Γράφοι: κατευθυνόμενοι και μη

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γράφοι: κατευθυνόμενοι και μη"

Transcript

1

2

3 Γράφοι: κατευθυνόμενοι και μη (V,E ) (V,E ) Γράφος (ή γράφημα): ζεύγος (V,E), V ένα μη κενό σύνολο, Ε διμελής σχέση πάνω στο V Μη κατευθυνόμενος γράφος: σχέση Ε συμμετρική V: κορυφές (vertices), κόμβοι (nodes) Ε: ακμές (edges) Ε = {{,}, {,}, {,}, {,}, {,}, {,}} Ε = {(,), (,), (,), (,), (,), (,), (,), (,), (,), (,)} Γράφοι: Προβλήματα και Αλγόριθμοι

4 Γράφοι: ορολογία (V,E ) (V,E ) Γειτονικές (adjacent) κορυφές: συνδέονται με ακμή, π.χ. και Άκρα (endpoints) ακμής Προσπίπτουσα (incident) ακμή (σε κόμβο) Γειτονικές ακμές Γράφοι: Προβλήματα και Αλγόριθμοι

5 Γράφοι: ορολογία -κανονικός γράφος Βαθμός (degree, valence) κορυφής v: ο αριθμός των ακμών που προσπίπτουν στην v, deg(v) Ένας (μη κατευθυνόμενος) γράφος όπου deg(v)=k για κάθε κορυφή v, λέγεται k-κανονικός (k-regular) Σημαντική ιδιότητα: Σ deg(v) = E Σε κατευθυνόμενο γράφο: in-deg(v), out-deg(v) Γράφοι: Προβλήματα και Αλγόριθμοι

6 Διαδρομές σε γράφους Δρόμος: έγκυρη ακολουθία από κορυφές-ακμές Μονοπάτι: δρόμος χωρίς επαναλήψεις ακμών Απλό μονοπάτι: μονοπάτι χωρίς επαναλήψεις κορυφών Κύκλος: κλειστό μονοπάτι Απλός κύκλος: απλό κλειστό μονοπάτι Μήκος δρόμου: το πλήθος των ακμών του Γράφοι: Προβλήματα και Αλγόριθμοι

7 Γράφοι: Προβλήματα και Αλγόριθμοι Αναπαράσταση γράφων με πίνακα γειτνίασης: Αν έχουμε βάρη, Μη-κατευθυνόμενος: συμμετρικός πίνακας Χώρος: Θ(n ) Προσπέλαση γειτόνων: Θ(n) Άμεσος έλεγχος ύπαρξης ακμής: Ο()

8 Γράφοι: Προβλήματα και Αλγόριθμοι 7 Αναπαράσταση γράφων με πίνακα γειτνίασης: Αν έχουμε βάρη, Κατευθυνόμενος: μη-συμμετρικός πίνακας Χώρος: Θ(n ) Προσπέλαση γειτόνων: Θ(n) Άμεσος έλεγχος ύπαρξης ακμής: Ο()

9 Αναπαράσταση γράφων με λίστες γειτνίασης: γειτονικές κορυφές σε λίστες Αν έχουμε βάρη, τα αποθηκεύουμε στους κόμβους Χώρος: Θ(m) Προσπέλαση γειτόνων: Θ(deg(u)) Έλεγχος ύπαρξης ακμής: Ο(deg(u)) / / / / / / Γράφοι: Προβλήματα και Αλγόριθμοι

10 Αναπαράσταση γράφων με λίστες γειτνίασης: γειτονικές κορυφές σε λίστες Αν έχουμε βάρη, τα αποθηκεύουμε στους κόμβους Χώρος: Θ(m) Προσπέλαση γειτόνων: Θ(deg(u)) Έλεγχος ύπαρξης ακμής: Ο(deg(u)) / / / / / / Γράφοι: Προβλήματα και Αλγόριθμοι 9

11 Γράφοι: συνεκτικοί και μη Ένας μη κατευθυνόμενος γράφος λέγεται συνεκτικός (connected) αν υπάρχει δρόμος μεταξύ οποιωνδήποτε δύο κορυφών του Σε συνεκτικό γράφο ισχύει: Ένας κατευθυνόμενος γράφος λέγεται ισχυρά συνεκτικός (strongly connected) αν υπάρχει δρόμος μεταξύ οποιωνδήποτε δύο κορυφών του ακολουθώντας τις κατευθύνσεις των ακμών ασθενώς συνεκτικός (weakly connected) αν υπάρχει δρόμος μεταξύ οποιωνδήποτε δύο κορυφών του αγνοώντας τις κατευθύνσεις των ακμών Γράφοι: Προβλήματα και Αλγόριθμοι

12 Άλλες έννοιες Παράγων υπογράφος (spanning subgraph) Επαγόμενος υπογράφος (induced subgraph) Συνεκτικές συνιστώσες (connected components) Πλήρης γράφος (Κn), διμερής γράφος (πλήρης Kn,m) Επίπεδος γράφος: αν μπορεί να σχεδιαστεί χωρίς να τέμνονται οι ακμές του ανν δεν περιέχει ως υπογράφους τα Κ, και Κ, - ούτε γράφους που προκύπτουν από αυτά με υποδιαιρέσεις των ακμών τους [Θεώρ. Kuratowski-Wagner] Δένδρο (tree): συνεκτικός γράφος χωρίς κύκλους Γράφοι: Προβλήματα και Αλγόριθμοι

13 Κλάσεις πολυπλοκότητας P: προβλήματα απόφασης για τα οποία η σωστή απάντηση μπορεί να βρεθεί σε πολυωνυμικό χρόνο ΝP: προβλήματα απόφασης για τα οποία η σωστή απάντηση, αν είναι καταφατική, μπορεί να επαληθευθεί σε πολυωνυμικό χρόνο (με χρήση σύντομου πιστοποιητικού) Συχνά εννοούμε τα αντίστοιχα προβλήματα αναζήτησης ή / και βελτιστοποίησης Γράφοι: Προβλήματα και Αλγόριθμοι

