Διαφορικές Εξισώσεις.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διαφορικές Εξισώσεις."

Transcript

1 Διαφορικές Εξισώσεις. Εαρινό εξάμηνο Λύσεις πρώτου φυλλαδίου ασκήσεων.. Για κάθε μία από τις παρακάτω διαφορικές εξισώσεις πείτε αν είναι γραμμική ή όχι και προσδιορίστε την τάξη της. α. y + y + sin. β. ( + y )y + y + e. γ. y + y + y + y +. [Γραμμική τάξης 4.] δ. y + y = 0. [Μη-γραμμική τάξης.] ε. y + sin( + y) = sin. [Μη-γραμμική τάξης.] στ. y + y + (cos ) 3. [Γραμμική τάξης 3.] Λύση. [α] Θεωρούμε τον τελεστή L(y) = y + y + y. (Συγκεντρώνουμε όλους τους όρους οι οποίοι περιέχουν y.) Τότε και L(y + y ) = (y + y ) + (y + y ) + (y + y ) = (y + y ) + (y + y ) + (y + y ) = ( y + y + y ) + ( y + y + y ) = L(y ) + L(y ) L(cy) = (cy) + (cy) + (cy) = cy + cy + c c( y + y + y) = cl(y). Άρα ο τελεστής είναι γραμμικός, οπότε η εξίσωση είναι γραμμική και, προφανώς, δεύτερης τάξης. [β] Θεωρούμε τον τελεστή L(y) = ( + y )y + y + y. Τότε Επίσης, L(y + y ) = ( + (y + y ) )(y + y ) + (y + y ) + (y + y ) = ( + y + y y + y )(y + y ) + (y + y ) + (y + y ). L(y ) + L(y ) = ( + y )y + y + y + ( + y )y + y + y. Άρα η ισότητα L(y + y ) = L(y ) + L(y ) ισοδυναμεί, μετά από πράξεις, με την y y + y y y + y y y + y y = 0. Αυτή η ισότητα δεν ισχύει για κάποια ζεύγη συναρτήσεων y, y. Π.χ. για y = y = η ισότητα γράφεται 4 = 0 και αυτό δεν ισχύει: η συνάρτηση 4 δεν ταυτίζεται με τη μηδενική συνάρτηση. Άρα ο τελεστής δεν είναι γραμμικός, οπότε και η εξίσωση δεν είναι γραμμική. Η εξίσωση είναι δεύτερης τάξης. Ένας άλλος τρόπος να δούμε ότι ο τελεστής L(y) = ( + y )y + y + y δεν είναι γραμμικός είναι να ελέγξουμε την ισότητα L(cy) = cl(y). Η ισότητα αυτή, μετά από πράξεις, ισοδυναμεί με την c 3 y y = cy y η οποία δεν ισχύει για κάποιους αριθμούς c και κάποιες συναρτήσεις y. Π.χ. για c = και η ισότητα γράφεται 4 = 0 η οποία και πάλι δεν είναι σωστή (ως ισότητα συναρτήσεων).

2 . Για κάθε μία από τις παρακάτω διαφορικές εξισώσεις βρείτε τη γενική λύση καθώς και τη λύση η οποία ικανοποιεί τη δοσμένη αρχική συνθήκη. α. y e, y(0) =. β. y e, y() = 0. [Γενική λύση: 3 3 e + ce.] γ. y + e +, y(0) = 0. [Γενική λύση: e + + ce.] δ. y e, y( ) =. [Γενική λύση: e + ce.] ε. y + e, y(0) = 3. στ. ( + )y + 4 (+ ), y(0) =. ζ. y + (tan ) sin(), π < < π, y( π 4 ) = 0. Λύση. [α] Γράφουμε p() = 3 και βρίσκουμε μία αντιπαράγωγο P () της p(). Η γενική αντιπαράγωγος είναι η p() d = 3 d = 3 + c. Άρα επιλέγουμε P () = 3. (Επιλέξαμε c = 0 αλλά οποιαδήποτε άλλη τιμή του c είναι επιτρεπτή.) Θεωρούμε τον ολοκληρωτικό παράγοντα µ() = e P () = e 3 και πολλαπλασιάζουμε με αυτόν την διαφορική εξίσωση παίρνοντας τις διαδοχικές ισοδύναμες εξισώσεις e 3 y + 3e 3 e 3 + e (e 3 y) = e 3 + e e 3 (e 3 + e ) d = e 3 d + e d = (e 3 ) d + e 3 = 3 e3 e 3 d + e = 3 3 e3 9 e3 + e + c e + ce 3. Αυτή είναι η γενική λύση της διαφορικής εξίσωσης. Για να βρούμε τη λύση που ικανοποιεί την αρχική συνθήκη y(0) =, θέτουμε στη γενική λύση = 0 και και έχουμε και άρα c = 0 9. Άρα η λύση είναι η = c e e 3. [ε] Γράφουμε p() = και τότε p() d = d = + c. Επιλέγουμε P () =.

3 Πολλαπλασιάζουμε την δ.ε. με τον ολοκληρωτικό παράγοντα µ() = e P () = e και παίρνουμε τις διαδοχικές ισοδύναμες εξισώσεις e y + e (e y) = e d = + c. e + ce. Αυτή είναι η γενική λύση της δ.ε. Για να βρούμε τη λύση που ικανοποιεί την αρχική συνθήκη y(0) = 3, θέτουμε στη γενική λύση = 0 και 3 και έχουμε 3 = c. Άρα η λύση είναι η e + 3e. [στ] Επειδή + 0 για κάθε, η δ.ε. είναι ισοδύναμη με την Γράφουμε p() = Επιλέγουμε y και βρίσκουμε p() d = 4 + ( + ) 3. 4 ( + + d = ) + d = log( + ) + c. P () = log( + ). Πολλαπλασιάζουμε την δ.ε. (στη δεύτερη μορφή: y +...) με τον ολοκληρωτικό παράγοντα µ() = e P () = e log(+) = ( + ) και παίρνουμε τις διαδοχικές ισοδύναμες εξισώσεις ( + ) y + 4( + ) + ( ( + ) y ) = + ( + ) d = Arctan + c. + Arctan ( + ) + c ( + ). Αυτή είναι η γενική λύση της δ.ε. Για να βρούμε τη λύση που ικανοποιεί την αρχική συνθήκη y(0) =, θέτουμε στη γενική λύση = 0 και και έχουμε = c. Άρα η λύση είναι η Arctan ( + ) + ( + ). 3

