ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι"

Transcript

1 ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Συστήματα Επιμέλεια: Πέτρος Π. Γρουμπός, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. Το περιεχόμενο της παρουσίασης (κείμενο, εικόνες, γραφήματα) δημιουργήθηκε από τον διδάσκοντα στα πλαίσια σύστασης του υλικού διδασκαλίας του ανοικτού μαθήματος Σήματα και Συστήματα Ι, εκτός αν αναγράφεται διαφορετικά. 2

3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου των διδασκόντων καθηγητών. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Πατρών» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

4 ΠΩΣ ΘΑ ΜΕΛΕΤΗΣΟΥΜΕ ΟΛΑ ΤΑ ΣΥΣΤΗΜΑΤΑ? ΠΩΣ ΘΑ ΜΕΛΕΤΗΣΟΥΜΕ ΟΛΑ ΤΑ ΣΥΣΤΗΜΑΤΑ? ΚΑΙ ΤΑ ΦΥΣΙΚΑ ΚΑΙ ΤΑ ΔΗΜΙΟΥΡΓΗΘΕΝΤΑ ΑΠΟ ΤΟΝ ΑΝΘΡΩΠΟ??? ΚΑΙ ΜΕ ΤΙ ΜΟΝΤΕΛΑ?? 4

5 u(t) Τ y(t)

6 Μαθηματικό??????? 6

7 Σκοπός Μελέτη Μαθηματικό πρότυπο μοντέλο εισόδου-εξόδου Γραμμικά συστήματα Χρονικώς αμετάβλητα συστήματα Συστήματα με μνήμη Αιτιατά συστήματα Ευστάθεια Δυναμικά συστήματα 7

8 Σύστημα Ένα φυσικό ή συμβολικό σύστημα είναι μία διάταξη που επιτελεί μία συγκεκριμένη λειτουργία. Χαρακτηρίζεται από την λειτουργία που επιτελεί και όχι από τις φυσικές συνιστώσες του Mπορεί να εκφρασθεί σαν μία απεικόνιση (mapping) σημάτων Η περιγραφή του συστήματος γίνεται με τη βοήθεια ενός προτύπου (model), φυσικού ή συμβολικού Π.χ. Μηχανικό Σύστημα (Φυσικό πρότυπο) Το ηλεκτρικό ανάλογο (Συμβολικό πρότυπο) Οι μαθηματικές σχέσεις που περιγράφουν τη λειτουργία του 8

9 Μαθηματικό πρότυπο (μοντέλο) συστήματος Η θεώρηση ενός συστήματος ως μία απεικόνιση (mapping) από ένα σύνολο σημάτων σε ένα άλλο σύνολο επιτρέπει την περιγραφή του συστήματος από μαθηματικές σχέσεις που αποτελούν αυτό που αποκαλείται μαθηματικό πρότυπο (mathematical model) του συστήματος. Παρατήρηση: μπορούν να αναπτυχθούν πολλά διαφορετικά μαθηματικά πρότυπα για το ίδιο σύστημα Παρακάτω θα αναφερθεί το μαθηματικό πρότυπο εισόδου-εξόδου 9

10 Το μαθηματικό πρότυπο εισόδου- εξόδου (1) Σύμφωνα με αυτό το μοντέλο το σύστημα ορίζεται ως εξής: Σύστημα είναι μία οποιαδήποτε απεικόνιση S από ένα σύνολο σημάτων U σε ένα άλλο σύνολο σημάτων Y. Τα σήματα u που ανήκουν στο πρώτο σύνολο U ονομάζονται είσοδοι (inputs) του συστήματος ενώ οι εικόνες τους y που είναι και αυτά σήματα ονομάζονται έξοδοι (outputs) του συστήματος. Τόσο η είσοδος u όσο και η έξοδος y είναι σήματα και μπορεί να είναι διανυσματικές συναρτήσεις. Αυτές ορίζονται σε ένα σύνολο χρόνου Τ και παίρνουν τιμές στον m-διάστατο και p-διάστατο πραγματικό ή μιγαδικό χώρο αντιστοίχως. Έτσι u(τ), u:τc m και y(t), y:tc p και εννοούμε τις διανυσματικές συναρτήσεις ) ( ) ( ) ( ) (, ) ( ) ( ) ( ) ( τ τ τ τ τ τ τ τ m y p y y y u u u u 10

11 Το μαθηματικό πρότυπο εισόδου- εξόδου (2) Η μαθηματική σχέση που συνδέει την έξοδο με την είσοδο: y( ) S[ u( )] Διανυσματικό σήμα εισόδου το οποίο ανήκει στο σύνολο U Διανυσματικό σήμα εξόδου το οποίο ανήκει στο σύνολο Υ Απεικόνιση από το σύνολο συναρτήσεων U στο οποίο ανήκει η u(.) στο σύνολο συναρτήσεων Y στο οποίο ανήκει η y(.). H απεικόνιση S είναι μονοσήμαντη 11

