3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON"

Transcript

1 3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPRON 3. ΕΙΣΑΓΩΓΗ: Το Perceptron είναι η απλούστερη μορφή Νευρωνικού δικτύου, το οποίο χρησιμοποιείται για την ταξινόμηση ενός ειδικού τύπου προτύπων, που είναι γραμμικά διαχωριζόμενα. - Ενα τέτοιο δίκτυο φαίνεται στο σχήμα: Σχήμα : Perceptron ενός επιπέδου - Κανόνας εκπαίδευσης: Ο κανόνας του Rosenblatt. - Moντέλο νευρώνα: Το μοντέλο Mc Culloch - Pitts Αποτελείται από ένα γραμμικό συνδυαστή ακολουθούμενο από ένα στοιχείο κατωφλίου και παράγει έξοδο με τιμή ±. - Θεωρούμε το signal - flow graph του perceptron. 6

2 - Η έξοδος του Γ.Σ. θα είναι: υ = wx i i θ p i= () - Σκοπός του perceptron είναι να ταξινομήσει ένα σύνολο εισόδων x, x, x ρ σε μία από τις κλάσεις l και l. - Ο κανόνας απόφασης θα είναι: ανάθεσε το σημείο που αναπαριστούν x, x, x ρ τα στην l, αν y = + και στην αν l y = -. - Οι περιοχές απόφασης διαχωρίζονται από το υπερεπίπεδο που ορίζεται από τη σχέση: p υ = wx i i θ= 0 i= () w x + w x - θ = 0 Στο σχήμα 3 φαίνεται η γραμμική διαχωρισιμότητα για ένα δισδιάστατο πρόβλημα ταξινόμησης, με δύο κλάσεις 63

3 Σχήμα 3 Για την προσαρμογή του w χρησιμοποιούμε ένα error - correction tule. 3. ΤΟ ΘΕΩΡΗΜΑ ΣΥΓΚΛΙΣΗΣ ΤΟΥ PERCEPRON. - Θεωρούμε ότι το κατώφλι θ(n) σαν ένα συναπτικό βάρος, που είναι συνδεδεμένο σε μια σταθερή είσοδο -. Αρα, το (p + ) x διάνυσμα εισόδου είναι: x(n) = [ -, x (n), x (n),, x p (n) ] (3) και αντίστοιχα ορίζουμε το (p + ) x διάνυσμα βαρών: w(n) = [ θ(n), w (n), w (n),, w p (n) ] (4) - H έξοδος του γραμμικού συνδυαστή είναι: υ(n) = w (n) x(n) (5) - Aν οι κλάσεις l και l είναι γραμμικά διαχωριζόμενες, τότε υπάρχει ένα διάνυσμα βαρών: και wx 0 x l () 6 wx< 0 x l - Το πρόβλημα για το απλό Perceptron είναι να βρούμε το διάνυσμα βαρών w, το οποίο ικανοποιεί τις ανισότητες (6) 64

4 Σχήμα 4: Ισοδύναμο signal - flow graph του Perceptron. - Αλγόριθμος προσαρμογής των βαρών. ) Αν το n - στό μέλος του εκπαιδευτικού διανύσματος x(n), ταξινομείται σωστά από το διάνυσμα βαρών στην η-στή επανάληψη του αγλορίθμου, δεν γίνεται καμία διόρθωση στο w(n), δηλ. w(n + ) = w(n) αν w (n) x(n) 0 και x(n) l και w(n + ) = w(n) αν w (n) x(n) < 0 και x(n) l (7) ) Διαφορετικά, το διάνυσμα βαρών του Perceptron, ενημερώνεται σύμφωνα με τον κανόνα: w(n + ) = w(n) - η(n) x(n) αν w (n) x(n) 0 και x(n) l και w(n + ) = w(n) + η(n) x(n) αν w (n) < 0 και x(n) l (8) - όπου η παράμετρος ρυθμού - μάθησης η(n) ελέγχει τις ρυθμίσεις, που εφαρμόζονται στο διάνυσμα βαρών στην επανάληψη η. - Αν η(n) = η - ct > 0, τότε έχουμε ένα κανόνα σταθερά αυξανόμενης προσαρμογής (fixed increment adaptation rule) για το Perceptron. Σύγκλιση: ) η =, o fixed increment adaption rule συγκλίνει: Απόδειξη: Για w(0) = 0, υποθέτουμε ότι w (n) x(n) < 0, για η =,, και το διάνυσμα x(n) X (το υποσύνολο των x (n), x (n) l ). 65

