Εισαγωγή στη Θεωρία Γράφων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εισαγωγή στη Θεωρία Γράφων"

Transcript

1 Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ Εισαγωγή στη Θεωρία Γράφων Υλικό βασισμένο στις εξής πηγές: Βιβλίο «Μαθήματα Θεωρίας Γράφων», Γιάννη Μανωλόπουλου, Εκδόσεις Νέων Τεχνολογιών, Θεσσαλονίκη 2000 Διαφάνειες Π. Κατσαρού στη διεύθυνση Βιβλίο «Εισαγωγή στους Γράφους. Θεωρία Προβλήματα και Λύσεις», Λ. Κυρούσης, Χ. Μπούρας, Π. Σπυράκης, Γ. Σταματίου, ΑΘΗΝΑ Θεωρία Γράφων 1

2 Στόχος του μαθήματος Θα ασχοληθούμε με τις βασικες έννοιες και ιδιότητες γραφημάτων. Θα μελετήσουμε ιδιαίτερα έννοιες οπως διαδρομές και αποστάσεις, συνδεσιμότητα, διαμερίσεις, επιπεδότητα γραφημάτων, κ.λπ. Θα δούμε ειδικές κατηγορίες γραφημάτων (που όμως παρουσιάζουν ιδιαίτερο ενδιαφέρον) πιο αναλυτικα, οπως για παραδειγμα δένδρα / διμερή / πλήρη / επίπεδα / κανονικά γραφηματα. Θα μελετήσουμε την υπαρξη κύκλων Euler και Hamilton σε ενα γραφημα. Θα μελετήσουμε ισομορφισμούς γραφηματων. Θα ασχοληθούμε με προβληματα χρωματισμων κορυφων / ακμων γραφηματων. Θα ασχοληθουμε με κατευθυνομενα γραφηματα, και τελος θα δουμε μερικα δυσεπίλυτα προβλήματα γραφημάτων. Θεωρία Γράφων 2

3 Εισαγωγή Η πιο γενική µορφή δοµής δεδοµένων, µε την έννοια ότι όλες οι προηγούµενες δοµές µπορούν να θεωρηθούν ως περιπτώσεις γράφων. Ένα γράφος αποτελείται από ένα σύνολο V κορυφών (vertices), ή σηµείων, ή κόµβων, και ένα σύνολο Ε ακµών (edges), ή τόξων, ή γραµµών. Μια ακµή είναι ένα ζεύγος (u,v) από κορυφές. Παράδειγµα γράφου: Θεωρία Γράφων 3

4 Γενικά - Εφαρμογές Γράφων Προσφέρουν μια ωφέλιμη μέθοδο για τη διατύπωση και λύση πολλών προβλημάτων, σε: Δίκτυα και συστήματα τηλεπικοινωνιών (π.χ. Ιντερνετ) Χάρτες επιλογή δρομολογίων Προγραμματισμό εργασιών (scheduling) Ανάλυση προγραμμάτων (flowcharts) Η θεωρία των γράφων θεωρείται ότι ξεκίνησε από τον Euler στις αρχές του 18ου αιώνα (1736). Πρόβλημα των γεφυρών του Königsberg (Koenigsburg). Θεωρία Γράφων 4

5 Γενικά Η θεωρία γράφων χρησιμοποιείται για τη γραφική αναπαράσταση των δικτύων επικοινωνιών και κατά συνέπεια την ανάλυσή τους. Έχει εφαρμοστεί σε μεγάλο αριθμό προβλημάτων (δίκτυα επικοινωνιών, θεωρία ηλεκτρικών κυκλωμάτων, δρομολόγια πλοίων κλπ.) Στα δίκτυα Η/Υ θεωρούμε ότι οι ζεύξεις αντιστοιχούν σε ακμές οι δικτυακές συσκευές σε κόμβους. C A D B Θεωρία Γράφων 5

6 Ιστορική Αναδρομή 1736 Euler, γέφυρες Koenigsburg 1847 Kirchoff, δένδρα, ηλεκτρικά δίκτυα 1847 Cayley, δένδρα, ισομερή υδρογονανθράκων CnH2n Cayley-De Morgan-Moebius, χρωματισμός με 4 χρώματα 1859 Hamilton, δωδεκάεδρο 1936 Koenig, το πρώτο βιβλίο Θεωρία Γράφων 6

7 Euler 1736 Πρόβλημα: Μέσα από την πόλη Konigsberg (Ρωσία), περνούσε ο ποταμός Pregel, ο οποίος κύκλωνε το νησάκι Α του σχήματος. Το νησάκι αυτό συνδεόταν με το δίπλα νησάκι και με τις όχθες του ποταμού με 7 γέφυρες. Ερώτημα: Εάν κάποιος ξεκινούσε από οποιοδήποτε σημείο (κάποια όχθη ή νησί) ήταν δυνατό να επιστρέψει στο ίδιο σημείο, έχοντας διασχίσει κάθε γέφυρα ακριβώς μια φορά και έχοντας περάσει από κάθε δυνατή ξηρά? Όχθη Δ Νησί Α 4 Νησί Β Όχθη Γ Θεωρία Γράφων 7

8 Το πρόβλημα της διάσχισης των γεφυρών του Konigsberg Για να υπάρχει διάσχιση (μονοπάτι Euler) κάθε σημείο θα πρέπει να συνδέεται με άρτιο αριθμό άλλων σημείων και αντίστροφα. Παρατηρούμε ότι το σημείο Δ συνδέεται με τρία άλλα σημεία. Καταλήγουμε στο ότι δεν υπάρχει η επιθυμητή διάσχιση Όχθη Δ Δ Νησί Α 4 Νησί Β Α 4 Β Όχθη Γ Γ 7 Η παρατήρηση αυτή ονομάζεται σήμερα θεώρημα του Euler. Θεωρία Γράφων 8

9 Γράφοι Euler Πρόβλημα: είναι δυνατόν σε κάθε γράφο να βρεθεί κύκλωμα (=κλειστό ίχνος) που να περνά από όλες τις ακμές? Βαθμός κορυφής v=d(v): είναι ο αριθμός των ακμών που προσπίπτουν στη v Θεώρημα: Ένας συνδεδεμένος απλός γράφος G(V,E) είναι γράφος Euler αν και μόνο αν δεν έχει κορυφές περιττού βαθμού. Είναι γράφος ημι-euler αν και μόνο αν έχει ακριβώς δύο κορυφές περιττού βαθμού. Γράφος Euler: περιέχει γραμμή Euler Θεωρία Γράφων 9

10 Γράφοι Euler όχι γράφος Euler ημι-euler γράφος Euler ή ημι-euler Θεωρία Γράφων 10