14 Προβλήματα Γράφων στην Κλάση P Κύκλος Euler Προσβασιμότητα (reachability) + Διάσχιση (traversal): DFS, BFS,... Συνεκτικές συνιστώσες (connected components) Συντομότερα μονοπάτια (shortest paths) Ελάχιστο συνδετικό δένδρο (minimum spanning tree) Μέγιστη ροή (maximum flow) Τέλειο ταίριασμα (perfect matching) Χρωματισμός ακμών διμερούς γράφου (bipartite edge coloring) Γράφοι: Προβλήματα και Αλγόριθμοι

15 Διάσχιση δένδρων Προδιατ/νη: καταγραφή κόμβου την η φορά που τον συναντάμε Ενδοδιατ/νη: καταγραφή κόμβου τη η φορά που τον συναντάμε (φύλλα: την η ) Μεταδιατ/νη: καταγραφή κόμβου την τελευταία φορά που τον συναντάμε Προδιατεταγμένη (preorder): Ενδοδιατεταγμένη (inorder): Μεταδιατεταγμένη (postorder): Γράφοι: Προβλήματα και Αλγόριθμοι

16 Αναζήτηση Κατά Βάθος (DFS) Πολυπλοκότητα O( V + E ): σε κάθε κόμβο Ο(deg(v)) έλεγχοι και κλήσεις της dfs (με ποια αναπαράσταση;) Γράφοι: Προβλήματα και Αλγόριθμοι

17 Παράδειγμα DFS Γράφοι: Προβλήματα και Αλγόριθμοι

18 ο παράδειγμα DFS Γράφοι: Προβλήματα και Αλγόριθμοι 7

19 ο παράδειγμα DFS Γράφοι: Προβλήματα και Αλγόριθμοι

20 ο παράδειγμα DFS Γράφοι: Προβλήματα και Αλγόριθμοι 9

21 ο παράδειγμα DFS Γράφοι: Προβλήματα και Αλγόριθμοι

22 ο παράδειγμα DFS Γράφοι: Προβλήματα και Αλγόριθμοι

23 ο παράδειγμα DFS Γράφοι: Προβλήματα και Αλγόριθμοι

24 ο παράδειγμα DFS 7 Γράφοι: Προβλήματα και Αλγόριθμοι

25 ο παράδειγμα DFS 7 Γράφοι: Προβλήματα και Αλγόριθμοι

26 ο παράδειγμα DFS 7 9 Γράφοι: Προβλήματα και Αλγόριθμοι

27 ο παράδειγμα DFS 7 9 Γράφοι: Προβλήματα και Αλγόριθμοι

28 ο παράδειγμα DFS 7 9 Γράφοι: Προβλήματα και Αλγόριθμοι 7

29 ο παράδειγμα DFS 7 9 Γράφοι: Προβλήματα και Αλγόριθμοι

30 Επιπλέον εφαρμογές DFS Έλεγχος συνεκτικότητας Εύρεση συνεκτικών συνιστωσών (πώς;) Εντοπισμός / εύρεση κύκλων: με έλεγχο και χρήση μη δενδρικών ακμών Αποδοτική εξερεύνηση άγνωστης περιοχής Γράφοι: Προβλήματα και Αλγόριθμοι 9

31 Αναζήτηση Κατά Πλάτος (BFS) Πολυπλοκότητα O( V + E ): σε κάθε κόμβο v, Ο(deg(v)) έλεγχοι και εισαγωγές στην ουρά Γράφοι: Προβλήματα και Αλγόριθμοι

32 Παράδειγμα BFS Γράφοι: Προβλήματα και Αλγόριθμοι

33 ο παράδειγμα BFS s 7 Q 9 Γράφοι: Προβλήματα και Αλγόριθμοι

34 ο παράδειγμα BFS s 7 Q 9 Γράφοι: Προβλήματα και Αλγόριθμοι

35 ο παράδειγμα BFS s 7 Q 7 9 Γράφοι: Προβλήματα και Αλγόριθμοι

36 ο παράδειγμα BFS s 7 Q 7 9 Γράφοι: Προβλήματα και Αλγόριθμοι

37 ο παράδειγμα BFS s 7 Q 9 Γράφοι: Προβλήματα και Αλγόριθμοι

38 ο παράδειγμα BFS s 7 Q 9 9 Γράφοι: Προβλήματα και Αλγόριθμοι 7

39 ο παράδειγμα BFS s 7 Q 9 Γράφοι: Προβλήματα και Αλγόριθμοι

40 ο παράδειγμα BFS s 7 9 Γράφοι: Προβλήματα και Αλγόριθμοι 9

41 ο παράδειγμα BFS s 7 9 Γράφοι: Προβλήματα και Αλγόριθμοι

42 Επιπλέον εφαρμογές ΒFS Έλεγχος συνεκτικότητας Εύρεση συνεκτικών συνιστωσών Εντοπισμός / εύρεση κύκλων: με έλεγχο και χρήση μη δενδρικών ακμών Μέτρηση αποστάσεων από αρχικό κόμβο (σε πλήθος ακμών) Γράφοι: Προβλήματα και Αλγόριθμοι

43 Εφαρμογή DFS/BFS To Πρόβλημα του Βαρκάρη Γράφοι: Προβλήματα και Αλγόριθμοι

44 Εφαρμογή DFS/BFS To Πρόβλημα του Βαρκάρη Μοντελοποίηση καταστάσεων με κόμβους γράφου, π.χ. (Λ,Π,Μ,Β / -) (Λ,Π / Β,Μ) Επίλυση: διαδρομή από αρχική κατάσταση προς τελική Πώς θα βρούμε την βέλτιστη σειρά κινήσεων; Πώς γενικεύεται το πρόβλημα; Γράφοι: Προβλήματα και Αλγόριθμοι

45 Συντομότερα Μονοπάτια (Dijkstra) Πολυπλ/τα O( V ): σε κάθε επανάληψη Ο( V ) για εύρεση ελαχίστου, Ο( V ) για ενημέρωση αποστάσεων Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι

46 Παράδειγμα Dijkstra Γράφοι: Προβλήματα και Αλγόριθμοι

47 Ορθότητα αλγορίθμου Dijkstra Ο αλγόριθμος δημιουργεί σταδιακά ένα δένδρο συντομότερων μονοπατιών. Το δένδρο αρχικοποιείται με τον αρχικό κόμβο. Αναλλοίωτη βρόχου: πριν από κάθε επανάληψη του εξωτερικού βρόχου η τρέχουσα απόσταση κάθε κόμβου v είναι η ελάχιστη απόστασή του από τον αρχικό κόμβο, μεταξύ όλων των διαδρομών που περνούν μόνο από κόμβους του μέχρι στιγμής κατασκευασμένου δένδρου (εξαιρώντας τον v). Σε κάθε επανάληψη επιλέγεται ο κόμβος w με την ελάχιστη τρέχουσα απόσταση. Γράφοι: Προβλήματα και Αλγόριθμοι

48 Ορθότητα αλγορίθμου Dijkstra Τα παραπάνω αποδεικνύονται επαγωγικά και αρκούν για να αποδείξουμε την παρακάτω η αναλλοίωτη βρόχου: ο κόμβος w που επιλέγεται έχει τελική ελάχιστη διαδρομή από τον αρχικό κόμβο αυτήν ακριβώς που αντιστοιχεί στην τρέχουσα απόστασή του. Η ορθότητα ισχύει σε γράφους χωρίς αρνητικά βάρη (άσκηση: βρείτε αντιπαράδειγμα). Γράφοι: Προβλήματα και Αλγόριθμοι 7

49 ο παράδειγμα Dijkstra Οι ετικέτες των κόμβων δείχνουν την μέχρι στιγμής ελάχιστη απόσταση από τον αρχικό κόμβο (πίνακας D). Γράφοι: Προβλήματα και Αλγόριθμοι

50 ο παράδειγμα Dijkstra Οι ετικέτες των κόμβων δείχνουν την μέχρι στιγμής ελάχιστη απόσταση από τον αρχικό κόμβο (πίνακας D), οι συνεχείς ακμές δείχνουν ποιος είναι ο αντίστοιχος προηγούμενος κόμβος (πίνακας P). Γράφοι: Προβλήματα και Αλγόριθμοι 9

51 ο παράδειγμα Dijkstra Οι ετικέτες των κόμβων δείχνουν την μέχρι στιγμής ελάχιστη απόσταση από τον αρχικό κόμβο (πίνακας D), οι συνεχείς ακμές δείχνουν ποιος είναι ο αντίστοιχος προηγούμενος κόμβος (πίνακας P). Γράφοι: Προβλήματα και Αλγόριθμοι

52 ο παράδειγμα Dijkstra 7 Οι ετικέτες των κόμβων δείχνουν την μέχρι στιγμής ελάχιστη απόσταση από τον αρχικό κόμβο (πίνακας D), οι συνεχείς ακμές δείχνουν ποιος είναι ο αντίστοιχος προηγούμενος κόμβος (πίνακας P). Γράφοι: Προβλήματα και Αλγόριθμοι

53 ο παράδειγμα Dijkstra 7 Οι ετικέτες των κόμβων δείχνουν την μέχρι στιγμής ελάχιστη απόσταση από τον αρχικό κόμβο (πίνακας D), οι συνεχείς ακμές δείχνουν ποιος είναι ο αντίστοιχος προηγούμενος κόμβος (πίνακας P). Γράφοι: Προβλήματα και Αλγόριθμοι

54 ο παράδειγμα Dijkstra 9 7 Οι ετικέτες των κόμβων δείχνουν την μέχρι στιγμής ελάχιστη απόσταση από τον αρχικό κόμβο (πίνακας D), οι συνεχείς ακμές δείχνουν ποιος είναι ο αντίστοιχος προηγούμενος κόμβος (πίνακας P). Γράφοι: Προβλήματα και Αλγόριθμοι

55 ο παράδειγμα Dijkstra 9 7 Οι ετικέτες των κόμβων δείχνουν την μέχρι στιγμής ελάχιστη απόσταση από τον αρχικό κόμβο (πίνακας D), οι συνεχείς ακμές δείχνουν ποιος είναι ο αντίστοιχος προηγούμενος κόμβος (πίνακας P). Γράφοι: Προβλήματα και Αλγόριθμοι

56 ο παράδειγμα Dijkstra 9 7 Οι ετικέτες των κόμβων δείχνουν την μέχρι στιγμής ελάχιστη απόσταση από τον αρχικό κόμβο (πίνακας D), οι συνεχείς ακμές δείχνουν ποιος είναι ο αντίστοιχος προηγούμενος κόμβος (πίνακας P). Γράφοι: Προβλήματα και Αλγόριθμοι

57 Αλγόριθμος Bellman-Ford dist(s):=; for each v<>s do dist(v):= (* η απόσταση του αρχικού κόμβου s τίθεται στο, των υπολοίπων στο *) repeat n- times for each edge e=(u,v) do if dist(u)+cost(u,v) < dist(v) then dist(v) := dist(u)+cost(u,v) (* ενημέρωση της απόστασης του v από τον s, με βάση την τρέχουσα απόσταση του u και το κόστος της e *) Γράφοι: Προβλήματα και Αλγόριθμοι

58 Αλγόριθμος Bellman-Ford Ορθότητα: στο τέλος της k-οστής επανάληψης έχουν υπολογιστεί σωστά οι ελάχιστες αποστάσεις μεταξύ διαδρομών το πολύ k ακμών (άσκηση: αποδείξτε το). Δουλεύει για γράφους με αρνητικά βάρη, αλλά όχι με αρνητικούς κύκλους (γιατί;). Εντοπισμός αρνητικών κύκλων: με μία ακόμη επανάληψη (άσκηση: αποδείξτε το). Πολυπλοκότητα: O( V Ε ) Γράφοι: Προβλήματα και Αλγόριθμοι 7

59 Ελάχιστο Συνδετικό Δένδρο (MST) Κριτήριο Prim: Διαλέγουμε κάθε φορά την ακμή ελαχίστου κόστους έτσι ώστε ο νέος υπογράφος να παραμένει δένδρο Κριτήριο Kruskal: Διαλέγουμε κάθε φορά την ακμή ελαχίστου κόστους έτσι ώστε ο νέος υπογράφος να μην έχει κύκλους Γράφοι: Προβλήματα και Αλγόριθμοι

