ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι"

Transcript

1 ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Σήματα και Συστήματα στο Πεδίο της Επιμέλεια: Αθανάσιος N. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. Το περιεχόμενο της παρουσίασης (κείμενο, εικόνες, γραφήματα) δημιουργήθηκε από τον διδάσκοντα στα πλαίσια σύστασης του υλικού διδασκαλίας του ανοικτού μαθήματος Σήματα και Συστήματα Ι, εκτός αν αναγράφεται διαφορετικά. 2

3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου των διδασκόντων καθηγητών. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Πατρών» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

4 Σκοπός Μελέτη Μετασχηματισμός Fourier και ιδιότητες του 4

5 Ανάλυση & Σύνθεση Συχνοτήτων Ανάλυση λευκού φωτός Σύνθεση λευκού φωτός 5

6 Χρόνος & Συχνότητα: δύο βάσεις περιγραφής! Πλάτος Πεδίο Χρόνου Χρόνος Πεδίο Πλάτος ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ι - Στο Πεδίο της Φάση 6

7 ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ι - Στο Πεδίο της 7

8 Μη ημιτονοειδείς κυματομορφές συντίθενται από ημιτονοειδείς ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ι - Στο Πεδίο της 8

9 Εποπτική Προσέγγιση... ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ι - Στο Πεδίο της 9

10 Το διάγραμμα φάσης για ένα ημίτονο μπορεί να οριστεί κοιτώντας το πρώτο πλησιέστερο στο μηδέν θετικό μέγιστο. Θ= t Τ 360 Αν το πλησιέστερο θετικό μέγιστο βρίσκεται μετά το t=0, έχω καθυστέρηση και αρνητική φάση. Αν το πλησιέστερο θετικό μέγιστο βρίσκεται πριν το t=0, το σήμα προπορεύεται και έχω θετική φάση. ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ι - Στο Πεδίο της 10

11 Η Φάση είναι απλά ένας δείκτης θέσης και όχι ένας δείκτης ενέργειας Χρόνος Συχνότητα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ι - Στο Πεδίο της 11

12 Ο σημαντικός ρόλος της Φάσης α β γ δ 1 x(t) 1 cos(2 t1) 2 2 cos(4 t2) cos(6 t3) 3 Το σήμα x(t) δίνεται στα σχήματα για διαφορετικές τιμές στις γωνίες φ 1, φ 2, φ 3. α. φ 1 =φ 2 =φ 3 =0 β. φ 1 =4rad, φ 2 =8rad, φ 3 =12rad γ. φ 1 =6rad, φ 2 = -2.7rad, φ 3 =0.93rad δ. φ 1 =1.2rad, φ 2 =4.1rad, φ 3 = -7.02rad ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ι - Στο Πεδίο της 12

13 Jean Baptiste Joseph Fourier and his Fourier transform Το φάσμα πλάτους καθορίζει το ποσό κάθε συνημιτονοειδούς συνιστώσας που παρουσιάζεται στην εικόνα. Η φάση καθορίζει το που ακριβώς βρίσκεται κάθε συνιστώσα στην εικόνα. 13

14 Εικόνα Μέτρο Fourier Φάση Fourier #1 #2 14

15 Μέτρο #2 + Φάση #1 Μέτρο #1 + Φάση #2 15

16 Εποπτικής Προσέγγισης Συνέχεια... 16

17 Καθώς η περίοδος T του σήματος τείνει στο άπειρο, οι γραμμές του διακριτού φάσματος πλησιάζουν. Όταν η περίοδος T γίνει άπειρη, η απόσταση μεταξύ των γραμμών μηδενίζεται και το φάσμα γίνεται συνεχές. α. Παλμός Πλάτους a=0.025 και περίοδος T=0.05 β. Παλμός Πλάτους a=0.025 και περίοδος T=0.1 Περιοδικό Σήμα Σειρά Fourier Γραμμικό Φάσμα γ. Παλμός Πλάτους a=0.025 και περίοδος T=0.2 Μη Περιοδικό Σήμα Μετασχηματισμός Fourier Συνεχές Φάσμα δ. Παλμός Πλάτους a=0.025 και περίοδος Τ 17

18 Κατηγορίες Σημάτων & Μετασχηματισμών Fourier Μετασχηματισμός Fourier Σήματα συνεχή και μη περιoδικά Σειρές Fourier Σήματα συνεχή και περιoδικά Μετασχηματισμός Fourier Διακριτού Χρόνου Σήματα διακριτά και μη περιoδικά Διακριτός Μετασχηματισμός Fourier Σήματα διακριτά και περιoδικά ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ι - Σήματα και Επεξεργασία: Μια πρώτη προσέγγιση 18

19 ΑΝΑΛΥΣΗ & ΣΥΝΘΕΣΗ ΣΗΜΑΤΩΝ Ο πίνακας αυτός είναι από το βιβλίο: Introduction to Digital Signal Processing, J.G. Proakis, D.G. Manolakis, Macmillan Publishing, 1988 ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ι - Σήματα και Επεξεργασία: Μια πρώτη προσέγγιση 19

20 Περιοδικά Μη περιοδικά ΣΧΕΣΕΙΣ ΑΝΑΛΥΣΗΣ & ΣΥΝΘΕΣΗΣ ΣΗΜΑΤΩΝ Συνεχούς Χρόνου Διακριτού Χρόνου x(t) k 1 k e 2 k jk t jkot x(t) e dt o 1 x(n) 1 n0 1 k 0 j2 N X(k) W X (k) x(n) W W N e nk N nk N 1 jt x(t) ( ) e d 2 jt ( ) x(t) e dt 1 j jn x(n) ( e ) e d 2 j ( e ) x(n) e n jn ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ι - Σήματα και Επεξεργασία: Μια πρώτη προσέγγιση 20

21 Γραμμικά Χρονικά Αμετάβλητα Συστήματα Ολισθημένες Κρουστικές Συνέλιξη Μιγαδικά Εκθετικά Ανάλυση Fourier 21

