητα Σεναρίου Τίτλος: Προγραμματίζοντας ένα Ρομπότ Γνωστικό Αντικείμενο: Πληροφορική Διδακτική Ενότητα: Ελέγχω-Προγραμματίζω τον Υπολογιστή Τάξη: Γ Γυμνασίου

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2011-2012 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α Α1. Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 1: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ - ΟΡΙΣΜΟΙ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 1: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ - ΟΡΙΣΜΟΙ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 1: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ - ΟΡΙΣΜΟΙ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών ΠΕΡΙΕΧΟΜΕΝΟ

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική Προγραμματισμός-Λειτουργικά

Εισαγωγή στην Πληροφορική Προγραμματισμός-Λειτουργικά Εισαγωγή στην Πληροφορική Προγραμματισμός-Λειτουργικά Ηλ. Γκρίνιας Τ. Ε. Ι. Σερρών Τμήμα Πληροφορικής και Επικοινωνιών Αλγόριθμοι Ορισμός: ο αλγόριθμος είναι μια σειρά από πεπερασμένα βήματα που καθορίζουν

Διαβάστε περισσότερα

Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον

Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον Κεφάλαιο 6ο Εισαγωγή στον Προγραµµατισµό Μέρος Πρώτο (6.1, 6.2 και 6.3) Α. Ερωτήσεις Σωστού Λάθους 1. Η γλώσσα µηχανής είναι µία γλώσσα υψηλού επιπέδου.

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ :

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ : ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ : ΤΑΞΗ : Β ΧΡΟΝΟΣ : 2 ΩΡΕΣ ΑΡΙΘΜΟΣ ΣΕΛΙΔΩΝ : 8 ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΤΜΗΜΑ

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η Μονοδιάστατοι Πίνακες Τι είναι ο πίνακας γενικά : Πίνακας είναι μια Στατική Δομή Δεδομένων. Δηλαδή συνεχόμενες θέσεις μνήμης, όπου το πλήθος των θέσεων είναι συγκεκριμένο. Στις θέσεις αυτές καταχωρούμε

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 4: Μεταβλητές, Δομές Ελέγχου και Επανάληψης

ΕΡΓΑΣΤΗΡΙΟ 4: Μεταβλητές, Δομές Ελέγχου και Επανάληψης ΕΡΓΑΣΤΗΡΙΟ 4: Μεταβλητές, Δομές Ελέγχου και Επανάληψης Στο εργαστήριο αυτό, θα εξοικειωθούμε με τους τύπους δεδομένων που μας παρέχει η γλώσσα C, θα χρησιμοποιήσουμε τις δομές επανάληψης (for, while, do...while),

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks

Υπολογιστική Νοημοσύνη. Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks Υπολογιστική Νοημοσύνη Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks Γενικά Ένα νευρωνικό δίκτυο λέγεται αναδρομικό, εάν υπάρχει έστω και μια σύνδεση από έναν νευρώνα επιπέδου i προς έναν νευρώνα επιπέδου

Διαβάστε περισσότερα

Κινητά Δίκτυα Υπολογιστών

Κινητά Δίκτυα Υπολογιστών Κινητά Δίκτυα Υπολογιστών Καθ. Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εξοικείωση του φοιτητή με την έννοια της προσαρμοστικής ισοστάθμισης καναλιού 2 Περιεχόμενα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΘΕΜΑ Α Α. Έστω t,t,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν,

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 18: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Εξόρυξη γνώμης πολιτών από ελεύθερο κείμενο

Εξόρυξη γνώμης πολιτών από ελεύθερο κείμενο Δίκαρος Νίκος Δ/νση Μηχανογράνωσης κ Η.Ε.Σ. Υπουργείο Εσωτερικών. Τελική εργασία Κ Εκπαιδευτικής Σειράς Ε.Σ.Δ.Δ. Επιβλέπων: Ηρακλής Βαρλάμης Εξόρυξη γνώμης πολιτών από ελεύθερο κείμενο Κεντρική ιδέα Προβληματισμοί

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Επεξεργασία Ερωτήσεων ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήματος 1. Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασμός) 2. Προγραμματισμός (Σχεσιακή Άλγεβρα, SQL) ημιουργία/κατασκευή Εισαγωγή εδομένων

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

4.4 Μετατροπή από μία μορφή δομής επανάληψης σε μία άλλη.

4.4 Μετατροπή από μία μορφή δομής επανάληψης σε μία άλλη. 4.4 Μετατροπή από μία μορφή δομής επανάληψης σε μία άλλη. Η μετατροπή μιας εντολής επανάληψης σε μία άλλη ή στις άλλες δύο εντολές επανάληψης, αποτελεί ένα θέμα που αρκετές φορές έχει εξεταστεί σε πανελλαδικό

Διαβάστε περισσότερα

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 015 ΒΑΘΜΟΣ : ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Αριθμητικά.. ΗΜΕΡΟΜΗΝΙΑ: 1/6/015 ΒΑΘΜΟΣ:... ΤΑΞΗ: Α Ολογράφως:... ΧΡΟΝΟΣ: ώρες

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

Η αβεβαιότητα στη μέτρηση.

Η αβεβαιότητα στη μέτρηση. Η αβεβαιότητα στη μέτρηση. 1. Εισαγωγή. Κάθε μέτρηση, όσο προσεκτικά και αν έχει γίνει, περικλείει κάποια αβεβαιότητα. Η ανάλυση των σφαλμάτων είναι η μελέτη και ο υπολογισμός αυτής της αβεβαιότητας στη

Διαβάστε περισσότερα

GreekLUG Ελεύθερο Λογισμικό & Λογισμικό Ανοικτού Κώδικα

GreekLUG Ελεύθερο Λογισμικό & Λογισμικό Ανοικτού Κώδικα GreekLUG Ελεύθερο Λογισμικό & Λογισμικό Ανοικτού Κώδικα Μάθημα 6ο Σουίτα Γραφείου LibreOffice 2 Ύλη Μαθημάτων V Μαθ. 5/6 : Σουίτα Γραφείου LibreOffice LibreOffice Γενικά, Κειμενογράφος - LibreOffice Writer,

Διαβάστε περισσότερα

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α) Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 14 3η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση, χρησιμοποιώντας ως δεδομένα τα στοιχεία που προέκυψαν από την 1η

Διαβάστε περισσότερα