Εργαστηριακά Κέντρα Φυσικών Επιστηµών Ανατολικής (ΕΚΦΕ) Αττικής 2010 ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΙΚΟΥ ΣΩΜΑΤΟΣ, ΜΕ ΤΗ ΧΡΗΣΗ ΦΩΤΟΠΥΛΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εργαστηριακά Κέντρα Φυσικών Επιστηµών Ανατολικής (ΕΚΦΕ) Αττικής 2010 ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΙΚΟΥ ΣΩΜΑΤΟΣ, ΜΕ ΤΗ ΧΡΗΣΗ ΦΩΤΟΠΥΛΗΣ"

Transcript

1 Εργαστηριακά Κέντρα Φυσικών Επιστηµών Ανατολικής (ΕΚΦΕ) Αττικής 010 ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΙΚΟΥ ΣΩΜΑΤΟΣ, ΜΕ ΤΗ ΧΡΗΣΗ ΦΩΤΟΠΥΛΗΣ Στόχοι. Σχεδιασµός, συναρµολόγηση και λειτουργία απλών πειραµατικών διατάξεων, στο πλαίσιο του θεωρητικού µοντέλου του άκαµπτου (στερεού) σώµατος. Σχεδιασµός γραφήµατος µε βάση τα πειραµατικά δεδοµένα. Υπολογισµός της ροπής αδράνειας οµοιογενούς κυλινδρικού σώµατος µε δύο διαφορετικές διαδικασίες. Έλεγχος των θεωρητικών προβλέψεων και υπολογισµός µεγεθών από το πειραµατικό γράφηµα. Απαιτούµενα όργανα και υλικά. 1. Επίπεδη, οµοιόµορφη σανίδα διαστάσεων 10cm x 40cm περίπου. [Για παράδειγµα, µπορεί να χρησιµοποιηθεί η επιφάνεια ενός θρανίου].. Υποστηρίγµατα για τη δηµιουργία κεκλιµένου επιπέδου, 3. Μεταλλικός κύλινδρος µε οπή (Κ1) και µεταλλικός συµπαγής κύλινδρος (Κ) µε Σχήµα 1 διάµετρο ίση µε την διάµετρο της οπής του µεγάλου κυλίνδρου (περιλαµβάνονται στη «σειρά οργάνων µηχανικής ΦΕ16»). 4. Μετροταινία m και χάρακας κανόνας 30cm. 5. Ζυγός (max 1-Kg). 6. Φωτοπύλη µε χρονόµετρο (περιλαµβάνονται στη «σειρά οργάνων µηχανικής ΦΕ16»). 7. Διαστηµόµετρο. 8. Σφικτήρες τύπου C. 9. Μαρκαδόρος. Το θεωρητικό πλαίσιο Ο κύλινδρος του σχήµατος κυλίεται χωρίς να ολισθαίνει κατά µήκος του πλάγιου επιπέδου. Τη χρονική στιγµή t=0 Σχήµα ο κύλινδρος έχει ταχύτητα ίση µε µηδέν. Εφαρµόζουµε την αρχή διατήρησης της µηχανικής ενέργειας, µεταξύ της αρχικής και µιας τυχαίας θέσης της διαδροµής του κυλίνδρου (σχήµα ):

2 1 1 mgh = mucm + Iω (1) Δεδοµένου ότι ο κύλινδρος κυλίεται χωρίς να ολισθαίνει, ισχύει: u cm ω = R Επιπλέον, από το σχήµα προκύπτει ότι h = L ηµθ. Οπότε, από τη σχέση 1, προκύπτει: u cm g ηµθ = L Ι 1+ mr () όπου: u cm : η στιγµιαία ταχύτητα του κέντρου µάζας του κυλίνδρου (τη συµβολίζουµε απλά µε u) m: η µάζα των δυο κυλίνδρων (m = m 1 + m ) R: η ακτίνα του µεγάλου κυλίνδρου, Ι: η ροπή αδρανείας του συστήµατος των δυο κυλίνδρων, L: το µήκος της διαδροµής του κέντρου µάζας του κυλίνδρου στο πλάγιο επίπεδο και h: η υψοµετρική διαφορά της αρχικής από την τελική θέση του κέντρου µάζας. g: η επιτάχυνση της βαρύτητας. Παρατηρούµε ότι η σχέση του u µε το L είναι γραµµική, µε σταθερά αναλογίας την ποσότητα: g ηµθ k = (3) Ι 1+ mr Έτσι, για να υπολογίσουµε πειραµατικά το Ι, αρκεί να βρούµε πειραµατικά την τιµή της κλίσης k της ευθείας: u = k L Τότε, σύµφωνα µε τη σχέση 3, η ροπή αδράνειας Ι υπολογίζεται από τη σχέση: g ηµθ I = mr 1 k (4) Έλεγχος του πλαισίου θεωρίας - πειράµατος Η ροπή αδράνειας οµοιογενούς, κυλίνδρου µάζας m και ακτίνας R, δίνεται από τη σχέση: 1 Ic = mr Στην άσκηση, το κυλιόµενο σώµα Κ έχει τη µορφή που εικονίζεται στις εικόνες 1, 3, 4. Εποµένως η ροπή αδρανείας του ισούται µε το άθροισµα της ροπής αδράνειας του κυλίνδρου Κ1, µε την οπή συν τη ροπή αδράνειας του µικρού, συµπαγούς κυλίνδρου Κ. Έστω m 1, R, h 1 και m, r, h οι µάζες, ακτίνες και ύψη των δύο κυλίνδρων και ρ η πυκνότητα του υλικού τους.