4 [ζ] Στο διάστημα ( π, π ) η p() = tan είναι συνεχής και sin (cos ) p() d = tan d = cos d = d = log cos + c. cos (Η cos είναι θετική στο διάστημα ( π, π ).) Επιλέγουμε P () = log cos. Πολλαπλασιάζουμε την δ.ε. με τον ολοκληρωτικό παράγοντα µ() = e P () = e log cos = cos και παίρνουμε τις διαδοχικές ισοδύναμες εξισώσεις cos y + sin cos sin() = cos ( ) cos sin cos sin d = sin cos cos = cos + sin + c. = sin cos + sin cos + c cos = cos + sin() + c cos. (cos ) d = cos + cos d Αυτή είναι η γενική λύση της δ.ε. Για να βρούμε τη λύση που ικανοποιεί την αρχική συνθήκη y( π 4 ) = 0, θέτουμε στη γενική λύση = π 4 και 0 και έχουμε οπότε c = π 4. Άρα η λύση είναι η 0 = π c cos + sin() + π 4 cos. 3. Για κάθε μία από τις παρακάτω διαφορικές εξισώσεις βρείτε τη γενική λύση σε καθένα από τα κατάλληλα διαστήματα καθώς και τη λύση η οποία ικανοποιεί τη δοσμένη αρχική συνθήκη στο κατάλληλο διάστημα. α. y + sin, y(π) = 0. β. y + sin cos, y( π) = 0. [Γενική λύση: (, 0) και (0, + ).] γ. y + (cot ) 4 sin, y( π ) = 0. δ. y + (+) (+) +3 (+), y( ) =. + sin + c στα διαστήματα Λύση. [α] Η p() = είναι συνεχής στα διαστήματα (, 0) και (0, + ), οπότε θα δουλέψουμε ξεχωριστά σε καθένα από τα διαστήματα αυτά. Επειδή οι πράξεις που θα κάνουμε θα είναι σχεδόν ίδιες για τα δύο διαστήματα, θα συνεχίσουμε ταυτόχρονα στα δύο διαστήματα και όπου χρειάζεται θα αναφέρουμε τις όποιες διαφορές. Έχουμε p() d = d = log + c. 4

5 Επιλέγουμε P () = log και πολλαπλασιάζουμε την δ.ε. με τον ολοκληρωτικό παράγοντα µ() = e P () = e log =. Ο ολοκληρωτικός παράγων είναι ίσος με µ() = στο (0, + ) και ίσος με µ() = στο (, 0). Όμως, επειδή το να πολλαπλασιάσουμε με την δ.ε. είναι ισοδύναμο με το να την πολλαπλασιάσουμε με (διότι θα πάρουμε ισοδύναμη δ.ε.), θεωρούμε ως ολοκληρωτικό παράγοντα τον µ() = και για τα δύο διαστήματα. Παίρνουμε, λοιπόν, τις ισοδύναμες διαδοχικές εξισώσεις: y + sin (y) = sin sin d = (cos ) d = cos + cos d = cos + sin + c. cos + sin + c. Αυτή, λοιπόν, είναι η γενική λύση. Πρέπει, όμως, να κάνουμε το εξής σημαντικό σχόλιο. Η λύση που βρήκαμε είναι η γενική λύση στο (, 0) και είναι, επίσης, η γενική λύση στο (0, + ). Δεν είναι, όμως, η γενική λύση στην ένωση (, 0) (0, + )! Αν θέλουμε να γράψουμε τη γενική λύση στην ένωση των διαστημάτων, πρέπει να γράψουμε { cos + sin + c στο (, 0) cos + sin + c στο (0, + ) Επεξήγηση: Στην προηγούμενη διαδικασία η σταθερά c προέκυψε όταν διαγράψαμε πρώτη φορά την παράγωγο, δηλαδή όταν από την προέκυψε η (y) = sin cos + sin + c. Πώς δικαιολογείται αυτό; Επειδή sin = ( cos + sin ), αυτό που συνέβη είναι ότι από την (y) = ( cos + sin ) προέκυψε η cos + sin + c. Αυτό συμβαίνει στην επίλυση οποιασδήποτε δ.ε. και πρέπει να το ξεκαθαρίσουμε. Γενικότερα, από την f = g προκύπτει f = g + c. Όμως, αυτή η συνεπαγωγή ισχύει σε διάστημα και όχι σε ένωση ξένων διαστημάτων. Πράγματι, γράφοντας h = f g, η f = g ισοδυναμεί με h = 0 και τώρα γνωρίζουμε ότι, αν η παράγωγος συνάρτησης είναι ίση με 0 σε διάστημα, τότε η συνάρτηση είναι σταθερή στο διάστημα και άρα h = c, δηλαδή f = g + c. Το ότι, αν η παράγωγος συνάρτησης είναι ίση με 0 5

6 σε διάστημα, τότε η συνάρτηση είναι σταθερή στο διάστημα, αποδεικνύεται χρησιμοποιώντας το Θεώρημα Μέσης Τιμής το οποίο ισχύει σε διάστημα και όχι σε ένωση ξένων διαστημάτων. Αν έχουμε δύο ξένα διαστήματα και αν f = g στην ένωση των δύο διαστημάτων, τότε παίρνουμε ότι f = g + c στο ένα διάστημα και f = g + c στο άλλο διάστημα: η σταθερά που προκύπτει εξαρτάται από το διάστημα. Αν έχουμε τρία ή περισσότερα διαστήματα, τότε θα προκύψουν τρεις ή περισσότερες σταθερές. Ξαναγυρνάμε στο πρόβλημά μας με την αρχική συνθήκη y(π) = 0. Το = π περιέχεται στο (0, + ), οπότε θα καθορίσουμε την σταθερά c, και άρα τη λύση y, σ αυτό το διάστημα. Θέτουμε στον τύπο της λύσης = π και 0 και έχουμε και άρα c = π. Επομένως, η λύση είναι η cos + sin 0 = + c π π στο (0, + ). [γ] Η συνάρτηση p() = cot = cos sin είναι συνεχής στα διαστήματα (kπ, (k + )π) με k Z και άρα εργαζόμαστε σε ένα οποιοδήποτε τέτοιο διάστημα. Έχουμε cos (sin ) p() d = cot d = sin d = d = log sin + c sin και επιλέγουμε P () = log sin. Τώρα πολλαπλασιάζουμε την δ.ε. με τον ολοκληρωτικό παράγοντα µ() = e P () = e log sin = sin. Σε κάθε διάστημα (kπ, (k+)π) με άρτιο k είναι µ() = sin και σε κάθε (kπ, (k+)π) με περιττό k είναι µ() = sin. Επειδή το να πολλαπλασιάσουμε την δ.ε. με το sin είναι ισοδύναμο με το να την πολλαπλασιάσουμε με το sin, επιλέγουμε τελικά ως ολοκληρωρικό παράγοντα τον µ() = sin για κάθε διάστημα (kπ, (k + )π). Τώρα παίρνουμε τις διαδοχικές ισοδύναμες εξισώσεις: (sin )y + (cos ) 4 sin ( (sin )y ) = 4 sin (sin ) 4 sin d = sin cos + c sin. ( cos()) d = sin() + c Αυτή είναι η γενική λύση σε κάθε διάστημα (kπ, (k + )π) με k Z. (Η γενική λύση σε ενώσεις τέτοιων διαστημάτων έχει διαφορετικές σταθερές σε καθένα από τα διαστήματα της ένωσης.) Η αρχική συνθήκη y( π ) = 0 καθορίζει τη λύση στο διάστημα (0, π (με k = 0). Με = π και 0 στον τύπο της γενικής λύσης βρίσκουμε οπότε c = π και η λύση είναι η 0 = π + c, sin cos π sin στο (0, π). 6