22 Σήμα ως ολοκληρωτικό άθροισμα κρουστικών x(t) lim x(n ) ( n ) 0 r f(t) f( ) (t )d Οποιοδήποτε σήμα μπορεί να εκφραστεί ως ολοκλήρωμα σταθμισμένων (scaled) ολισθημένων (shifted) κρουστικών (impulses). 22

23 Αναλυτική Προσέγγιση... 23

24 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER jt ( ) x(t) e dt 1 jt x(t) ( ) e d 2 Ευθύς MF (Ανάλυση) Αντίστροφος MF (Σύνθεση) Ο MF Χ(Ω) ενός μη περιοδικού σήματος x(t) συχνά ονομάζεται φάσμα του x(t), αφού παρέχει την πληροφορία που απαιτείται για την περιγραφή του x(t) ως γραμμικού συνδυασμού (ως ολοκληρώματος) των ημιτονοειδών σημάτων στις διάφορες συχνότητες. 24

25 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Ο MF, δηλαδή το X(Ω) είναι πεπερασμένο/συγκλίνει, όταν το σήμα x(t) έχει πεπερασμένη ενέργεια (δηλαδή τετραγωνικά ολοκληρώσιμο): x(t) 2 dt Εναλλακτικά η ύπαρξη του MF διασφαλίζεται όταν πληρούνται οι συνθήκες Dirichlet: x(t) dt 1. To x(t) να είναι ολοκληρώσιμο κατ απόλυτη τιμή. 2. Το x(t) να έχει πεπερασμένο αριθμό μεγίστων και ελαχίστων σε ένα πεπερασμένο διάστημα. 3. Το x(t) να έχει πεπερασμένο αριθμό ασυνεχειών σε οποιοδήποτε πεπερασμένο διάστημα και επιπλέον καθεμιά από τις ασυνέχειες να είναι πεπερασμένου ύψους. Συμπέρασμα: Συνεχή σήματα που είναι ολοκληρώσιμα κατ απόλυτη τιμή ή που έχουν πεπερασμένο αριθμό ασυνεχειών έχουν MF. 25

26 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Παράδειγμα 1. Να υπολογιστεί ο MF του x(t)=δ(t) jt (j ) (t) e dt 1 Η κρουστική έχει MF που αποτελείται από ίση συνεισφορά ΟΛΩΝ των συχνοτήτων. 26

27 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Παράδειγμα 2. Να υπολογιστεί ο MF του τετραγωνικού παλμού x t = 1, t < T 2 0, t T 2 T /2 jt jt 1 jt T /2 ( ) x(t) e dt e dt e j T /2 T /2 jt /2 jt /2 1 jt /2 jt /2 2 e e 2 ( e e ) sin j 2j 2 sin 2 2 T sinc( ) 2 Όπου sinc( x) sin x x 27

28 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER 28

29 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Παράδειγμα 3. Να βρεθεί το σήμα x(t) του οποίου ο MF ισούται με: Χ Ω = 1, Ω < W 2 0, Ω W 2 W /2 jt jt jt x(t) ( ) e d e d e jt W/2 W /2 W /2 jwt /2 jwt /2 1 jtw /2 jtw /2 1 e e 1 Wt ( e e ) sin 2 tj t 2 j t 2 Wt sin W 2 W Wt sinc( ) 2 Wt

30 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ι - Στο Πεδίο της 30

31 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Παράδειγμα 4. Να υπολογιστεί ο MF του x(t) e at u(t), 0 jt at jt ( a j) t e dt e e dt e dt ( ) x(t) 1 ( a j) t 1 e, 0 a j a j Ο MF έχει μιγαδικές τιμές οπότε υπολογίζουμε το μέτρο και τη φάση του: 1 1 X ( ), ( ) tan ( )

32 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER 32

33 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Παράδειγμα 5. Να υπολογιστεί ο MF του at ( ) x(t) j e t dt e e j t dt 0 a at jt at jt 1 1 e e dt e e dt a j a j 2a at x(t) e, 0 33

34 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Παράδειγμα 6. Να υπολογιστεί ο MF του jt at jt ( ) x(t) e dt e cos( t) e dt 0 j ot j ot at e e jt e e dt 2 ( a j jo)t ( a j jo)t e dt e dt a j( 0) a j( 0) at x(t) e cos( t) u(t) 34

35 F F ΙΔΙΟΤΗΤΕΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟY FOURIER Γραμμικότητα: ax(t)+by(t) F ax(ω)+by(ω) Ολίσθηση στο χρόνο: x(t-to) F e -jωto X(Ω) Ολίσθηση στη συχνότητα: e jωto x(t) F X(Ω-Ωο) Κλιμάκωση στο χρόνο: x(αt) Κλιμάκωση στη συχνότητα: 1 a F 1 a t x F X( ) ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ι - Στο Πεδίο της 35

36 ΙΔΙΟΤΗΤΕΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟY FOURIER Παραγώγιση: Ολοκλήρωση: Δυϊκότητα: t dx(t) F j( ) dt n d x(t) F n ( j) ( ) n dt F 1 x( )d ( ) ( ) ( ) j F x(t) 2 x( ) Συνέλιξη: F y(t) h(t)*x(t) Y( ) ( ) ( ) Πολλαπλασιασμός: Θεώρημα Parseval: F 1 y(t) s(t) x(t) Y ( ) [S( )* ( )] x(t) dt ( ) d 2 ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ι - Στο Πεδίο της 36

37 ΙΔΙΟΤΗΤΕΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟY FOURIER Απόδειξη ολίσθησης στο χρόνο: Ο ΜF του x(t-to) είναι: jt F{x(t)} x(t) e dt jt tto F{x(t to)} x(t to) e dt j( to) x( ) e d( to) jto j jto e x( ) e d e X ( ) ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ι - Στο Πεδίο της 37

38 ΙΔΙΟΤΗΤΕΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟY FOURIER Παράδειγμα 7. Να υπολογιστεί ο MF του σχήματος Το x(t) μπορεί να εκφραστεί ως άθροισμα δύο σημάτων x1(t) και x2(t): 1( ) sin( ) sin( ) 2( ) ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ι - Στο Πεδίο της 38

39 ΙΔΙΟΤΗΤΕΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟY FOURIER Λόγω γραμμικότητας ο MF της x(t) θα ισούται με: 3 sin( ) 2sin( ) 1 ( ) 1( ) 2( ) ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ι - Στο Πεδίο της 39

40 ΙΔΙΟΤΗΤΕΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟY FOURIER Παράδειγμα 8. Να υπολογιστεί ο MF του σχήματος Παρατηρούμε ότι το x(t) μπορεί να γραφεί ως διαφορά παλμών: 1 T T x(t) PT/2 t PT/2 t T 2 2 sin sin 1 2 j 2 2 j 2 X ( ) e e sin sin 2 2 e e j j j

41 ΙΔΙΟΤΗΤΕΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟY FOURIER Παράδειγμα 9. Να υπολογιστεί ο MF του σχήματος Παρατηρούμε ότι: g(t)=x(t-2.5)=x(t- 5 2 ) 5 5 j j 2 2 G( ) e X ( ) e sin 3 2sin

42 ΙΔΙΟΤΗΤΕΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟY FOURIER Πεδίο Χρόνου Πεδίο Η ολίσθηση στον χρόνο επηρεάζει μόνον την Φάση! α. Ολίσθηση Τ=-Το β. Ολίσθηση Τ=0 γ. Ολίσθηση Τ=Το 42

43 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Παράδειγμα 10. Να υπολογιστεί ο MF της σταθεράς 1. Γνωρίζουμε ότι (t) F 1 Και βάση την αρχή δυϊκότητας έχουμε F X(t) 2 x( ) Οπότε: 1 F 2 ( ) Επαλήθευση : Υπολογίζουμε τον αντίστροφο MF της 2πδ(Ω) 1 jt x(t) X( ) e d Αφού δ(ω)=1 για Ω=0 μόνο. jt jt 2 ( ) e d ( ) e d 1 43

44 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Παράδειγμα 11. Να υπολογιστεί ο MF της μοναδιαίας βηματικής συνάρτησης u(t). A Τρόπος Έστω x(t)=u(t) και g(t)=δ(t). Γνωρίζουμε ότι ο MF της δ(t) ισούται με 1, δηλαδή g(t)=δ(t) G Ω = 1. H βηματική απόκριση μπορεί να εκφραστεί και ως ολοκλήρωμα της κρουστικής. t x(t) g( )d Λαμβάνοντας τον MF και των δύο μελών με την ιδιότητα της ολοκλήρωσης 1 1 ( ) G( ) G(o) ( ) ( ) j j 44

45 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Σημείωση: Θυμηθείτε ότι η δ(t) προκύπτει ως η πρώτη παράγωγος της βηματικής u(t). Με βάση αυτό και την ιδιότητα της διαφόρισης μπορούμε να επαληθεύσουμε ότι δ(t) 1. du(t) F 1 (t) j ( ) 1 dt j Αφού ( ) 0 45

46 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Β Τρόπος Εκφράζουμε τη u(t) ως άθροισμα συναρτήσεων u(t)= sgn(t), όπου sgn(t) η συνάρτηση προσήμου Έχουμε 1 F ( ) 2 2 sgn(t) j Εφαρμόζοντας την ιδιότητα της γραμμικότητας έχουμε F 1 u(t) ( ) j 46

47 ΙΔΙΟΤΗΤΕΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟY FOURIER Δυϊκότητα: (t) F 2 x( ) Με βάση την ιδιότητα της δυϊκότητας μπορούμε να εξηγήσουμε κάποιες από τις γνωστές μας ιδιότητες, όπως αυτή της ολίσθησης στη συχνότητα, ή να εξάγουμε άλλες ιδιότητες όπως αυτή της παραγώγισης και της ολοκλήρωσης στη συχνότητα: Ολίσθηση στη συχνότητα: Παραγώγιση στη συχνότητα: F ( ) jt e x t X F dx ( ) jtx(t) d 1 Ολοκλήρωση στη συχνότητα: (t) (0) (t) F x x x (w)dw jt ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ι - Στο Πεδίο της 47

48 ΙΔΙΟΤΗΤΕΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟY FOURIER ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ι - Στο Πεδίο της 48

49 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Παράδειγμα 12. Να υπολογιστεί ο MF της x(t)cosω ο t. Έχουμε Άρα 1 cos 0t e e 2 j t j t 1 jt jt x(t) cos 0t e x(t) e x(t) 2 Kαι λαμβάνοντας τον MF και των δύο μελών έχουμε: F 1 x(t)cos 0t X ( 0) X ( 0) 2 49

50 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Παράδειγμα 12. Να υπολογιστεί ο MF της x(t)sinω ο t. Έχουμε Άρα 1 sin 0t e e 2 j j t j t 1 jt jt x(t) sin 0t e x(t) e x(t) 2 j Kαι λαμβάνοντας τον MF και των δύο μελών έχουμε: F 1 x(t)sin 0t X ( 0) X ( 0) 2 j 50

51 ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ι - Στο Πεδίο της 51

52 Αλλαγή x( t) Κλίμακας 1 X a Σήμα x(t) και το φάσμα Χ(Ω) Σήμα x 1 (t)=x(αt) με το α>1 και το φάσμα Χ 1 (Ω) Σήμα x 2 (t)=x(αt) με το 0<α<1 και το φάσμα Χ 2 (Ω) ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ι - Στο Πεδίο της 52

53 Σημείωμα Χρήσης Έργων Τρίτων Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες Διαφάνεια 5, 19: J. G. Proakis, D. G. Manolakis: "Introduction to Digital Signal Processing", Macmillan Publishing Company, 1988 Διαφάνεια 22: B. P. Lathi: "Linear Systems and Signals", Oxford University Press, 2005 Διαφάνεια 52: Σεραφείμ Καραμπογιάς, Σέργιος Θεοδωρίδης: "Σήματα και Συστήματα", Ελληνικό Ανοικτό Πανεπιστήμιο, 2004 ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ι - Στο Πεδίο της 53