5 Αρα, το perceptron ταξινομεί λάθος τα x(), x(),, και (6β) παραβιάζεται. Τότε για η(n) =, έχουμε: w(n + ) = w(n) + x(n) για x(n) l (9) Eπειδή w(0) = 0, μπορούμε να λύσουμε επαναληπτικά την εξίσωση, άρα: w(n + ) = x() + x() + + x(n) (0) Επειδή οι κλάσεις l και l έχουν υποτεθεί γραμμικά διαχωριζόμενες υπάρχει μια λύση wo για την οποία w x(n) 0 για το διάνυσμα x(),, x(n) X. - Για μια fixed λύση wo, μπορούμε να υπολογίζουμε ένα θετικό αριθμό α από τη σχέση: α= min x( n) X w o x ( n) () Aρα, από την (0), πολ/τας επί w o, παίρνουμε: w o w(n + ) = w o x() + w o x() + + w o x(n) () () () w o w(n + ) na, n =,, p (3) Aπό την ανισότητα Cauchy - Schwartz έχουμε: w o w(n + ) [w o w(n + ) ] (4) (4) (3) [w o w o (n + ) ] n α w o w(n + ) n α w( n+) n α (5) w o Στη συνέχεια, ακολουθούμε μια άλλη τεχνική. Ξαναγράφουμε την (9) στη μορφή: w(k + ) = w(k) + x(k), για k =,, n και x(k) X (6) w(k + ) = w(k) + x(k) + w (k) x(k) (7) Aλλά, έχουμε υποθέσει ότι το perceptron ταξινομεί λάθος ένα διάνυσμα εισόδου x(k) X, άρα w (k) x(k) < 0 (7) w(k + ) w(k) + x(k) ή w(k + ) - w(k) x(k), k =,, n (8) - Προσθέτοντας τις ανισότητες για k =, n και επειδή w(o) = 0, έχουμε: 66

6 p i= w( n +) x( k ) n β (9) όπου β είναι μια θετική σταθερά που ορίζεται από: (0) β = max x( k) x(n) X - H ανισότητα (9) ορίζει ότι η τετραγωνική νόρμα του w(k + ) αυξάνεται γραμμικά με τον αριθμό των επαναλήψεων (n). Αυτό όμως, έρχεται σε αντίθεση με το αποτέλεσμα της (5), για ικανοποιητικά μεγάλες τιμές του n. Στην πραγματικότητα, το n δεν μπορεί να είναι μεγαλύτερο από κάποια τιμή n max, για την οποία οι σχέσεις (5) και (9) ικανοποιούνται σαν ανισότητα. Αρα, το nmax, θα είναι η λύση της εξίσωσης: nmaxα w o = n β n = max max β w o α () - Εχουμε λοιπόν, αποδείξει ότι, για η(n) = η και w(o) = 0, δοθέντος ότι υπάρχει μια λύση w ο, ο κανόνας για την προσαρμογή των βαρών του perceptron, πρέπει να τελειώσει το πολύ σε nmax επαναλήψεις. - Aπό τις (), (0) και () είναι προφανές ότι δεν υπάρχει μια μοναδική λύση για w ο ή nmax. Ορισμός του fixed - increment converigene theore m, για το perceptron ενός επιπέδου (Rosenblat, 96): Εστω ότι τα υποσύνολα Χ και Χ, του εκπαιδευτικού συνόλου Χ, είναι γραμμικά διαχωριζόμενα και έστω ότι οι είσοδοι που παρουσιάζονται στο απλό perceptron προέρχονται από αυτά τα δύο υποσύνολα. Τότε, το perceptron συγκλίνει μετά aπό μερικές επαναλήψεις η o, με την έννοια ότι: w(n o ) = w(n o + ) = w(n o + ) = είναι ένα διάνυσμα λύσης για n o n max 67

7 - Θεωρούμε στη συνέχεια τη διαδικασία απόλυτης διάρθρωσης λάθους για την προσαρμογή ενός απλού perceptron, για το οποίο το η(n) είναι μεταβλητό. - Εστω ότι η(n) είναι ο μικρότερος ακέραιος για τον οποίο: η(n) x (n) x(n) > w (n) x(n) - Σε αυτή τη διαδικασία, βρίσκουμε ότι αν το εσωτερικό γινόμενο w (n) x(n) στην η- στή επανάληψη έχει λάθος πρόσημο, τότε το w (n+) x(n) στην επανάληψη n + θα είχε το σωστό πρόσημο. - Αυτό σημαίνει ότι αν το w (n) x(n) έχει λάθος πρόσημο, πρέπει να τροποποιήσουμε την εκπαιδευτική ακολουθία στη n + επανάλειψη θέτοντας x(n+) = x(n). - Mε άλλα λόγια, κάθε πρότυπο παρουσιάζεται επαναληπτικά στο perceptron, μέχρι να ταξινομηθεί σωστά. - Σημειώνουμε επίσης ότι η χρήση της αρχικής τιμής w(0) 0, σπανίως έχει σαν αποτέλεσμα την αύξηση ή ελάττωση του αριθμού των επαναλήψεων που απαιτούνται για σύγκλιση, εξαρτώμενο από το πως το w(0) συνδέεται προς τη λύση w o. 3.3 ΑΝΑΚΕΦΑΛΑΙΩΣΗ - Στον πίνακα, παρουσιάζεται η ανακεφαλαίωση του αλγόριθμου σύγκλισης του perceptron (Lippman, 987). - Το σύμβολο sgn( ), που χρησιμοποιείται στο βήμα 3 του πίνακα, για τον υπολογισμό της πραγματικής απόκρισης του perceptron, παριστάνει την συνάρτηση προσίμου: sgn ( υ) = + αν αν υ > 0 υ < 0 () ΠΙΝΑΚΑΣ : Αλγόριθμος Σύγκλισης του Perceptron Μεταβλητές και Παράμετροι x(n) = (p + ) x input vector [-, x (n), x (n), x ρ (n) ] w(n) = (p + ) x weight vector = [ θ(n), w (n), w (n),, w p (n) ] 68