7 [δ] Οι συναρτήσεις p() = (+) (+) και +3 (+) είναι συνεχείς στα διαστήματα (, ), (, 0) και (0, + ). Επομένως, θα εργαστούμε σ αυτά τα διαστήματα. Έχουμε Επιλέγουμε p() d = + ( + ) d = ( + ) d = + = log + log + + c = log ( + ) + c. P () = log ( + ) και πολλαπλασιάζουμε την δ.ε. με τον ολοκληρωτικό παράγοντα µ() = e P () = e log (+) = ( + ). d + + d Στα διαστήματα (, ) και (0, + ) είναι µ() = ( + ) και στο διάστημα (, 0) είναι µ() = ( + ). Επειδή το να πολλαπλασιάσουμε την δ.ε. με το ( + ) είναι ισοδύναμο με το να την πολλαπλασιάσουμε με το ( + ), επιλέγουμε τελικά ως ολοκληρωτικό παράγοντα τον µ() = ( + ) και για τα τρία διαστήματα και παίρνουμε τις διαδοχικές ισοδύναμες εξισώσεις: ( + )y + ( + ) + 3 ( ) ( + ) + 3 ( + ) ( + 3 ) d = c + 3 ( + ) + c ( + ) = c ( + ). Αυτή είναι η γενική λύση σε καθένα από τα διαστήματα (, ), (, 0) και (0, + ). (Η γενική λύση σε ενώσεις αυτών των διαστημάτων έχει διαφορετικές σταθερές σε καθένα από τα διαστήματα της ένωσης.) Η αρχική συνθήκη y( ) = καθορίζει τη λύση στο διάστημα (, 0). Με = και στον τύπο της γενικής λύσης βρίσκουμε οπότε c = και η λύση είναι η = c, ( + ). 4. Για κάθε μία από τις παρακάτω διαφορικές εξισώσεις βρείτε τη γενική λύση στα διαστήματα (, 0) και (0, + ) και διερευνήστε αν κάποια από τις λύσεις είναι λύση στο (, + ). α. y. β. y + +. γ. y +. [Γενική λύση: + c. Καμία λύση στο (, + ).] δ. y + e. [Γενική λύση: e e + c. Μόνο η λύση με c = είναι λύση στο (, + ).] ε. y + cos. [Γενική λύση: sin (, + ).] + c. Μόνο η λύση με c = 0 είναι λύση στο 7

8 στ. y + 3 { sin, 0, = 0 ζ. y + sin. [Γενική λύση: cos + sin λύση στο (, + ).] η. y + 3 sin. Λύση: [α] Γράφουμε τη δ.ε. στη μορφή y, + c. Μόνο η λύση με c = 0 είναι οπότε αυτομάτως εργαζόμαστε παρακάτω στα διαστήματα (, 0) και (0, + ). Με p() = έχουμε p() d = d = log + c και επιλέγουμε P () = log. Πολλαπλασιάζουμε τη δ.ε. (στη μορφή y +...) με τον ολοκληρωτικό παράγοντα µ() = e P () = e log =. Είναι µ() = στο (0, + ) και µ() = στο (, 0) και, επειδή το να πολλαπλασιάσουμε τη δ.ε. με είναι ισοδύναμο με το να την πολλαπλασιάσουμε με, θεωρούμε ως ολοκληρωτικό παράγοντα την µ() = και για τα δύο διαστήματα. Προκύπτουν τώρα και για τα δύο διαστήματα οι παρακάτω διαδοχικές ισοδύναμες εξισώσεις: y ( y ) = + c + c. Αυτή είναι η γενική λύση της δ.ε. σε καθένα από τα διαστήματα (, 0) και (0, + ). Για να δούμε αν υπάρχει λύση της αρχικής δ.ε. y στο (, + ), σκεφτόμαστε ότι αν y είναι μια τέτοια λύση, τότε αυτή πρέπει να είναι λύση και σε καθένα από τα (, 0) και (0, + ) και επιπλέον να ορίζεται και στο 0. Άρα η y πρέπει να έχει τύπο + c στο (, 0) a για = 0 + c στο (0, + ) 8

9 Η y ικανοποιεί τη δ.ε. στα (, 0) και (0, + ), οπότε αρκεί να είναι παραγωγίσιμη και στο 0 και να ικανοποιεί την δ.ε. και για = 0. Για να είναι η y συνεχής στο 0 πρέπει να είναι δηλαδή lim y() = lim y() = y(0), = 0 = a. Άρα y(0) = a = 0 και ο τύπος της y γράφεται + c στο (, 0) 0 για = 0 + c στο (0, + ) Για να είναι η y παραγωγίσιμη στο 0 πρέπει να ισχύει δηλαδή Ορίζουμε, λοιπόν, και ο τύπος της y γράφεται η. πιό απλά, y() y(0) lim = lim 0 0+ c = c. c = c = c y() y(0), + c στο (, 0) 0 για = 0 + c στο (0, + ) + c στο (, + ). Αμέσως βλέπουμε ότι αυτή η y ικανοποιεί τη δ.ε. και στο 0, δηλαδή την 0y (0) y(0) = 0 αφού y(0) = 0 και y (0) = c. Άρα οι λύσεις της αρχικής δ.ε. στο (, + ) είναι οι + c. [β] Γράφουμε τη δ.ε. στη μορφή y + +, και εργαζόμαστε παρακάτω στα διαστήματα (, 0) και (0, + ). Με p() = έχουμε p() d = d = log + c = log( ) + c και επιλέγουμε P () = log( ). Πολλαπλασιάζουμε τη δ.ε. (στη μορφή y +...) με τον ολοκληρωτικό παράγοντα µ() = e P () = e log() =. 9