12 Το μαθηματικό πρότυπο εισόδου-εξόδου (3) To σύστημα Σ παριστάνεται σαν ένα μαύρο κουτί που επικοινωνεί με τον έξω κόσμο μέσω των εισόδων u j και εξόδων y i : u Σ y Τα u, y είναι συνήθως διανύσματα 12

13 Ταξινόμηση συστημάτων Η βασική κατηγοριοποίηση των συστημάτων γίνεται με το διαχωρισμό τους σε συστήματα συνεχούς και διακριτού χρόνου. Έτσι ένα σύστημα είναι συνεχούς (διακριτού) χρόνου αν τόσο η είσοδος όσο και η έξοδος είναι σήματα συνεχούς (διακριτού) χρόνου Παράδειγμα: Σύστημα συνεχούς χρόνου (ολοκληρωτής) t y( t) u( ) d Σύστημα διακριτού χρόνου (συσσωρευτής) n y [ n] u[ k] k Οι άλλες κατηγοριοποιήσεις των συστημάτων δεν εξαρτώνται από την φύση των σημάτων εισόδου και εξόδου αλλά από τις ιδιότητες της απεικόνισης S. 13

14 Γραμμικά συστήματα (1) Ένα σύστημα Σ με μαθηματικό μοντέλο y( ) S[ u( )] είναι γραμμικό αν και μόνο αν για κάθε ζεύγος εισόδων 1 2 ( u ( ), u ( )) και κάθε ζεύγος αριθμών (α 1,α 2 ) ισχύει η σχέση S [ 2 a1 y1( ) a2 y2 ( )] a1s[ u1( )] a2s[ u ( )] Όπως φαίνεται παραπάνω ένα σύστημα είναι γραμμικό αν η έξοδος σε οποιοδήποτε γραμμικό συνδυασμό εισόδων και είναι ίση με τον ίδιο γραμμικό συνδυασμό των αντίστοιχων εξόδων Γραμμικά συστήματα: Μη γραμμικά συστήματα: dy( t) dt y( t) 2u( t) 2y( t) u( t) 5 y[ n] 2u[ n] y[ n] 2Re{ u[ n]} 14

15 Γραμμικά συστήματα (2) Ιδιότητες: Ο τελεστής S στα γραμμικά συστήματα είναι Προσθετικός (additive), δηλαδή οι σχέσεις y y ( ) S[ u1( )] 1 ( ) S[ u2 2 ( )] συνεπάγονται την σχέση y ( ) y2 ( ) S[ u1( ) u2 1 ( )] Ομογενής (homogeneous), δηλαδή αν από τη σχέση y( ) S[ u( )] προκύπτει η σχέση ay( ) S[ au( )] για κάθε α αριθμό 15

16 Χρονικώς αμετάβλητα συστήματα (1) D t0 - Τελεστής μετατοπίσεως (shifting operator) O τελεστής μετατοπίσεως είναι μία απεικόνιση από σύνολο συναρτήσεων σε σύνολο συναρτήσεων και έχει την ιδιότητα D τ 0 u( τ) u( τ τ0) για οποιαδήποτε συνάρτηση u( ) και κάθε τ Τ Ενα σύστημα y(.)=s[u(.)] λέγεται χρονικώς αμετάβλητο (timeinvariant) αν: S[ D τ 0 u( )] D τ 0 y( ) για κάθε τ 0 T. 16

17 Χρονικώς αμετάβλητα συστήματα (2) Παράδειγμα: Χρονικά αμετάβλητο σύστημα D 5 Χρονικά μεταβαλλόμενο σύστημα D 10 17

18 Συστήματα με μνήμη Ένα σύστημα ονομάζεται στιγμιαίο η σύστημα μηδενικής μνήμης (memoryless system) αν η τιμή της εξόδου του σε οποιαδήποτε χρονική στιγμή εξαρτάται μόνο από την τιμή της εισόδου την ίδια χρονική στιγμή. Παράδειγμα: υ(t) = R u(t) Ένα σύστημα έχει μνήμη αν η τιμή της εξόδου του σε οποιαδήποτε χρονική στιγμή εξαρτάται από τις τιμές της εισόδου σε ένα χρονικό διάστημα. Παράδειγμα: t 1 y ( t) u( τ) dτ C Η έξοδος "θυμάται" το παρελθόν. y(t)=u(t+2) Οι τιμές της εξόδου εξαρτώνται από μελλοντικές τιμές της εισόδου 18