11 Kirchoff 1847 Φυσικός Kirchoff 1847: χρησιμοποίησε το μοντέλο των γράφων για να αναπαραστήσει ένα ηλεκτρικό κύκλωμα που αποτελείται από διπολικά στοιχεία: από ωμικές αντιστάσεις, επαγωγικά στοιχεία, χωρητικά στοιχεία και πηγές τάσης (Συνήθως η συμπεριφορά δίνεται από μια μαθηματική εξίσωση). Αντικατέστησε το κύκλωμα με ένα γράφο. Παρατήρηση: για να υπολογιστούν οι τιμές του ρεύματος και της τάσης σε κάθε στοιχείο του κυκλώματος, δεν είναι απαραίτητο να λυθούν εξισώσεις, αλλά αρκεί να παρθεί ένα οποιοδήποτε δένδρο που περιέχεται στο γράφο και συμπεριλαμβάνει όλα τα σημεία του (το οποίο ονομάζεται γεννητικό δέντρο) και να λυθούν οι εξισώσεις που σχηματίζονται σε κάθε έναν από τους βασικούς κύκλους. Θεωρία Γράφων 11

12 Cayley 1857 Cayley 1857: μελέτησε το πρόβλημα της απαρίθμησης όλων των δυνατών κορεσμένων υδρογονανθράκων με συντακτικό τύπο CnH2n+2 (παραφίνες) ως συνάρτηση τoυ αριθμού ατόμων άνθρακα. Πρόβλημα Χημείας: υπολογισμός όλων των δυνατών ισομερών ενώσεων, ενός δοσμένου συντακτικού τύπου. Αναπαράσταση ισομερών χημικών ενώσεων με γράφους. Ισομερείς ενώσεις ονομάζονται αυτές που έχουν τον ίδιο συντακτικό τύπο, δηλ. τα ίδια άτομα και την ίδια αναλογία ατόμων από κάθε είδος, αλλά διαφορετική διάταξη των ατόμων στο χώρο. Παρατήρηση: οι γράφοι που αναπαριστούν τις χημικές ενώσεις έχουν μια ειδική μορφή:κάθε σημείο τους επικοινωνεί με οποιοδήποτε άλλο μέσω ακμών (συνεκτικότητα) και δεν σχηματίζεται κάποιος κύκλος από σημεία (ακυκλικότητα). Οι γράφοι αυτοί ονομάζονται δέντρα. H H H H H H H C C C O H H C C C H H H H H O H Θεωρία Γράφων 12 H

13 Μαθηματικοί Ορισμοί Γράφος G: διατεταγμένο ζεύγος G=(V,E) V το σύνολο των κορυφών, μη κενό πεπερασμένο σύνολο Ε σύνολο ακμών, που είναι σύνολο από διμελή σύνολα κορυφών (είναι μη διατεταγμένο ζέυγος κόμβων) Αναπαράσταση: Κόμβων με σημεία Ακμών με γραμμές Αριθμός κόμβων: τάξη (order) γράφου Αριθμός ακμών: μέγεθος (size) γράφου Κόμβοι V = {Α, Β, C, D} Ακμές Ε = {ΑΒ, ΑC, AD, BC, CD} ΤΑΞΗ =4 ΜΕΓΕΘΟΣ = 5 Α Β C D Θεωρία Γράφων 13

14 Ορισμοί-Βασικές Έννοιες n: τάξη-order είναι το πλήθος των κορυφών: n= V m: μέγεθος-size είναι το πλήθος των ακμών: m= E Πεπερασμένος γράφος: n, m πεπερασμένα Άπειρος γράφος Ειδικές περιπτώσεις: n=0: κενός-empty n=1: ασήμαντος-trivial m=0: μηδενικός-null (Nn) Τετριμμένος γράφος: μια μόνο κορυφή και καμία ακμή Θεωρία Γράφων 14

15 Ορισμοί (Ι) Γειτονιά κορυφής: N(v)={u V(G) (v,u) E(G)} Βαθμός κορυφής v=d(v): είναι ο αριθμός των ακμών που προσπίπτουν στη v Βαθμός κορυφής degree: d(v)= N(v) Ελάχιστος και μέγιστος βαθμός γράφου d(g)- mindeg, D(G)-maxdeg Τακτικοί γράφοι (regular): Οι κορυφές έχουν τον ίδιο βαθμό d Κυκλικός γράφος (C n ): όλοι οι κόμβοι d(v)=2 (κυβικός) Πλατωνικοί γράφοι (τετράεδρο, κύβος, οκτάεδρο, δωδεκάεδρο, εικοσάεδρο) Θεωρία Γράφων 15

16 Ορισμοί (II) Βαθμός κορυφής v=deg(v)=d(v). Σε ένα γράφο (p,q), που έχει p κορυφές και q ακμές, ισχύει ότι 0<=deg(v i )<=p-1 (για κάθε κορυφή v i ). Θεώρημα: Το άθροισμα των βαθμών όλων των κορυφών ενός γράφου ισούται με το διπλάσιο του αριθμού των ακμών του. Βαθμός κορυφών γράφου Κn=n-1 Αριθμός ακμών γράφου n(n-1)/2. Πόρισμα: Ο αριθμός των κορυφών ενός γράφου με περιττό βαθμό είναι άρτιος αριθμός. Θεωρία Γράφων 16

17 Ορισμοί (ΙII) Ένας γράφος ονοµάζεται κατευθυνόµενος (directed graph, digraph) αν κάθε µια από τις ακµές του είναι προσανατολισµένη προς µία κατεύθυνση. Ένας γράφος ονοµάζεται µη-κατευθυνόµενος (undirected) αν οι ακµές του δεν είναι προσανατολισµένες. Αν (u,v) είναι ακµή τότε λέµε ότι οι κορυφές u και v είναι γειτονικές (adjacent) ή ότι γειτνιάζουν. Μονοπάτι ή διαδροµή (path) ενός γράφου µήκους n, είναι µια ακολουθία κόµβων v0, v1,, vn, όπου για κάθε i, 0 i < n, (vi, vi+1) είναι ακµή του γράφου. Μήκος ενός µονοπατιού είναι ο αριθµός ακµών που περιέχει. Μια διαδροµή ενός γράφου ονοµάζεται απλή (simple) αν όλες οι κορυφές της είναι διαφορετικές µεταξύ τους, εκτός από την πρώτη και την τελευταία οι οποίες µπορούν να είναι οι ίδιες. Κύκλος (cycle) ονοµάζεται µια διαδροµή µε µήκος >1 που ικανοποιεί v 0 = v n. Θεωρία Γράφων 17

18 Ορισμοί (IV) Ένας γράφος που δεν περιέχει κύκλους ονοµάζεται άκυκλος (acyclic) Έστω G=(V,E) και G = (V, E ) γράφοι, όπου V V και E E. Tότε ο γράφος G είναι υπογράφος (subgraph) του γράφου G. Η απόσταση δύο κορυφών είναι το µήκος της συντοµότερης διαδροµής που οδηγεί από τη µια κορυφή στην άλλη. Ένας µη κατευθυνόµενος γράφος λέγεται συνεκτικός (connected) αν για κάθε ζευγάρι κορυφών υπάρχει διαδροµή που τις συνδέει. Ένας κατευθυνόµενος γράφος που ικανοποιεί την ίδια ιδιότητα ονοµάζεται ισχυρά συνεκτικός (strongly connected). Αν ο µηκατευθυνόµενος γράφος στον οποίο αντιστοιχεί είναι συνεκτικός, τότε ο γράφος ονοµάζεται ελαφρά συνεκτικός (weakly connected). Θεωρία Γράφων 18