10 Προκύπτουν τώρα και για τα δύο διαστήματα οι παρακάτω διαδοχικές ισοδύναμες εξισώσεις: y ( y) = c c. Αυτή είναι η γενική λύση της δ.ε. σε καθένα από τα διαστήματα (, 0) και (0, + ). Για να δούμε αν υπάρχει λύση της αρχικής δ.ε. y + + στο (, + ), σκεφτόμαστε ότι αν y είναι μια τέτοια λύση, τότε αυτή πρέπει να είναι λύση και σε καθένα από τα (, 0) και (0, + ) και επιπλέον να ορίζεται και στο 0. Άρα η y πρέπει να έχει τύπο c στο (, 0) a για = c στο (0, + ) Η y ικανοποιεί τη δ.ε. στα (, 0) και (0, + ), οπότε αρκεί να είναι παραγωγίσιμη και στο 0 και να ικανοποιεί την δ.ε. και για = 0. Για να είναι η y συνεχής στο 0 πρέπει να είναι Άρα πρέπει να είναι δηλαδή ο τύπος της y γράφεται ή, πιο απλά, lim y() = lim y() = y(0) c = c = 0 και = = a, στο (, 0) για = στο (0, + ) στο (, + ). Αμέσως βλέπουμε ότι αυτή η y ικανοποιεί τη δ.ε. και στο 0, δηλαδή την 0y (0) + y(0) = αφού y(0) = και y (0) = 3. Άρα η μοναδική λύση της αρχικής δ.ε. στο (, + ) είναι η [στ] Γράφουμε τη δ.ε. στη μορφή y + 3 sin 3, 0

11 και εργαζόμαστε στα διαστήματα (, 0) και (0, + ). Με p() = 3 έχουμε p() d = 3 d = 3 log + c και επιλέγουμε P () = 3 log. Πολλαπλασιάζουμε τη δ.ε. (στη μορφή y +...) με τον ολοκληρωτικό παράγοντα µ() = e P () = e 3 log = 3. Είναι µ() = 3 στο (0, + ) και µ() = 3 στο (, 0) και, επειδή το να πολλαπλασιάσουμε τη δ.ε. με 3 είναι ισοδύναμο με το να την πολλαπλασιάσουμε με 3, θεωρούμε ως ολοκληρωτικό παράγοντα την µ() = 3 και για τα δύο διαστήματα. Προκύπτουν τώρα και για τα δύο διαστήματα οι παρακάτω διαδοχικές ισοδύναμες εξισώσεις: 3 y + 3 sin ( 3 y) = sin 3 cos + c cos 3 + c 3 = c cos 3. Αυτή είναι η γενική λύση της δ.ε. σε καθένα από τα διαστήματα (, 0) και (0, + ). Για να δούμε αν υπάρχει λύση της αρχικής δ.ε. { sin y + 3, 0, = 0 στο (, + ), σκεφτόμαστε ότι αν y είναι μια τέτοια λύση, τότε αυτή πρέπει να είναι λύση και σε καθένα από τα (, 0) και (0, + ) και επιπλέον να ορίζεται και στο 0. Άρα η y πρέπει να έχει τύπο c cos στο (, 0) 3 a για = 0 c cos 3 στο (0, + ) Η y ικανοποιεί τη δ.ε. στα (, 0) και (0, + ), οπότε αρκεί να είναι παραγωγίσιμη και στο 0 και να ικανοποιεί την δ.ε. και για = 0. Για να είναι η y συνεχής στο 0 πρέπει να είναι lim y() = lim y() = y(0) Αν c, τότε ο αριθμητής του c cos c έχει όριο 0 και άρα lim cos Αν c =, τότε με τον κανόνα του l Hopitâl έχουμε = ±. cos sin lim 0 3 = lim 0 3 = lim sin 0 3 =. Άρα για κάθε τιμή του c το όριο lim 0 y() δεν είναι αριθμός. Ομοίως, για κάθε τιμή του c το όριο lim 0+ y() δεν είναι αριθμός και καταλήγουμε στο

12 ότι δεν υπάρχει λύση της δ.ε. στο (, + ). [η] Γράφουμε τη δ.ε. στη μορφή y + 3 sin, και εργαζόμαστε στα διαστήματα (, 0) και (0, + ). Με p() = 3 έχουμε p() d = 3 d = 3 log + c και επιλέγουμε P () = 3 log. Πολλαπλασιάζουμε τη δ.ε. (στη μορφή y +...) με τον ολοκληρωτικό παράγοντα µ() = e P () = e 3 log = 3. Είναι µ() = 3 στο (0, + ) και µ() = 3 στο (, 0) και, επειδή το να πολλαπλασιάσουμε τη δ.ε. με 3 είναι ισοδύναμο με το να την πολλαπλασιάσουμε με 3, θεωρούμε ως ολοκληρωτικό παράγοντα την µ() = 3 και για τα δύο διαστήματα. Προκύπτουν τώρα και για τα δύο διαστήματα οι παρακάτω διαδοχικές ισοδύναμες εξισώσεις: 3 y + 3 sin ( 3 y) = sin 3 sin d = (cos ) d = cos + cos d = cos + sin + c cos + sin 3 + c 3. Αυτή είναι η γενική λύση της δ.ε. σε καθένα από τα διαστήματα (, 0) και (0, + ). Για να δούμε αν υπάρχει λύση της αρχικής δ.ε. y + 3 sin στο (, + ), σκεφτόμαστε ότι αν y είναι μια τέτοια λύση, τότε αυτή πρέπει να είναι λύση και σε καθένα από τα (, 0) και (0, + ) και επιπλέον να ορίζεται και στο 0. Άρα η y πρέπει να έχει τύπο cos + sin + c 3 στο (, 0) 3 a για = 0 cos + sin + c 3 στο (0, + ) 3 Η y ικανοποιεί τη δ.ε. στα (, 0) και (0, + ), οπότε αρκεί να είναι παραγωγίσιμη και στο 0 και να ικανοποιεί την δ.ε. και για = 0. Για να είναι η y συνεχής στο 0 πρέπει να είναι lim y() = lim y() = y(0). 0 0+

13 Αν c 0, τότε ο αριθμητής του cos +sin +c έχει όριο 0. Αν c 3 = 0, τότε με τον κανόνα του l Hopitâl έχουμε cos + sin sin sin lim 0 3 = lim 0 3 = lim 0 3 = 3. Ομοίως, μόνο όταν c = 0 το όριο lim 0+ y() είναι αριθμός και τότε το όριο είναι 3. Άρα ο τύπος της y γράφεται ή, πιο απλά, cos + sin στο (, 0) 3 3 για = 0 στο (0, + ) cos { cos + sin 3 + sin 3 για 0 3 για = 0 Η y είναι συνεχής στο 0. Για να είναι παραγωγίσιμη στο 0 πρέπει το y() y(0) 3 cos + 3 sin 3 lim = lim να είναι αριθμός. Τώρα με διαδοχικές εφαρμογές του κανόνα του l Hopitâl έχουμε 3 cos + 3 sin 3 lim = lim 0 3 sin 3 3 Άρα η y είναι παραγωγίσιμη στο 0 και y (0) = 0. Επομένως, η y ικανοποιεί τη δ.ε. και στο 0, δηλαδή την = lim 0 sin 4 cos sin = lim = lim = y (0) + 3 0y(0) = sin 0 αφού y(0) = 3 και y (0) = 0. Άρα η μοναδική λύση της αρχικής δ.ε. στο (, + ) είναι η { cos + sin για για = 0 3