19 Συστήματα αιτιατά Ένα σύστημα λέγεται αιτιατό όταν υπάρχει μία απεικόνιση S : UY τέτοια ώστε y(τ) = S[u(-,τ)] για κάθε είσοδο και κάθε τ Τ. Ένα σύστημα λέγεται μη αιτιατό όταν η τιμή της εξόδου την χρονική στιγμή t* εξαρτάται από την συμπεριφορά της εισόδου σε μελλοντικές χρονικές στιγμές t>t*. Τα μη αιτιατά συστήματα είναι μη πραγματοποιήσιμα φυσικώς (physically unrealizable). 19

20 Ευστάθεια (1) Είναι η πιο σημαντική ιδιότητα ενός συστήματος. Σχετίζεται με την συμπεριφορά του όταν αυτό υφίσταται ανεπιθύμητες διαταραχές (perturbations). Διαταραχές Στη δομή του συστήματος (αλλάζει η σχέση εισόδουεξόδου) Στιγμιαίες διαταραχές (instantaneous perturbations) Στην είσοδο του συστήματος Επιμένουσες διαταραχές (persistent perturbations) 20

21 Ευστάθεια (2) Επιμένουσες διαταραχές Ένα σύστημα στο οποίο επιδρούν μόνιμες διαταραχές στην είσοδο του έχει την εξής μορφή: u*(τ) + + Δu(τ) Σ y*(τ)+δy(τ) Η έξοδος του συστήματος δεν είναι η προβλεπόμενη y*(τ) αλλά μία άλλη της μορφής y*(τ)+δy(τ) Για την αξιολόγηση της λειτουργίας του συστήματος πρέπει να είναι γνωστό ποιες θα είναι οι συνέπειες της επίδρασης της διαταραχής Δu(τ) στην προβλεπόμενη τροχιά y*(τ) 21

22 Επιμένουσες διαταραχές Ευστάθεια (3) Ερώτημα: Ο περιορισμός του εύρους της διαταραχής Δu(τ) στην είσοδο του συστήματος θα έχει σαν συνέπεια το εύρος της απόκλισης Δy(τ) της εξόδου του συστήματος από την προβλεπόμενη τιμή της y*(τ) να είναι επίσης περιορισμένο; Ευστάθεια κατά Lagrange (Lagrange stability) Η έξοδος y*( τ) είναι ευσταθής κατά Lagrange, αν υπάρχουν θετικοί πραγματικοί αριθμοί a και b τέτοιοι ώστε για κάθε τ 0 και κάθε επιμένουσα διαταραχή Δu(τ) που ικανοποιεί την ανισότητα Δu(τ) a τ τ 0 για την προκύπτουσα έξοδο y(τ)=y*(τ)+δy(τ) να αληθεύει η ανισότητα Δy(τ) b Ένα σύστημα είναι ευσταθές Φραγμένης Εισόδου - Φραγμένης Εξόδου (Bounded Input - Bounded Output stable) αν όλες οι έξοδοί του για κάθε είσοδο είναι ευσταθείς κατά Lagrange. 22

23 Στιγμιαίες διαταραχές Ευστάθεια (4) Ένα σύστημα που έχει υποστεί στιγμιαία διαταραχή έχει την εξής μορφή: u*(τ) Σ y*(τ)+δy(τ) Λόγω του στιγμιαίου χαρακτήρα της διαταραχής, τόσο πριν από την χρονική στιγμή τ 0 όσο και μετά από αυτήν η είσοδος του συστήματος είναι ίση με την u*(τ) Περιορίζοντας καταλλήλως το εύρος της αρχικής απομάκρυνσης Δy(τ 0 ) της εξόδου από την προβλεπόμενη τιμή της y*(τ 0 ), είναι δυνατόν να εξασφαλισθεί ότι η έξοδος του συστήματος για τ>τ 0 δεν θα απομακρυνθεί από την προβλεπόμενη τροχιά y*(τ) περισσότερο από από κάποια επιθυμητή τιμή; Θα επιστρέψει (έστω ασυμπτωτικώς) ή όχι η έξοδος y(τ)=y*(τ)+δy(τ) στην αρχικώς προβλεπόμενη τιμή της y*(τ); 23

24 Στιγμιαίες διαταραχές Ευστάθεια (5) Ασυμπτωτική ευστάθεια (asymptotic stability) Η έξοδος y*(τ) είναι ασυμπτωτικώς ευσταθής (asymptotically stable) αν Για κάθε θετικό αριθμό ε υπάρχει άλλος θετικός αριθμός δ(ε) τέτοιος ώστε αν Δy(τ 0 ) δ τότε Δy(τ) ε για κάθε τ τ0 Υπάρχει άλλος θετικός αριθμός η τέτοιος ώστε αν Δy(τ 0 ) lim y( ) 0 t η τότε: Αν όλες οι έξοδοι του συστήματος είναι ασυμπτωτικώς ευσταθείς τότε το σύστημα είναι ασυμπτωτικώς ευσταθές. 24