3 Υπολογισµός της ροπής αδράνειας (Ι 1 ) του κυλίνδρου Κ 1, µε οπή ακτίνας r. Η µάζας του Κ 1 είναι m 1 και η εξωτερική ακτίνα του R: Η ροπή αδράνειας του κυλίνδρου µε οπή ισούται µε τη ροπή αδράνειας που θα είχε αν ήταν συµπαγής µείον το ροπή αδράνειας κυλίνδρου Κ ο που καλύπτει ακριβώς την οπή. Αν 1 m o είναι η µάζα του κυλίνδρου Κ ο, η ροπή αδρανείας του είναι Io = mo r. Υπολογίζουµε τη µάζα m o του Κ ο συναρτήσει της m 1 : mo ρ π r h1 r = = m ρ π R h ρ π r h R r Από τη µέτρηση των ακτίνων R και r, προκύπτει ότι R=3r, οπότε από την προηγούµενη 1 σχέση προκύπτει ότι mo = m1. Η ροπή αδράνειας I o είναι: Io = mo r = m1 r 16 Ώστε: 1 1 I 1 = (m1 + m) o R mo r = = m1 R όπου m 1 η µάζα του κυλίνδρου µε την οπή, που µετρήσαµε µε το ζυγό. Τελικά, η ροπή αδράνειας (Ι) του σώµατος Κ είναι: I = I + I = = m1 R 1 m r Από τη µέτρηση των υψών των δύο κυλίνδρων, προκύπτει ότι h =h 1, οπότε (αφού οι κύλινδροι είναι οµοιογενείς) ισχύει και m =m o =1/4m 1 και η τελευταία σχέση γράφεται ως εξής: I = m1 R (5) 1 1,13 m1 R Η τιµή που θα προκύψει από τη σχέση 5, συγκρίνεται µε την τιµή της ροπής αδράνειας του κυλιόµενου σώµατος, που υπολογίζεται από την πειραµατική διαδικασία. Με τον τρόπο αυτό ελέγχουµε αν συµφωνεί το πείραµα µε τις θεωρητικές προβλέψεις. 3

4 Εικόνα 3 Εικόνα 4 Εικόνα 5 4

5 Πειραµατική διαδικασία 1) Ζυγίζουµε τον κάθε κύλινδρο και καταγράφουµε τη µάζα του. ) Στερεώνουµε (µε κόλλα) τον κύλινδρο Κ στο εσωτερικό του (σχήµα 1). Η µάζα του σώµατος Κ, που προκύπτει, είναι m = m 1 + m 3) Τυλίγουµε την παράπλευρη επιφάνειά του Κ1 µε αυτοκόλλητη χαρτοταινία, ώστε να αποφύγουµε κάθε ενδεχόµενο ολίσθησής του στο πλάγιο επίπεδο. 4) Μετράµε µε το διαστηµόµετρο: τη διάµετρο R του Κ1, και τη διάµετρο r του Κ. 5) Συνθέτουµε την πειραµατική διάταξη που φαίνεται στις εικόνες 3, 4, 5. Προσέχουµε ώστε η γωνία κλίσης του πλάγιου επιπέδου να µην υπερβαίνει τις 10 µοίρες 6) Αφήνουµε τον κύλινδρο (σώµα Κ) να ξεκινήσει από τη θέση L=0,1m και µετράµε το χρόνο διέλευσης του από την φωτοπύλη. 7) Επαναλαµβάνουµε την διαδικασία τοποθετώντας τον κύλινδρο διαδοχικά, στις θέσεις L=0,, 0,3 Καταγράφουµε όλες τις µετρήσεις µας στον πίνακα µετρήσεων. Παρατηρήσεις: α) Προσέχουµε ώστε ο κύλινδρος Κ να κινείται παράλληλα µε τις οριζόντιες ακµές της πλάγιας σανίδας. β) Επειδή στη µέτρηση του χρόνου µπορεί να γίνουν σφάλµατα, προτείνεται να γίνουν τρείς χρονοµετρήσεις, για κάθε τιµή του L. Αν κάποια µέτρηση διαφέρει πολύ από τις άλλες, την απορρίπτουµε και επαναλαµβάνουµε τη µέτρηση. Ως Δt καταγράφουµε τη µέση τιµή των τριών µετρήσεων. 8) Συµπληρώνουµε όλες τις στήλες του πίνακα µετρήσεων. Μετρήσεις Μάζα κυλίνδρου Κ1: m 1 = Kg Μάζα κυλίνδρου Κ: m = Kg Μάζα σώµατος Κ: m = m 1 +m = Kg Γωνία κλίσης πλάγιου επιπέδου: θ = µοίρες ηµθ = 5

6 ΘΕΣΗ L (m) ΧΡΟΝΟΣ Δt ΠΙΝΑΚΑΣ ΜΕΤΡΗΣΕΩΝ u cm M.O. Δt Δx=r (m) u cm =Δx/Δt Σχεδιάζουµε την ευθεία u = f (L), στο τετραγωνισµένο φύλλο, επιλέγοντας κατάλληλο σύστηµα ορθογωνίων αξόνων. Μετράµε την κλίση της ευθείας αυτής και υπολογίζουµε την ποσότητα k (σχέση 3). Υπολογίζουµε τη ροπή αδράνειας Ι, του κυλίνδρου από σχέση 4. Υπολογίζουµε τη ροπή αδράνειας του κυλίνδρου µε βάση τη σχέση 5 και τη συγκρίνουµε µε Ι την τιµή που προέκυψε στο το βήµα 9. Υπολογίζουµε τη σχετική διαφορά ( δ= ) των I δύο τιµών και καταγράφουµε τα συµπεράσµατά µας. 6

7 7

8 Ενδεικτικές µετρήσεις g=9,8m/s, m= 14,5 x 10-3 Kg, R= 1,5 x 10 - m, Γωνία κλίσης θ = 7 0, ηµθ = 0,1 ΘΕΣΗ L (m) ΧΡΟΝΟΣ Δt M.O. Δt Δx =r (m) u cm =Δx/Δt u cm ΘΕΣΗ L (m) ROPI ADRANEIAS 1 y = 1,4994x - 0,0005 0,8 u^ (m/s)^ 0,6 0,4 0, 0-0, 0 0,1 0, 0,3 0,4 0,5 0,6 0,7 L (m) Υπολογισµός κλίσης ευθείας u = f (L) : k = y x =1.49 Υπολογισµός Ροπής Αδράνειας: Ι =, Kgm Θεωρητική: Ι. = I 1 + Ι =, Kgm 8

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ Προσδιορισµός ρο ής αδράνειας κυλίνδρου ή σφαίρας ου κυλίεται χωρίς ολίσθηση σε κεκλιµένο ε ί εδο Στόχοι 1. Σχεδιασμός και συναρμολόγηση απλών πειραματικών διατάξεων,

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ

ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ Συνοπτική περιγραφή Μελετάμε την κίνηση μιας ράβδου που μπορεί να περιστρέφεται γύρω από σταθερό οριζόντιο άξονα,

Διαβάστε περισσότερα

Α u. u cm. = ω 1 + α cm. cm cm

Α u. u cm. = ω 1 + α cm. cm cm ΕΚΦΕ Ν.ΚΙΛΚΙΣ η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΕΞΕΡΓΑΣΙΑ : Κ. ΚΟΥΚΟΥΛΑΣ, ΦΥΣΙΚΟΣ - ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΟΣ [ Ε.Λ. ΠΟΛΥΚΑΣΤΡΟΥ ] ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΟΥ

Διαβάστε περισσότερα

Προσδιορισµός ρο ής αδράνειας κυλίνδρου ή σφαίρας ου κυλίεται χωρίς ολίσθηση σε κεκλιµένο ε ί εδο

Προσδιορισµός ρο ής αδράνειας κυλίνδρου ή σφαίρας ου κυλίεται χωρίς ολίσθηση σε κεκλιµένο ε ί εδο ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ Καθηγητές: Σφαέλος Ι. Φύττας Γ. Προσδιορισµός ρο ής αδράνειας κυλίνδρου ή σφαίρας ου κυλίεται

Διαβάστε περισσότερα

Μελέτη της ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης σώματος με χρήση συστήματος φωτοπύλης-χρονομέτρου. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός

Μελέτη της ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης σώματος με χρήση συστήματος φωτοπύλης-χρονομέτρου. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός Εργαστήριο Φυσικής Λυκείου Επιμέλεια: Κ. Παπαμιχάλης Μελέτη της ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης σώματος με χρήση συστήματος φωτοπύλης-χρονομέτρου Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός

Διαβάστε περισσότερα

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό.

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Φυσική 1. Επεξεργασία πειραματικών δεδομένων: α) Καταγραφή δεδομένων σε πίνακα μετρήσεων, β) Επιλογή συστήματος αξόνων με τις κατάλληλες κλίμακες και

Διαβάστε περισσότερα

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΥΜΠΑΓΟΥΣ ΚΑΙ ΟΜΟΓΕΝΟΥΣ ΚΥΛΙΝΔΡΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΤΗΣ ΣΥΣΚΕΥΗΣ ΚΕΚΛΙΜΕΝΟΥ ΕΠΙΠΕΔΟΥ ΠΟΛΛΑΠΛΩΝ ΧΡΗΣΕΩΝ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΥΜΠΑΓΟΥΣ ΚΑΙ ΟΜΟΓΕΝΟΥΣ ΚΥΛΙΝΔΡΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΤΗΣ ΣΥΣΚΕΥΗΣ ΚΕΚΛΙΜΕΝΟΥ ΕΠΙΠΕΔΟΥ ΠΟΛΛΑΠΛΩΝ ΧΡΗΣΕΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΥΜΠΑΓΟΥΣ ΚΑΙ ΟΜΟΓΕΝΟΥΣ ΚΥΛΙΝΔΡΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΤΗΣ ΣΥΣΚΕΥΗΣ ΚΕΚΛΙΜΕΝΟΥ ΕΠΙΠΕΔΟΥ ΠΟΛΛΑΠΛΩΝ ΧΡΗΣΕΩΝ ΣΤΟΧΟΙ Πειραματική μέτρηση της ροπής αδράνειας συμπαγούς και ομογενούς κυλίνδρου

Διαβάστε περισσότερα

Εργαστηριακή άσκηση 4: ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ Α ΡΑΝΕΙΑΣ ΚΥΛΙΝ ΡΟΥ ΠΟΥ ΚΥΛΙΕΤΑΙ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕ Ο

Εργαστηριακή άσκηση 4: ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ Α ΡΑΝΕΙΑΣ ΚΥΛΙΝ ΡΟΥ ΠΟΥ ΚΥΛΙΕΤΑΙ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕ Ο ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Εργαστηριακή άσκηση 4: ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ Α ΡΑΝΕΙΑΣ ΚΥΛΙΝ ΡΟΥ ΠΟΥ ΚΥΛΙΕΤΑΙ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕ Ο ΣΤΟΧΟΙ Τροποποίηση της διαδικασίας η οποία περιγράφεται

Διαβάστε περισσότερα

ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 2014 ΦΥΣΙΚΗ. 7 Δεκεμβρίου 2013 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ:

ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 2014 ΦΥΣΙΚΗ. 7 Δεκεμβρίου 2013 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ: ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 2014 ΦΥΣΙΚΗ 7 Δεκεμβρίου 2013 ΛΥΚΕΙΟ:.... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: 1.. 2.. 3.. ΜΟΝΑΔΕΣ: Λίγα λόγια από τη θεωρία: Διερευνώντας τη μηχανική ενέργεια Το μέτρο της στιγμιαίας ταχύτητας μπορούμε

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΕΥΘΥΓΡΑΜΜΗΣ ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ΚΙΝΗΣΗ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕ Ο

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΕΥΘΥΓΡΑΜΜΗΣ ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ΚΙΝΗΣΗ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕ Ο ΕΚΦΕ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ ΕΚΦΕ ΝΕΑΣ ΙΩΝΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΕΥΘΥΓΡΑΜΜΗΣ ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ΚΙΝΗΣΗ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕ Ο N T=ηmgσυνθ mgηµθ θ Σχήµα1 mg Κατά τη διεξαγωγή της άσκησης θα µάθεις

Διαβάστε περισσότερα

Προσδιορισμός Ροπής Αδράνειας με φωτοπύλες και ηλεκτρονικό χρονόμετρο

Προσδιορισμός Ροπής Αδράνειας με φωτοπύλες και ηλεκτρονικό χρονόμετρο Προσδιορισμός Ροπής Αδράνειας με φωτοπύλες και ηλεκτρονικό χρονόμετρο Κορδάς Γιώργος Φυσικός MSc. ΕΚΦΕ Ρόδου Ιανουάριος 011 Εισαγωγή Η ροπή αδράνειας ενός σώματος στην περιστροφική κίνηση παίζει παρόμοιο

Διαβάστε περισσότερα

Εργαστηριακή άσκηση 9: ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ (Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου)

Εργαστηριακή άσκηση 9: ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ (Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου) ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΤΟΧΟΙ Εργαστηριακή άσκηση 9: ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ (Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου) Η εξοικείωση µε τη χρήση χρονοµέτρων

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΟΥ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΟΥ ΜΙΝΟΠΕΤΡΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΦΥΣΙΚΟΣ - Ρ/Η ΚΑΘΗΓΗΤΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ου ΥΠΕΥΘΥΝΟΣ ΣΕΦΕ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΡΑΜΑΤΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΟΥ ΚΕΡΑΤΣΙΝΙ