19 Ορισμοί (V) Εαν V είναι υποσύνολο των κορυφών V ενός γράφου G, ο υπογράφος του G που προτρέπεται από το V (προτρεπόμενος υπογράφος) είναι εκείνος ο υπογράφος που έχει ως σύνολο κορυφών το V και ακμές όλες τις ακμές του G με άκρα στο V. Με την αφαίρεση μιας ακμής από ένα γράφο προκύπτει ένας υπογράφος με το ίδιο σύνολο κορυφών αλλά με μια ακμή λιγότερη. Με την αφαίρεση μιας κορυφής από ένα γράφο προκύπτει ένας υπογράφος με σύνολο κορυφών μειωμένο κατά μια κορυφή και σύνολο ακμών μειωμένο κατά όλες τις ακμές που προσπίπτουν στην αφαιρεθείσα κορυφή. V1 V1 V4 V2 V2 V4 V3 V5 V3 V5 Ένας γράφος (α) και δυο υπογράφοι του (β) και (γ) V3 Θεωρία Γράφων 19

20 Ορισμοί-Πλήρης Γράφος Πλήρης γράφος Κ n : όλες οι κορυφές του ενώνονται είναι και τακτικός γράφος βαθμού n-1 Γράφος με m συνιστώσες τύπου Κ n : m Κ n Κλίκα H ενός γράφου G, είναι ένας υπογράφος που αποτελείται από σύνολο κορυφών S, έτσι ώστε H(S) να είναι πλήρης. Αριθμός κλίκας ω, λέγεται η τάξη της κλίκας. Θεώρημα: Ένας πλήρης γράφος Κ n έχει n(n-1)/2 ακμές Θεώρημα: Για έναν απλό γράφο G με n κορυφές, m ακμές και k συνιστώσες ισχύει: Πόρισμα: κάθε απλός γράφος με n κορυφές και τουλάχιστον (n-1)(n-2)/2 ακμές είναι συνδεδεμένος Θεωρία Γράφων 20

21 Παραδείγματα Γράφων Πλήρης Γράφος v3 v1 v2 Πολλαπλός γράφος: επιτρέπονται πολλαπλές γραμμές και ανακυκλώσεις Θεωρία Γράφων 21

22 Ορισμοί- Ισομορφικός Γράφος Ισομορφικοί καλούνται δυο γράφοι G=(V,E) και G1=(V1,E1) αν υπάρχει αμφιμονοσήμαντη και επί απεικόνιση που διατηρεί τη γειτνίαση. Ισομορφικοί: υπάρχει αμφιμονοσήμαντη αντιστοιχία Μ ώστε αν οι κορυφές u και v είναι γειτονικές στον ένα γράφο τότε και οι M(u) και M(v) είναι γειτονικές στο δεύτερο γράφο Βάρος γράφου είναι το άθροισμα τα βαρών Ετικέτες στις κορυφές ή τις ακμές των γραφών Θεωρία Γράφων 22

23 Ορισμοί- Διμερής Γράφος Ισομορφικοί γράφοι που μπορούν να σχεδιαστούν στο επίπεδο με τρόπο ώστε οι ακμές να συναντώνται μόνο στις κορυφές καλούνται επίπεδοι γράφοι. Διμερής γράφος: οι κορυφές του μπορούν να διαχωριστούν σε δυο ξένα μεταξύ τους μη κενά υποσύνολα V1 και V2 ετσι ώστε όλες οι ακμές να έχουν το ένα άκρο τους στο V1 και το άλλο στο V2 αντίστοιχα. (Σχήμα) Ενας διμερής γράφος καλείται πλήρης αν οποιεσδήποτε δυο κορυφές απο τα δυο ξένα μεταξύ τους σύνολα κορυφών που επιτρέπεται να είναι γειτονικές, είναι όντως γειτονικές. Ο πλήρης διμερής γράφος με μέρη πληθαρίθμου n και m αντίστοιχα συμβολίζεται με K n,m. Ένας διμερής γράφος V1 V2 V4 V5 V3 V6 Θεωρία Γράφων 23

24 Παραδείγματα Ισομορφικών Γράφων V1 V1 V2 V4 V2 V4 V3 V5 V3 V5 V1 V1 V2 V6 V2 V6 V3 V5 V3 V5 V4 V4 Θεωρία Γράφων 24

25 Παραδείγματα Συμπληρωματικών Γράφων Δύο γράφοι G=(V,E) και G =(V,E ), με το ίδιο σύνολο κορυφών V=V, καλούνται συμπληρωματικοί αν: (ι) E E ' 0 (ιι) για οποιεσδήποτε δύο κορυφές v,w, ισχύει αν και μόνο αν { v, w} E V1 V1 { v, w} E ' V2 V4 V2 V4 V3 V5 V3 V5 Θεωρία Γράφων 25

26 Ορισμοί- Συνεκτικός Γράφος Περίπατος ή δρόμος: μια ακολουθία vo, v1,, vn από κορυφές έτσι ώστε οποιεσδήποτε δυο διαδοχικές από αυτές να είναι γειτονικές. Εάν v0=vn, ο περίπατος καλείται κλειστός. Συνεκτικός: εάν δυο οποιεσδήποτε κορυφές του γράφου συνδέονται με ένα δρόμο. Συνεκτική συνιστώσα ενός G καλείται ένας μέγιστος συνεκτικός υπογράφος G που είναι συνεκτικός και για τον οποίο δεν υπάρχει άλλος υπογράφος G του G. Απόσταση d(u,v): είναι το μήκος του συντομότερου μονοπατιού που ενώνει τις δυο κορυφές. Σε συνεκτικό γράφο G, η απόσταση είναι μια μετρική σχέση. Ισχύουν τα εξής: (α) d( u, v) 0 (β) d( u, v) d( v, u) (γ) d( u, v) d( v, w) d( u, w) Θεωρία Γράφων 26

27 Ορισμοί-Εκκεντρότητα Συνεκτικού Εκκεντρότητα e(u) μιας κορυφής u σε ένα συνεκτικό γράφο G, είναι η μέγιστη απόσταση d(u,v) με v ανήκει στο V(G). Ακτίνα r(g): η μικρότερη e(u) Διάμετρος d(g): η μεγαλύτερη e(u) Κεντρικό σημείο: e(u)=r(g) Παραδείγματα r(g)=3, d(g)= u 3 v Θεωρία Γράφων 27

28 Ορισμοί-Επίπεδος Γράφος Επίπεδος Γράφος: έχει τη δυνατότητα να ζωγραφιστεί σε μια επίπεδη επιφάνεια έτσι ώστε να μην τέμνεται κανένα ζεύγος ακμών του. Εφαρμογή σε μοντελοποίηση δικτύου διασυνδεδεμένων στοιχείων: είναι δυνατόν να σχεδιαστεί το δίκτυο με τέτοιο τρόπο ώστε να μην χρειάζονται γεφυρώσεις, δηλ. ειδικές παρακάμψεις έτσι ώστε μια ακμή να περάσει πάνω από μια άλλη χωρίς όμως να την αγγίζει. Παράδειγμα Θεωρία Γράφων 28