60 Αλγόριθμος Prim Επιλέγεται ένας αρχικός κόμβος, έστω v. Η απόσταση του v τίθεται στο, των υπόλοιπων κόμβων στο. Κάθε φορά επιλέγεται ο κόμβος, έστω w, με την ελάχιστη απόσταση από το μέχρι στιγμής κατασκευασμένο δένδρο, και προστίθεται στο δένδρο. Ενημερώνονται οι αποστάσεις των υπόλοιπων κόμβων από το δένδρο με βάση το κόστος των ακμών (w,u i ): if cost(w,u i )<dist(u i ) then dist(u i ):=cost(w,u i ) Πολυπλοκότητα: O( V ), παρόμοια με Dijkstra Γράφοι: Προβλήματα και Αλγόριθμοι 9

61 Αλγόριθμος Prim Γράφοι: Προβλήματα και Αλγόριθμοι

62 Αλγόριθμος Prim Γράφοι: Προβλήματα και Αλγόριθμοι

63 Αλγόριθμος Prim Γράφοι: Προβλήματα και Αλγόριθμοι

64 Αλγόριθμος Prim Γράφοι: Προβλήματα και Αλγόριθμοι

65 Αλγόριθμος Prim Γράφοι: Προβλήματα και Αλγόριθμοι

66 Αλγόριθμος Prim Γράφοι: Προβλήματα και Αλγόριθμοι

67 Αλγόριθμος Prim Γράφοι: Προβλήματα και Αλγόριθμοι

68 Αλγόριθμος Prim Γράφοι: Προβλήματα και Αλγόριθμοι 7

69 Αλγόριθμος Prim 7 9 Γράφοι: Προβλήματα και Αλγόριθμοι

70 Αλγόριθμος Kruskal Οι ακμές ταξινομούνται σε αύξουσα σειρά κόστους. Κάθε φορά επιλέγεται η ακμή ελαχίστου κόστους και αν δε δημιουργεί κύκλο στο μέχρι στιγμής δάσος προστίθεται σε αυτό, αλλιώς απορρίπτεται. Για αποδοτική υλοποίηση, η ύπαρξη κύκλου ελέγχεται με χρήση πράξεων συνόλων (UNION-FIND, Union by Rank). Πολυπλοκότητα: O( E log V ) Γράφοι: Προβλήματα και Αλγόριθμοι 9

71 Αλγόριθμος Kruskal Γράφοι: Προβλήματα και Αλγόριθμοι 7

72 Αλγόριθμος Kruskal Γράφοι: Προβλήματα και Αλγόριθμοι 7

73 Αλγόριθμος Kruskal Γράφοι: Προβλήματα και Αλγόριθμοι 7

74 Αλγόριθμος Kruskal Γράφοι: Προβλήματα και Αλγόριθμοι 7

75 Αλγόριθμος Kruskal Γράφοι: Προβλήματα και Αλγόριθμοι 7

76 Αλγόριθμος Kruskal Γράφοι: Προβλήματα και Αλγόριθμοι 7

77 Αλγόριθμος Kruskal Γράφοι: Προβλήματα και Αλγόριθμοι 7

78 Αλγόριθμος Kruskal Γράφοι: Προβλήματα και Αλγόριθμοι 77

79 Αλγόριθμος Kruskal 7 9 Γράφοι: Προβλήματα και Αλγόριθμοι 7

80 Κοινή ιδέα Prim-Kruskal Ξεκινώντας από τον γράφο χωρίς ακμές και ενώνοντας επαναληπτικά δύο οποιαδήποτε συμπληρωματικά υποσύνολα κόμβων S και V \ S, που ακόμη δεν έχουν ακμή μεταξύ τους, με την ελαφρύτερη δυνατή ακμή καταλήγουμε σε ελάχιστο συνδετικό δένδρο Γράφοι: Προβλήματα και Αλγόριθμοι 79

81 Γιατί δουλεύει η ιδέα; Θεώρημα. Ένα σύνολο ακμών A που είναι υποσχόμενο (= υποσύνολο ενός MST) παραμένει υποσχόμενο αν του προσθέσουμε την ελαφρύτερη ακμή που συνδέει οποιαδήποτε συνεκτική συνιστώσα (connected component) του τρέχοντος υπογράφου (που ορίζεται από τις ακμές του A) με τον υπόλοιπο υπογράφο. Απόδειξη. Στον πίνακα. Γράφοι: Προβλήματα και Αλγόριθμοι

82 Εφαρμογή: αλγόριθμος Boruvka Λειτουργεί σε γύρους. Αρχικά κάθε κόμβος είναι συνιστώσα μόνος του. Σε κάθε γύρο, κάθε συνεκτική συνιστώσα συνδέεται με την ελαφρύτερη δυνατή ακμή με κάποια από τις υπόλοιπες συνιστώσες. Χρειάζεται τρόπος επίλυσης 'ισοπαλιών'. Πολυπλοκότητα: O( E log V ) (σε κάθε γύρο το πλήθος συνιστωσών μειώνεται στο μισό). Προσφέρεται για παράλληλη / κατανεμημένη υλοποίηση. Γράφοι: Προβλήματα και Αλγόριθμοι

83 NP-πλήρη Προβλήματα Γράφων VERTEX COVER (VC) CLIQUE HAMILTON CIRCUIT (HC) TRAVELING SALESMAN (TSP) -COLORABILITY SUBGRAPH ISOMORPHISM -DIMENSIONAL MATCHING (DM) Γράφοι: Προβλήματα και Αλγόριθμοι

84 NP-πλήρη Προβλήματα Γράφων Απόδειξη NP-πληρότητας: αναγωγές Γράφοι: Προβλήματα και Αλγόριθμοι

85 «Ενδιάμεση» Πολυπλοκότητα; Ισομορφισμός γράφων: δεν είναι NP-πλήρες πρόβλημα (κάτω από γενικά παραδεκτές υποθέσεις) Γράφοι: Προβλήματα και Αλγόριθμοι