Διαβάστε περισσότερα

Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός

Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός Εργαστήριο Φυσικής Λυκείου Επιμέλεια: Κ. Παπαμιχάλης Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός Βασικές έννοιες, σχέσεις και διαδικασίες Αδρανειακό

Διαβάστε περισσότερα

ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΚΑΙ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ )

ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΚΑΙ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ ) 1 ο ΕΚΦΕ (. ΣΜΥΡΗΣ) Δ Δ/ΣΗΣ Δ. Ε. ΑΘΗΑΣ 1 ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΟ ΚΑΙ ΟΡΙΖΟΤΙΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ ) Α. ΣΤΟΧΟΙ Η εφαρμογή των νόμων της Μηχανικής στη μελέτη της κίνησης σώματος, που ολισθαίνει

Διαβάστε περισσότερα

Εργαστηριακές Ασκήσεις Φυσικής

Εργαστηριακές Ασκήσεις Φυσικής Εργαστηριακό Κέντρο Φυσικών Επιστηµών Αγίων Αναργύρων Αθήνας Εργαστηριακές Ασκήσεις Φυσικής Γ Λυκείου Κατεύθυνσης Επιµέλεια-Εκτέλεση-Παρουσίαση: Ευάγγελος Κουντούρης, Φυσικός, Υπεύθυνος του Εργαστηριακού

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ

ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ [Π. Μουρούζης, Γ. Παληός, Κ. Παπαμιχάλης, Γ. Τουντουλίδης, Τζ. Τσιτοπούλου, Ι. Χριστακόπουλος] Για

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση Β Λυκείου Θετικής ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

Εργαστηριακή Άσκηση Β Λυκείου Θετικής ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Εργαστηριακή Άσκηση Β Λυκείου Θετικής ΕΠΙΒΕΒΑΙΩΣΗ ΤΗΣ ΑΡΧΗΣ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΜΕ ΑΝΑΚΥΚΛΩΣΗ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΤΜΗΜΑ: ΟΜΑΔΑ: ΗΜΕΡ/ΝΙΑ:. ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Σκοπός της άσκησης Στα πλαίσια της διδασκαλίας

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥ- ΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥ- ΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥ- ΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ [Π. Μουρούζης, Γ. Παληός, Κ. Παπαμιχάλης, Γ. Τουντουλίδης, Τζ. Τσιτοπούλου, Ι. Χριστακόπουλος]

Διαβάστε περισσότερα

ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ Ή ΤΟ MULTILOG )

ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ Ή ΤΟ MULTILOG ) 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ Ή ΤΟ MULTILOG ) Α. ΣΤΟΧΟΙ Η εφαρμογή των νόμων της Μηχανικής στη μελέτη της κίνησης σώματος,

Διαβάστε περισσότερα

Φύλλο εργασίας ΟΝΟΜΑΤΕΠΩΝΥΜΟ...ΤΑΞΗ...ΤΜΗΜΑ...

Φύλλο εργασίας ΟΝΟΜΑΤΕΠΩΝΥΜΟ...ΤΑΞΗ...ΤΜΗΜΑ... Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΜΑΓΝΗΣΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ (Ε.Κ.Φ.Ε) Φύλλο εργασίας ΟΝΟΜΑΤΕΠΩΝΥΜΟ...ΤΑΞΗ...ΤΜΗΜΑ... ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΚΥΛΙΝΔΡΟΥ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ KAI ΠΕΙΡΑΜΑΤΙΚΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΣ

Διαβάστε περισσότερα

Εργαστηριακή άσκηση 7: ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕ Ο (Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου)

Εργαστηριακή άσκηση 7: ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕ Ο (Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου) ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΤΟΧΟΙ Εργαστηριακή άσκηση 7: ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕ Ο (Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου) Η εφαρµογή των νόµων της Μηχανικής στη µελέτη της κίνησης σώµατος, που ολισθαίνει

Διαβάστε περισσότερα

Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική. Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3)

Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική. Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3) ΠΑΝΕΚΦΕ Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3) Σχήμα 1 Εργαστηριακή Άσκηση: Μέτρηση της μάζας κινούμενου

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΦΥΣΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 11 η Ευρωπαϊκή Ολυµπιάδα Επιστηµών EUSO 2013 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συµµετέχουν: (1) (2) (3) Σέρρες 08/12/2012

Διαβάστε περισσότερα

ΕΚΦΕ Χανίων «Κ. Μ. Κούμας» Νίκος Αναστασάκης Γιάννης Σαρρής

ΕΚΦΕ Χανίων «Κ. Μ. Κούμας» Νίκος Αναστασάκης Γιάννης Σαρρής ΕΚΦΕ Χανίων «Κ. Μ. Κούμας» Νίκος Αναστασάκης Γιάννης Σαρρής Σκοπός Στόχοι Άσκησης Οι μαθητές να: Αναγνωρίζουν τις δυνάμεις που ασκούνται στα σώματα και αντιλαμβάνονται τις σχέσεις μεταξύ τους,

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α Α.1. Η γωνιακή επιτάχυνση ενός οµογενούς δίσκου που στρέφεται γύρω από σταθερό άξονα, που διέρχεται από το κέντρο

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ ΙΙ Μελέτη Ελεύθερης Πτώσης

ΠΕΙΡΑΜΑ ΙΙ Μελέτη Ελεύθερης Πτώσης ΠΕΙΡΑΜΑ ΙΙ Μελέτη Ελεύθερης Πτώσης Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την κίνηση ενός σώµατος καθώς πέφτει ελεύθερα υπό την επίδραση του βάρους του. Πιο συγκεκριµένα θα επαληθεύσουµε τις

Διαβάστε περισσότερα

Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Πανελλήνιος προκαταρκτικός διαγωνισµός στη Φυσική. Σχολείο: Ονόµατα των µαθητών της οµάδας: 1) 2) 3)

Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Πανελλήνιος προκαταρκτικός διαγωνισµός στη Φυσική. Σχολείο: Ονόµατα των µαθητών της οµάδας: 1) 2) 3) ΠΑΝΕΚΦΕ Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Πανελλήνιος προκαταρκτικός διαγωνισµός στη Φυσική 17-01-2009 Σχολείο: Ονόµατα των µαθητών της οµάδας: 1) 2) 3) Επισηµάνσεις από τη θεωρία Πάνω στον πάγκο

Διαβάστε περισσότερα

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΣΤΕΡΕΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Α. Στις ερωτήσεις 1 έως 3 επιλέξτε τη σωστή απάντηση 1. Δυο δακτύλιοι µε διαφορετικές ακτίνες αλλά ίδια µάζα κυλάνε χωρίς ολίσθηση σε οριζόντιο έδαφος µε την