29 Ορισμοί- Ομοιομορφικοί Γράφοι Δυο γράφοι καλούνται ομοιομορφικοί, εάν μπορούν να προκύψουν από τον ίδιο γράφο, μετά από μια ακολουθία παρεμβολών κορυφών βαθμού 2 μεταξύ ζευγών γειτονικών κορυφών. Θεωρία Γράφων 29

30 Ορισμοί (συνέχεια) Πόσες ακµές µπορεί να έχει ένας γράφος µε n κορυφές; Ένας γράφος λέγεται αραιός (sparse) αν ο αριθµός των ακµών του είναι της τάξης Ο(n), όπου n είναι ο αριθµός κορυφών του, διαφορετικά λέγεται πυκνός (dense). Συχνά συσχετίζουµε κάθε ακµή ενός γράφου µε κάποιο βάρος (weight). Τότε ο γράφος ονοµάζεται γράφος µε βάρη (weighted graph). Ποιες ιδιότητες ικανοποιούν οι πιο κάτω γράφοι; Θεωρία Γράφων 30

31 Κατευθυνόμενος Γράφος Ένας κατευθυνόμενος γράφος ή διγράφος G(V,E) αποτελείται από δύο σύνολα Κόμβων (vertices) Ακμών (edges): ακμή είναι διατεταγμένο ζεύγος κόμβων Πίνακας γειτνίασης- Adjacency matrix Θεωρία Γράφων 31

32 Εφαρμογές Εφαρμογή 1: να αποδειχθεί ότι σε κάθε γράφο υπάρχουν δυο τουλάχιστον κορυφές με τον ίδιο βαθμό. Εφαρμογή 2: Να αποδείξετε ότι σε μία συγκέντρωση τουλάχιστον 6 ατόμων είτε υπάρχουν τουλάχιστον 3 άτομα που ανα δύο γνωρίζονται είτε υπάρχουν τουλάχιστον 3 άτομα που ανα δύο δεν γνωρίζονται. Θεωρία Γράφων 32

33 Απόδειξη εφαρμογής 1 1 η Λύση: Ο γράφος έχει τουλάχιστο μια κορυφή βαθμού 0. τότε οι δυνατοί βαθμοί για τις κορυφές είναι 0,..., n-2. επειδή όμως έχουμε n κορυφές που όλες πρέπει να έχουν κάποιο βαθμό από τους n-1 δυνατούς βαθμούς, συμπεραίνουμε ότι δύο τουλάχιστον κορυφές θα έχουν τον ίδιο βαθμό. 2 η Λύση: Ο γράφος δεν έχει απομονωμένες κορυφές. Οι δυνατοί βαθμοί στην περίπτωση αυτή είναι πάλι n-1, δηλ, οι 0,1,2,...,n-1. Οπως και πριν συμπεραίνουμε ότι υπάρχουν δυο κορυφές με τον ίδιο βαθμό. Θεωρία Γράφων 33

34 Απόδειξη εφαρμογής 2 Λύση: Αρκεί να αποδειχθεί ότι για κάθε γράφο με 6 κορυφές αυτός ή ο συμπληρωματικός του περιέχει ως υπογράφο τον Κ 3. Οι υπόλοιπες 5 κορυφές διαμερίζονται σε δυο ξένα σύνολα V1 και V2 που είναι και δεν είναι αντίστοιχα, γειτονικές με τη v. Ενα από τα V1 και V2 έχει τουλάχιστον 3 στοιχεία. Ας υποθέσουμε ότι V1 >=3 (αν V2 >=3 θεωρούμε το συμπληρωματικό γράφο του Γ και συνεχίζουμε με τον ίδιο τρόπο). Αν δυο τουλάχιστον κορυφές του V1, συνδέονται με μια ακμή, τότε αυτές οι δύο μαζί με τη v συναποτελούν τον ζητούμενο υπογράφο Κ 3. Αν όλες οι κορυφές του V1 δεν συνδέονται ανά δυο καθόλου, τότε ο συμπληρωματικός του G περιέχει τον Κ 3. Θεωρία Γράφων 34

35 Δένδρα Μονοπάτι λέγεται μία διαδρομή από έναν κόμβο i σε έναν κόμβο j που περνάει μία μόνο φορά από κάθε κόμβο και ακμή. Δένδρο (ρίζα, κόμβοι-γονείς, κόμβοι-παιδιά, κόμβοι-φύλλα) απλός γράφος που για κάθε i και j υπάρχει μοναδικό μονοπάτι από τον i στον j. απλός γράφος με Ν κόμβους και Ν-1 ακμές ακμές απλός και συνδεδεμένος γράφος με Ν κόμβους και Ν-1 ακμές Θεωρία Γράφων 35

36 Spanning Tree Υπογράφος ενός γράφου λέγεται κάθε υποσύνολο του αρχικού όταν για κάθε ακμή επιλέγονται και οι προσκείμενοί της κόμβοι. Ένας υπογράφος του G λέγεται γεννητικό δένδρο (spanning tree) του G όταν περιλαμβάνει όλους τους κόμβους του G και είναι δέντρο. Minimal spanning tree: είναι αυτό που έχει το μικρότερο συνολικό μήκος ακμών ΠΑΡΑΔΕΙΓΜΑ Σε ένα τηλεπικοινωνιακό δίκτυο με 5 κόμβους πελάτες και ένα κεντρικό σύστημα, το minimal spanning tree του δικτύου αντιστοιχεί στην εύρεση της διαδρομής που διασυνδέει όλους τους χρήστες είτε άμεσα είτε έμμεσα με το μικρότερο συνολικό δυνατό μήκος (ΟΙΚΟΝΟΜΙΑ). Θεωρία Γράφων 36

37 Minimal Spanning Tree Αλγόριθμος Επιλέγουμε έναν κόμβο τυχαία Βρίσκουμε τον ασύνδετο κόμβο πιο κοντα σε έναν από τους συνδεδεμένους και τον επιλέγουμε Επαναλαμβάνουμε το προηγούμενο βήμα μέχρι ο γράφος να είναι συνδεδεμένος. Με την τεχνική αυτή επιτυγχάνεται η βέλτιστη λύση Θεωρία Γράφων 37

38 Μήκος Ελάχιστου Μονοπατιού Minimum path distance Σε κάθε δίκτυο θα πρέπει να ληφθούν αποφάσεις για το πως θα δρομολογηθούν τα πακέτα δεδομένων (θα πρέπει να βρεθεί ένα μονοπάτι από τον αποστολέα προς τον παραλήπτη) Οι αποφάσεις αυτές βασίζονται σε κριτήρια ελαχίστου κόστους Ελάχιστος αριθμός αλμάτων Ελάχιστη συμφόρηση-φόρτος Ελάχιστο οικονομικό κόστος Ασφαλέστερη διαδρομή Τα κριτήρια αυτά χρησιμοποιούνται σαν είσοδοι σε αλγορίθμους δρομολόγησης Αλγόριθμος Dijkstra Αλγόριθμος Bellman-Ford Θεωρία Γράφων 38