54 Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Πατρών, Αθανάσιος Σκόδρας. «Σήματα και Συστήματα Ι, Στο Πεδίο της». Έκδοση: 1.0. Πάτρα Διαθέσιμο από τη δικτυακή διεύθυνση: ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ι - Στο Πεδίο της 54

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων. 2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γενικά τι είναι - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος των επιτρεποµένων εισόδων και εξόδων. Ιδιότητες των

Διαβάστε περισσότερα

Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας

Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 2 Συστήματα Εξισώσεων Διαφορών Συστήματα Εξισώσεων Διαφορών Γραμμικές Εξισώσεις Διαφορών με Σταθερούς Συντελεστές (Linear Constant- Coefficient

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 4 η : ΕΥΣΤΑΘΕΙΑ ΤΩΝ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Άδειες Χρήσης

Διαβάστε περισσότερα

Μετασχηµατισµός Ζ (z-tranform)

Μετασχηµατισµός Ζ (z-tranform) Μετασχηµατισµός Ζ (-traform) Εργαλείο ανάλυσης σηµάτων και συστηµάτων διακριτού χρόνου ιεργασία ανάλογη του Μετ/σµού Laplace Απόκριση συχνότητας Εφαρµογές επίλυση γραµµικών εξισώσεων διαφορών µε σταθερούς

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ

ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ Η χρονική απόκριση μπορεί να ληφθεί από αναλυτικά μέσα όπως η μέθοδος μετασχηματισμού Laplace, εναλλακτικά δε μπορεί να χρησιμοποιηθεί εξομοίωση από Η/Υ. Η προσέγγιση

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

Διαφήμιση και Δημόσιες Σχέσεις Ενότητα 9: Σχέσεις διαφημιστή-διαφημιζόμενου

Διαφήμιση και Δημόσιες Σχέσεις Ενότητα 9: Σχέσεις διαφημιστή-διαφημιζόμενου Διαφήμιση και Δημόσιες Σχέσεις Ενότητα 9: Σχέσεις διαφημιστή-διαφημιζόμενου Θεοδωρίδης Προκόπης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Κινητές και Δορυφορικές Επικοινωνίες

Κινητές και Δορυφορικές Επικοινωνίες Πανεπιστήμιο Αιγαίου Κινητές και Δορυφορικές Επικοινωνίες Πρόγραμμα Μεταπτυχιακών Σπουδών Κατεύθυνση: «Τεχνολογίες Δικτύων Επικοινωνιών & Υπολογιστών» Βασικές Αρχές Κυψελωτών Συστημάτων Δημοσθένης Βουγιούκας

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. ΚΕΦΑΛΑΙΟ 4 ο Μετασχηματισμός Z

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. ΚΕΦΑΛΑΙΟ 4 ο Μετασχηματισμός Z ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΚΕΦΑΛΑΙΟ 4 ο Μετασχηματισμός Z ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ - Μετασχ.- Σ. Φωτόπουλος ΔΠΜΣ Ποιός είναι ο DTFT της u(n)?? u(n) e πδ(ω πk) j ω k ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ - Μετασχ.-

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 2: Γραφήματα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΔΙΑΦΟΡΑΣ ΦΑΣΗΣ ΔΥΟ ΗΜΙΤΟΝΟΕΙΔΩΝ ΣΗΜΑΤΩΝ

ΜΕΤΡΗΣΗ ΔΙΑΦΟΡΑΣ ΦΑΣΗΣ ΔΥΟ ΗΜΙΤΟΝΟΕΙΔΩΝ ΣΗΜΑΤΩΝ ΑΣΚΗΣΗ 05 ΜΕΤΡΗΣΗ ΔΙΑΦΟΡΑΣ ΦΑΣΗΣ ΔΥΟ ΗΜΙΤΟΝΟΕΙΔΩΝ ΣΗΜΑΤΩΝ Αντικείμενο της άσκησης αυτής είναι η μέτρηση της διαφοράς φάσης μεταξύ δύο κυματομορφών τάσης σε ένα κύκλωμα εναλλασσομένου ρεύματος με τη βοήθεια

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ 1 (Εργαστήριο)

Προγραμματισμός Η/Υ 1 (Εργαστήριο) Προγραμματισμός Η/Υ 1 (Εργαστήριο) Ενότητα 1: Εισαγωγή στη C - Αλγόριθμοι Καθηγήτρια Εφαρμογών: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΑΘΑΝΑΣΙΟΣ Χ. ΑΛΕΞΑΝΔΡΑΚΗΣ ΑΝ. ΚΑΘΗΓΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕΔΟΝΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Β ΤΟΜΟΣ Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα και τη σφραγίδα του εκδότη ISBN SET: 960-56-026-9

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων και Συστημάτων Αποφάσεων ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι Σημειώσεις Εργαστηριακών

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 6: Εφαρμογές Γραμμικού Προγραμματισμού (2 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ...3

ΕΙΣΑΓΩΓΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ...3 ΚΕΦΑΛΑΙΟ 3 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ- ΕΙΣΑΓΩΓΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ...3 ΕΝΟΤΗΤΑ 3.. Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ-Z...4 3... ΟΡΙΣΜΌΣ...4 3... ΎΠΑΡΞΗ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΎ-Z...5 3..3. ΙΔΙΌΤΗΤΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΎ-Z... ΕΝΟΤΗΤΑ 3..