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ III Μελέτη Ελευθερης Πτώσης

ΠΕΙΡΑΜΑ III Μελέτη Ελευθερης Πτώσης ΠΕΙΡΑΜΑ III Μελέτη Ελευθερης Πτώσης Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την κίνηση ενός σώµατος καθώς πέφτει ελεύθερα υπό την επίδραση του βάρους του. Πιο συγκεκριµένα θα επαληθεύσουµε τις

Διαβάστε περισσότερα

Α και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ

Α και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011-12 Τοπικός διαγωνισμός στη Φυσική 10-12-2011 Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3) Κεντρική ιδέα της άσκησης Στην άσκηση μελετάμε την κίνηση ενός

Διαβάστε περισσότερα

6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο:

6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο: 6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4 να γράψετε στο

Διαβάστε περισσότερα

Τοπικός Μαθητικός Διαγωνισμός EUSO

Τοπικός Μαθητικός Διαγωνισμός EUSO Τοπικός Μαθητικός Διαγωνισμός EUSO 2014-2015 ΟΜΑΔΑ : 1] 2] 3] Γενικό Λύκειο Άργους Ορεστικού. 6 - Δεκ. - 1014 Φυσική Θέμα: Μέτρηση επιτάχυνσης. 1] Θεωρητική εισαγωγή Κίνηση είναι η αλλαγή της θέσης ενός

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής) ΕΚΦΩΝΗΣΕΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 (Κινητική ενέργεια λόγω περιστροφής Έργο και ισχύς σταθερής ροπής) Ένας κύβος και ένας δίσκος έχουν ίδια μάζα και αφήνονται από το ίδιο ύψος να κινηθούν κατά μήκος δύο κεκλιμένων

Διαβάστε περισσότερα

6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι. Θέµα Α

6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι. Θέµα Α 6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι Ηµεροµηνία : 10 Μάρτη 2013 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα Α Στις ερωτήσεις Α.1 Α.4 επιλέξτε την σωστη απάντηση [4 5 = 20 µονάδες] Α.1. Στερεό

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2005

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2005 Θεωρητικό Μέρος Γ Λυκείου 19 Μαρτίου 2005 Θέµα 1 ο A. Σε πείραµα µε µικροκύµατα που εκπέµπονται από τον ποµπό, αυτά α- Ανακλαστήρας Ποµπός 25 cm νακλώνται από µεταλλική πλάκα (ανακλαστήρας) και συµβάλλουν

Διαβάστε περισσότερα

F r. www.ylikonet.gr 1

F r. www.ylikonet.gr 1 3.5. Έργο Ενέργεια. 3.5.1. Έργο δύναµης- ροπής και Κινητική Ενέργεια. Το οµοαξονικό σύστηµα των δύο κυλίνδρων µε ακτίνες R 1 =0,1m και R =0,5m ηρεµεί σε οριζόντιο επίπεδο. Τυλίγουµε γύρω από τον κύλινδρο

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ ΙΙ Μελέτη Ελεύθερης Πτώσης

ΠΕΙΡΑΜΑ ΙΙ Μελέτη Ελεύθερης Πτώσης - &. ΠΕΙΡΑΜΑ ΙΙ Μελέτη Ελεύθερης Πτώσης Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την κίνηση ενός σώµατος καθώς πέφτει ελεύθερα υπό την επίδραση του βάρους του. Πιο συγκεκριµένα θα επαληθεύσουµε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ B B1. Σωστή απάντηση είναι η

Διαβάστε περισσότερα

µε την βοήθεια του Συστήµατος Συγχρονικής Λήψης Απεικόνισης.

µε την βοήθεια του Συστήµατος Συγχρονικής Λήψης Απεικόνισης. 1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ () ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ µε την βοήθεια του Συστήµατος Συγχρονικής Λήψης Απεικόνισης. Το φύλλο εργασίας στηρίζεται στο αντίστοιχο του Παιδαγωγικού Ινστιτούτου που

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Ονοµατεπώνυµο: Διάρκεια: (3 45)+5=50 min Τµήµα: ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Ζήτηµα ο Ένα στερεό µπορεί να στρέφεται γύρω από σταθερό άξονα και αρχικά ηρεµεί. Σε µια στιγµή δέχεται (ολική) ροπή

Διαβάστε περισσότερα

EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003

EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003 1 EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003 1. Από την ίδια γραµµή αφετηρίας(από το ίδιο ύψος) ενός κεκλιµένου επιπέδου αφήστε να κυλήσουν, ταυτόχρονα προς τα κάτω, δύο κυλίνδροι της

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ V Ροπή Αδράνειας Στερεού Σώµατος

ΠΕΙΡΑΜΑ V Ροπή Αδράνειας Στερεού Σώµατος ΠΕΙΡΑΜΑ V Ροπή Αδράνειας Στερεού Σώµατος Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την περιστροφική κίνηση που εκτελεί ένα υλικό σηµείο ή ένα στερεό σώµα, σταθερού µεγέθους και σχήµατος, υπό την

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα

ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα - &. ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου: Να µετρήσουµε την πυκνότητα

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ Αντικείμενο: Κεφάλαιο 4 Θέμα 1ο Α. Να επιλέξετε τη σωστή απάντηση που ακολουθεί κάθε μια από τις πιο κάτω προτάσεις α. Ένα σώμα ηρεμεί εκτός πεδίου βαρύτητας. Ασκούμε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ ΙV Ροπή Αδράνειας Στερεού Σώµατος

ΠΕΙΡΑΜΑ ΙV Ροπή Αδράνειας Στερεού Σώµατος - &. ΠΕΙΡΑΜΑ ΙV Ροπή Αδράνειας Στερεού Σώµατος Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την περιστροφική κίνηση που εκτελεί ένα υλικό σηµείο ή ένα στερεό σώµα, σταθερού µεγέθους και σχήµατος,

Διαβάστε περισσότερα

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα). Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Ο Στις ερωτήσεις -4 να βρείτε τη σωστή πρόταση.. Η ροπή αδράνειας ενός στερεού σώµατος εξαρτάται: α. Από τη ροπή της δύναµης που ασκείται στο στερεό. β. από

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ ΙV Ροπή Αδράνειας Στερεού Σώµατος