25 Κατάσταση του συστήματος Δυναμικά Συστήματα (1) Η σχέση εισόδου εξόδου ενός συστήματος με μνήμη έχει την εξής μορφή: y(τ)=s[u [-,τ] ] Για να προσδιοριστεί η τιμή της εξόδου είναι αναγκαίο να παρατηρείται το σύστημα από t= - Υπάρχουν συστήματα τέτοια που η έξοδός τους y(τ) είναι συνάρτηση της u[ τ 0, τ] αντί της u(, τ ] t Π.χ. 1 y ( t) is ( τ) dτ C t 0 1 x( t0) is ( ) d C όπου x t ) t 0 t 1 ( 0 C Μπορεί να προσδιορίσει κάποιος την έξοδο y(t) γιά tt 0 γνωρίζοντας την είσοδο μόνο για tt 0, αρκεί επί πλέον να γνωρίζει την x(t 0 ). u( τ) dτ 25

26 Κατάσταση του συστήματος Δυναμικά Συστήματα (2) Η x(t 0 ) περιέχει όλες τις πληροφορίες για το παρελθόν του συστήματος που είναι απαραίτητες για τον προσδιορισμό της εξόδου y(t) για tt0. Ονομάζεται κατάσταση (state) του συστήματος την χρονική στιγμή t 0 Η κατάσταση x(t 0 ) εκφράζει το σύνολο των πληροφοριών που μαζί με την u [ t 0, t] είναι αρκετές για τον προσδιορισμό της εξόδου y(t) για οποιοδήποτε tt 0. 26

27 Δυναμικά Συστήματα (3) Το σύνολο των "πληροφοριών" που ορίζουν την κατάσταση του συστήματος σε κάθε χρονική στιγμή τ 0 μπορεί να περιγραφεί από ένα πεπερασμένης διαστάσεως διάνυσμα x(τ 0 ), x(τ 0 ) q y( τ) S[ x( τ 0 ), u[ τ0, τ] S: n xu p Τότε ] Για τ 0 = τ y τ) S[ x( τ), u ] ( [ τ, τ] η αλλιώς y( τ) g[ τ, x( τ), u( τ)] Η έξοδος του συστήματος μπορεί να προσδιοριστεί αν είναι δυνατόν να προσδιορισθεί η κατάσταση x(τ) την χρονική στιγμή τ από την τιμή της x(τ 0 ) την χρονική στιγμή τ 0 και την u[ τ0, τ ] Αυτό θα μπορούσε να πραγματοποιηθεί αν υπήρχε μία απεικόνιση S*: q U n τέτοια ώστε x τ) S *[ x( τ ), u ] ( 0 [ τ0, τ] 27

28 Δυναμικά Συστήματα (4) Ένα σύστημα λέγεται δυναμικό αν υπάρχει μία συνάρτηση x(τ), x:t q, μία απεικόνιση S*: q U p και μία άλλη συνάρτηση g: T q m p τέτοιες ώστε x( ) S *[ x( ), u ] 0 [, ] y( τ) g[ τ, x( τ), u( τ)] 0 γιά κάθε τ 0 T και τ> τ 0. Οι συνιστώσες x 1, x 2,..., x q του διανύσματος x λέγονται μεταβλητές καταστάσεως (state variables) του συστήματος ενώ η x(τ 0 ) υποδηλώνει την κατάσταση του συστήματος την χρονική στιγμή τ 0 28

29 Δυναμικά Συστήματα (5) Καταστατικές εξισώσεις συνεχούς χρόνου Η μαθηματική περιγραφή των δυναμικών συστημάτων συνεχούς χρόνου γίνεται με διαφορικές εξισώσεις (όταν το διάνυσμα καταστάσεως x είναι συνεχής και παραγωγίσιμη συνάρτηση για οποιαδήποτε κατά τμήματα συνεχή είσοδο u): x ( t) f [ t, x( t), u( t)] y( t) g[ t, x( t), u( t)] Οι εξισώσεις αυτές ονομάζονται καταστατικές εξισώσεις (state equations) συνεχούς χρόνου 29

30 Δυναμικά Συστήματα (6) Καταστατικές εξισώσεις διακριτού χρόνου Ένα δυναμικό σύστημα διακριτού χρόνου θα περιγράφεται από τις εξής σχέσεις: x[ n] S *[ x[ n0 ], u[ n, 1] ] 0 n Θέτοντας όπου n 0 y[ n] g[ n, x[ n], u[ n]] τo n και όπου n το n+1 προκύπτουν οι σχέσεις x[ n 1] S *[ x[ n, u[ n, n] ] y[ n] g[ n, x[ n], u[ n]] Θέτοντας f [ n, x[ n], u[ n]] S *[ x[ n, u[ n, n] ] f:tx q x m q x[ n 1] f [ n, x[ n], u[ n]] y[ n] g[ n, x[ n], u[ n]] 30