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων Πρόγραμμα Μεταπτυχιακών Σπουδών: «Τεχνολογίες και Συστήματα Ευρυζωνικών Εφαρμογών και Υπηρεσιών» Μάθημα: «Επεξεργασία Ψηφιακού Σήματος και Σχεδιασμός Υλικού» Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής

Διαβάστε περισσότερα

Ενότητα 3 (μέρος 1 ο )

Ενότητα 3 (μέρος 1 ο ) Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 3 (μέρος 1 ο ) Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Μέθοδοι Βελτιστοποίησης

Μέθοδοι Βελτιστοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 5: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Κ. Ψυχαλίνος Πάτρα 005 . METAΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Ορισμοί Μετάβαση από το πεδίο του χρόνου στο πεδίο συχνότητας.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18)

ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) Άσκηση 1. Α) Στο κύκλωμα του παρακάτω σχήματος την χρονική στιγμή t=0 sec ο διακόπτης κλείνει. Βρείτε τα v c και i c. Οι πυκνωτές είναι αρχικά αφόρτιστοι. Β)

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

Άσκηση 4: Παραγωγή Ημιτονικών Κυμάτων (Sine waves generation)

Άσκηση 4: Παραγωγή Ημιτονικών Κυμάτων (Sine waves generation) ΤΕΙ ΠΕΙΡΑΙΑ / ΣΤΕΦ / ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Μάθημα: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ (Εργαστήριο) Ε εξάμηνο Εξάμηνο: Χειμερινό 2014-2015 Σκοπός της άσκησης Άσκηση 4: Παραγωγή Ημιτονικών Κυμάτων (Sine

Διαβάστε περισσότερα

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt Προχωρημένα Θέματα Τηλεπικοινωνιών Συγχρονισμός Συμβόλων Εισαγωγή Σε ένα ψηφιακό τηλεπικοινωνιακό σύστημα, η έξοδος του φίλτρου λήψης είναι μια κυματομορφή συνεχούς χρόνου y( an x( t n ) n( n x( είναι

Διαβάστε περισσότερα

Σημειώσεις για την Άσκηση 2: Μετρήσεις σε RC Κυκλώματα

Σημειώσεις για την Άσκηση 2: Μετρήσεις σε RC Κυκλώματα Σημειώσεις για την Άσκηση 2: Μετρήσεις σε RC Κυκλώματα Ένας πυκνωτής με μία αντίσταση σε σειρά αποτελούν ένα RC κύκλωμα. Τα RC κυκλώματα χαρακτηρίζονται για την απόκρισή τους ως προς τη συχνότητα και ως

Διαβάστε περισσότερα

Διεθνείς Επενδύσεις & Διεθνές Εμπόριο

Διεθνείς Επενδύσεις & Διεθνές Εμπόριο Διεθνείς Επενδύσεις & Διεθνές Εμπόριο Ενότητα 3: Θεωρία του Διεθνούς Εμπορίου Θεωρητικές προσεγγίσεις Γεώργιος Μιχαλόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

1 ΘΕΩΡΙΑ ΥΠΟΔΟΜΗΣ 2 ΜΕΤΑΔΟΣΗ ΔΕΔΟΜΕΝΩΝ 2-30. 1.1 Εισαγωγή 1-5. 1.2 Σειρές Fourier 1-5. 1.3 Το πεδίο της συχνότητας 1-7

1 ΘΕΩΡΙΑ ΥΠΟΔΟΜΗΣ 2 ΜΕΤΑΔΟΣΗ ΔΕΔΟΜΕΝΩΝ 2-30. 1.1 Εισαγωγή 1-5. 1.2 Σειρές Fourier 1-5. 1.3 Το πεδίο της συχνότητας 1-7 1 ΘΕΩΡΙΑ ΥΠΟΔΟΜΗΣ 1-5 1.1 Εισαγωγή 1-5 1.2 Σειρές Fourier 1-5 1.3 Το πεδίο της συχνότητας 1-7 1.4 Φάσμα μιας σειράς δυαδικών δεδομένων βασικής ζώνης 1-10 1.5 Ο μετασχηματισμός Fourier 1-11 1.6 Η διαδικασία

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1 Ήχος Χαρακτηριστικά του ήχου Ψηφιοποίηση με μετασχηματισμό Ψηφιοποίηση με δειγματοληψία Κβαντοποίηση δειγμάτων Παλμοκωδική διαμόρφωση Συμβολική αναπαράσταση μουσικής Τεχνολογία Πολυμέσων και Πολυμεσικές

Διαβάστε περισσότερα

Υψηλές Τάσεις. Ενότητα 4: Υγρά Μονωτικά Υλικά. Κωνσταντίνος Ψωμόπουλος Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ

Υψηλές Τάσεις. Ενότητα 4: Υγρά Μονωτικά Υλικά. Κωνσταντίνος Ψωμόπουλος Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Υψηλές Τάσεις Ενότητα 4: Υγρά Μονωτικά Υλικά Κωνσταντίνος Ψωμόπουλος Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Επιδημιολογία καρκίνου του πνεύμονα Ενότητα 1: Ογκολογία Πνεύμονα. Κυριάκος Καρκούλιας, Επίκουρος Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής

Επιδημιολογία καρκίνου του πνεύμονα Ενότητα 1: Ογκολογία Πνεύμονα. Κυριάκος Καρκούλιας, Επίκουρος Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής Επιδημιολογία καρκίνου του πνεύμονα Ενότητα 1: Ογκολογία Πνεύμονα Κυριάκος Καρκούλιας, Επίκουρος Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής Επιδημιολογικά στοιχεία καρκίνου του πνεύμονα Ο καρκίνος

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εισαγωγή στην Επιστήμη και Τεχνολογία των Υπηρεσιών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εισαγωγή στην Επιστήμη και Τεχνολογία των Υπηρεσιών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εισαγωγή στην Επιστήμη και Τεχνολογία των Υπηρεσιών Εργαστήριο: XQuery - 2 Όνομα Καθηγητή: Χρήστος Νικολάου Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Δορυφορική Γεωδαισία (GPS)

Δορυφορική Γεωδαισία (GPS) Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ Δορυφορική Γεωδαισία (GPS)

Διαβάστε περισσότερα

Αρχιτεκτονική υπολογιστών

Αρχιτεκτονική υπολογιστών 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αρχιτεκτονική υπολογιστών Ενότητα 12 : Δομή και Λειτουργία της CPU 2/2 Φώτης Βαρζιώτης 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Φωτοτεχνία

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Φωτοτεχνία ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Φωτοτεχνία Ενότητα 3: Μελέτες Φωτισμού Εσωτερικών Χώρων Mέθοδος Favie-Οικονομόπουλος Γεώργιος Χ. Ιωαννίδης Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Ανακατασκευή εικόνας από προβολές

Ανακατασκευή εικόνας από προβολές Ανακατασκευή εικόνας από προβολές Μέθοδος ανακατασκευής με χρήση χαρακτηριστικών δειγμάτων προβολής Αναστάσιος Κεσίδης Δρ. Ηλεκτρολόγος Μηχανικός Θέματα που θα αναπτυχθούν Εισαγωγή στις τομογραφικές μεθόδους

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.)