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε όλες τις λύσεις της εξίσωσης Bernoulli x y = xy + y 3 καθορίζοντας προσεκτικά το διάστημα στο οποίο ορίζεται καθεμιά

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 2015-16. Λύσεις του τρίτου φυλλαδίου ασκήσεων. 1. Λύστε τις παρακάτω διαφορικές εξισώσεις. Αν προκύψει αλγεβρική σχέση ανάμεσα στις μεταβλητές x, y η οποία δεν λύνεται

Διαβάστε περισσότερα

Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους

Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους ΜΑΘΗΜΑΤΙΚΑ, 6-7 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΠΙΚ. ΚΑΘ. ΣΤΑΥΡΟΣ ΤΟΥΜΠΗΣ Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους 6-7. Περιοδικές Συναρτήσεις) Έστω συνεχής συνάρτηση f : R R περιοδική

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. 1 ΔΩΔΕΚΑΤΟ ΜΑΘΗΜΑ Έστω συνάρτηση f ορισμένη σε διάστημα I. Λέμε ότι η F είναι αντιπαράγωγος της f στο I αν ισχύει F = f στο I. ΠΡΟΤΑΣΗ. Αν η F είναι αντιπαράγωγος της f στο

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ [Κεφ..6: Συνέπειες του Θεωρήματος της Μέσης Τιμής πλην της Ενότητας Μονοτονία Συνάρτησης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

Κατηγορία 1 η. Σταθερή συνάρτηση Δίνεται παραγωγίσιμη συνάρτηση f : 0, f '( x) 0 για κάθε εσωτερικό σημείο x του Δ

Κατηγορία 1 η. Σταθερή συνάρτηση Δίνεται παραγωγίσιμη συνάρτηση f : 0, f '( x) 0 για κάθε εσωτερικό σημείο x του Δ Κατηγορία η Σταθερή συνάρτηση Τρόπος αντιμετώπισης: Για να αποδείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ πρέπει: η συνάρτηση να είναι συνεχής στο Δ '( ) 0 για κάθε εσωτερικό σημείο του

Διαβάστε περισσότερα

APEIROSTIKOS LOGISMOS I

APEIROSTIKOS LOGISMOS I APEIROSTIKOS LOGISOS I ΟΛΟΗΜΕΡΟ ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΒΛΗΜΑΤΩΝ Λύσεις ασκήσεων φυλλαδίου. Άσκηση : Αποδείξτε με τον ορισμό ότι:. lim ( ) = +,. lim =,. lim ln( + ) = ln, + 4. lim + =. Λύση:. Θεωρούμε αυθαίρετο

Διαβάστε περισσότερα

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle.

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle. Κατηγορία η Συνθήκες θεωρήματος Rolle Τρόπος αντιμετώπισης:. Για να ισχύει το θεώρημα Rolle για μια συνάρτηση σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) τέτοιο ώστε ( ) ) πρέπει:

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ. Το Θεώρημα και το Πόρισμα ισχύουν σε διαστήματα και όχι σε ένωση διαστημάτων.

ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ. Το Θεώρημα και το Πόρισμα ισχύουν σε διαστήματα και όχι σε ένωση διαστημάτων. ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σε ένα διάστημα Δ και ισχύει f () = 0 για κάθε εσωτερικό σημείο του Δ, τότε η f είναι σταθερή σ' όλο το διάστημα Δ. Πόρισμα Αν δύο συναρτήσεις

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

(β) Από την έκφραση (22) και την απαίτηση (20) βλέπουμε ότι η συνάρτηση Green υπάρχει αρκεί η ομογενής εξίσωση. ( L z) ( x) 0

(β) Από την έκφραση (22) και την απαίτηση (20) βλέπουμε ότι η συνάρτηση Green υπάρχει αρκεί η ομογενής εξίσωση. ( L z) ( x) 0 Τρόποι Κατασκευής Εάν οι ιδιοσυναρτήσεις του διαφορικού τελεστή L αποτελούν ένα ορθοκανονικό L ( ) ( ) (7) και πλήρες σύστημα συναρτήσεων ( ) m( ), m (8) και εάν τότε η εξίσωση Gree ( ) ( ) ( ) (9) z ()

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: 5 Φεβρουαρίου 008 Ημερομηνία παράδοσης της Εργασίας: 4 Μαρτίου 008

Διαβάστε περισσότερα

APEIROSTIKOS LOGISMOS I

APEIROSTIKOS LOGISMOS I APEIROSTIKOS LOGISMOS I ΟΛΟΗΜΕΡΟ ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΒΛΗΜΑΤΩΝ Λύσεις ασκήσεων φυλλαδίου 4. Άσκηση : Υπολογίστε, αν υπάρχουν, τα παρακάτω όρια. Αν χρειάζεται, υπολογίστε τα αντίστοιχα πλευρικά όρια. + 4 3 + +,

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017 Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες Η πρώτης τάξης διαφορική εξίσωση M(x, y) + (x, y)y = 0 ή ισοδύναμα, γραμμένη στην μορφή M(x,

Διαβάστε περισσότερα

x είναι f 1 f 0 f κ λ

x είναι f 1 f 0 f κ λ 3 Ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ [Κεφάλαια, Μέρος Β' του σχολικού βιβλίου] ΘΕΜΑ Α.Βλέπε σχολικό βιβλίο, σελίδα 4.. Βλέπε σχολικό βιβλίο, σελίδα 88, 89. 3. α) ΣΩΣΤΟ, διότι αν η f παραγωγίσιμη στο χ

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ Κεφάλαιο ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ο ΜΕΡΟΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 6. Λ 8. Λ. Σ 7. Σ 9. Λ 3. Λ 8. Λ 3. Σ 4. Σ 9. Σ 3. α Σ 5. Σ. Σ β Σ 6. Λ.

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ.