31 Λυμένες Ασκήσεις (1) Άσκηση 1: Για το σύστημα που φαίνεται στο παρακάτω σχήμα να καθοριστεί αν α) έχει μνήμη, β) είναι αιτιατό, γ) γραμμικό, δ) χρονικά αμετάβλητο, ε) ευσταθές x(t) Χ yt xtcos c t cosω c t 31

32 y t x t t 1α) cos c Λυμένες Ασκήσεις (2) Η τιμή της εξόδου εξαρτάται μόνο από τις τρέχουσες τιμές της εισόδου άρα το σύστημα δεν έχει μνήμη. 1β) Επειδή η έξοδος δεν εξαρτάται από μελλοντικές τιμές της εισόδου το σύστημα είναι αιτιατό 1γ) Αν xt x t x t τότε y t 1x1 t 2x2 t cosct 1x1 t cosct 2x2 t cosct y t y t Η ιδιότητα της υπέρθεσης ικανοποιείται άρα το σύστημα είναι γραμμικό. 32

33 x t x t t Λυμένες Ασκήσεις (3) 1δ) Έστω y1 t η έξοδος που προκύπτει από την εφαρμογή μετατοπισμένης εισόδου 1 0 Όμως yt t xt t t y t cos c Άρα το σύστημα δεν είναι χρονικά αμετάβλητο cos 1 1ε) Επειδή c t y t x t cos t x t c y t T x t t x t t t 0 0 cos c Άρα το σύστημα είναι ευσταθές (Φραγμένης εισόδου-φραγμένης Εξόδου) 33

34 Λυμένες Ασκήσεις (4) Άσκηση 2: Έστω σύστημα που περιγράφεται από την παρακάτω σχέση εισόδου y n T x n nx n Να καθοριστεί αν α) έχει μνήμη, β) είναι αιτιατό, εξόδου γ) γραμμικό, χρονικά αμετάβλητο, δ)ευσταθές 2α) Επειδή η τιμή της εξόδου τη στιγμή n εξαρτάται από την τιμή της εισόδου στο n το σύστημα δεν έχει μνήμη. 2β) Επειδή η έξοδος δεν εξαρτάται από μελλοντικές τιμές της εισόδου το σύστημα είναι αιτιατό. 34

35 Λυμένες Ασκήσεις (5) 2γ) Για είσοδο xn x n x n y n T x n n x n x n nx n nx n y n y n Η ιδιότητα της υπέρθεσης ικανοποιείται άρα το σύστημα είναι γραμμικό. 2δ) Αν y1[n] είναι η έξοδος στην μετατοπισμένη είσοδο x n xn n Τότε y n T x n n nx n n Όμως yn n n n xn n y n

36 Λυμένες Ασκήσεις (6) 2ε) Για x[n]=s[n] υ[n]=n s[n] Όπως φαίνεται, η φραγμένη μοναδιαία ακολουθία παράγει μια ακολουθία στην έξοδο που συνεχώς μεγαλώνει χωρίς όριο. Το σύστημα δεν είναι ευσταθές (Φραγμένης εισόδου-φραγμένης Εξόδου) 36

37 Λυμένες Ασκήσεις (7) Άσκηση 3: Να υπολογισθεί η κρουστική απόκριση του συστήματος πρώτης y t 3y t 2x t τάξης Η κρουστική απόκριση θα πρέπει να ικανοποιεί τη διαφορική εξίσωση: 3 2 h t h t t Η ομογενής λύση της παραπάνω εξίσωσης είναι της μορφής: Υποθέτοντας ειδική λύση της μορφής h C t p 2 3t hh C1e s t η γενική λύση της διαφορικής εξίσωσης δίνεται από 3t 1 2 h C e s t C t Αντικαθιστώντας προκύπτει: 3t 3t 3t C 1 3e s t e t C2 t 3 C1e s t C2 t 2 t 37

38 Λυμένες Ασκήσεις (8) Εξισώνοντας τους συντελεστές των δ(t) και δ (t) προκύπτούν 2 εξισώσεις με 2 αγνώστους. C Τελικά 1 C h t 2e s t 3t Άρα 38

39 Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Πατρών, Πέτρος Γρουμπός. «Σήματα και Συστήματα Ι, Συστήματα». Έκδοση: 1.0. Πάτρα Διαθέσιμο από τη δικτυακή διεύθυνση: https://eclass.upatras.gr/modules/course_metadata/opencourses.php?fc=15 39