86 Συμπεράσματα Αρκετά προβλήματα γράφων λύνονται γρήγορα: διάσχιση (προσβασιμότητα), συνεκτικές συνιστώσες, ελάχιστες διαδρομές, ελάχιστο συνδετικό δένδρο, κύκλος Euler, τέλειο ταίριασμα, μέγιστη ροή,... Πολλά προβλήματα φαίνεται να μην λύνονται γρήγορα: VERTEX COVER, CLIQUE, HAMILTON CIRCUIT, TRAVELING SALESMAN, -COLORABILITY, SUBGRAPH ISOMORPHISM, -DIMENSIONAL MATCHING,... Κάποια από αυτά λύνονται γρήγορα σε ειδικές περιπτώσεις, ή προσεγγιστικά. Εντατική έρευνα, πολλά ανοιχτά ερωτήματα. Γράφοι: Προβλήματα και Αλγόριθμοι

87

Ενότητα 5: Αλγόριθμοι γράφων και δικτύων

Ενότητα 5: Αλγόριθμοι γράφων και δικτύων Εισαγωγή στην Επιστήμη των Υπολογιστών ο εξάμηνο ΣΗΜΜΥ Ενότητα : Αλγόριθμοι γράφων και δικτύων Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 4 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 5 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

Αναζήτηση Κατά Πλάτος

Αναζήτηση Κατά Πλάτος Αναζήτηση Κατά Πλάτος ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα συνεκτικότητα,

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων

Διαβάστε περισσότερα

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Γράφοι Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο πλευρές (ακµές) και κορυφές (κόµβους). Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Graph Drawing 4 πιθανές αναπαραστάσεις

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήµατα v1.0 (2010-05-25) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

Αλγόριθµοι Γραφηµάτων

Αλγόριθµοι Γραφηµάτων Αλγόριθµοι Γραφηµάτων Παύλος Σπυράκης Πανεπιστήµιο Πατρών Τοµέας Θεµελιώσεων και Εφαρµογών της Επιστήµης των Υπολογιστών Ερευνητικό Ακαδηµαϊκό Ινστιτούτο Τεχνολογίας Υπολογιστών Γραφήµατα Μοντελοποίηση

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γράφων (Graph Theory)

Στοιχεία Θεωρίας Γράφων (Graph Theory) Στοιχεία Θεωρίας Γράφων (Graph Theory) Ε Εξάμηνο, Τμήμα Πληροφορικής & Τεχνολογίας Υπολογιστών ΤΕΙ Λαμίας plam@inf.teilam.gr, Οι διαφάνειες βασίζονται στα βιβλία:. Αλγόριθμοι, Σχεδιασμός & Ανάλυση, η έκδοση,

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο

Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο Σχεδίαση Αλγορίθμων Άπληστοι Αλγόριθμοι http://delab.csd.auth.gr/~gounaris/courses/ad 1 Άπληστοι αλγόριθμοι Προβλήματα βελτιστοποίησης ηςλύνονται με μια σειρά επιλογών που είναι: εφικτές τοπικά βέλτιστες

Διαβάστε περισσότερα

Ελάχιστο Γεννητικό Δένδρο. Παράδειγμα - Αλγόριθμος Prim. Γιατί δουλεύουν αυτοί οι αλγόριθμοι;

Ελάχιστο Γεννητικό Δένδρο. Παράδειγμα - Αλγόριθμος Prim. Γιατί δουλεύουν αυτοί οι αλγόριθμοι; Άπληστοι Αλγόριθμοι ΙΙI Αλγόριθμοι γραφημάτων Ελάχιστο Γεννητικό Δένδρο Παράδειγμα Κατασκευή δικτύων Οδικά, επικοινωνίας Έχουμε ένα συνεκτικό γράφημα (V,E) και ένας βάρος we σε κάθε ακμή e. Να βρεθεί υποσύνολο

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήματα. v1.3 ( ) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήματα. v1.3 ( ) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήματα v1.3 (2014-01-30) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισμοί και Εφαρμογές γραφήματα γράφημα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

Αλγόριθμοι Γραφημάτων

Αλγόριθμοι Γραφημάτων Αλγόριθμοι Γραφημάτων 1. Minimum Spanning Trees 2. Αλγόριθμος Prim 3. Αλγόριθμος Kruskal Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Minimum Spanning Tree Πρόβλημα: Για δοσμένο συνεκτικό, μη προσανατολισμένο,

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα 7ο εξάμηνο Σ.Η.Μ.Μ.Υ. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 4η εβδομάδα: Εύρεση k-οστού Μικρότερου Στοιχείου, Master Theorem, Τεχνική Greedy: Knapsack, Minimum Spanning Tree, Shortest Paths

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.

Διαβάστε περισσότερα

Αλγόριθμοι Δικτύων και Πολυπλοκότητα

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Αλγόριθμοι Δικτύων και Πολυπλοκότητα Εισαγωγή σε βασικές έννοιες αλγορίθμων και πολυπλοκότητας και γραφοθεωρητικών προβλημάτων Άρης Παγουρτζής ΕΜΠ ΑΛΜΑ Ευχαριστίες: μέρος των διαφανειών αυτών προέρχεται

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος

Διαβάστε περισσότερα

u v 4 w G 2 G 1 u v w x y z 4

u v 4 w G 2 G 1 u v w x y z 4 Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E

Διαβάστε περισσότερα

Ελάχιστο Συνδετικό Δέντρο

Ελάχιστο Συνδετικό Δέντρο Ελάχιστο Συνδετικό Δέντρο Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό Δέντρο

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες

Διαβάστε περισσότερα

Ελάχιστο Συνδετικό Δέντρο

Ελάχιστο Συνδετικό Δέντρο Ελάχιστο Συνδετικό Δέντρο Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό Δέντρο

Διαβάστε περισσότερα

Ελάχιστο Συνδετικό έντρο

Ελάχιστο Συνδετικό έντρο Ελάχιστο Συνδετικό έντρο ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό έντρο (MST) Συνεκτικό μη-κατευθ. G(V, E, w) με βάρη Βάρος

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 2005 Σύνολο μονάδων: 91

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 2005 Σύνολο μονάδων: 91 Ε.Μ.Πoλυτεχνείο ΣΗΜΜΥ, ΣΕΜΦΕ Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Διδάσκων: Ε.Ζαχος Ονοματεπώνυμο:... Αριθμός Μητρώου:... Σχολή:... εξάμηνο:... ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 005 Σύνολο