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) Ενότητα 5: Γεωθερμία Σπύρος Τσιώλης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1 Ήχος και φωνή Φύση του ήχου Ψηφιοποίηση µε µετασχηµατισµό Ψηφιοποίηση µε δειγµατοληψία Παλµοκωδική διαµόρφωση Αναπαράσταση µουσικής Ανάλυση και σύνθεση φωνής Μετάδοση φωνής Τεχνολογία Πολυµέσων 4-1 Φύση

Διαβάστε περισσότερα

Ενότητα 3 η. (Ισχύς, συντελεστής ισχύος, βελτίωση συντελεστή ισχύος. Τριφασικά δίκτυα, γραμμές μεταφοράς)

Ενότητα 3 η. (Ισχύς, συντελεστής ισχύος, βελτίωση συντελεστή ισχύος. Τριφασικά δίκτυα, γραμμές μεταφοράς) - 1 - Ενότητα 3 η (Ισχύς, συντελεστής ισχύος, βελτίωση συντελεστή ισχύος. Τριφασικά δίκτυα, γραμμές μεταφοράς) Στην παρούσα ενότητα παρουσιάζεται το θέμα της ισχύος σε μονοφασικά και τριφασικά συμμετρικά

Διαβάστε περισσότερα

Διοίκηση ανθρωπίνων Πόρων. Ενότητα 2: Προγραμματισμός Ανθρώπινου Δυναμικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διοίκηση ανθρωπίνων Πόρων. Ενότητα 2: Προγραμματισμός Ανθρώπινου Δυναμικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Διοίκηση ανθρωπίνων Πόρων Ενότητα 2: Προγραμματισμός Ανθρώπινου Δυναμικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Εργαστήριο 3: Διαλείψεις

Εργαστήριο 3: Διαλείψεις Εργαστήριο 3: Διαλείψεις Διάλειψη (fading) είναι η παραμόρφωση ενός διαμορφωμένου σήματος λόγω της μετάδοσης του σε ασύρματο περιβάλλον. Η προσομοίωση μίας τέτοιας μετάδοσης γίνεται με την μοντελοποίηση

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 8: ΤΟΠΟΣ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B 4 Εργο και Ενέργεια 4.1 Εργο σε µία διάσταση Το έργο µιας σταθερής δύναµης F x, η οποία ασκείται σε ένα σώµα που κινείται σε µία διάσταση x, ορίζεται ως W = F x x Εργο ύναµης = ύναµη Μετατόπιση Εχουµε

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Πάτρα 0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Ενότητες του μαθήματος Η πιο συνηθισμένη επεξεργασία αναλογικών σημάτων είναι η ενίσχυση τους, που επιτυγχάνεται με

Διαβάστε περισσότερα

Κεφάλαιο T4. Υπέρθεση και στάσιµα κύµατα

Κεφάλαιο T4. Υπέρθεση και στάσιµα κύµατα Κεφάλαιο T4 Υπέρθεση και στάσιµα κύµατα Κύµατα και σωµατίδια Τα κύµατα είναι πολύ διαφορετικά από τα σωµατίδια. Τα σωµατίδια έχουν µηδενικό µέγεθος. Τα κύµατα έχουν ένα χαρακτηριστικό µέγεθος το µήκος

Διαβάστε περισσότερα

ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ

ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ Ένα ρεύµα ονοµάζεται εναλλασσόµενο όταν το πλάτος του χαρακτηρίζεται από µια συνάρτηση του χρόνου, η οποία εµφανίζει κάποια περιοδικότητα. Το συνολικό ρεύµα που διέρχεται από µια

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br ΑΣΚΗΣΗ 1 Έστω ένα σύστηµα εκκρεµούς όπως φαίνεται στο ακόλουθο σχήµα: Πάνω στη µάζα Μ επιδρά µια οριζόντια δύναµη F l την οποία και θεωρούµε σαν είσοδο στο σύστηµα. Έξοδος του συστήµατος θεωρείται η απόσταση

Διαβάστε περισσότερα

Ψηφιακά Φίλτρα. Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 20/5/2005 2

Ψηφιακά Φίλτρα. Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 20/5/2005 2 Ψηφιακά Φίλτρα Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 Αναλογικά και ψηφιακά φίλτρα Στην επεξεργασία σήματος, η λειτουργία ενός φίλτρου είναι να απομακρύνει τα ανεπιθύμητα μέρη ενός σήματος, όπως ένα

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Μετασχηµατισµός Laplace ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 4 Μαρτίου 29 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας του µετασχηµατισµού Laplace

Διαβάστε περισσότερα

Κεφάλαιο 15 ΚίνησηΚυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 ΚίνησηΚυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 ΚίνησηΚυµάτων ΠεριεχόµεναΚεφαλαίου 15 Χαρακτηριστικά Κυµατικής Είδη κυµάτων: ιαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της ιάδοσης κυµάτων ΗΕξίσωσητουΚύµατος Κανόνας

Διαβάστε περισσότερα

Διοίκηση ανθρωπίνων Πόρων. Ενότητα 4: Εντοπισμός και προσέλκυση προσωπικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διοίκηση ανθρωπίνων Πόρων. Ενότητα 4: Εντοπισμός και προσέλκυση προσωπικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Διοίκηση ανθρωπίνων Πόρων Ενότητα 4: Εντοπισμός και προσέλκυση προσωπικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Γενικά Μαθηµατικά Ι Θέµατα Ιανουαρίου 2015