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Καταστατικές Εξισώσεις Επιμέλεια: Πέτρος Π. Γρουμπός, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Σήματα και Συστήματα στο Πεδίο του Χρόνου Επιμέλεια: Αθανάσιος N. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Εισαγωγή Επιμέλεια: Πέτρος Π. Γρουμπός, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Προσέγγιση και Ομοιότητα Σημάτων Επιμέλεια: Πέτρος Π. Γρουμπός Καθηγητής Γεώργιος Α. Βασκαντήρας Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΧΩΡΟ ΚΑΤΑΣΤΑΣΗΣ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το

Διαβάστε περισσότερα

4 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

4 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 4 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΣΥΣΤΗΜΑΤΑ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Σήματα και Συστήματα ΙΙ

Σήματα και Συστήματα ΙΙ Σήματα και Συστήματα ΙΙ Ενότητα 5: Μετασχηματισμός Ζ Α. Ν. Σκόδρας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ελεγξιμότητα και Παρατηρησιμότητα Σημάτων Επιμέλεια: Πέτρος Π. Γρουμπός, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Σήματα και Συστήματα ΙΙ

Σήματα και Συστήματα ΙΙ Σήματα και Συστήματα ΙΙ Ενότητα 6: Απόκριση Συχνότητας-Φίλτρα Α. Ν. Σκόδρας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας,

Διαβάστε περισσότερα

Έλεγχος Κίνησης

Έλεγχος Κίνησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Συστήματα Ελέγχου Κίνησης Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #3 Ιδιάζοντα σήματα Βασικές κατηγορίες συστημάτων Διασυνδέσεις συστημάτων Ιδιάζοντα σήματα (singular signals) Τα ιδιάζοντα σήματα είναι σήματα τα οποία είναι ιδεατά

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Εκθετική Ορισμοί & Ιδιότητες Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Περιγραφή και Ανάλυση Συστημάτων Ελέγχου στο Χώρο Κατάστασης Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Σήματα και Συστήματα Συνεχούς/Διακριτού Χρόνου Επιμέλεια: Πέτρος Π. Γρουμπός, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ψηφιακά Σ.Α.Ε: Περιγραφή στο Χώρο Κατάστασης Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Σήματα και Συστήματα στο Πεδίο της Επιμέλεια: Αθανάσιος N. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ορθογωνιότητα Διανυσμάτων και Σημάτων Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 1: Εισαγωγή Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται

Διαβάστε περισσότερα

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Ιδιότητες συστημάτων Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Ενότητα 1: E-L Συστήματα Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου II

Συστήματα Αυτομάτου Ελέγχου II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου II Ενότητα #10: Λύση Εξισώσεων Εσωτερικής Κατάστασης με Χρήση Μεθόδου Ιδιοτιμών Δημήτριος Δημογιαννόπουλος

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα Δ. Δημογιαννόπουλος, dimogian@teipir.gr

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων. 2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γενικά τι είναι - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος των επιτρεποµένων εισόδων και εξόδων. Ιδιότητες των

Διαβάστε περισσότερα

Ενότητα 2: Εισαγωγή στη Θεωρία Βέλτιστου Ελέγχου. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Ενότητα 2: Εισαγωγή στη Θεωρία Βέλτιστου Ελέγχου. Νίκος Καραμπετάκης Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Εισαγωγή στη Θεωρία Βέλτιστου Ελέγχου Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 20. Παρατηρητής Κατάστασης Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.9: Το Διαφορικό Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.9: Το Διαφορικό 1 Άδειες

Διαβάστε περισσότερα

Έλεγχος Κίνησης

Έλεγχος Κίνησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Αυτόματος Έλεγχος Συστημάτων Κίνησης Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα

Διαβάστε περισσότερα

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 3 η Τα Συστήματα στις Τηλεπικοινωνίες

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 6: Το γραμμικό τετραγωνικό πρόβλημα βέλτιστης Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 8: Αντίστροφος μετασχηματισμός Laplace Εφαρμογή σε απόκριση συστήματος: Σύστημα 1 ης τάξης

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 8: Αντίστροφος μετασχηματισμός Laplace Εφαρμογή σε απόκριση συστήματος: Σύστημα 1 ης τάξης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 8: Αντίστροφος μετασχηματισμός Laplace Εφαρμογή σε απόκριση συστήματος: Σύστημα 1 ης τάξης Δ. Δημογιαννόπουλος,

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Α Μέρος) Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

Δυναμική Ηλεκτρικών Μηχανών

Δυναμική Ηλεκτρικών Μηχανών Δυναμική Ηλεκτρικών Μηχανών Ενότητα 4: Μέθοδος Μικρών Μεταβολών Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) =

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) = ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Περίληψη Ευστάθεια Συστημάτων Απόκριση ΓΧΑ Συστημάτων σε Διεγέρσεις

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ευστάθεια Συστημάτων Ελέγχου Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη του Ηλεκτρολόγου Μηχανικού (και στην Τεχνολογία Υπολογιστών;)