8 θ(n) = threshold (κατώφλι) y(n) = actual response (πραγματική έξοδος) d(n) = desired response (επιθυμητή έξοδος) η = learning - rate parameter, θετική σταθερά < Step : Αρχικοποίηση Θέσε w(0) = 0. Κατόπιν κάνε τους υπολογισμούς για η =,, Step : Ενεργοποίηση Στο χρόνο n, ενεργοποίησε το perceptron εφαρμόζονται το συνεχές διάνυσμα εισόδου x(n) και το d(n). Step 3: Υπολογισμός πραγματικής Απόκρισης Υπολόγισε την πραγματική απόκριση του perceptron: y(n) = sgn [w (n) x(n) ] Step 4: Προσαρμογή διανύσματος βαρών Προσάρμοσε τα βάρη του perceptron: w(n + ) = w(n) + n [d(n) - y(n) ] x(n) (E.C.L. rule) όπου: d(n) = +, αν x(n) ανήκει στην κλάση l -, αν x(n) ανήκει στην κλάση l Step 5: Aύξησε το χρόνο η κατά μια μονάδα και πήγαινε στο βήμα. Παρατήρηση: Για το n ισχύει: ο < η. Για να δώσουμε τιμές μέσα σε αυτό το διάστημα, πρέπει να θυμόμαστε δύο απαιτήσεις (Lippman), που είναι conflict (συγκρουόμενες): - Να παίρνουμε μέσες τιμές των περασμένων εισόδων για να επιτύχουμε ευσταθείς εκτιμήσεις των βαρών, που απαιτεί μικρό η. - Γρήγορη προσαρμογή σε σχέση με τις πραγματικές αλλαγές στις υποκείμενες κατανομείς της διαδικασίας που είναι υπεύθυνη για τη δημιουργία του διανύσματος εισόδου x, απαντεί μια μεγάλη τιμή για το η. 3.4 ΜΕΤΡΟ ΑΠΟΔΟΣΗΣ 69

9 Είναι προφανές μέτρο απόδοσης θα μπορούσε να είναι η μέση πιθανότητα του λάθους ταξινόμισης, που ορίζεται σαν η μέση πιθανότητα του perceptron να πάρει απόφαση υπέρ μιας κλασης, όταν το διάνυσμα εισόδου ανήκει σε άλλη κλάση. - Δυστυχώς, ένα τέτοιο μέτρο απόδοσης, δεν οδηγεί από μόνο του στην αναλυτική παραγωγή του αλγόριθμου. - Ο Shynk (990) πρότεινε τη χρήση μιας συνάρτησης απόδοσης, η οποία προσαρμόζεται στη λειτουργία του perceptron, όπως φαίνεται από την: J = -E [ e(n) υ(n) ] (6) όπου e(n) = d(n) - y(n)-, το σήμα λάθους υ(n) = η έξοδος του γραμμικού συνδυαστή - Η στιγμιαία εκτίμηση της συνάρτησης απόδοσης, είναι χρονικά μεταβαλλόμενη συνάρτηση: J( n ) = - e (n) υ(n) = - [ d (n) - y (n) ] υ (n) J( n ) (7) - o στιγμιαίο gradient vector ορίζεται σαν: w J$ (n) = J(n) w( n) (8) - Aρα, επειδή το d(n) είναι ανεξάρτητο του w(n) και το γεγονός ότι η πραγματική έξοδος y(n) έχει μια σταθερή τιμή ±, από τις (7) και () w J$ (n) = - [ d(n) - y(n) ] v(n) w( n) (9) Aπό την (5): υ(n) = w (n) x(n) u( n) w( n) = x( n) (30) Εξ ορισμού είναι: υ = w x = p υ wx i i = w i= υ w υ w : υ w p 70

10 αλλά υ w i = xi για i =,,, p άρα: υ w = x x : x p = x Aντικαθιστώντας την (30) στην (9) έχουμε το αποτέλεσμα: w J$ (n) = - [ d (n) - y (n) ] x( n ) (3) Aρα, σύμφωνα με το E.C.L. rule, μπορούμε να εκφράσουμε την αλλαγή, που εφαρμόζεται στο διάνυσμα βαρών σαν: Δ w( n ) = η J$ (n) = - η [ d(n) - y(n) ] x( n) w (3) όπου η είναι η learning - rate parameter. - Αυτό είναι ακριβώς η διόρθωση που έγινε στο διάνυσμα βαρών, καθώς προχωρούμε από την επανάλειψη n στην n +, όπως περιγράφεται από την εξίσωση (5). Αποδείξαμε λοιπόν ότι η στιγμιαία εκτίμηση της συνάρτησης απόδοσης J ( n) J(n), όπως ορίζεται από την (7), είναι πράγματι το σωστό μέτρο απόδοσης για ένα perceptron ενός επιπέδου. 7

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 3ο Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 3ο Φροντιστήριο Ασκήσεις Φροντιστηρίου 3ο Φροντιστήριο Πρόβλημα 1 ο Το perceptron ενός επιπέδου είναι ένας γραμμικός ταξινομητής προτύπων. Δικαιολογήστε αυτή την πρόταση. x 1 x 2 Έξοδος y x p θ Κατώφλι Perceptron (στοιχειώδης