Γενικά Μαθηµατικά Ι Θέµατα Ιανουαρίου 2015 Γενικά Μαθηµατικά Ι Θέµατα Ιανουαρίου 215 Άσκηση 1: (α) Να υπολογισθεί το γενικευµένο ολοκλήρωµα (ax+b)(x 2 +1) αν το a είναι ϑετικός αριθµός. (ϐ) Το µεσηµέρι, ένα σαλιγκάρι που ϐρίσκεται στο κέντρο ενός

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011

ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011 ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011 ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΠΡΩΤΟΒΑΘΜΙΑΣ ΚΑΙ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΤΜΗΜΑ Β Τηλ: 210 344 2478 FAX:

Διαβάστε περισσότερα

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 Κίνηση Κυµάτων Περιεχόµενα Κεφαλαίου 15 Χαρακτηριστικά των Κυµάτων Είδη κυµάτων: Διαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της Διάδοσης κυµάτων Η Εξίσωση του Κύµατος

Διαβάστε περισσότερα

Κυκλώματα, Σήματα και Συστήματα

Κυκλώματα, Σήματα και Συστήματα Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών

Διαβάστε περισσότερα

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Φίλτρα πεπερασμένης κρουστικής απόκρισης Finite Impulse Response (FIR) filters y(n) = M k= bk x(n k) / 68 παράδειγμα (εισαγωγικό) y(n) = 9 x(n k ) k= 2/ 68 Βασικές κατηγορίες

Διαβάστε περισσότερα

Μικροοικονομική. Ενότητα 10: Μονοπωλιακός Ανταγωνισμός. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μικροοικονομική. Ενότητα 10: Μονοπωλιακός Ανταγωνισμός. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μικροοικονομική Ενότητα 10: Μονοπωλιακός Ανταγωνισμός Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΜΗΧΑΝΟΓΡΑΦΗΜΕΝΗ ΛΟΓΙΣΤΙΚΗ Ι

ΜΗΧΑΝΟΓΡΑΦΗΜΕΝΗ ΛΟΓΙΣΤΙΚΗ Ι ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΤΕ ΜΗΧΑΝΟΓΡΑΦΗΜΕΝΗ ΛΟΓΙΣΤΙΚΗ Ι ΚΑΘΗΓΗΤΗΣ ΔΑΠΗΣ ΔΗΜΗΤΡΙΟΣ ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh

Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh Ginnhc K. Sarant pouloc jnik Mets bio Poluteqne o Sqol farmosmłnwn Majhmatik n & Fusik n pisthm n TomŁac Majhmatik n 22 Febrouar ou 28 Perieqìmena Συμβολισμός

Διαβάστε περισσότερα

Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας

Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας Ενότητα: Άσκηση 6: Αντιστάθμιση γραμμών μεταφοράς με σύγχρονους αντισταθμιστές Νικόλαος Βοβός, Γαβριήλ Γιαννακόπουλος, Παναγής Βοβός Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Μικροοικονομία. Ενότητα 1: Εισαγωγικές έννοιες. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής

Μικροοικονομία. Ενότητα 1: Εισαγωγικές έννοιες. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Μικροοικονομία Ενότητα 1: Εισαγωγικές έννοιες Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 2: Βασικές αρχές λειτουργίας και χρήσης του υπολογιστή Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΤΟΥ ΕΡΓΟΥ

ΠΑΡΟΥΣΙΑΣΗ ΤΟΥ ΕΡΓΟΥ ΑΝΟΙΚΤΑ ΨΗΦΙΑΚΑ ΜΑΘΗΜΑΤΑ ΑΝΟΙΚΤΑ ΨΗΦΙΑΚΑ ΜΑΘΗΜΑΤΑ του Τ.Ε.Ι. ΚΕΝΤΡΙΚΉΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΟΥ ΕΡΓΟΥ Δρ. Χρήστος Βοζίκης Υπεύθυνος ενημέρωσης, ευαισθητοποίησης και κατάρτισης του διδακτικού και τεχνικού

Διαβάστε περισσότερα

KYMATA Ανάκλαση - Μετάδοση

KYMATA Ανάκλαση - Μετάδοση ΦΥΣ 131 - Διαλ.34 1 KYMATA Ανάκλαση - Μετάδοση q Παλµός πάνω σε χορδή: Ένα άκρο της σταθερό (δεµένο) Προσπίπτων Ο παλµός ασκεί µια δύναµη προς τα πάνω στον τοίχο ο οποίος ασκεί µια δύναµη προς τα κάτω

Διαβάστε περισσότερα

(E) Το περιεχόμενο. Προγράμματος. διαφορετικά

(E) Το περιεχόμενο. Προγράμματος. διαφορετικά Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ηλεκτροτεχνία, ηλ. μηχανές & εγκαταστάσεις πλοίου (E) Ενότητα 12: Ηλεκτρικός Ισολογισμόςς Πλοίου Δημήτριος Νικόλαος Παγώνης Τμήμα Ναυπηγών

Διαβάστε περισσότερα

Αλληλεπίδραση Ανθρώπου- Υπολογιστή & Ευχρηστία

Αλληλεπίδραση Ανθρώπου- Υπολογιστή & Ευχρηστία Αλληλεπίδραση Ανθρώπου- Υπολογιστή & Ευχρηστία Ενότητα 3: Ο Υπολογιστής Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Το παρόν εκπαιδευτικό υλικό διατίθεται με του όρους χρήσης Creative Commons (CC) Αναφορά Δημιουργού Μη Εμπορική Χρήση Όχι Παράγωγα Έργα.