Εισαγωγή στην Επιστήμη του Ηλεκτρολόγου Μηχανικού (και στην Τεχνολογία Υπολογιστών;) Εισαγωγή στην Επιστήμη του Ηλεκτρολόγου Μηχανικού (και στην Τεχνολογία Υπολογιστών;) Τι είναι αυτό; 1. Διαλέξεις; 2. Σεμινάριο; 3. Μάθημα; 4. Αλλο; Θεωρία Συστημάτων, Θεωρία Αποφάσεων και (αυτόματος) Έλεγχος

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Διδάσκων : Επίκ Καθ Κολάσης Χαράλαμπος Άδειες Χρήσης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 1, Μέρος 2ο: ΠΕΡΙ ΣΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 12: Αρχή ελαχίστου του Pontryagin Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ (Transfer function) ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ ΣΥΣΤΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

Σήματα και Συστήματα ΙΙ

Σήματα και Συστήματα ΙΙ Σήματα και Συστήματα ΙΙ Ενότητα 2: Μετασχηματισμός Fourier Διακριτού Χρόνου (DTFT) Α. Ν. Σκόδρας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής Γεώργιος

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Μετασχηματισμός Ζ (Ζ Transform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 9: Ιδιότητες της κλίσης. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 9: Ιδιότητες της κλίσης. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Ιδιότητες της κλίσης. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σεάδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εφαρμοσμένη Βελτιστοποίηση

Εφαρμοσμένη Βελτιστοποίηση Εφαρμοσμένη Βελτιστοποίηση Ενότητα 2: Συναρτήσεις Χώροι - Μεταβλητές Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα η : Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου II

Συστήματα Αυτομάτου Ελέγχου II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου II Ενότητα #8: Χώρος Κατάστασης: Μεταβλητές, Εξισώσεις, Κανονικές Μορφές Δημήτριος Δημογιαννόπουλος

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.10: Αναπτύγματα σε Σειρά Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.10: Αναπτύγματα

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1 Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1 Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Δισδιάστατα σήματα

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Βασικές Έννοιες Φυσικής. Ενότητα: Μηχανική. Διδάσκων: Καθηγητής Κ. Κώτσης. Τμήμα: Παιδαγωγικό, Δημοτικής Εκπαίδευσης

Τίτλος Μαθήματος: Βασικές Έννοιες Φυσικής. Ενότητα: Μηχανική. Διδάσκων: Καθηγητής Κ. Κώτσης. Τμήμα: Παιδαγωγικό, Δημοτικής Εκπαίδευσης Τίτλος Μαθήματος: Βασικές Έννοιες Φυσικής Ενότητα: Μηχανική Διδάσκων: Καθηγητής Κ. Κώτσης Τμήμα: Παιδαγωγικό, Δημοτικής Εκπαίδευσης 2. Μηχανική Η μηχανική είναι ένα βασικό τμήμα της φυσικής επιστήμης,

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 4: Το γενικευμένο πρόβλημα βέλτιστου ελέγχου για συστήματα συνεχούς Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Διακριτοποίηση συστημάτων Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

5 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

5 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 5 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΣΥΝΕΛΙΞΗ ΜΕΡΟΣ Α Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : Μετασχηματισμός LAPLACE (Laplace Tranform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 3 η : ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΜΕΓΕΘΗ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Άδειες Χρήσης

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΠΕΙΚΟΝΙΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

x(t) 2 = e 2 t = e 2t, t > 0

x(t) 2 = e 2 t = e 2t, t > 0 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 216-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Σήµατα και Συστήµατα Ασκηση

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons

Διαβάστε περισσότερα

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Συστήματα πρώτης και δεύτερης τάξης Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Μαθηματικά Μοντέλα Συστημάτων Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Ιδιότητες της Συνέλιξης Η συνέλιξη μετατοπισμένων σημάτων

Διαβάστε περισσότερα

Δυναμική Ηλεκτρικών Μηχανών

Δυναμική Ηλεκτρικών Μηχανών Δυναμική Ηλεκτρικών Μηχανών Ενότητα 1: Εισαγωγή Βασικές Αρχές Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

9 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

9 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 9 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ ΣΥΣΤΗΜΑΤΟΣ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Μαθηματικά Και Στατιστική Στη Βιολογία

Μαθηματικά Και Στατιστική Στη Βιολογία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά Και Στατιστική Στη Βιολογία Ενότητα 10 : Δυναμικά Συστήματα Στέφανος Σγαρδέλης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 4: Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 4: Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 4: Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων Η Κρουστική Απόκριση

Διαβάστε περισσότερα

Μάθημα: Θεωρία Δικτύων

Μάθημα: Θεωρία Δικτύων Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 7-8, 5ο Εξάμηνο Μάθημα: Θεωρία Δικτύων Ανάλυση Ευσταθείας Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή Ηλεκτρ.