Διαβάστε περισσότερα

Το μοντέλο Perceptron

Το μοντέλο Perceptron Το μοντέλο Perceptron Αποτελείται από έναν μόνο νευρώνα McCulloch-Pitts w j x x 1, x2,..., w x T 1 1 x 2 w 2 Σ u x n f(u) Άνυσμα Εισόδου s i x j x n w n -θ w w 1, w2,..., w n T Άνυσμα Βαρών 1 Το μοντέλο

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο Ασκήσεις Φροντιστηρίου 4 o Φροντιστήριο Πρόβλημα 1 ο Ο πίνακας συσχέτισης R x του διανύσματος εισόδου x( στον LMS αλγόριθμο 1 0.5 R x = ορίζεται ως: 0.5 1. Ορίστε το διάστημα των τιμών της παραμέτρου μάθησης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΕΚΠΑΙ ΕΥΣΗΣ ΑΠΟ ΑΠΟΣΤΑΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΕΚΠΑΙ ΕΥΣΗΣ ΑΠΟ ΑΠΟΣΤΑΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΕΚΠΑΙ ΕΥΣΗΣ ΑΠΟ ΑΠΟΣΤΑΣΗ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ P-INF-003 : ΠΛΗΡΟΦΟΡΙΚΗ : ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΚΠΑΙ ΕΥΤΙΚΟ ΥΛΙΚΟ ΤΡΙΤΟ ΚΕΦΑΛΑΙΟ ΣΥΓΓΡΑΦΕΙΣ

Διαβάστε περισσότερα

Νευρωνικά ίκτυα. Σηµερινό Μάθηµα

Νευρωνικά ίκτυα. Σηµερινό Μάθηµα Νευρωνικά ίκτυα Σηµερινό Μάθηµα Perceptron (Αισθητήρας) Aλγόριθµος µάθησης του Perceptron Οι εξισώσεις των Wiener-Hopf Μέθοδος Ταχύτερης Καθόδου (Steepest Descent) Οαλγόριθµος Ελάχιστου Μέσου Τετραγωνικού

Διαβάστε περισσότερα

Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron Βιολογικός Νευρώνας Δενδρίτες, που αποτελούν τις γραμμές εισόδου των ερεθισμάτων (βιολογικών σημάτων) Σώμα, στο οποίο γίνεται η συσσώρευση των ερεθισμάτων και

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Νευρώνας Perceptron Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος Τζώρτζης Γρηγόρης Περιεχόμενα Εισαγωγή

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδηµαϊκό έτος 2010-11 Χειµερινό Εξάµηνο Τελική εξέταση Τρίτη, 21 εκεµβρίου 2010,

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν.

Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης Ελαχιστοποίηση συνάρτησης σφάλματος Εκπαίδευση ΤΝΔ: μπορεί να διατυπωθεί ως πρόβλημα ελαχιστοποίησης μιας συνάρτησης σφάλματος E(w)

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 19 ης διάλεξης

Ασκήσεις μελέτης της 19 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 19 ης διάλεξης 19.1. Δείξτε ότι το Perceptron με (α) συνάρτηση ενεργοποίησης

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΜΙΑ ΣΥΜΒΑΣΗ: Προκειμένου να καταστήσουμε πιο συμπαγή το συμβολισμό H : ορίζουμε Ετσι έχουμε *=[ ] an *=[ ]. H : * * ΣΗΜΕΙΩΣΗ: Στη συνέχεια εκτός αν ορίζεται

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 2: Δομικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ. Καραγιώργου Σοφία

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ. Καραγιώργου Σοφία ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Καραγιώργου Σοφία Εισαγωγή Προσομοιώνει βιολογικές διεργασίες (π.χ. λειτουργία του εγκεφάλου, διαδικασία

Διαβάστε περισσότερα

Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP)

Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP) Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP) x -0,5 a x x 2 0 0 0 0 - -0,5 y y 0 0 x 2 -,5 a 2 θ η τιμή κατωφλίου Μία λύση του προβλήματος XOR Multi Layer Perceptron (MLP) x -0,5 Μία

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 17η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 17η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 17η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται: στο βιβλίο Artificia Inteigence A Modern Approach των S. Russe και

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Version Εκφράζοντας τον ταξινομητή Bayes (a) Με χρήση συναρτήσεων διάκρισης (discriminant functions) - Έστω g q (x)=f(p(ω q )p(x ω q )), q=,,m, όπου f γνησίως

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

y[n] 5y[n 1] + 6y[n 2] = 2x[n 1] (1) y h [n] = y h [n] = A 1 (2) n + A 2 (3) n (4) h[n] = 0, n < 0 (5) h[n] 5h[n 1] + 6h[n 2] = 2δ[n 1] (6)

y[n] 5y[n 1] + 6y[n 2] = 2x[n 1] (1) y h [n] = y h [n] = A 1 (2) n + A 2 (3) n (4) h[n] = 0, n < 0 (5) h[n] 5h[n 1] + 6h[n 2] = 2δ[n 1] (6) Ασκήσεις σε Σήματα Συστήματα Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 9 Οκτωβρίου 015 1. Ενα αιτιατό ΓΧΑ σύστημα