ΠΕΙΡΑΜΑ ΙV Ροπή Αδράνειας Στερεού Σώµατος ΠΕΙΡΑΜΑ ΙV Ροπή Αδράνειας Στερεού Σώµατος Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την περιστροφική κίνηση που εκτελεί ένα υλικό σηµείο ή ένα στερεό σώµα, σταθερού µεγέθους και σχήµατος, µε την

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό

Διαβάστε περισσότερα

Τίτλος Κεφαλαίου: Στερεό σώµα. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1

Τίτλος Κεφαλαίου: Στερεό σώµα. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1 Τίτλος Κεφαλαίου: Στερεό σώµα ιδακτική Ενότητα: Κινηµατική του Στερεού Σώµατος Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα 3ο: Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1 ιδακτική Ενότητα: Ροπή

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. 13 η Ευρωπαϊκή Ολυμπιάδα επιστημών EUSO 2015 ΕΚΦΕ Λευκάδας - Τοπικός Διαγωνισμός. Λευκάδα

ΦΥΣΙΚΗ. 13 η Ευρωπαϊκή Ολυμπιάδα επιστημών EUSO 2015 ΕΚΦΕ Λευκάδας - Τοπικός Διαγωνισμός. Λευκάδα ΠΑΝΕΛΛΗΝΙΑ ΕΝΩΣΗ ΥΠΕΥΘΥΝΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΚΕΝΤΡΩΝ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ «ΠΑΝΕΚΦE» 13 η Ευρωπαϊκή Ολυμπιάδα επιστημών EUSO 15 ΕΚΦΕ Λευκάδας - Τοπικός Διαγωνισμός Λευκάδα 6-1-14 ΣΧΟΛΙΚΗ ΜΟΝΑΔΑ:. ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:.

Διαβάστε περισσότερα

Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος. Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός.

Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος. Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός. Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός http://perifysikhs.wordpress.com 1 Κίνηση Ράβδου σε κατακόρυφο επίπεδο Εστω µια οµογενής ϱάβδος ΟΑ µάζας Μ

Διαβάστε περισσότερα

Στροφορµή. Αν έχουµε ένα υλικό σηµείο που κινείται µε ταχύτητα υ, τότε έχει στροφορµή

Στροφορµή. Αν έχουµε ένα υλικό σηµείο που κινείται µε ταχύτητα υ, τότε έχει στροφορµή Στροφορµή Στροφορµή υλικού σηµείου Αν έχουµε ένα υλικό σηµείο που κινείται µε ταχύτητα υ, τότε έχει στροφορµή ως προς σηµείο ή ως προς άξονα, που το µέτρο της υπολογίζεται από την εξίσωση L = mυr Όπου

Διαβάστε περισσότερα

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s]

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s] ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ 34. Μία κατακόρυφη ράβδος μάζας μήκους, μπορεί να περιστρέφεται στο κατακόρυφο επίπεδο γύρω από

Διαβάστε περισσότερα

υναµική στερεού. Οµάδα Γ

υναµική στερεού. Οµάδα Γ 3.3.21. Μια περίεργη κύλιση Κύλινδρος υναµική στερεού. Οµάδα Γ µάζας Μ=10Κg και ακτίνας R=0,5m αρχίζει την στιγµή t=0 να ανέρχεται κυλιόµενος (αριστερόστροφα) χωρίς να ολισθαίνει κατά µήκος αρχικά λείου

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α Α.1. Ενα στερεό σώµα περιστρέφεται γύρω από ακλόνητο άξονα. Εάν διπλασιαστεί η στροφορµή

Διαβάστε περισσότερα

Διαγώνισμα Μηχανική Στερεού Σώματος

Διαγώνισμα Μηχανική Στερεού Σώματος Διαγώνισμα Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 28 Φλεβάρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1

Διαβάστε περισσότερα

Κύλιση με ολίσθηση δακτυλίου-σφαίρας

Κύλιση με ολίσθηση δακτυλίου-σφαίρας Κύλιση με ολίσθηση δακτυλίου-σφαίρας Ο δακτύλιος του σχήματος ακτίνας r=0,1m έχει όλη τη μάζα του συγκεντρμένη στην περιφέρεια του και κυλίεται χρίς να ολισθαίνει πάν στο τραχύ οριζόντιο επίπεδο του σχήματος.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ A ΤΑΞΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ A ΤΑΞΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ A ΤΑΞΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΟΝΟΜΑΤΕΠΩΝΥΜΟ 1. Το έργο ως φυσικό µέγεθος εκφράζει: α) την ενέργεια που έχει ένα σώµα κατά τη διάρκεια της κίνησής του. β) το ρυθµό µε τον οποίο µια

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΕΡΡΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Σέρρες 26/11/2011. Σύνολο µορίων:...

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΕΡΡΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Σέρρες 26/11/2011. Σύνολο µορίων:... ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΕΡΡΩΝ 10 η Ευρωπαϊκή Ολυµπιάδα Επιστηµών EUSO 2012 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συµµετέχουν: (1) (2) (3) Σέρρες 26/11/2011

Διαβάστε περισσότερα

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2 ΦΥΣ 131 - Διαλ.22 1 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r 2r 2 2 I =! m i r i = 2mr 2 1 I = m(2r) 2 = 4mr 2 Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 01: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το

Διαβάστε περισσότερα

Α. Ροπή δύναµης ως προς άξονα περιστροφής

Α. Ροπή δύναµης ως προς άξονα περιστροφής Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 24 Γενάρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4

Διαβάστε περισσότερα

Προκριματικός διαγωνισμός για την 13 η EUSO 2015 στην Φυσική Σάββατο 6/12/2014

Προκριματικός διαγωνισμός για την 13 η EUSO 2015 στην Φυσική Σάββατο 6/12/2014 ΕΚΦΕ ΑΙΓΑΛΕΩ ΕΚΦΕ ΑΓΙΩΝ ΑΝΑΡΓΥΡΩΝ Προκριματικός διαγωνισμός για την 13 η EUSO 015 στην Φυσική Σάββατο 6/1/014 Ονοματεπώνυμα μελών ομάδας 1) ) 3) Σχολείο: ΜΕΤΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ () ΜΕ ΤΗ

Διαβάστε περισσότερα

Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Προκαταρκτικός διαγωνισµός στη Φυσική. Σχολείο: Επισηµάνσεις από τη θεωρία

Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Προκαταρκτικός διαγωνισµός στη Φυσική. Σχολείο: Επισηµάνσεις από τη θεωρία ΕΚΦΕ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Προκαταρκτικός διαγωνισµός στη Φυσική Σχολείο: Ονόµατα των µαθητών της οµάδας 1) 2) 3) Επισηµάνσεις από τη θεωρία Παθητικό ηλεκτρικό δίπολο

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου να: Να µετρήσουµε την πυκνότητα

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ V Ταχύτητα και Επιτάχυνση

ΠΕΙΡΑΜΑ V Ταχύτητα και Επιτάχυνση ΠΕΙΡΑΜΑ V Ταχύτητα και Επιτάχυνση Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την κίνηση ενός σώµατος και θα διερευνήσουµε τους δυο πρώτους νόµους του Newton. Επιπλέον θα µετρήσουµε την επιτάχυνση

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΕΡΡΩΝ ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΩΝ ΦΥΣΙΚΗΣ. ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συµµετέχουν:

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΕΡΡΩΝ ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΩΝ ΦΥΣΙΚΗΣ. ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συµµετέχουν: 14 η Ευρωπαϊκή Ολυµπιάδα Επιστηµών EUSO 2016 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συµµετέχουν: (1) (2) (3) Σέρρες 05/12/2015 Σύνολο µορίων:..... ΜΕΤΡΗΣΗ ΤΗΣ ΣΤΑΘΕΡΑΣ

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W

Γ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΟΝΟΜΑ ΤΜΗΜΑ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΤΕΤΑΡΤΗ 8 ΜΑΡΤΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία

Διαβάστε περισσότερα

Προκριματικός διαγωνισμός για την 13 η EUSO 2015 στην Φυσική Σάββατο 6/12/2014

Προκριματικός διαγωνισμός για την 13 η EUSO 2015 στην Φυσική Σάββατο 6/12/2014 ΕΚΦΕ ΑΙΓΑΛΕΩ ΕΚΦΕ ΑΓΙΩΝ ΑΝΑΡΓΥΡΩΝ Ονοματεπώνυμα μελών ομάδας Προκριματικός διαγωνισμός για την 13 η EUSO 015 στην Φυσική Σάββατο 6/1/014 1) ) 3) Σχολείο: ΜΕΤΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ (g) ΜΕ ΤΗ

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΚΦΕ Α Αν. Αττικής - Υπεύθυνος Κ. Παπαμιχάλης Εργαστηριακές ασκήσεις Φυσικής Β Γυμνασίου ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ Βασικές έννοιες: Θέση - μετατόπιση - χρόνος - χρονικό διάστημα - ταχύτητα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΦΥΣΙΚΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΦΥΣΙΚΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΦΥΣΙΚΗ Ον/μο:.. Ύλη:Στερεό Είμαστε τυχεροί που είμαστε δάσκαλοι Γ Λυκείου Θετ-Τεχν Κατ. 09-0-14 Θέμα 1 ο : 1) Σε ένα μολύβι που ισορροπεί σε οριζόντια επιφάνεια ασκούμε τις δυνάμεις F 1

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού εκκρεμούς.

Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού εκκρεμούς. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού

Διαβάστε περισσότερα

Εισαγωγικές Γνώσεις Πειραματική Διαδικασία

Εισαγωγικές Γνώσεις Πειραματική Διαδικασία ΕΚΦΕ Ν.ΚΙΛΚΙΣ 1 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Α ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΠΕΞΕΡΓΑΣΙΑ : Κ. ΚΟΥΚΟΥΛΑΣ, ΦΥΣΙΚΟΣ - ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΟΣ [ Ε.Λ. ΠΟΛΥΚΑΣΤΡΟΥ ] ΜΕΛΕΤΗ ΕΥΘΥΓΡΑΜΜΗΣ ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ Στόχοι 1.

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ Ι-β Μελέτη Φυσικού Εκκρεµούς

ΠΕΙΡΑΜΑ Ι-β Μελέτη Φυσικού Εκκρεµούς ΠΕΙΡΑΜΑ Ι-β Μελέτη Φυσικού Εκκρεµούς Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε το φυσικό εκκρεµές και θα µετρήσουµε την επιτάχυνση της βαρύτητας. Θα εξετάσουµε λοιπόν πειραµατικά τα εξής: Την ταλάντωση

Διαβάστε περισσότερα

Διαγώνισμα: Μηχανική Στερεού Σώματος

Διαγώνισμα: Μηχανική Στερεού Σώματος Διαγώνισμα: Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ V Ταχύτητα και Επιτάχυνση

ΠΕΙΡΑΜΑ V Ταχύτητα και Επιτάχυνση - &. ΠΕΙΡΑΜΑ V Ταχύτητα και Επιτάχυνση Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την κίνηση ενός σώµατος και θα διερευνήσουµε τους δυο πρώτους νόµους του Newton. Επιπλέον θα µετρήσουµε την επιτάχυνση

Διαβάστε περισσότερα

Στόχοι: Με τη βοήθεια των γραφικών παραστάσεων των ταλαντώσεων µέσω του ΣΣΛ-Α ο µαθητής αποκτά δεξιότητες στο:

Στόχοι: Με τη βοήθεια των γραφικών παραστάσεων των ταλαντώσεων µέσω του ΣΣΛ-Α ο µαθητής αποκτά δεξιότητες στο: 1 ο & ο ΕΚΦΕ ΗΡΑΚΛΕΙΟΥ ελλατόλας Στέλιος - Λεβεντάκης Γιάννης ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ Για τον καθηγητή Στόχοι: Με τη βοήθεια των γραφικών παραστάσεων των ταλαντώσεων µέσω

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή ΦΥΣ102 1 Υπολογισμός Ροπών Αδράνειας Η Ροπή αδράνειας

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25) ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ ΘΕΜΑ Α (μοναδες 25) Α1. Σε στερεό που περιστρέφεται γύρω από σταθερό κατακόρυφο άξονα ενεργεί σταθερή ροπή. Τότε αυξάνεται με σταθερό ρυθμό: α. η ροπή αδράνειας του β. η

Διαβάστε περισσότερα

Φύλλο Εργασίας Οριζόντια βολή. Ονοματεπώνυμο Τμήμα Ημερομηνία

Φύλλο Εργασίας Οριζόντια βολή. Ονοματεπώνυμο Τμήμα Ημερομηνία Ενότητα Καμπυλόγραμμες κινήσεις Φύλλο Εργασίας Οριζόντια βολή Φυσική Β Λυκείου Γενικής Παιδείας Ονοματεπώνυμο Τμήμα Ημερομηνία Στόχοι και σκοποί της άσκησης : Να επαληθεύσετε ότι η οριζόντια βολή είναι