39 Αλγόριθμος Dijkstra Να βρεθούν τα συντομότερα μονοπάτια από έναν κόμβο πηγή προς όλους τους άλλους κόμβους κατατάσσοντας τα μονοπάτια ως προς αύξουσα σειρά ως προς το μήκος τους. Έστω Ν κόμβοι, s κόμβος πηγή, Τ: το σύνολο των ήδη επεξεργασμένων κόμβων,l(n): το ελάχιστο κόστος κάθε φορά από τον s στον n. Αλγόριθμος ΑΡΧΗ : Τ = {s}, υπολογίζονται κόστη προς γειτονικούς κόμβους ΕΠΟΜΕΝΟΣ ΚΟΜΒΟΣ: Γειτονικός που δεν ανήκει στο Τ. Προστίθεται στο Τ Υπολογίζεται το νέο ελάχιστο μήκος L(x) ΤΕΛΟΣ ΑΛΓΟΡΙΘΜΟΥ όταν όλοι οι κόμβοι προστεθούν στο Τ Θεωρία Γράφων 39

40 Αλγόριθμος Dijkstra Θεωρία Γράφων 40

41 Αλγόριθμος Dijkstra Θεωρία Γράφων 41

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Γράφοι Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο πλευρές (ακµές) και κορυφές (κόµβους). Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Graph Drawing 4 πιθανές αναπαραστάσεις

Διαβάστε περισσότερα

u v 4 w G 2 G 1 u v w x y z 4

u v 4 w G 2 G 1 u v w x y z 4 Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E

Διαβάστε περισσότερα

ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 11-1

ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 11-1 Γράφοι Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Γράφοι - ορισµοί και υλοποίηση Διάσχιση Γράφων Τοπολογική Ταξινόµηση ΕΠΛ 23 Δοµές Δεδοµένων και Αλγόριθµοι - Γράφοι Η πιο γενική µορφή δοµής

Διαβάστε περισσότερα

2 ) d i = 2e 28, i=1. a b c

2 ) d i = 2e 28, i=1. a b c ΑΣΚΗΣΕΙΣ ΘΕΩΡΙΑΣ ΓΡΑΦΩΝ (1) Εστω G απλός γράφος, που έχει 9 κορυφές και άθροισμα βαθμών κορυφών μεγαλύτερο του 7. Αποδείξτε ότι υπάρχει μια κορυφή του G με βαθμό μεγαλύτερο ή ίσο του 4. () Αποδείξτε ότι

Διαβάστε περισσότερα

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ 3 η Διάλεξη Μονοπάτια και Κύκλοι Μήκη και αποστάσεις Κέντρο και μέσο γράφου. Ακτίνα και Διάμετρος Δυνάμεις Γραφημάτων Γράφοι Euler.

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 3 : Γραφήματα & Αποδείξεις Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γράφων (Graph Theory)

Στοιχεία Θεωρίας Γράφων (Graph Theory) Στοιχεία Θεωρίας Γράφων (Graph Theory) Ε Εξάμηνο, Τμήμα Πληροφορικής & Τεχνολογίας Υπολογιστών ΤΕΙ Λαμίας plam@inf.teilam.gr, Οι διαφάνειες βασίζονται στα βιβλία:. Αλγόριθμοι, Σχεδιασμός & Ανάλυση, η έκδοση,

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, Γράφοι Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Γράφοι - ορισµοί και υλοποίηση Τοπολογική Ταξινόµηση ιάσχιση Γράφων ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26 - Γράφοι Ηπιο

Διαβάστε περισσότερα

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα Ασκήσεις στους Γράφους 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα Ασκηση 1 η Να αποδείξετε ότι κάθε γράφημα περιέχει μια διαδρομή από μια κορυφή u σε μια κορυφή w αν και

Διαβάστε περισσότερα

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ 2 Η ΔΙΑΛΕΞΗ Βασικές Έννοιες Γράφων - Ορισμοί (συνέχεια) - Ισομορφισμοί-Ομοιομορφισμοί Γράφων - Πράξεις - Αναπαράσταση Γράφων (Πίνακες

Διαβάστε περισσότερα

Θεωρία και Αλγόριθμοι Γράφων

Θεωρία και Αλγόριθμοι Γράφων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 2: Εισαγωγή (Ορισμοί) Ιωάννης Μανωλόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Ένα γράφημα αποτελείται από ένα σύνολο 94.

ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Ένα γράφημα αποτελείται από ένα σύνολο 94. ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» ΤΟΜΟΣ Α ΤΟΜΟΣ Β ΑΓΓΛΙΚΗ Γράφημα, Γράφος, Ένα γράφημα αποτελείται από ένα σύνολο 94 11 κορυφών και ένα σύνολο ακμών.

Διαβάστε περισσότερα

βασικές έννοιες (τόμος Β)

βασικές έννοιες (τόμος Β) θεωρία γραφημάτων Παύλος Εφραιμίδης 1 περιεχόμενα βασικές έννοιες (τόμος Α) βασικές έννοιες (τόμος Β) 2 Θεωρία Γραφημάτων Βασική Ορολογία Τόμος Α, Ενότητα 4.1 Βασική Ορολογία Γραφημάτων Γράφημα Γ = (E,V)

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Εισαγωγή σε βασικές έννοιες Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 1 Περιεχόμενα

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 9 Απριλίου 2009 1 / 0 Παραδείγµατα γράφων

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη

Διαβάστε περισσότερα

(elementary graph algorithms)

(elementary graph algorithms) (elementary graph algorithms) Παύλος Εφραιμίδης 1 περιεχόμενα γραφήματα αναπαραστάσεις οριζόντια διερεύνηση καθοδική διερεύνηση 2 ΓΡΑΦΉΜΑΤΑ 3 αναπαράσταση δύο καθιερωμένοι τρόποι: πίνακας γειτνίασης συλλογή

Διαβάστε περισσότερα

Διάλεξη 29: Γράφοι. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 29: Γράφοι. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 9: Γράφοι Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Γράφοι - ορισμοί και υλοποίηση - Διάσχιση Γράφων Διδάσκων: Παναγιώτης νδρέου ΕΠΛ035 Δομές Δεδομένων και λγόριθμοι για Ηλ. Μηχ.