Το παρόν εκπαιδευτικό υλικό διατίθεται με του όρους χρήσης Creative Commons (CC) Αναφορά Δημιουργού Μη Εμπορική Χρήση Όχι Παράγωγα Έργα. 2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό διατίθεται με του όρους χρήσης Creative Commons (CC) Αναφορά Δημιουργού Μη Εμπορική Χρήση Όχι Παράγωγα Έργα. Για εκπαιδευτικό υλικό, όπως εικόνες, διαγράμματα,

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ 33 Θ Ε Μ Α Τ Α με λύση Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Επιμέλεια: Νίκος Λέντζος Καθηγητής Μαθηματικών Δ/θμιας Εκπαίδευσης Από το βιβλίο ΜΑΘΗΜΑΤΙΚΑ (έκδοση 4) Γ ΛΥΚΕΙΟΥ τεύχος Α Αναστάσιου Χ. Μπάρλα μα προσφορά του

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εισαγωγή στην Τεχνολογία

Πανεπιστήµιο Κύπρου. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εισαγωγή στην Τεχνολογία Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ100 Εισαγωγή στην Τεχνολογία Εργαστήριο: Εισαγωγή στην Μέτρηση Βασικών Σηµάτων Συνοπτική Περιγραφή Εξοπλισµού και Στοιχείων

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 3 : Αποκατάσταση εικόνας (Image Restoration) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Μάθημα: Ψηφιακή Επεξεργασία Ήχου

Μάθημα: Ψηφιακή Επεξεργασία Ήχου Τμήμα Τεχνών Ήχου και Εικόνας Ιόνιο Πανεπιστήμιο Μάθημα: Ψηφιακή Επεξεργασία Ήχου Εργαστηριακή Άσκηση 1 «Διαχείριση και Δημιουργία Βασικών Σημάτων, Δειγματοληψία και Κβαντισμός» Διδάσκων: Φλώρος Ανδρέας

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα

Μάρκετινγκ Επιχειρήσεων Λιανικής Πώλησης

Μάρκετινγκ Επιχειρήσεων Λιανικής Πώλησης Μάρκετινγκ Επιχειρήσεων Λιανικής Πώλησης Ενότητα 4: Συλλογή Εμπορευμάτων Θεοδωρίδης Προκόπης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μικροοικονομική. Ενότητα 2:Οικονομική σκέψη Καραμάνης Κωνσταντίνος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μικροοικονομική. Ενότητα 2:Οικονομική σκέψη Καραμάνης Κωνσταντίνος Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Μικροοικονομική Ενότητα 2:Οικονομική σκέψη Καραμάνης Κωνσταντίνος 1 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Λογιστικής και χρηματοοικονομικής

Διαβάστε περισσότερα

Διοίκηση Τουριστικών Μονάδων

Διοίκηση Τουριστικών Μονάδων Διοίκηση Τουριστικών Μονάδων Ενότητα 4: Ξενοδοχειακή Βιομηχανία. Γιανναράκης Γρηγόρης ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΓΡΕΒΕΝΑ) ΔΙΟΙΚΗΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

ΕΑΠ / ΘΕ ΠΛΗ22 ΒΑΣΙΚΑ ΖΗΤΗΜΑΤΑ ΙΚΤΥΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΝΑΛΛΑΚΤΙΚΟ Ι ΑΚΤΙΚΟ ΥΛΙΚΟ ΣΤΙΣ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ (DRAFT)

ΕΑΠ / ΘΕ ΠΛΗ22 ΒΑΣΙΚΑ ΖΗΤΗΜΑΤΑ ΙΚΤΥΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΝΑΛΛΑΚΤΙΚΟ Ι ΑΚΤΙΚΟ ΥΛΙΚΟ ΣΤΙΣ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ (DRAFT) ΕΑΠ / ΘΕ ΠΛΗ ΒΑΣΙΚΑ ΖΗΤΗΜΑΤΑ ΙΚΤΥΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΝΑΛΛΑΚΤΙΚΟ Ι ΑΚΤΙΚΟ ΥΛΙΚΟ ΣΤΙΣ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ (DRAT Νικόλαος ηµητρίου ρ.ηλεκτρολόγος Μηχανικός ΣΕΠ, ΘΕ ΠΛΗ ΕΑΠ/ΠΛΗ αό 75 ΕΙΣΑΓΩΓΗ... 4 ΣΧΕ ΙΑΣΗ ΚΥΜΑΤΟΜΟΡΦΗΣ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

στοιχεία Βιο-μηχανική:

στοιχεία Βιο-μηχανική: : ορισμός Ως δύναμη ορίζεται η επίδραση, η οποία ασκούμενη σε ένα σώμα προκαλεί είτε μεταβολή στην κινητική του κατάσταση, είτε ταυτόχρονα και μεταβολή στην μορφή του. επιταχύνουν ή/και παραμορφώνουν σώματα.

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

Επεξεργασία σήματος Εισαγωγή

Επεξεργασία σήματος Εισαγωγή 10 Επεξεργασία σήματος Εισαγωγή Τα αρχεία δεδομένων που κατασκευάζονται από το σύστημα συλλογής δεδομένων στο εργαστήριο στην ξηρά περιέχουν ένα μεγάλο αριθμό (2613) από πακέτα δεδομένων στα οποία συμπεριλαμβάνονται

Διαβάστε περισσότερα

Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite Impulse Response (F.I.R.) Filters)

Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite Impulse Response (F.I.R.) Filters) ΤΕΙ ΠΕΙΡΑΙΑ / ΣΤΕΦ / ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Μάθημα: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ (Εργαστήριο) Ε εξάμηνο Εξάμηνο: Χειμερινό 2014-2015 Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Νο 07 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μακροοικονομική. Ενότητα :Δημοσιονομική πολιτική. Καραμάνης Κωνσταντίνος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μακροοικονομική. Ενότητα :Δημοσιονομική πολιτική. Καραμάνης Κωνσταντίνος Μακροοικονομική Χρηματοοικονομική των,δημοσιονομική Επιχειρήσεων, πολιτική, Ενότητα : Βέλτιστη ΤΜΗΜΑ Κεφαλαιακή ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Δομή, ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΉΣ ΚΑΙ ΛΟΓΙΣΤΙΚΗΣ, ΤΕΙ ΚΑΙ ΗΠΕΙΡΟΥ- ΛΟΓΙΣΤΙΚΗΣ,

Διαβάστε περισσότερα