Διαβάστε περισσότερα

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Περιγραφή συστημάτων στο πεδίο της συχνότητας Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 5: Το γραμμικό τετραγωνικό πρόβλημα ρύθμισης (LQ Regulators) Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης

Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Σύστημα ονομάζουμε ένα σύνολο στοιχείων κατάλληλα συνδεδεμένων μεταξύ τους για να επιτελέσουν κάποιο έργο Είσοδο ονομάζουμε τη διέγερση, εντολή ή αιτία η οποία

Διαβάστε περισσότερα

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο Μετασχηματισμός Ζ Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο μετασχηματισμός Z (Ζ-Τransform: ZT) χρήσιμο μαθηματικό εργαλείο για την ανάλυση των διακριτών σημάτων και συστημάτων αποτελεί ό,τι ο μετασχηματισμός

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Διαφορική Γεωμετρία II

Τίτλος Μαθήματος: Διαφορική Γεωμετρία II Τίτλος Μαθήματος: Διαφορική Γεωμετρία II Ενότητα: Σσναλλοίωτη παράγωγος και παράλληλη μεταφορά Όνομα Καθηγητή: Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών 17 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ο μετασχηματισμός Laplace Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Χρονική απόκριση συστημάτων Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.: Η Παράγωγος Συνάρτησης Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.: Η Παράγωγος

Διαβάστε περισσότερα

Βιομηχανικοί Ελεγκτές

Βιομηχανικοί Ελεγκτές ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #10: Μοντέρνες Μέθοδοι Αναλογικού Ελέγχου Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός 1/8 Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.05: Ολοκλήρωση Ρητών Συναρτήσεων Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Προηγμένος έλεγχος ηλεκτρικών μηχανών

Προηγμένος έλεγχος ηλεκτρικών μηχανών Προηγμένος έλεγχος ηλεκτρικών μηχανών Ενότητα 3: Βαθμωτός Έλεγχος Ασύχρονων Μηχανών Επαμεινώνδας Μητρονίκας - Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Αυτόματος Έλεγχος. Ενότητα 4 η : Πρότυπα μεταβλητών κατάστασης. Παναγιώτης Σεφερλής. Εργαστήριο Δυναμικής Μηχανών Τμήμα Μηχανολόγων Μηχανικών

Αυτόματος Έλεγχος. Ενότητα 4 η : Πρότυπα μεταβλητών κατάστασης. Παναγιώτης Σεφερλής. Εργαστήριο Δυναμικής Μηχανών Τμήμα Μηχανολόγων Μηχανικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4 η : Πρότυπα μεταβλητών κατάστασης Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική

Κλασική Ηλεκτροδυναμική Κλασική Ηλεκτροδυναμική Ενότητα 12: Συνάρτηση Green από ιδιοσυναρτήσεις Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να μελετήσει την συνάρτηση Green από

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Aνάλυση Σήματος. 2 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Aνάλυση Σήματος. 2 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Aνάλυση Σήματος 2 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Τι είναι σήμα; Παραδείγματα: Σήμα ομιλίας. Σήμα εικόνας. Σεισμικά σήματα. Ιατρικά σήματα

Τι είναι σήμα; Παραδείγματα: Σήμα ομιλίας. Σήμα εικόνας. Σεισμικά σήματα. Ιατρικά σήματα Τι είναι σήμα; Σεραφείμ Καραμπογιάς Ως σήμα ορίζεται ένα φυσικό μέγεθος το οποίο μεταβάλλεται σε σχέση με το χρόνο ή το χώρο ή με οποιαδήποτε άλλη ανεξάρτητη μεταβλητή ή μεταβλητές. Παραδείγματα: Σήμα

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη : Μετασχηματισμός Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μετασχηματισμός Laplace. Μαθηματικός ορισμός μετασχηματισμού Laplace 2. Η περιοχή σύγκλισης του μετασχηματισμού

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Απόκριση Συχνότητας Αναλογικών Σ.Α.Ε Διαγράμματα BODE Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες

Διαβάστε περισσότερα

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Ενότητα 9: Παθητικότητα Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης

Διαβάστε περισσότερα

Μαθηματική Ανάλυση ΙI

Μαθηματική Ανάλυση ΙI Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση ΙI Ενότητα 6: Παράγωγος κατά κατεύθυνση, κλίση, εφαπτόμενα επίπεδα Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα Ι

Τηλεπικοινωνιακά Συστήματα Ι Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 1: Σήματα και Συστήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μέρος 1: Σήματα Συνεχούς Χρόνου 2 Σήματα Συνεχούς Χρόνου 1. Κατηγορίες Σημάτων

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Πραγματικές Συναρτήσεις Πολλών Μεταβλητών (μέρος 1) Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Διαβάστε περισσότερα