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδημαϊκό έτος 2010-11 Χειμερινό Εξάμηνο Practice final exam 1. Έστω ότι για

Διαβάστε περισσότερα

Γραµµικοί Ταξινοµητές

Γραµµικοί Ταξινοµητές ΚΕΣ 3: Αναγνώριση Προτύπων και Ανάλυση Εικόνας KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Γραµµικοί Ταξινοµητές ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου 7 Ncolas sapatsouls

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Η παραπάνω ανάλυση ήταν χρήσιμη προκειμένου να κατανοήσουμε τη λογική των δικτύων perceptrons πολλών επιπέδων

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο Πρόβλημα ο Ασκήσεις Φροντιστηρίου 5 o Φροντιστήριο Δίνεται το παρακάτω σύνολο εκπαίδευσης: # Είσοδος Κατηγορία 0 0 0 Α 2 0 0 Α 0 Β 4 0 0 Α 5 0 Β 6 0 0 Α 7 0 Β 8 Β α) Στον παρακάτω κύβο τοποθετείστε τα

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 1 ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΟΥ ΧΩΡΟΥ ΤΩΝ ΤΑΞΙΝΟΜΗΤΩΝ Ταξινομητές Ταξινομητές συναρτ. διάκρισης Ταξινομητές επιφανειών απόφ. Παραμετρικοί ταξινομητές Μη παραμετρικοί

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 11-12 Γραμμική παλινδρόμηση συνέχεια Γραμμική παλινδρόμηση συνέχεια Γραμμικές διαχωριστικές συναρτήσεις Γραμμική παλινδρόμηση (Linear regression) y = w + wx + + w

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΔΕ. 11 ΙΟΥΝΙΟΥ 2012

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΔΕ. 11 ΙΟΥΝΙΟΥ 2012 ΔΕ. ΙΟΥΝΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η ( μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάσει το συντελεστή συσχέτισης. (γράψτε ποιο χαρακτηριστικό

Διαβάστε περισσότερα

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2). ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους

Διαβάστε περισσότερα

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Μέθοδοι πολυδιάστατης ελαχιστοποίησης Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

(1) L{a 1 x 1 + a 2 x 2 } = a 1 L{x 1 } + a 2 L{x 2 } (2) x(t) = δ(t t ) x(t ) dt x[i] = δ[i i ] x[i ] (3) h[i, i ] x[i ] (4)

(1) L{a 1 x 1 + a 2 x 2 } = a 1 L{x 1 } + a 2 L{x 2 } (2) x(t) = δ(t t ) x(t ) dt x[i] = δ[i i ] x[i ] (3) h[i, i ] x[i ] (4) Πανεπιστήμιο Θεσσαλίας ΗΥ240: Θεωρία Σημάτων και Συστημάτων Γραμμικά χρονικά μεταβαλλόμενα συστήματα Συνάρτηση συστήματος Ένα σύστημα L απεικονίζει κάθε σήμα εισόδου x σε ένα σήμα εξόδου y, δηλ., συνεχής

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΒΕΣ 6: ΠΡΟΣΑΡΜΟΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Ακαδηµαϊκό Έτος 26 27, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το

Διαβάστε περισσότερα

2.1 Αριθμητική επίλυση εξισώσεων

2.1 Αριθμητική επίλυση εξισώσεων . Αριθμητική επίλυση εξισώσεων Στο κεφάλαιο αυτό διαπραγματεύεται μεθόδους εύρεσης των ριζών εξισώσεων γραμμικών ή μη-γραμμικών για τις οποίες δεν υπάρχουν αναλυτικές 5 4 3 εκφράσεις. Παραδείγματα εξισώσεων

Διαβάστε περισσότερα

Το Πολυεπίπεδο Perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Το Πολυεπίπεδο Perceptron. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Το Πολυ Perceptron Δίκτυα Πρόσθιας Τροφοδότησης (feedforward) Tο αντίστοιχο γράφημα του δικτύου δεν περιλαμβάνει κύκλους: δεν υπάρχει δηλαδή ανατροφοδότηση της εξόδου ενός νευρώνα προς τους νευρώνες από

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008 Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 5//008 Πρόβληµα ο Στα παρακάτω ερωτήµατα επισηµαίνουµε ότι perceptron είναι ένας νευρώνας και υποθέτουµε, όπου χρειάζεται, τη χρήση δικτύων

Διαβάστε περισσότερα

Τεχνητά Νευρωνικά Δίκτυα. Τσιριγώτης Γεώργιος Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας & Θράκης

Τεχνητά Νευρωνικά Δίκτυα. Τσιριγώτης Γεώργιος Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας & Θράκης Τεχνητά Τσιριγώτης Γεώργιος Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας & Θράκης Ο Βιολογικός Νευρώνας Δενδρίτες Συνάψεις Πυρήνας (Σώμα) Άξονας 2 Ο Βιολογικός Νευρώνας 3 Βασικά Χαρακτηριστικά