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου Χριστίνα Σπυροπούλου 8η Διάλεξη 8 Δεκεμβρίου 2016 1 Ασύγχρονη κατασκευή BFS δέντρου Στα σύγχρονα συστήματα ο αλγόριθμος της πλημμύρας είναι ένας απλός αλλά

Διαβάστε περισσότερα

ΠΛΗ 20, 6 η ΟΣΣ: Δέντρα Εξετάσεις

ΠΛΗ 20, 6 η ΟΣΣ: Δέντρα Εξετάσεις ΠΛΗ 20, 6 η ΟΣΣ: Δέντρα Εξετάσεις Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο Δέντρα Δέντρο: πρότυπο ιεραρχικής δομής. Αναπαράσταση (ιεραρχικών)

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 26 Ιουνίου 201 1 / Απληστοι (Greedy) Αλγόριθµοι

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήματα. ver. 21/12/2014. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήματα. ver. 21/12/2014. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήματα ver. 21/12/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισμοί και Εφαρμογές γραφήματα γράφημα G: ένας τρόπος κωδικοποίησης των σχέσεων ανά

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ενότητα 3 Αλγόριθµοι Γραφηµάτων Prim-Kruskal Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 3 Prim-Kruskal

Διαβάστε περισσότερα

Αλγόριθμοι Γράφων. Κεφάλαιο Διάσχιση γράφων Γενικά Αναζήτηση κατά πλάτος (Breadth First Search)

Αλγόριθμοι Γράφων. Κεφάλαιο Διάσχιση γράφων Γενικά Αναζήτηση κατά πλάτος (Breadth First Search) Κεφάλαιο Αλγόριθμοι Γράφων. Διάσχιση γράφων.. Γενικά Οι τεχνικές διάσχισης γράφων μας βοηθούν στο να επισκεπτόμαστε συστηματικά τους κόμβους ενός γράφου G(V,E) έτσι ώστε να δίνουμε γρήγορα απαντήσεις σε

Διαβάστε περισσότερα

2 ) d i = 2e 28, i=1. a b c

2 ) d i = 2e 28, i=1. a b c ΑΣΚΗΣΕΙΣ ΘΕΩΡΙΑΣ ΓΡΑΦΩΝ (1) Εστω G απλός γράφος, που έχει 9 κορυφές και άθροισμα βαθμών κορυφών μεγαλύτερο του 7. Αποδείξτε ότι υπάρχει μια κορυφή του G με βαθμό μεγαλύτερο ή ίσο του 4. () Αποδείξτε ότι

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Πολύ ενθαρρυντική εικόνα. Σαφώς καλύτερη

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 9: Άπληστοι Αλγόριθμοι. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 9: Άπληστοι Αλγόριθμοι. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 9: Άπληστοι Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Υπολογιστική Πολυπλοκότητα

Υπολογιστική Πολυπλοκότητα Υπολογιστική Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Γιατί κάποια (επιλύσιμα) προβλήματα είναι δύσκολο

Διαβάστε περισσότερα

Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα

Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα Διδάσκοντες: E. Ζάχος, Α. Παγουρτζής Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 2: Γραφήματα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

Δένδρα επικάλυψης ελάχιστου κόστους και το πρόβλημα του πλανόδιου πωλητή (Traveling Salesman Problem: TSP)

Δένδρα επικάλυψης ελάχιστου κόστους και το πρόβλημα του πλανόδιου πωλητή (Traveling Salesman Problem: TSP) Δένδρα επικάλυψης ελάχιστου κόστους και το πρόβλημα του πλανόδιου πωλητή (Traveling Salesman Problem: TSP) Αλγόριθμος Prim Ξεκινάμε από ένα δένδρο Τ αποτελούμενο από ένα μόνο κόμβο. Στη συνέχεια, σε κάθε

Διαβάστε περισσότερα

Άσκηση 3 (ανακοινώθηκε στις 24 Απριλίου 2017, προθεσμία παράδοσης: 2 Ιουνίου 2017, 12 τα μεσάνυχτα).

Άσκηση 3 (ανακοινώθηκε στις 24 Απριλίου 2017, προθεσμία παράδοσης: 2 Ιουνίου 2017, 12 τα μεσάνυχτα). Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2016-2017. Άσκηση 3 (ανακοινώθηκε στις 24 Απριλίου 2017, προθεσμία παράδοσης: 2 Ιουνίου 2017, 12 τα μεσάνυχτα).

Διαβάστε περισσότερα

βασικές έννοιες (τόμος Β)

βασικές έννοιες (τόμος Β) θεωρία γραφημάτων Παύλος Εφραιμίδης 1 περιεχόμενα βασικές έννοιες (τόμος Α) βασικές έννοιες (τόμος Β) 2 Θεωρία Γραφημάτων Βασική Ορολογία Τόμος Α, Ενότητα 4.1 Βασική Ορολογία Γραφημάτων Γράφημα Γ = (E,V)

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π. Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 11: Minimum Spanning Trees Αλγόριθμος Prim Αλγόριθμος Kruskal Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Αναζήτηση στους γράφους. - Αναζήτηση η κατά βάθος Συνεκτικές Συνιστώσες - Αλγόριθμος εύρεσης συνεκτικών συνιστωσών

Αναζήτηση στους γράφους. - Αναζήτηση η κατά βάθος Συνεκτικές Συνιστώσες - Αλγόριθμος εύρεσης συνεκτικών συνιστωσών Αναζήτηση στους γράφους Βασικός αλγόριθμος λό - Αναζήτηση κατά πλάτος - Αναζήτηση η κατά βάθος Συνεκτικές Συνιστώσες - Αλγόριθμος εύρεσης συνεκτικών συνιστωσών Διάσχιση (αναζήτηση ) στους γράφους Φεύγοντας

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων 6η Διάλεξη Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Αντίστοιχη βαθμολογικά και ποιοτικά με την

Διαβάστε περισσότερα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αρκετά απαιτητικά ερωτήματα,

Διαβάστε περισσότερα

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Υπολογιστική Πολυπλοκότητα

Υπολογιστική Πολυπλοκότητα Υπολογιστική Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Ενότητα 10 Γράφοι (ή Γραφήµατα)