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήματα. v1.3 ( ) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήματα. v1.3 ( ) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήματα v1.3 (2014-01-30) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισμοί και Εφαρμογές γραφήματα γράφημα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 4 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήµατα v1.0 (2010-05-25) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά. Τι είδαμε την προηγούμενη φορά. Θεωρία γράφων / γραφήματα. 25 -Γράφοι. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017

HY118-Διακριτά Μαθηματικά. Τι είδαμε την προηγούμενη φορά. Θεωρία γράφων / γραφήματα. 25 -Γράφοι. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017 HY118-Διακριτά Μαθηματικά Τι είδαμε την προηγούμενη φορά Παρασκευή, 12/05/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Υπογράφημα Συμπληρωματικά γραφήματα Ισομορφισμός γράφων Υπολογιστική πολυπλοκότητα

Διαβάστε περισσότερα

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή Εργαστήριο 10 Γράφηµα (Graph) Εισαγωγή Στην πληροφορική γράφηµα ονοµάζεται µια δοµή δεδοµένων, που αποτελείται από ένα σύνολο κορυφών ( vertices) (ή κόµβων ( nodes» και ένα σύνολο ακµών ( edges). Ενας

Διαβάστε περισσότερα

Μαθηματικά Πληροφορικής

Μαθηματικά Πληροφορικής Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενα γραφήματα Ορισμός Κατευθυνόμενογράφημα Gείναιέναζεύγος (V,E)όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 2: Γραφήματα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 5 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Αντίστοιχη βαθμολογικά και ποιοτικά με την

Διαβάστε περισσότερα

Γράφοι: κατευθυνόμενοι και μη

Γράφοι: κατευθυνόμενοι και μη Γράφοι: κατευθυνόμενοι και μη (V,E ) (V,E ) Γράφος (ή γράφημα): ζεύγος (V,E), V ένα μη κενό σύνολο, Ε διμελής σχέση πάνω στο V Μη κατευθυνόμενος γράφος: σχέση Ε συμμετρική V: κορυφές (vertices), κόμβοι

Διαβάστε περισσότερα

Φροντιστήριο #8 Ασκήσεις σε Γράφους 16/5/2017

Φροντιστήριο #8 Ασκήσεις σε Γράφους 16/5/2017 Φροντιστήριο #8 Ασκήσεις σε Γράφους 16/5/2017 Άσκηση 8.1: Στο παρακάτω σχήμα φαίνονται δέκα λατινικοί χαρακτήρες (A, F, K, M, R, S, T, V, X και Z) με τη μορφή γράφων. Ποιοι από αυτούς είναι ισομορφικοί;

Διαβάστε περισσότερα

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα. Κατευθυνόµενα γραφήµατα Απλό κατευθυνόµενο Γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E), µε: Στοιχεία Θεωρίας Γραφηµάτων (1) σύνολο κορυφών / κόµβων V, Ορέστης Τελέλης tllis@unipi.r Τµήµα Ψηφιακών Συστηµάτων,

Διαβάστε περισσότερα

Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016

Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016 Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016 Άσκηση 8.1: Στο παρακάτω σχήμα φαίνονται δέκα λατινικοί χαρακτήρες (A, F, K, M, R, S, T, V, X και Z) με τη μορφή γράφων. Ποιοι από αυτούς είναι ισομορφικοί;

Διαβάστε περισσότερα

Ενότητα 5: Αλγόριθμοι γράφων και δικτύων

Ενότητα 5: Αλγόριθμοι γράφων και δικτύων Εισαγωγή στην Επιστήμη των Υπολογιστών ο εξάμηνο ΣΗΜΜΥ Ενότητα : Αλγόριθμοι γράφων και δικτύων Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα Ασκήσεις στους Γράφους 2 ο Σετ Ασκήσεων Δέντρα Ασκηση 1 η Ένας γράφος G είναι δέντρο αν και μόνο αν κάθε δυο κορυφές του συνδέονται με ένα μοναδικό μονοπάτι. Υποθέτουμε ότι ο γράφος G είναι δέντρο. Έστω

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων 6η Διάλεξη Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Τρίτη, 17/05/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/22/2016 1 1 5/22/2016 2 2 Τι είναι οι γράφοι; Mία ειδική κλάση διακριτών δοµών (που

Διαβάστε περισσότερα

Επίπεδα Γραφήματα (planar graphs)

Επίπεδα Γραφήματα (planar graphs) Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους 1 2 1 2 3 4 3 4 Άρα αυτό το γράφημα είναι επίπεδο Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Παρασκευή, 12/05/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 12-May-17 1 1 Θεωρία γράφων / γραφήματα 12-May-17 2 2 Τι είδαμε την προηγούμενη φορά Υπογράφημα Συμπληρωματικά

Διαβάστε περισσότερα

d(v) = 3 S. q(g \ S) S

d(v) = 3 S. q(g \ S) S Διάλεξη 9: 9.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιωτίδης Αλέξανδρος Θεώρημα 9.1 Εστω γράφημα G = (V, E), υπάρχει τέλειο ταίριασμα στο G αν και μόνο αν για κάθε S υποσύνολο

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 4η Διάλεξη

Θεωρία Γραφημάτων 4η Διάλεξη Θεωρία Γραφημάτων 4η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 4η Διάλεξη

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων. 22 - Γράφοι

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων. 22 - Γράφοι HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Τρίτη, 19/05/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/21/2015 1 1 5/21/2015 2 2 Τι είναι οι γράφοι; Mία ειδική κλάση διακριτών δοµών (που

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 2 Περιεχόμενα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είδαµε την προηγούµενη φορά. Συνεκτικότητα Γράφοι

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είδαµε την προηγούµενη φορά. Συνεκτικότητα Γράφοι HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Παρασκευή, 20/05/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/22/2016 1 1 5/22/2016 2 2 Τι είδαµε την προηγούµενη φορά Συνεκτικότητα Υπογράφηµα

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία Γραφημάτων 1η Διάλεξη Θεωρία Γραφημάτων η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 206 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός ΘΕΩΡΙΑ ΓΡΑΦΩΝ 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός Βασικές Έννοιες Στο κεφάλαιο αυτό θα μελετηθεί ο βαθμός συνεκτικότητας (συνδεσμικότητας)

Διαβάστε περισσότερα

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε Διάλεξη 4: 20.10.2016 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος 4.1 2-συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός γραφήματος G μοιράζονται το πολύ μία κορυφή. Απόδειξη:

Διαβάστε περισσότερα

Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο. Γραφήµατα. (Graphs)

Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο. Γραφήµατα. (Graphs) Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο Γραφήµατα (Grphs) http://tos.it.tith.gr/~mos/thing_gr.html Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ATEI ΘΕΣΣΑΛΟΝΙΚΗΣ Γράφημα (Grph) Oρισμός 1: Έστω το µη

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.

Διαβάστε περισσότερα

Αλγόριθμοι Γραφημάτων

Αλγόριθμοι Γραφημάτων Αλγόριθμοι Γραφημάτων. Γραφήματα. Αναπαράσταση Γραφημάτων 3. Διερεύνηση σε Πρώτα σε Πλάτος (BFS) Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Γράφημα Ορισμός: Ένα γράφημα G είναι το διατεταγμένο ζεύγος

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 11η Διάλεξη

Θεωρία Γραφημάτων 11η Διάλεξη Θεωρία Γραφημάτων 11η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη

Διαβάστε περισσότερα

Θεωρία και Αλγόριθμοι Γράφων

Θεωρία και Αλγόριθμοι Γράφων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 6: Δένδρα Ιωάννης Μανωλόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους

Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους Άσκηση 10.1: Στο παρακάτω σχήμα φαίνονται δέκα λατινικοί χαρακτήρες (A, F, K, M, R, S, T, V, X και Z) με τη μορφή γράφων. Ποιοι από αυτούς είναι ισομορφικοί;