Διαβάστε περισσότερα

Αριθμητική Ανάλυση & Εφαρμογές

Αριθμητική Ανάλυση & Εφαρμογές Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 9 20 Kernel methods Support vector machines Εκπαίδευση νευρωνικών δικτύων backpropagation:. Υπολογισμός μεταβλητών δικτύου «τρέχον» w () () (2) (2) aj = wji xi ak

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Ακαδηµαϊκό Έτος 007-008 ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής 1η Εργαστηριακή Άσκηση Αναγνώριση

Διαβάστε περισσότερα

Συγκριτική Μελέτη Μεθόδων Κατηγοριοποίησης σε Ιατρικά Δεδομένα

Συγκριτική Μελέτη Μεθόδων Κατηγοριοποίησης σε Ιατρικά Δεδομένα ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Συγκριτική Μελέτη Μεθόδων Κατηγοριοποίησης σε Ιατρικά Δεδομένα

Διαβάστε περισσότερα

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η (3 μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάση το συντελεστή συσχέτισης. (γράψτε ποιο

Διαβάστε περισσότερα

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Η αδυναµία επίλυσης της πλειοψηφίας των µη γραµµικών εξισώσεων µε αναλυτικές µεθόδους, ώθησε στην ανάπτυξη αριθµητικών µεθόδων για την προσεγγιστική επίλυσή τους, π.χ. συν()

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX

ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX ΚΕΦΑΛΑΙΟ 3 ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX 3.1 Εισαγωγή Ο αλγόριθμος Simplex θεωρείται πλέον ως ένας κλασικός αλγόριθμος για την επίλυση γραμμικών προβλημάτων. Η πρακτική αποτελεσματικότητά του έχει

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 11

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 11 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 11 Πάτρα 2008 Προσαρμοστικός LQ έλεγχος για μη ελαχίστης

Διαβάστε περισσότερα

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης Αναγνώριση Προτύπων (Pattern Recognton Μπεϋζιανή Θεωρία Αποφάσεων (Bayesan Decson Theory Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Μπεϋζιανή Θεωρία Αποφάσεων (Bayes Decson theory Στατιστικά

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Να γνωρίζει: α. την έννοια του μιγαδικού αριθμού και β. πότε δύο μιγαδικοί αριθμοί είναι ίσοι. Να μπορεί να βρίσκει: α. το άθροισμα,

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Bayesian decision Minimum misclassificaxon rate decision: διαλέγουμε την κατηγορία Ck για

Διαβάστε περισσότερα

Κεφάλαιο 5: Γραμμικές Διακρίνουσες Συναρτήσεις 5.1 Εισαγωγή

Κεφάλαιο 5: Γραμμικές Διακρίνουσες Συναρτήσεις 5.1 Εισαγωγή Κεφάλαιο 5: Γραμμικές Διακρίνουσες Συναρτήσεις 5. Εισαγωγή Στο τρίτο κεφάλαιο θεωρήθηκε ότι η μορφή των συναρτήσεων πυκνότητας πιθανότητας είναι γνωστή και ότι τα δείγματα εκπαίδευσης χρησιμοποιούνται

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 15 16 Λογιστική παλινδρόμηση (Logistic regression) Νευρωνικά Δίκτυα (Neural Networks) g ( x) = w x+ w T k k k0 1 ( T T WLS = X X) X T= X T Γραμμικές διαχωριστικές

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΤΡΙΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Non Linear Equations (2)

Non Linear Equations (2) Non Linear Equations () Τρίτη, 17 Φεβρουαρίου 015 5:14 μμ 15.0.19 Page 1 15.0.19 Page 15.0.19 Page 3 15.0.19 Page 4 15.0.19 Page 5 15.0.19 Page 6 15.0.19 Page 7 15.0.19 Page 8 15.0.19 Page 9 15.0.19 Page

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου ΙΙ. Άσκηση. γραμμάτων του επιθέτου σας (π.χ. για το επίθετο Κοσματόπουλος, οι αριθμοί α ι θα είναι a

Συστήματα Αυτομάτου Ελέγχου ΙΙ. Άσκηση. γραμμάτων του επιθέτου σας (π.χ. για το επίθετο Κοσματόπουλος, οι αριθμοί α ι θα είναι a Συστήματα Αυτομάτου Ελέγχου ΙΙ Άσκηση Θεωρείστε το σύστημα με συνάρτηση μεταφοράς: Y ( s) a s 4 3 a3s a U ( s) s a όπου οι αριθμοί α ι αντιστοιχούν στους αντίστοιχους αριθμούς των 4 πρώτων γραμμάτων του

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16 HMY 795: Αναγνώριση Προτύπων Διαλέξεις 15-16 Νευρωνικά Δίκτυα(Neural Networks) Fisher s linear discriminant: Μείωση διαστάσεων (dimensionality reduction) y Τ =w x s + s =w S w 2 2 Τ 1 2 W ( ) 2 2 ( ) m2

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5.1 Εισαγωγή στους αλγορίθμους 5.1.1 Εισαγωγή και ορισμοί Αλγόριθμος (algorithm) είναι ένα πεπερασμένο σύνολο εντολών οι οποίες εκτελούν κάποιο ιδιαίτερο έργο. Κάθε αλγόριθμος