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ. ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με Δημητριάδος) Βόλος τηλ. 4598 Κεφάλαιο ο Ολοκληρωτικός Λογισμός Ολοκληρωτικός Λογισμός Μεθοδολογία Λυμένα

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x = ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 0: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να εξετάσετε από τις παρακάτω συναρτήσεις ποιές ικανοποιούν

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος. Δείξτε ότι ο V R εφοδιασμένος με τις ακόλουθες πράξεις (, a b) + (, d) ( a+, b+ d) και k ( ab, ) ( kakb,

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ27 Μέρος Β του σχολικού βιβλίου] ΣΗΜΕΙΩΣΕΙΣ Εύρεση

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 014 ΘΕΜΑ 1 Δίνεται ο πίνακας: 1) Να

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1)

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1) 1 ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης (1) όπου οι συντελεστές είναι δοσµένες συνεχείς συναρτήσεις ορισµένες σ ένα ανοικτό διάστηµα. Ορισµός 1. Ορίζουµε τον διαφορικό τελεστή µέσω της

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 2015-16. Λύσεις του έβδομου φυλλαδίου ασκήσεων. 1. Λύστε την παρακάτω δ.ε. με τη δοσμένη αρχική συνθήκη. Σχεδιάστε τις χαρακτηριστικές καθώς και το γράφημα της λύσης

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. f (x) =, x 0, (1), x. lim f (x) = lim = +. x

ΣΗΜΕΙΩΣΕΙΣ. f (x) =, x 0, (1), x. lim f (x) = lim = +. x ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 2.9: Ασύμπτωτες Κανόνες de l Hospital Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ ΑΣΥΜΠΤΩΤΕΣ-ΚΑΝΟΝΑΣ

Διαβάστε περισσότερα

Γραμμική Διαφορική Εξίσωση 2 ου βαθμού

Γραμμική Διαφορική Εξίσωση 2 ου βαθμού //04 Γραμμική Διαφορική Εξίσωση ου βαθμού, με τη βοήθεια του αορίστου ολοκληρώματος, της χρήσιμης γραμμικής διαφορικής εξίσωσης πρώτου βαθμού af ( ) f ( ) cf ( ) g( ), ac,, σταθεροί πραγματικοί αριθμοί

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμένο Όριο στο R - Κεφ..7: Όρια Συνάρτησης

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ Μ. Παπαδημητράκης. 1 ΔΕΚΑΤΟ ΤΡΙΤΟ ΜΑΘΗΜΑ Χρησιμοποιούμε τα σύμβολα f και f() d για να συμβολίσουμε όλα μαζί τα αόριστα ολοκληρώματα της f σε ένα διάστημα I. Δηλαδή, γράφουμε f = f + c ή f() d =

Διαβάστε περισσότερα

Ολοκλήρωμα πραγματικής συνάρτησης

Ολοκλήρωμα πραγματικής συνάρτησης ΚΕΦΑΛΑΙΟ 7 Ολοκλήρωμα πραγματικής συνάρτησης Σύνοψη Το κεφάλαιο αυτό αποτελεί το «πέρασμα» από το Διαφορικό στον Ολοκληρωτικό Λογισμό Η θεμελιώδης έννοια, για το σκοπό αυτό, είναι η αντιπαράγωγος ή αόριστο

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ ΕΙΚΟΣΤΟ ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, 9--3 Μ. Παπαδημητράκης. Εκτός από το κριτήριο του Cauchy, όλα τα άλλα κριτήρια σύγκλισης μιας σειράς που είδαμε μέχρι τώρα (απόλυτης σύγκλισης, σύγκρισης δυο σειρών, λόγου,

Διαβάστε περισσότερα

35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης

35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης 4 5 35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης Περίληψη: Στο ένθετο αυτό περιλαμβάνονται 35 βασικές προτάσεις, μικρά λήμματα χρήσιμα για τις εξετάσεις. Μας βοηθούν να «ξεκλειδώνουμε»

Διαβάστε περισσότερα

1 Σύντομη επανάληψη βασικών εννοιών

1 Σύντομη επανάληψη βασικών εννοιών Σύντομη επανάληψη βασικών εννοιών Μερικές χρήσιμες ταυτότητες + r + r 2 + + r n = rn r r + 2 + 3 + + n = 2 n(n + ) 2 + 2 2 + 3 2 + n 2 = n(n + )(2n + ) 6 Ανισότητα Cauchy Schwarz ( n ) 2 ( n x i y i i=

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ..6 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα 1. ΘΕΜΑ Β Να μελετηθούν ως προς την μονοτονία

Διαβάστε περισσότερα

f ( x) f ( x ) για κάθε x A

f ( x) f ( x ) για κάθε x A ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 3/04/06 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ονομάζουμε ρυθμό μεταβολής του y = f() ως προς το στο σημείο 0 ;

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΕΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ : ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΛΟΓΟΣ Σε κάθε ενότητα αυτού του βιβλίου θα βρείτε : Βασική θεωρία με τη μορφή ερωτήσεων Μεθοδολογίες και σχόλια

Διαβάστε περισσότερα

2. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ.

2. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Κατηγορία η Εύρεση μονοτονίας Τρόπος αντιμετώπισης:. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f( ) σε κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως αύξουσα σε όλο το

Διαβάστε περισσότερα

6 Εφαρµογές των παραγώγων στον υπολογισµό ορίων α- προσδιόριστων µορφών - Κανόνες L Hôpital

6 Εφαρµογές των παραγώγων στον υπολογισµό ορίων α- προσδιόριστων µορφών - Κανόνες L Hôpital 6 Εφαρµογές των παραγώγων στον υπολογισµό ορίων α- προσδιόριστων µορφών - Κανόνες L Hôpital Στην ενότητα αυτή ϑα µελετήσουµε εφαρµογές των παραγώγων συναρτήσεων στον υπολογισµό απροσδιόριστων µορφών ορίων

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρείτε τις ασύμπτωτες της γραφικής παράστασης της συνάρτησης f με τύπο

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρείτε τις ασύμπτωτες της γραφικής παράστασης της συνάρτησης f με τύπο ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..9: Ασύμπτωτες Κανόνες de l Hospital Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

f (x) = l R, τότε f (x 0 ) = l.

f (x) = l R, τότε f (x 0 ) = l. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα 1. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση.

Διαβάστε περισσότερα

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Ο ΚΕΦΑΛΑΙΟ : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β Έστω

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται

Διαβάστε περισσότερα

Μιχάλης Παπαδημητράκης. Μερικές Διαφορικές Εξισώσεις

Μιχάλης Παπαδημητράκης. Μερικές Διαφορικές Εξισώσεις Μιχάλης Παπαδημητράκης Μερικές Διαφορικές Εξισώσεις Περιεχόμενα 1 Γενικά. 1 1.1 Μερικές διαφορικές εξισώσεις............................ 1 1.2 Διαφορικοί τελεστές................................. 2 1.3

Διαβάστε περισσότερα

16 Ασύμπτωτες. όπως φαίνεται στα παρακάτω σχήματα. 1. Κατακόρυφη ασύμπτωτη. Η ευθεία x = x0

16 Ασύμπτωτες. όπως φαίνεται στα παρακάτω σχήματα. 1. Κατακόρυφη ασύμπτωτη. Η ευθεία x = x0 6 Ασύμπτωτες Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορίζουμε μια ευθεία ( ε ) ως ασύμπτωτη της γραφικής παράστασης της αν η απόσταση ενός μεταβλητού σημείου Ρ της γραφικής παράστασης από την ευθεία ( ε ) γίνεται

Διαβάστε περισσότερα

13 Μονοτονία Ακρότατα συνάρτησης

13 Μονοτονία Ακρότατα συνάρτησης 3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση 1. Να δείξετε ότι η εξίσωση 7 3 + + + 3= (1) έχει ακριβώς μία πραγματική

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 014 ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ & ΘΕΜΑΤΑ: ΓΕΝΙΚΑ

Διαβάστε περισσότερα

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Μεθοδική Επανα λήψή Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 Βόλος Τηλ. 4 598 Επιμέλεια Κων/νος Παπασταματίου Περιεχόμενα Συνοπτική Θεωρία με Ερωτήσεις Απαντήσεις...