Ενότητα 10 Γράφοι (ή Γραφήµατα) Ενότητα 10 Γράφοι (ή γραφήµατα) ΗΥ240 - Παναγιώτα Φατούρου 1 Γράφοι (ή Γραφήµατα) Ένας γράφος αποτελείται από ένα σύνολο από σηµεία (που λέγονται κόµβοι) και ένα σύνολο από γραµµές (που λέγονται ακµές)

Διαβάστε περισσότερα

Κλάσεις Πολυπλοκότητας

Κλάσεις Πολυπλοκότητας Κλάσεις Πολυπλοκότητας Παύλος Εφραιμίδης pefraimi ee.duth.gr Κλάσεις Πολυπλοκότητας 1 Οι κλάσεις πολυπλοκότητας P και NP P: Polynomial ΗκλάσηP περιλαμβάνει όλα τα υπολογιστικά προβλήματα που μπορούν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού

Διαβάστε περισσότερα

Συντομότερες ιαδρομές

Συντομότερες ιαδρομές Συντομότερες ιαδρομές ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συντομότερη ιαδρομή Κατευθυνόμενο G(V, E, w) με μήκη Μήκος διαδρομής Απόσταση d(u,

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Άπληστοι Αλγόριθμοι Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Άπληστοι Αλγόριθμοι Είναι δύσκολο να ορίσουμε ακριβώς την έννοια του άπληστου

Διαβάστε περισσότερα

Μη Ντετερμινισμός και NP-Πληρότητα

Μη Ντετερμινισμός και NP-Πληρότητα Μη Ντετερμινισμός και NP-Πληρότητα Διδάσκοντες: Σ Ζάχος, Δ Φωτάκης Επιμέλεια διαφανειών: Δ Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 Θέματα μελέτης Πρόβλημα αναζήτησης σε γραφήματα Αναζήτηση κατά βάθος (Depth-first search DFS) Αναζήτηση κατά πλάτος (Breadth-first search BFS) 2 Γράφημα (graph) Αναπαράσταση συνόλου

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 9 Απριλίου 2009 1 / 0 Παραδείγµατα γράφων

Διαβάστε περισσότερα

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα. Κατευθυνόµενα γραφήµατα Απλό κατευθυνόµενο Γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E), µε: Στοιχεία Θεωρίας Γραφηµάτων (1) σύνολο κορυφών / κόµβων V, Ορέστης Τελέλης tllis@unipi.r Τµήµα Ψηφιακών Συστηµάτων,

Διαβάστε περισσότερα

Graph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βάλια

Graph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βάλια Graph Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βάλια Περιεχόμενα Μεταβατικό Κλείσιμο Συνεκτικές συνιστώσες Συντομότερα μονοπάτια Breadth First Spanning

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 11. Γράφοι 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 23/12/2016 Εισαγωγή Οι γράφοι

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Ταιριάσματα. Γράφημα. Ταίριασμα (matching) τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του

Ταιριάσματα. Γράφημα. Ταίριασμα (matching) τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του Ταιριάσματα Γράφημα Ταίριασμα (matching) Σύνολο ακμών τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του Θέλουμε να βρούμε ένα μέγιστο ταίριασμα (δηλαδή με μέγιστο αριθμό ακμών) Ταιριάσματα

Διαβάστε περισσότερα

Network Algorithms and Complexity Παραλληλοποίηση του αλγορίθμου του Prim. Αικατερίνη Κούκιου

Network Algorithms and Complexity Παραλληλοποίηση του αλγορίθμου του Prim. Αικατερίνη Κούκιου Network Algorithms and Complexity Παραλληλοποίηση του αλγορίθμου του Prim Αικατερίνη Κούκιου Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα Ασκήσεις στους Γράφους 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα Ασκηση 1 η Να αποδείξετε ότι κάθε γράφημα περιέχει μια διαδρομή από μια κορυφή u σε μια κορυφή w αν και

Διαβάστε περισσότερα

6η Διάλεξη Διάσχιση Γράφων και Δέντρων

6η Διάλεξη Διάσχιση Γράφων και Δέντρων ΘΕΩΡΙΑ ΓΡΑΦΩΝ 6 η Διάλεξη Διάσχιση Γράφων και Δέντρων Αλγόριθμος αναζήτησης σε Βαθος Αλγόριθμος αναζήτησης κατά Πλάτος Αλγόριθμοι για Δένδρα Εύρεση ελαχίστων Γεννητορικών (Επικαλύπτοντα) Δένδρων Διάσχιση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός ΘΕΩΡΙΑ ΓΡΑΦΩΝ 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός Βασικές Έννοιες Στο κεφάλαιο αυτό θα μελετηθεί ο βαθμός συνεκτικότητας (συνδεσμικότητας)

Διαβάστε περισσότερα

Κλάση NP, NP-Complete Προβλήματα

Κλάση NP, NP-Complete Προβλήματα Κλάση NP, NP-Complete Προβλήματα Βαγγέλης ούρος douros@aueb.gr 1 11/6/2012 Αλγόριθμοι, Εαρινό Εξάμηνο 2012, Φροντιστήριο #14 Προβλήματα Απόφασης & Βελτιστοποίησης 2 Πρόβλημα Απόφασης: Κάθε πρόβλημα που

Διαβάστε περισσότερα

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής ισαγωγή στην πιστήμη των Υπολογιστών 2015-16 λγόριθμοι και ομές εδομένων (IΙ) (γράφοι και δένδρα) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης φηρημένες

Διαβάστε περισσότερα

Συντομότερες ιαδρομές

Συντομότερες ιαδρομές Συντομότερες ιαδρομές ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μη Ντετερμινισμός και NP-Πληρότητα

Μη Ντετερμινισμός και NP-Πληρότητα Μη Ντετερμινισμός και P-Πληρότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές Μηχανές Turing Μη ντετερμινιστική Μηχ. Turing (ΝTM)

Διαβάστε περισσότερα

NP-πληρότητα. Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων

NP-πληρότητα. Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων NP-πληρότητα Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων Πολυωνυμικός μετασχηματισμός Ένας πολυωνυμικός μετασχηματισμός από την L 1 Σ 1 * στην L 2 Σ 2 * είναι μια συνάρτηση

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Ενθαρρυντική εικόνα, σαφώς καλύτερη από