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήματα. ver. 21/12/2014. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήματα. ver. 21/12/2014. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήματα ver. 21/12/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισμοί και Εφαρμογές γραφήματα γράφημα G: ένας τρόπος κωδικοποίησης των σχέσεων ανά

Διαβάστε περισσότερα

Το πρόβλημα μονοδρόμησης (The One-Way Street Problem)

Το πρόβλημα μονοδρόμησης (The One-Way Street Problem) Το πρόβλημα μονοδρόμησης (The One-Way Street Problem) Το πρόβλημα Σχετίζεται με τη διαχείριση της κίνησης οχημάτων στους δρόμους Αν δεν υπήρχαν καθυστερήσεις στην κίνηση στις πόλεις Αποφυγή σπατάλης ενέργειας

Διαβάστε περισσότερα

Διάλεξη 18: Γράφοι I Εισαγωγή

Διάλεξη 18: Γράφοι I Εισαγωγή Διάλεξη 18: Γράφοι I Εισαγωγή Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Γράφοι ορισμοί και υλοποίηση Διάσχιση Γράφων ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Εισαγωγή στους Γράφους Η πιο

Διαβάστε περισσότερα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)

Διαβάστε περισσότερα

Αναζήτηση Κατά Πλάτος

Αναζήτηση Κατά Πλάτος Αναζήτηση Κατά Πλάτος ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα συνεκτικότητα,

Διαβάστε περισσότερα

Θεωρία Γράφων - Εισαγωγή

Θεωρία Γράφων - Εισαγωγή Θεωρία Γράφων - Εισαγωγή Τοπολογιές απειονίσεις Τοπολογία Κλάδος των μαθηματιών που μελετά ανάμεσα σε άλλα τις ιδιότητες εείνες των γεωμετριών σχημάτων οι οποίες παραμένουν αναλλοίωτες ατά τις τοπολογιές

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 7η Διάλεξη

Θεωρία Γραφημάτων 7η Διάλεξη Θεωρία Γραφημάτων 7η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 7η Διάλεξη

Διαβάστε περισσότερα

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12.

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12. ΑΣΚΗΣΗ 1: Είναι το ακόλουθο γράφημα απλό; Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12. v 2 ΑΠΑΝΤΗΣΗ 1: Το παραπάνω γράφημα δεν είναι απλό, αφού υπάρχουν δύο ακμές που

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Ενθαρρυντική εικόνα, σαφώς καλύτερη από

Διαβάστε περισσότερα

Γράφοι. Ορολογία. Ορισµός: G = (V, E) όπου. Ορολογία (συνέχεια) γράφος ή γράφηµα (graph) V:ένα σύνολο E:µια διµελής σχέση στο V

Γράφοι. Ορολογία. Ορισµός: G = (V, E) όπου. Ορολογία (συνέχεια) γράφος ή γράφηµα (graph) V:ένα σύνολο E:µια διµελής σχέση στο V Γράφοι Ορολογία γράφος ή γράφηµα (graph) Ορισµός: G = (V, E) όπου V:ένα σύνολο E:µια διµελής σχέση στο V Ορολογία (συνέχεια) κάθε v V ονοµάζεται κορυφή (vertex) ή κόµβος (node) κάθε (v 1, v 2 ) Ε ονοµάζεται

Διαβάστε περισσότερα

Διαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k

Διαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k Διαίρει και Βασίλευε πρόβλημα μεγέθους Ν διάσπαση πρόβλημα μεγέθους k πρόβλημα μεγέθους Ν-k Διαίρει και Βασίλευε πρόβλημα μεγέθους Ν διάσπαση επιλύουμε αναδρομικά τα υποπροβλήματα πρόβλημα μεγέθους k πρόβλημα

Διαβάστε περισσότερα

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs) Μη κατευθυνόµενα γραφήµατα Στοιχεία Θεωρίας Γραφηµάτων (1) Απλό µη κατευθυνόµενο γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E) µε σύνολο κορυφών/κόµβων V Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων,

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία Γραφημάτων 1η Διάλεξη Θεωρία Γραφημάτων η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 207 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη

Διαβάστε περισσότερα

Σχεδίαση & Ανάλυση Αλγορίθμων

Σχεδίαση & Ανάλυση Αλγορίθμων Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 4.1 Βασικοί Αλγόριθμοι Γραφημάτων Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγοριθμική Θεωρία

Διαβάστε περισσότερα

Θεωρία και Αλγόριθμοι Γράφων

Θεωρία και Αλγόριθμοι Γράφων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 4: Μονοπάτια και Κύκλοι Ιωάννης Μανωλόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΙΣΑΓΩΓΗ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΤΙ ΕΙΝΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ; Η επιστήμη των αριθμών Βασανιστήριο για τους μαθητές και φοιτητές Τέχνη για τους μαθηματικούς ΜΑΘΗΜΑΤΙΚΑ Α Εξάμηνο ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γραφηµάτων (1)

Στοιχεία Θεωρίας Γραφηµάτων (1) Στοιχεία Θεωρίας Γραφηµάτων (1) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 1 / 23 Μη κατευθυνόµενα γραφήµατα

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 17/05/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/22/2016 1 1 Θεωρία γράφων / γραφήµατα 5/22/2016 2 2 Τι είναι οι γράφοι; Mία ειδική κλάση διακριτών δοµών (που

Διαβάστε περισσότερα

Ελάχιστο Γεννητικό Δένδρο. Παράδειγμα - Αλγόριθμος Prim. Γιατί δουλεύουν αυτοί οι αλγόριθμοι;

Ελάχιστο Γεννητικό Δένδρο. Παράδειγμα - Αλγόριθμος Prim. Γιατί δουλεύουν αυτοί οι αλγόριθμοι; Άπληστοι Αλγόριθμοι ΙΙI Αλγόριθμοι γραφημάτων Ελάχιστο Γεννητικό Δένδρο Παράδειγμα Κατασκευή δικτύων Οδικά, επικοινωνίας Έχουμε ένα συνεκτικό γράφημα (V,E) και ένας βάρος we σε κάθε ακμή e. Να βρεθεί υποσύνολο

Διαβάστε περισσότερα

Έχοντας υπόψιν το Λήμμα του Urysohn, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν

Έχοντας υπόψιν το Λήμμα του Urysohn, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν 3 4.3 Τελείως κανονικοί χώροι ( ). 3 2 Έχοντας υπόψιν το Λήμμα του Urysoh, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν κανονικός χώρος, x και κλειστό ώστε x. Υπάρχει τότε συνεχής συνάρτηση f :, ώστε

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Γραφήματα. Κεφάλαιο Εισαγωγικές έννοιες Ορισμός

Γραφήματα. Κεφάλαιο Εισαγωγικές έννοιες Ορισμός Κεφάλαιο 3 Γραφήματα 3.1 Εισαγωγικές έννοιες Ορισμός Ορισμός 3.1. Γράφος (ή γράφημα) G, ονομάζεται ένα διατεταγμένο ζεύγος συνόλων (V, E), όπου V είναι μη κενό σύνολο στοιχείων και E ένα σύνολο μη διατεταγμένων

Διαβάστε περισσότερα

ΔΕΝΔΡΙΚΑ ΓΡΑΦΗΜΑΤΑ ΚΕΦΑΛΑΙΟ 3

ΔΕΝΔΡΙΚΑ ΓΡΑΦΗΜΑΤΑ ΚΕΦΑΛΑΙΟ 3 Δενδρικά Γραφήματα 93 ΚΕΦΑΛΑΙΟ 3 ΔΕΝΔΡΙΚΑ ΓΡΑΦΗΜΑΤΑ 3.1 Εισαγωγή 3.2 Βασικές Ιδιότητες Δένδρων 3.3 Απαρίθμηση Δένδρων 3.4 Γενετικά Δένδρα 3.5 Ελάχιστα Γενετικά Δένδρα Προαπαιτούμενη Γνώση Πολύ καλή γνώση

Διαβάστε περισσότερα

Βασικές Δοµές Δεδοµένων. Σύντοµη επανάληψη (ΕΠΛ 035).