Διαβάστε περισσότερα

Σηµειώσεις. Eφαρµοσµένα Μαθηµατικά Ι. Nικόλαος Aτρέας

Σηµειώσεις. Eφαρµοσµένα Μαθηµατικά Ι. Nικόλαος Aτρέας Σηµειώσεις Eφαρµοσµένα Μαθηµατικά Ι ικόλαος Aτρέας ΘΕΣΣΑΛΟΝΙΚΗ 207 Περιεχόµενα Κεφάλαιο. Επισκόπηση γνωστών εννοιών. -8. Σειρές πραγµατικών αριθµών..2 Σειρές συναρτήσεων..3 Γενικευµένα ολοκληρώµατα. Κεφάλαιο

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. x β. τo σύνολο των σημείων του Α στα οποία αυτή είναι παραγωγίσιμη. Αντιστοιχίζοντας κάθε x Α. = f (x)

ΣΗΜΕΙΩΣΕΙΣ. x β. τo σύνολο των σημείων του Α στα οποία αυτή είναι παραγωγίσιμη. Αντιστοιχίζοντας κάθε x Α. = f (x) ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..: Παραγωγίσιμες Συναρτήσεις Παράγωγος Συνάρτηση - Κεφ..3: Κανόνες Παραγώγισης

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ Επιμέλεια: Βασίλης Κράνιας wwwe-mathsgr ΑΝΑΛΥΣΗ Τι ονομάζουμε πραγματική συνάρτηση Έστω Α ένα υποσύνολο

Διαβάστε περισσότερα

IV. Συνέχεια Συνάρτησης. math-gr

IV. Συνέχεια Συνάρτησης. math-gr IV Συνέχεια Συνάρτησης mth-gr mth-gr Παντελής Μπουμπούλης, MSc, PhD σελ mth-grblogspotcom, bouboulismyschgr ΜΕΡΟΣ Συνέχεια Συνάρτησης Α Ορισμός Συνέχεια σε σημείο: Θα λέμε ότι μια συνάρτηση είναι συνεχής

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 215-16. Λύσεις ενδέκατου φυλλαδίου ασκήσεων. 1. Λύστε το πρόβλημα συνοριακών συνθηκών u xx + u yy =, u(x, ) = u(x, π) =, u(, y) =, u(a, y) = sin 2y + 4 sin 5y, < x

Διαβάστε περισσότερα

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R ΟΕΦΕ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Α Να αποδείξετε ότι η συνάρτηση ν ν και ισχύει f ν f, νν-{,} είναι παραγωγίσιμη στο R

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

1. Υπολογίστε, όπου αυτές υπάρχουν, τις παραγώγους των συναρτήσεων:

1. Υπολογίστε, όπου αυτές υπάρχουν, τις παραγώγους των συναρτήσεων: Υπολογίστε, όπου αυτές υπάρχουν, τις παραγώγους των συναρτήσεων:, g, h Απάντηση: Η με έχει παράγωγο 4 Μπορούμε όμως να εργαστούμε ως εξής: Είναι άρα 4 Η g με g έχει παράγωγο : g Η συνάρτηση h με h έχει

Διαβάστε περισσότερα

ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμοί α) (Κατακόρυφη ασύμπτωτη) Αν ένα τουλάχιστον απ' τα όρια f(), o o λέγεται κατακόρυφη ασύμπτωτη της C f. f() είναι +, ή -, τότε η ευθεία o β) (Οριζόντια

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.)

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση. ΘΕΜΑ Β Δίνεται

Διαβάστε περισσότερα

g(x) =α x +β x +γ με α= 1> 0 και

g(x) =α x +β x +γ με α= 1> 0 και ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.

Διαβάστε περισσότερα

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016 Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΓΕΝΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2009 1 ΘΕΜΑ 1 Α. Σχολικό βιβλίο Σελ. 251. Β. Σχολικό βιβλίο Σελ. 213. Γ. α. Σωστό β. Σωστό γ. Λάθος δ. Λάθος ε. Λάθος ΘΕΜΑ 2 Α. α. Έστω η εικόνα του στο μιγαδικό επίπεδο. Τότε θα έχουμε: η οποία είναι η ζητούμενη

Διαβάστε περισσότερα

G L (x) =Ax + B, G R (x) =A x + B οπότε από τις συνοριακές συνθήκες έχουμε

G L (x) =Ax + B, G R (x) =A x + B οπότε από τις συνοριακές συνθήκες έχουμε 1 ÈÖ Ð Ñ Για να είναι εφαρμόσιμη η μέθοδος της συνάρτησης Green, θαπρέπειηομογενής εξίσωση Ly =+ Ο.Σ.Σ. να έχει ως μοναδική λύση τη μηδενική. α) Η ομογενής εξίσωση y =έχει λύση y = A + B, από τις δεδομένες

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 1.3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Μονοτονία

Διαβάστε περισσότερα

ΘΕΜΑ Α A1 Να αποδείξετε το θεώρημα: Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα. τέτοιος ώστε: f x.

ΘΕΜΑ Α A1 Να αποδείξετε το θεώρημα: Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα. τέτοιος ώστε: f x. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 3 ΑΠΡΙΛΙΟΥ 6 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Μερικές Διαφορικές Εξισώσεις

Μερικές Διαφορικές Εξισώσεις Πανεπιστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 24-25, Διδάσκων: Α.Τόγκας ο φύλλο προβλημάτων Ονοματεπώνυμο - ΑΜ: ΜΔΕ ο φύλλο προβλημάτων Α. Τόγκας

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

και γνησίως αύξουσα στο 0,

και γνησίως αύξουσα στο 0, ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α1. Σχολικό βιβλίο σελ 6 (i) A. Σχολικό βιβλίο σελ 141 Α. Σχολικό βιβλίο σελ 46-47 Α4. α. Λ β. Σ γ. Λ δ. Σ ε. Σ ΘΕΜΑ Β Β1. Ισχύει D f επειδή 1 1 1 Για κάθε η f είναι παραγωγίσιμη

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006 ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 006 Θέµα ο. Για την διαφορική εξίσωση + ' =, > 0 α) Να δειχτεί ότι όλες οι λύσεις τέµνουν κάθετα την ευθεία =. β) Να βρεθεί η γενική λύση. γ) Να βρεθεί και να σχεδιαστεί

Διαβάστε περισσότερα

= lim. (P QP ) n x, x. E(Ex) = lim. (P QP ) m P x = Ex, EP x = lim

= lim. (P QP ) n x, x. E(Ex) = lim. (P QP ) m P x = Ex, EP x = lim Άσκηση: Η προβολή στην τομή δύο υποχώρων Αν P, Q είναι δύο ορθές προβολές σε έναν χώρο Hilbert H και R = P Q είναι η προβολή στην τομή im P im Q, δείξτε ότι, για κάθε x H, Rx = lim (P QP ) x = lim (P Q)

Διαβάστε περισσότερα

ΘΕΜΑ Α. Α1. Θεωρία -απόδειξη θεωρήματος στη σελίδα 262 (μόνο το iii) στο σχολικό βιβλίο.