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

Ελαφρύτατες διαδρομές

Ελαφρύτατες διαδρομές Ελαφρύτατες διαδρομές Ελαφρύτατες διαδρομές Κατευθυνόμενο γράφημα Συνάρτηση βάρους Ελαφρύτατη διαδρομή από το u στο v : διαδρομή με και ελάχιστο βάρος s 3 t 7 x 5 3 y z Βάρος ελαφρύτατης διαδρομής εάν

Διαβάστε περισσότερα

Συντομότερες Διαδρομές

Συντομότερες Διαδρομές Συντομότερη Διαδρομή Συντομότερες Διαδρομές Διδάσκοντες: Σ Ζάχος, Δ Φωτάκης Επιμέλεια διαφανειών: Δ Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κατευθυνόμενο G(V, E, w) με μήκη Μήκος

Διαβάστε περισσότερα

Επίπεδα Γραφήματα (planar graphs)

Επίπεδα Γραφήματα (planar graphs) Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους 1 2 1 2 3 4 3 4 Άρα αυτό το γράφημα είναι επίπεδο Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά. Τι είδαμε την προηγούμενη φορά. Θεωρία γράφων / γραφήματα. 25 -Γράφοι. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017

HY118-Διακριτά Μαθηματικά. Τι είδαμε την προηγούμενη φορά. Θεωρία γράφων / γραφήματα. 25 -Γράφοι. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017 HY118-Διακριτά Μαθηματικά Τι είδαμε την προηγούμενη φορά Παρασκευή, 12/05/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Υπογράφημα Συμπληρωματικά γραφήματα Ισομορφισμός γράφων Υπολογιστική πολυπλοκότητα

Διαβάστε περισσότερα

Υπολογιστικό Πρόβληµα

Υπολογιστικό Πρόβληµα Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 3: Δένδρα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 3: Δένδρα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 3: Δένδρα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το

Διαβάστε περισσότερα

Minimum Spanning Tree: Prim's Algorithm

Minimum Spanning Tree: Prim's Algorithm Minimum Spanning Tree: Prim's Algorithm 1. Initialize a tree with a single vertex, chosen arbitrarily from the graph. 2. Grow the tree by one edge: of the edges that connect the tree to vertices not yet

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 (5.1-5.2 και 5.4-5.6) Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Δέντρα Βασικοί ορισµοί Μαθηµατικές ιδιότητες Διάσχιση δέντρων Preorder, postorder,

Διαβάστε περισσότερα

Φροντιστήριο #8 Ασκήσεις σε Γράφους 16/5/2017

Φροντιστήριο #8 Ασκήσεις σε Γράφους 16/5/2017 Φροντιστήριο #8 Ασκήσεις σε Γράφους 16/5/2017 Άσκηση 8.1: Στο παρακάτω σχήμα φαίνονται δέκα λατινικοί χαρακτήρες (A, F, K, M, R, S, T, V, X και Z) με τη μορφή γράφων. Ποιοι από αυτούς είναι ισομορφικοί;

Διαβάστε περισσότερα

ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Ένα γράφημα αποτελείται από ένα σύνολο 94.

ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Ένα γράφημα αποτελείται από ένα σύνολο 94. ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» ΤΟΜΟΣ Α ΤΟΜΟΣ Β ΑΓΓΛΙΚΗ Γράφημα, Γράφος, Ένα γράφημα αποτελείται από ένα σύνολο 94 11 κορυφών και ένα σύνολο ακμών.

Διαβάστε περισσότερα

Εισαγωγή στη Θεωρία Γράφων

Εισαγωγή στη Θεωρία Γράφων Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ Εισαγωγή στη Θεωρία Γράφων Υλικό βασισμένο στις εξής πηγές: Βιβλίο «Μαθήματα Θεωρίας Γράφων», Γιάννη Μανωλόπουλου, Εκδόσεις Νέων

Διαβάστε περισσότερα

Φροντιστήριο 11 Λύσεις

Φροντιστήριο 11 Λύσεις Άσκηση 1 Φροντιστήριο 11 Λύσεις Να αποδείξετε ότι η κλάση Ρ είναι κλειστή ως προς τις πράξεις της ένωσης, της συναρμογής και του συμπληρώματος. Θα πρέπει να δείξουμε ότι: (α) Ένωση: Αν οι Λ 1 και Λ 2 είναι

Διαβάστε περισσότερα

Σχεδίαση & Ανάλυση Αλγορίθμων

Σχεδίαση & Ανάλυση Αλγορίθμων Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 4.2 Διαδρομές σε Γραφήματα Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Πρόβλημα Οδικό Δίκτυο

Διαβάστε περισσότερα

Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5

Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5 Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Τρίτη, 17/05/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/22/2016 1 1 5/22/2016 2 2 Τι είναι οι γράφοι; Mία ειδική κλάση διακριτών δοµών (που

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Εκλογή αρχηγού σε γενικά δίκτυα 20 Οκτωβρίου 2016 Παναγιώτα Παναγοπούλου Εκλογή αρχηγού σε γενικά δίκτυα Προηγούμενη διάλεξη Σύγχρονα Κατανεμημένα Συστήματα Μοντελοποίηση συστήματος Πρόβλημα εκλογής αρχηγού

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #7: Ελάχιστα Επικαλυπτικά Δένδρα, Αλγόριθμος Kruskal, Δομές Union-Find Άσκηση # 0 5 0 0 0

Διαβάστε περισσότερα

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ 3 η Διάλεξη Μονοπάτια και Κύκλοι Μήκη και αποστάσεις Κέντρο και μέσο γράφου. Ακτίνα και Διάμετρος Δυνάμεις Γραφημάτων Γράφοι Euler.

Διαβάστε περισσότερα

Γραφήματα. Κεφάλαιο Εισαγωγικές έννοιες Ορισμός

Γραφήματα. Κεφάλαιο Εισαγωγικές έννοιες Ορισμός Κεφάλαιο 3 Γραφήματα 3.1 Εισαγωγικές έννοιες Ορισμός Ορισμός 3.1. Γράφος (ή γράφημα) G, ονομάζεται ένα διατεταγμένο ζεύγος συνόλων (V, E), όπου V είναι μη κενό σύνολο στοιχείων και E ένα σύνολο μη διατεταγμένων

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη

Διαβάστε περισσότερα