Διαβάστε περισσότερα

Ισορροπία στερεού. 3.2.8. Ποιες είναι οι δυνάμεις που ασκούνται; 3.2.9. Ένας Κύλινδρος Πάνω σε μια Σφήνα. Υλικό Φυσικής Χημείας

Ισορροπία στερεού. 3.2.8. Ποιες είναι οι δυνάμεις που ασκούνται; 3.2.9. Ένας Κύλινδρος Πάνω σε μια Σφήνα. Υλικό Φυσικής Χημείας 3.2.. 3.2.1. Ροπές και ισορροπία. Πάνω σε λείο οριζόντιο επίπεδο βρίσκεται μια ράβδος μήκους l=4m, η οποία μπορεί να στρέφεται γύρω από κατακόρυφο άξονα, ο οποίος διέρχεται από το μέσον της Ο. Ασκούμε

Διαβάστε περισσότερα

Όταν υπάρχει ΑΚΙΝΗΤΟ σηµείο

Όταν υπάρχει ΑΚΙΝΗΤΟ σηµείο Όταν υπάρχει ΑΚΙΝΗΤΟ σηµείο ) Οµογενής κύλινδρος µάζας m, ακτίνας R φέρει λεπτή εγκοπή βάθους είναι τυλιγµένο νήµα αµελητέου πάχους. R r=, στην οποία Το άλλο άκρο του νήµατος έχει δεθεί σε οροφή όπως στο

Διαβάστε περισσότερα

β) Από τον νόμο του Νεύτωνα για την μεταφορική κίνηση του κέντρου μάζας έχουμε: Επομένως το κέντρο μάζας αποκτάει αρνητική επιτάχυνση σταθερού μέτρου

β) Από τον νόμο του Νεύτωνα για την μεταφορική κίνηση του κέντρου μάζας έχουμε: Επομένως το κέντρο μάζας αποκτάει αρνητική επιτάχυνση σταθερού μέτρου ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ 1) Συμπαγής κύλινδρος μάζας m και ακτίνας R δέχεται μια αρχική μεγάλη και στιγμιαία ώθηση προς τα πάνω σε κεκλιμένο επίπεδο γωνίας θ και μετά αφήνεται ελεύθερος. Κατά την παύση της ώθησης,

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ 1 ο Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό 1 έως 3 καθεµιάς από τις παρακάτω ερωτήσεις και δίπλα το γράµµα που

Διαβάστε περισσότερα

7ο ιαγώνισµα - Μηχανική Στερεού Σώµατος ΙΙ

7ο ιαγώνισµα - Μηχανική Στερεού Σώµατος ΙΙ Σχολική Χρονιά 01-013 7ο ιαγώνισµα - Μηχανική Στερεού Σώµατος ΙΙ Ηµεροµηνία : 4 Μάρτη 013 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα Α Στις ερωτήσεις Α.1 Α.4 επιλέξτε την σωστή απάντηση [4 5 = 0

Διαβάστε περισσότερα

ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΤΕΡΕΟΥ 1. ΘΕΜΑ Α Στις παρακάτω ερωτήσεις Α1-Α.5 να σημειώσετε την σωστή απάντηση

ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΤΕΡΕΟΥ 1. ΘΕΜΑ Α Στις παρακάτω ερωτήσεις Α1-Α.5 να σημειώσετε την σωστή απάντηση ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΤΕΡΕΟΥ 1 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις Α1-Α.5 να σημειώσετε την σωστή απάντηση Α.1 Το στερεό του σχήματος δέχεται αντίρροπες δυνάμεις F 1 kαι F 2 που έχουν ίσα μέτρα. Το μέτρο

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ Γ Λυκείου

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ Γ Λυκείου Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 006 Θεωρητικό Μέρος Γ Λυκείου 8 Μαρτίου 006 Θέµα ο Α. Μια νυχτερίδα κινείται µε ταχύτητα 5 m/s κυνηγώντας ένα ιπτάµενο έντοµο το οποίο κινείται στην

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ A Λυκείου

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ A Λυκείου Θεωρητικό Μέρος A Λυκείου 21 Απριλίου 2007 Θέμα 1 ο 1. Η διαστατική ανάλυση είναι μια σημαντική τεχνική στη φυσική η οποία μας επιτρέπει να ελέγξουμε την ορθότητα μιας εξίσωσης. Αν οι διαστάσεις στα δύο

Διαβάστε περισσότερα

23 Ιανουαρίου 2016 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ:

23 Ιανουαρίου 2016 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ: ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΒΟΡΕΙΑΣ ΕΛΛΑΔΑΣ ΦΥΣΙΚΗ 3 Ιανουαρίου 016 ΛΥΚΕΙΟ:..... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: 1....... 3..... ΜΟΝΑΔΕΣ: Α. ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - Η ΙΔΕΑ Εικόνα 1: Ελεύθερη πτώση Ελεύθερη πτώση ονομάζεται η κίνηση

Διαβάστε περισσότερα

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΤΡΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤO ΣΤΕΡΕΟ

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΤΡΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤO ΣΤΕΡΕΟ ΠΡΤΥΠ ΠΕΙΡΑΜΑΤΙΚ ΛΥΚΕΙ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΤΡΙΩΡ ΕΠΑΝΑΛΗΠΤΙΚ ΔΙΑΓΩΝΙΣΜΑ ΣΤO ΣΤΕΡΕ Μαθητής/Μαθήτρια -----------------------------------------------

Διαβάστε περισσότερα

Στροφορµή. υο παρατηρήσεις: 1) Η στροφορµή ενός υλικού σηµείου, που υπολογίζουµε µε βάση τα προηγούµενα, αναφέρεται. σε µια ορισµένη χρονική στιγµή.

Στροφορµή. υο παρατηρήσεις: 1) Η στροφορµή ενός υλικού σηµείου, που υπολογίζουµε µε βάση τα προηγούµενα, αναφέρεται. σε µια ορισµένη χρονική στιγµή. Στροφορµή Έστω ένα υλικό σηµείο που κινείται µε ταχύτητα υ και έστω ένα σηµείο Ο. Ορίζουµε στροφορµή του υλικού σηµείου ως προς το Ο, το εξωτερικό γινόµενο: L= r p= m r υ Όπου r η απόσταση του υλικού σηµείου

Διαβάστε περισσότερα