Βασικές Δοµές Δεδοµένων. Σύντοµη επανάληψη (ΕΠΛ 035). Βασικές Δοµές Δεδοµένων Σύντοµη επανάληψη (ΕΠΛ 035). Περίληψη Γραµµικές Δοµές Δεδοµένων Πίνακες Λίστες Στοίβες Ουρές Γράφοι Δέντρα Γραµµικές Δοµές Πίνακας (array) A[0] A[1] A[2] A[ ] A[n-1] Προκαθορισµένη

Διαβάστε περισσότερα

Αλγόριθμοι Γραφημάτων

Αλγόριθμοι Γραφημάτων Αλγόριθμοι Γραφημάτων 1. Minimum Spanning Trees 2. Αλγόριθμος Prim 3. Αλγόριθμος Kruskal Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Minimum Spanning Tree Πρόβλημα: Για δοσμένο συνεκτικό, μη προσανατολισμένο,

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι έχουµε δει µέχρι τώρα. Υπογράφηµα Γράφοι

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι έχουµε δει µέχρι τώρα. Υπογράφηµα Γράφοι HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Πέµπτη, 19/05/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/22/2016 1 1 5/22/2016 2 2 Τι έχουµε δει µέχρι τώρα Κατευθυνόµενοι µη κατευθυνόµενοι

Διαβάστε περισσότερα

Γραφήματα. Θέματα Υπολογισμού στον Πολιτισμό Γραφήματα

Γραφήματα. Θέματα Υπολογισμού στον Πολιτισμό Γραφήματα Γραφήματα Θεωρία γραφημάτων Παλιό αντικείμενο 18 ος αιώνας Leonhard Euler (Ελβετός μαθηματικός): πρόβλημα γεφυρών της πόλης Königsberg Με πολλές σύγχρονες εφαρμογές Μελέτη ιδιοτήτων ηλεκτρονικών κυκλωμάτων

Διαβάστε περισσότερα

Θεωρία γραφημάτων. Παλιό αντικείμενο 18 ος αιώνας Leonhard Euler (Ελβετός μαθηματικός): πρόβλημα γεφυρών της πόλης Königsberg

Θεωρία γραφημάτων. Παλιό αντικείμενο 18 ος αιώνας Leonhard Euler (Ελβετός μαθηματικός): πρόβλημα γεφυρών της πόλης Königsberg Γραφήματα Θεωρία γραφημάτων Παλιό αντικείμενο 18 ος αιώνας Leonhard Euler (Ελβετός μαθηματικός): πρόβλημα γεφυρών της πόλης Königsberg Με πολλές σύγχρονες εφαρμογές Μελέτη ιδιοτήτων ηλεκτρονικών κυκλωμάτων

Διαβάστε περισσότερα

6 Συνεκτικοί τοπολογικοί χώροι

6 Συνεκτικοί τοπολογικοί χώροι 36 6 Συνεκτικοί τοπολογικοί χώροι Έστω R διάστημα και f : R συνεχής συνάρτηση τότε, όπως γνωρίζουμε από τον Απειροστικό Λογισμό, η f έχει την ιδιότητα της ενδιάμεσου τιμής. Η ιδιότητα αυτή δεν εξαρτάται

Διαβάστε περισσότερα

Network Science. Θεωρεία Γραφηµάτων (2)

Network Science. Θεωρεία Γραφηµάτων (2) Network Science Θεωρεία Γραφηµάτων () Section.8 PATHOLOGY Διαδρομές Μια διαδρομή είναι μια σειρά κόμβων όπου κάθε κόμβος είναι δίπλα στην επόμενη P i0,in μήκους n μεταξύ των κόμβων i 0 και i n είναι μια

Διαβάστε περισσότερα

Αλγόριθµοι Γραφηµάτων

Αλγόριθµοι Γραφηµάτων Αλγόριθµοι Γραφηµάτων Παύλος Σπυράκης Πανεπιστήµιο Πατρών Τοµέας Θεµελιώσεων και Εφαρµογών της Επιστήµης των Υπολογιστών Ερευνητικό Ακαδηµαϊκό Ινστιτούτο Τεχνολογίας Υπολογιστών Γραφήµατα Μοντελοποίηση

Διαβάστε περισσότερα

ΠΛΗ20 ΕΝΟΤΗΤΑ 5: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ/2. Μάθηµα 5.1: Παραστάσεις Γραφηµάτων. ηµήτρης Ψούνης

ΠΛΗ20 ΕΝΟΤΗΤΑ 5: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ/2. Μάθηµα 5.1: Παραστάσεις Γραφηµάτων. ηµήτρης Ψούνης ΠΛΗ20 ΕΝΟΤΗΤΑ 5: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ/2 Μάθηµα 5.1: Παραστάσεις Γραφηµάτων ηµήτρης Ψούνης 2 ΠΕΡΙΕΧΟΜΕΝΑ Α. Σκοπός του Μαθήµατος Β.Θεωρία 1. Πίνακας Γειτνίασης 1. Ορισµός για µη κατευθυνόµενα γραφήµατα 2.

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #7: Ελάχιστα Επικαλυπτικά Δένδρα, Αλγόριθμος Kruskal, Δομές Union-Find Άσκηση # 0 5 0 0 0

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις. Ρίζου Ζωή

Επαναληπτικές Ασκήσεις. Ρίζου Ζωή Επαναληπτικές Ασκήσεις Ρίζου Ζωή email: zrizou@ee.duth.gr Άσκηση 1 Τι πραγματεύεται το θεώρημα Euler; Απάντηση Ψευδογραφήματα που περιέχουν ένα κύκλωμα στο ψευδογραφήματα, των οποίων ο βαθμός κάθε κορυφής

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Κατευθυνόμενα και μη κατευθυνόμενα γραφήματα

Κατευθυνόμενα και μη κατευθυνόμενα γραφήματα Εισαγωγικά στοιχεία Κατευθυνόμενα και μη κατευθυνόμενα γραφήματα Κατευθυνόμενο γράφημα (directed graph ή digraph): (V,A) V: πεπερασμένο σύνολο κορυφών που σημειώνονται ως σημεία A: σύνολο διατεταγμένων

Διαβάστε περισσότερα