Διαβάστε περισσότερα

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

Σχεδίαση & Ανάλυση Αλγορίθμων

Σχεδίαση & Ανάλυση Αλγορίθμων Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε

Διαβάστε περισσότερα

Ανδρέας Παπαζώης. Τμ. Διοίκησης Επιχειρήσεων

Ανδρέας Παπαζώης. Τμ. Διοίκησης Επιχειρήσεων Ανδρέας Παπαζώης Τμ. Διοίκησης Επιχειρήσεων Περιεχόμενα Εργ. Μαθήματος Εκπαίδευση (μάθηση) Νευρωνικών Δικτύων Απλός αισθητήρας Παράδειγμα εκπαίδευσης Θέματα υλοποίησης Νευρωνικών Δικτύων 2/17 Διαδικασία

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ Μ. Παπαδημητράκης. 1 ΤΡΙΑΚΟΣΤΟ ΠΕΜΠΤΟ ΜΑΘΗΜΑ Ας θυμηθούμε από την περασμένη φορά ότι ένα σύνολο M σε έναν μετρικό χώρο (X, d είναι συμπαγές όταν: αν έχουμε οποιαδήποτε ανοικτά σύνολα που καλύπτουν

Διαβάστε περισσότερα

ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ

ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ Κατευθυνόμενη ταξινόμηση (supervsed cassfcaton) Μη-κατευθυνόμενη ταξινόμηση (unsupervsed cassfcaton) Γραμμική: Lnear Dscrmnant Anayss Μη- Γραμμική: Νευρωνικά δίκτυα κλπ. Ιεραρχική

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων

Σχεδίαση και Ανάλυση Αλγορίθμων Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4.0 Επιλογή Αλγόριθμοι Επιλογής Select και Quick-Select Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros

Διαβάστε περισσότερα

Στοχαστικά Σήματα και Τηλεπικοινωνιές

Στοχαστικά Σήματα και Τηλεπικοινωνιές Στοχαστικά Σήματα και Τηλεπικοινωνιές Ενότητα 2: Ανασκόπηση Στοιχείων Γραμμικής Άλγεβρας Καθηγητής Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Παρουσίαση/υπενθύμιση

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 18η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 18η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 18η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται: στο βιβλίο Machine Learning του T. Mitchell, McGraw- Hill, 1997,

Διαβάστε περισσότερα

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο Μετασχηματισμός Ζ Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο μετασχηματισμός Z (Ζ-Τransform: ZT) χρήσιμο μαθηματικό εργαλείο για την ανάλυση των διακριτών σημάτων και συστημάτων αποτελεί ό,τι ο μετασχηματισμός

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Αλγορίθμων

Εισαγωγή στην Ανάλυση Αλγορίθμων Εισαγωγή στην Ανάλυση Αλγορίθμων (4) Μεθοδολογία αναδρομικών σχέσεων (Ι) Με επανάληψη της αναδρομής Έστω όπου r και a είναι σταθερές. Βρίσκουμε τη σχέση που εκφράζει την T(n) συναρτήσει της T(n-) την T(n)

Διαβάστε περισσότερα

Ο Αλγόριθµος της Simplex

Ο Αλγόριθµος της Simplex Βήµατα Αλγορίθµου Τα ϐήµατα του αλγορίθµου συνοψίζονται σε ϐήµατα. Βήµατα Αλγορίθµου Τα ϐήµατα του αλγορίθµου συνοψίζονται σε ϐήµατα. Αρχικοποίηση : Επέλεξε έναν αντιστρέψιµο πίνακα B (m m) έτσι ώστε x

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 19η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 19η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 19η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτές βασίζονται σε ύλη των βιβλίων: Artificia Inteigence A Modern Approach των S. Russe και P.

Διαβάστε περισσότερα

ΔΙΚΤΥO RBF. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

ΔΙΚΤΥO RBF. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων ΔΙΚΤΥO RBF Αρχιτεκτονική δικτύου RBF Δίκτυα RBF: δίκτυα συναρτήσεων πυρήνα (radial basis function networks). Πρόσθιας τροφοδότησης (feedforward) για προβλήματα μάθησης με επίβλεψη. Εναλλακτικό του MLP.

Διαβάστε περισσότερα

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 5

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 5 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 5 Πάτρα 2008 Χρονικά μεταβαλλόμενες παράμετροι Στο πρόβλημα

Διαβάστε περισσότερα

Εφαρμοσμένη Βελτιστοποίηση

Εφαρμοσμένη Βελτιστοποίηση Εφαρμοσμένη Βελτιστοποίηση Ενότητα 4: Αναλυτικές μέθοδοι βελτιστοποίησης για συναρτήσεις πολλών μεταβλητών Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 21: Δυϊκή Θεωρία, Θεώρημα Συμπληρωματικής Χαλαρότητας και τρόποι χρήσης του Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων ΕΠΛ 1 Δομές Δεδομένων και Αλγόριθμοι Σεπτέμβριος 009 Κατ οίκον Εργασία 1 Σκελετοί Λύσεων Άσκηση 1 Αρχικά θα πρέπει να υπολογίσουμε τον αριθμό των πράξεων που μπορεί να εκτελέσει ο υπολογιστής σε μια ώρα,