ΘΕΜΑ Α. Α1. Θεωρία -απόδειξη θεωρήματος στη σελίδα 262 (μόνο το iii) στο σχολικό βιβλίο. ΙΟΥΝΙΟΥ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Θεωρία -απόδειξη θεωρήματος στη σελίδα 6 (μόνο το iii) στο σχολικό βιβλίο.

Διαβάστε περισσότερα

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,

Διαβάστε περισσότερα

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ .8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ - ΟΡΙΣΜΟΣ Όταν θέλουμε να εξετάσουμε ως προς τη συνέχεια μια συνάρτηση πολλαπλού τύπου, εργαζόμαστε ως εξής

Διαβάστε περισσότερα

Υψώνουμε την δοσμένη σχέση στο τετράγωνο οπότε

Υψώνουμε την δοσμένη σχέση στο τετράγωνο οπότε ΑΠΑNTHΣΕΙΣ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΘΕΜΑ A A Απόδειξη Σελ 53 Α Ορισμός Σελ 9 Α3 Ορισμός Σελ 58 Α4 α) Σ β) Σ γ) Λ δ) Λ ε) Λ ΘΕΜΑ Β Β 4 4 4 Άρα ο γεωμετρικός τόπος των εικόνων των μιγαδικών

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Ιουλίου Θέμα ( μονάδες) 4 Θεωρούμε τον Ευκλείδειο χώρο και τον υποχώρο του V που παράγεται

Διαβάστε περισσότερα

Κεφάλαιο 11. Πολυώνυμα Taylor Ορισμός

Κεφάλαιο 11. Πολυώνυμα Taylor Ορισμός Κεφάλαιο Πολυώνυμα Taylor Στο κεφάλαιο αυτό θα κάνουμε μια σύντομη εισαγωγή στα πολυώνυμα Taylor. Τα πολυώνυμα αυτά μπορούν να χρησιμοποιηθούν ως προσεγγίσεις μιας συνάρτησης γύρω από ένα σημείο, και έχουν

Διαβάστε περισσότερα

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με, y V και του πολλαπλασιασμού

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΕΙΚΟΣΤΟ ΠΕΜΠΤΟ ΜΑΘΗΜΑ Έστω μια δυναμοσειρά a (x ξ) = a 0 + a (x ξ) + a 2 (x ξ) 2 + με ακτίνα σύγκλισης R και με ρ = lim a. Αν x = ξ, η δυναμοσειρά συγκλίνει και έχει άθροισμα

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης Γ Λυκείου

Ασκήσεις Επανάληψης Γ Λυκείου Ασκήσεις Επανάληψης Γ Λυκείου Ασκήσεις Επανάληψης σε όλο το εύρος της διδακτέας ύλης Κων/νος Παπασταματίου Κ. Καρτάλη 8 (με Δημητριάδος) Τηλ. 4 598 Θε ματα Δεσμω ν 98- Επιμέλεια Κων/νος Παπασταματίου Σελίδα

Διαβάστε περισσότερα

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ)

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ) ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ (ΑΝΑΛΥΣΗ) Ι. Οι τριγωνομετρικές συναρτήσεις και οι αντίστροφές τους. Η συνάρτηση = sin. Η συνάρτηση sin : -, [,], = sin είναι, αφού (sin ) = cos >, για κάθε -,. Άρα

Διαβάστε περισσότερα

Αόριστο Ολοκλήρωμα Μέθοδοι Ολοκλήρωσης

Αόριστο Ολοκλήρωμα Μέθοδοι Ολοκλήρωσης 8 Αόριστο Ολοκλήρωμα Μέθοδοι Ολοκλήρωσης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμός Έστω μια συνάρτηση f ορισμένη σε διάστημα Δ. Ονομάζουμε αρχική συνάρτηση ή παράγουσα της f στο Δ, μια συνάρτηση F παραγωγίσιμη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Η έννοια του ορίου στο x ο Υπάρχουν συναρτήσεις οι τιμές των οποίων πλησιάζουν ένα πραγματικό αριθμό L, όταν η ανεξάρτητη μεταβλητή

Διαβάστε περισσότερα

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013 Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013 Απαντήσεις Θεμάτων Θεμα Α Α1. Θεωρία σχολικού βιβλίου σελ. 334-335

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο?

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο? ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] είναι όριο? β) Για να βρούμε το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] πρέπει

Διαβάστε περισσότερα

3.4 3.5 ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ

3.4 3.5 ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΚΕΦΑΛΑΙΟ Ο.. ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΜΕΘΟΔΟΛΟΓΙΑ : ΟΛΟΚΛΗΡΩΜΑΤΑ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Συμφώνα με το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού Θ.Θ.Ο.Λ ισχύει : I. d II. d III. d ln IV. d V. d VI. d VII. d

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ).

f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ). Κεφάλαιο 4 Συναρτήσεις μεταξύ μετρικών χώρων 4.1 Συνεχείς συναρτήσεις Εστω (X, ρ) και (Y, σ) δύο μετρικοί χώροι. Στην 2.2 δώσαμε τον ορισμό της συνέχειας μιας συνάρτησης f : X Y σε κάποιο σημείο x 0 X:

Διαβάστε περισσότερα

Σημεία Προσοχής στην Παράγραφο Ε1.

Σημεία Προσοχής στην Παράγραφο Ε1. Σημεία Προσοχής στην Παράγραφο Ε1. 1. Πότε μια πρόταση που περιέχει το ή είναι αληθής; Μια πρόταση που περιέχει τον σύνδεσμο "ή", ουσιαστικά αποτελείται από δύο ισχυρισμούς. Μπορεί και οι δύο ισχυρισμοί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ..3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να βρείτε το μέτρο των μιγαδικών

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016 ΘΕΜΑ Α Απαντήσεις στα Μαθηματικά Κατεύθυνσης 6 Α.. Σχολ. Βιβλίο, Θεωρία, σελ.6-(i) Α.. Σχολ. Βιβλίο, Θεωρία, σελ. 4 Α. Σχολ. Βιβλίο, Θεωρία, σελ. 46,47 Α.4. α. Λ β. Σ γ. Λ δ. Σ ε. Σ ΘΕΜΑ Β B. Η συνάρτηση

Διαβάστε περισσότερα