Διαβάστε περισσότερα

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης Γραμμικά Συστήματα Σύστημα: x(t) T y(t) Κατηγορίες: Συνεχή/Διακριτά Γραμμικά/Μη Γραμμικά Αν Τότε Γραμμικά Συστήματα Σύστημα: x(t) T y(t) Κατηγορίες: Χρονικά

Διαβάστε περισσότερα

Συνέλιξη Κρουστική απόκριση

Συνέλιξη Κρουστική απόκριση Συνέλιξη Κρουστική απόκριση Το εργαστήριο αυτό ασχολείται με τα «διασημότερα συστήματα στην επεξεργασία σήματος. Αυτά δεν είναι παρά τα γραμμικά χρονικά αμετάβλητα (ΓΧΑ) συστήματα. Ένα τέτοιο σύστημα μπορεί

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Β 2016

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Β 2016 ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Β 06 version -6-06 Παρακάτω υπάρχουν θέματα θεωρίας και ασκήσεις που καλύπτουν πιστεύω σε μεγάλο βαθμό την εξεταστέα ύλη. Εχουν στόχο να μας βοηθήσουν να θυμηθούμε την

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΑ σε ΝΕΥΡΩΝΙΚΑ

ΕΡΩΤΗΜΑΤΑ σε ΝΕΥΡΩΝΙΚΑ ηµήτρης Ψούνης ΠΛΗ3, Απαντήσεις Quiz σε ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΕΡΩΤΗΜΑΤΑ σε ΝΕΥΡΩΝΙΚΑ Μάθηµα 3. ΕΡΩΤΗΜΑ Ένας αισθητήρας µπορεί να µάθει: a. εδοµένα που ανήκουν σε 5 διαφορετικές κλάσεις. b. εδοµένα που ανήκουν

Διαβάστε περισσότερα

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 Περιεχόμενα 1 Εισαγωγή 2 2 Μεγιστικός τελέστης στην μπάλα 2 2.1 Βασικό θεώρημα........................ 2 2.2 Γενική περίπτωση μπάλας.................. 6 2.2.1 Στο

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 07, 2 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Συμμετρικοί και θετικά ορισμένοι πίνακες. Η ανάλυση Cholesky 2. Νόρμες

Διαβάστε περισσότερα

Παραδείγματα (2) Διανυσματικοί Χώροι

Παραδείγματα (2) Διανυσματικοί Χώροι Παραδείγματα () Διανυσματικοί Χώροι Παράδειγμα 7 Ελέγξτε αν τα ακόλουθα σύνολα διανυσμάτων είναι γραμμικά ανεξάρτητα ή όχι: α) v=(,4,6), v=(,,), v=(7,,) b) v=(,4), v=(,), v=(4,) ) v=(,,), v=(5,,), v=(5,,)

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Διαχωριστικές συναρτήσεις Ταξινόμηση κανονικών

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ , Β= 1 y, όπου y 0. , όπου y 0.

ΑΠΑΝΤΗΣΕΙΣ , Β= 1 y, όπου y 0. , όπου y 0. ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ 9 Ιουνίου 8:-: ΑΠΑΝΤΗΣΕΙΣ Θέμα (Α) ( 5 μονάδες) Δίδονται οι πίνακες Α=,

Διαβάστε περισσότερα

Συσχετιστικές Μνήμες Δίκτυο Hopfield. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Συσχετιστικές Μνήμες Δίκτυο Hopfield. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Συσχετιστικές Μνήμες Δίκτυο Hopfield Συσχετιστική Μνήμη Η ανάκληση ενός γεγονότος σε μία χρονική στιγμή προκαλείται από τη συσχέτιση αυτού του γεγονότος με κάποιο ερέθισμα. Πολλές φορές επίσης καλούμαστε

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 2ο Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 2ο Φροντιστήριο Ασκήσεις Φροντιστηρίου 2ο Φροντιστήριο Πρόβλημα ο Ο κανόνας δέλτα που περιγράφεται από την παρακάτω ισότητα n) ηe n)x και ο κανόνας του Hebb που περιγράφεται από την επόμενη ισότητα n) ηy x αποτελούν δύο

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 4 Διαχωριστικές συναρτήσεις Ταξινόμηση Γκαουσιανών μεταβλητών Bayesan decson Mnmum msclassfcaton rate decson: διαλέγουμε την κατηγορίαck για την οποία η εκ των υστέρων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)

Διαβάστε περισσότερα

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Κινητά Δίκτυα Επικοινωνιών Μέρος Α: Τηλεπικοινωνιακά Θέματα: Ενότητα Νο 4 Τεχνικές Ισοστάθμισης Διαύλου Βασικές

Διαβάστε περισσότερα

Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα

Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Πολυεπίπεδες Perceptron Οαλγόριθµος

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 13: Ανάλυση ΓΧΑ συστημάτων (Ι) Περιγραφές ΓΧΑ συστημάτων Έχουμε δει τις παρακάτω πλήρεις περιγραφές ΓΧΑ συστημάτων: 1. Κρυστική απόκριση (impulse

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 2-22 Support vector machies (συνέχεια) Support vector machies (συνέχεια) Usupervised learig: Clusterig ad Gaussia mixtures Kerel fuctios: k( xx, ') = ϕ ( x) ϕ( x

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα