Introduction to the Standard Model of Particle Physics

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Introduction to the Standard Model of Particle Physics"

Transcript

1 Introduction to the Standard Model of Particle Physics February 3, 008

2 Contents Pre-requisits 3. Special Relativity Transition rates Quantum Field Theory 7. The free scalar eld The interacting scalar eld Spin Fields The interacting fermionic eld Quantenelectrodynamics QED The electromagnetic eld Lagrangian of QED Magnetic moment of electron Renormalisation Quantum Chromodynamics QCD 5 4. The QCD-Lagrangian Running coupling Connement Phase diagram of QCD Electroweak Theory Quantum Flavourdynamics, QFD Lagrange density of electroweak theory The Higgs sector Spontaneous Symmetry Breaking The mass matrix and the Cabibbo angles CP-Violation in the Standard model Beyond the Standard Model SM A hint of Supersymmetry A Auxiliary calculation to Fermi's trick 8

3 B Supplement 83 B. Landé-factor

4 Chapter Pre-requisits. Special Relativity The Minkowski space is a four dimensional space the following metric: g µν =. One point in the Minkowski space is a contravariant vector: x µ c t = x µ = 0,,, 3 and c = = x µ = t x The scalar product of space-time dierences. x µ = g µν x ν is a covariant vector. x y = x y µ g µν x y ν. = x y µ x y µ = x y 0 x y Symmetry transformation? What leaves x y µ x y µ invariant? Poincaré transformations Λ, a: x µ x µ = Λ µ ν x ν + a µ.3 Composition: Λ, a Λ, a = Λ Λ, Λ a + a.4 3

5 Invariance: In components: or Λ T g Λ = g.5 Λ ρ µ g ρσ Λ σ ν = g µν Λ σ µ Λ σ ν = g µ ν = δ µ ν Lorentz group Λ, 0: Component of unity orthochron: Parity P: x x det Λ = ± Λ µ σ = Λ σ µ.6 det Λ =, Λ 0 0 > 0.7 Λ P =.8 Time reversal T: x 0 x 0 Λ T =.9 Generators of Lorentz group: Boost along x-axis: γ Λ µ ν = γ v c = e ωk µ ν γ v c γ, γ = v c.0 rapidity ω v ω = arctanh c. 4

6 and generator K Lorentz algebra Boosts K i, rotations J i : K =. Transition rates [J i, J j ] = i ε ijk J k [K i, K j ] = i ε ijk J k.3 [J i, K j ] = i ε ijk K k Perturbation theory for computing decay rates and cross sections H 0 φ n = E n φ n.4 Perturbation H : V φ mφ n d 3 x = δ mn. H 0 + H ψ = i ψ t What is the transition rate from φ i at T to φ f at T?.5 φx = n c n t φ n x e ient From equation.5: dc f t dt c n T = δ ni.6 φ t = ih 0 + H φ = i n c n t d 3 r φ f H φ n } {{ } f H n = i f H i e ie f E it + OH e ie f E nt c i t = + OH t c f t = i dt f H i e ie f E it.7 T 5

7 Transition amplitude A fi : A fi = c f T A fi = i T dt f H i e ie f E it.8 or T A fi T = i φ f xh φ i x d 4 x.9 φ n x = φ n xe ient Transition probability: H time-independent lim A fi = f H i T T T dt e ie f E it T T dt e ie f E it Fermi s trick = T π f H i δe f E i.0 Transition rate Γ: A fi Γi f = lim = π f H i δe f E i. T T Integrating over nal states ρ: phase space density: Γ [i f] = de f ρe f π f H i δe f E i. Γ [i f] = π f H i ρe i.3 In general: Γ [i f] = π T fi ρe i T fi = f H i + f H n n H i. 6

8 Chapter Quantum Field Theory. The free scalar eld Spin 0, neutral particles, e.g. Π 0, described by a real scalar eld ϕ: Property under Lorentz transformations: ϕ x = ϕx. ϕ x = ϕx scalar. The equation of motion, free, up to second order in derivatives unique if local is called Klein-Gordon equation: µ µ + m ϕx = 0.3 µ µ = t = t = = p µ. : d Alembert operator, m : mass of the scalar particle The Klein-Gordon equation can be derived out of Boosts from the rest frame equation of motion: E m ϕx = 0 unique.4 The most fruitful approach to Elementary Particle Physics is via the action principle. Lagrange density of a free scalar eld: Lx = [ µϕx µ ϕx m ϕ x]..5 7

9 Action S: S[ϕ] = d 4 x Lx = d 4 x µ ϕx µ ϕx m ϕ x.6 Action principle: or and δs[ϕ] = 0 δs δϕx = 0 δϕy δϕx = δ4 x y δ µ ϕy δϕx results in the following equation which equals.3. = y µ δ 4 x y.7 L ϕ L µ µ ϕ = 0.8 Classical solutions of the Klein-Gordon equation, take e.g. ϕ = ϕx : Solutions are plane waves: + m ϕx = 0. ϕx = e ±ikx.9 kx = k µ x µ k = m, k 0 = ±ω = ± k + m. General solution: linear superposition of plane waves. d 3 k ϕx = e ikx π 3 α ω k + e ikx α k.0 }{{} d 4 k π 4 δk m ω k = k. 8

10 QFT: ϕx φx operator The expectation value φx is a classical eld. φ obeys canonical commutation relations: [φ x, t, φ y, t] = i δ 3 x y.. φ y, t is the canonical conjugated momentum. Let a be the lattice parameter of a crystal. }{{} Classical mechanics a a 0 eld theory QM [x, p] = i a 0 QFT [φ, Π 0 ] = i φx still obeys the Klein-Gordon equation + m φ = 0. φx = d 3 k [ π 3 e ikx a ω k + e ikx a ] k. Inserting. into. results in [ a k, a ] k = π 3 ω δ 3 k k.3 [ a k, a ] [ k = 0 = a k, a ] k Fock space 0 : normalised vacuum state: 0 0 = a k 0 = 0. 0 is the lowest energy state! a annihilates the vacuum. Heisenberg picture: t 0 = 0.4 All states are generated by applying a, a on 0. a, a are annihilation and creation operators, respectively. One particle states: k = a k 0..5 The states k are orthogonal: k k = 0 a k a k 0 = 0 [a k, a k] 0 = π 3 ω δ 3 k k.6 9

11 General one-particle state: f = d 3 k π 3 ω f k a k 0.7 Example: two state system spin With aa + a a = a 0 = a 0 = 0 a = 0 Realisation: 0 0 a = = a = =. 0 Realised in spin system. Pauli matrices: σ 0 = 0, σ = 0 i i 0, σ 3 = 0 0. Note that: [σ i, σ j ] = i ε ijk σ k {σ i, σ j } = δ jk σ ± = σ ± iσ 0 σ + =, σ 0 0 = N-Particle states particles: a k a k 0 3 particles: a k 3 a k a k 0..9 Have Bose symmetry, as a k a k = a k a k.0 0

12 Energy-momentum is additive. Take some state β, then a k β is a state one additional particle momentum k. Annihilation: a k β is a state, where a particle momentum k is removed from the state β. Example a general particle state f see equation.7: a k f > = a d 3 k k π 3 f k a k 0 ω d 3 k = π 3 f k [a k, a k ] ω }{{} Interpretation of φx:.4π 3 ωδ 3 k k = ωf k 0. states dened particle number n have vanishing expectation values of φ, as φ creates and annihilates a particle, see equation.. This follows from 0 a 0 = 0 a 0 = 0 k a k = k a k = φx 0 = coherent states: φ behaves like a classical wave. α = { N exp d 3 } k π 3 ω α ka k 0 }{{} α 0 { N = exp and α k coecient function. d 3 } k π 3 ω α k = α 0 α 0.3 α α = via 0 α k α k m α k n... α k 0 δ [ nm ωπ 3 ] n α φx α = d 3 k { π 3 e ikx α ω k + e ikx α } k.4

13 Using [ d 3 n! ak k ] n π 3 ω α k a k 0 = = [ d n! n α k 3 k π 3 ω α k a k = α k n! [ d 3 k π 3 ω α k a k ] n 0 see equation.6 ] n 0.5 and similarily [ d 3 k ] n [ n! π 3 ω α k a k a d 3 k ] n k = n! π 3 ω α k a k α k.6 Symmetries: By partial integration of equation.5 one gets: S[φ] = d 4 x Lx = d 4 x φx[ µ µ m ]φx..7. Invariance of S[φ] under orthochronous Poincaré transformations and x µ = Λ µ νx ν + a µ see equation.3 φ x = φx.8 µ µ = µ µ Unitary Representation: UΛ, a Λ T gλ = g + m φ x = + m φx = 0 φx = φ x = U Λ, a φx UΛ, a UΛ, a φx U Λ, a = φx = φλx + a.9 On Fockspace: UΛ, a 0 = 0 UΛ, a a k U Λ, a = e ik a a k k µ = Λ µ νk ν

14 . Invariance of S[φ] under Parity transformations x µ = Λ µ P ν xν.30 Λ P =. Unitary Representation intrinsic parity η P = ±. On Fockspace: UP φx U P = η P φx UP φ x, t U P = η P φ x, t.3 UP 0 = 0 UP a k U P = η P a k.3 Parity reverses 3-momentum of particle: Scalar elds: η P = + Pseudo scalar elds: η P = e.g. Π 0 Parity: x x p p What about Parity transformations of pseudovectors like e.g. the angular momentum L: L = x p? So what about e.g. x L or p L? L x p pseudo vector x L x L p L p L pseudoscalars 3. Invariance of S[φ] under time reversal x µ = Λ µ T ν xν.33 Λ T =. Anti-unitary transformation V 3

15 a b c V c a + c b = c V a + c V b.34 V V = V V =.35 a V b = b V a.36 We have [ V ΛT φ x, t V Λ T ] = φ x t.37 On Fockspace: V Λ T 0 = 0 V Λ T a k V Λ T = a k.38 Note that a = V Λ T a b = V Λ T b.39 and a b = b a = a b Charge conjugation: complex., 3., 4. CPT-invariance is required for any local, relativistic QFT. But CP, P, T violation is permitted and realised.. The interacting scalar eld In this chapter some basic concepts on scattering/perturbation theory are introduced. Interaction of a real scalar eld a static potential V x, e.g. a localised potential produced by a nucleus. Langrange density H = H 0 + H : Lx = L 0 x + L x.4 = ϕx µ µ m ϕx }{{} V xϕ x }{{} L 0x L x L x = V xϕ x L 0 x is the Lagrange density of a free scalar eld. interaction density. QM revisited: interaction picture L x is the Lagrange i t t = H t t.4 4

16 H is the interaction Hamiltonian see.5. t < T = i adiabatic t > T = f the solution t 0 = T where Ut, t 0 describes a unitary time evolution: t Ut, t 0 = + i dt H t t } 0 {{} = T exp{ i so that the time is ordered. We have rst order term, see page 5 t Iterate.4 in its innitesimal form: This denes the S-Matrix: t = Ut, t 0 t i t t 0 dt t t 0 dt H t H t +... t 0 dt H t }.44 i t Ut, t 0 = H tut, t 0.45 t + t = t i t H t t S = = i t H t t lim t 0 t + Ut, t Back to eld theory: H t = d 3 x Lx, t.47 = d 3 x V x :φ x, tφ x, t: where φ x, t is a operator, which includes annihilation and creation of particles and : : denotes normal ordering: :a k a k : = + a k a k..48 5

17 Example: transition amplitude for transition We have Consider weak interactions: Then f S i = δ fi i from i = k = a k 0 at t 0 to f = k = a k A fi = f S i = k S k = k i dt H t +... k R = k + i d 4 x L x +... k.50 V x 0. d 4 x V x k φx 0 0 φx k..5 The factor in.5 stands for the two permutations of a and a, included in φ x, which contribute. They are: a a and aa, because there is neither an overlap between three particles and one particle nor between one and 0, the annihilated vacuum state 0. Furthermore δ fi = f i = k k = 0 a k a k 0 = 0 [a k, a k] 0 = π 3 ω δ 3 k k.5 The last equation follows from equation.4 on page 9. Interpretation:. δ fi : no interaction k = k.. state k scatters once at V x into state k. d 3 k { 0 φx k = 0 π 3 ω e ik x a k + e ik x a } k a k 0 0 a = a 0 = 0 6

18 follows and similarily d 3 k 0 φx k = 0 = π 3 d 3 k π 3 ω e ik x ω e ik 0 [a k, a k] 0 x ω π 3 δ 3 k k = e ikx.53 k φx 0 = e ik x..54 Interpretation: Amplitudes for annihilating/ creating particles momentum k/ k at spacetime point x. We infer: A fi = f S i = δ fi i d 4 x V xe ik x e ikx [ ] = δ fi + i dt d 3 x V xe i k k x e ik 0 k 0 x 0 = δ fi i δk 0 k 0 Ṽ q.55 Ṽ q = d 3 x V xe i q x Interpretation revisited: q = k k. 3-momentum transfer.56. State k scatters at V x 'strength' Ṽ q into state k where q = k k.. Energy is conserved as k 0 = k 0. Final remark: Relation between the scattering amplitudes in momentum space and the form/ range of potential in space-time: Example: V x = V 0 π 3/ Ṽ q = V 0 exp { l 3 exp { } l q } x l The potential V x and its Fourier transformation V q are plotted in gures. and. for one V 0 -l-combination. 7

19 Figure.: Potential V x for V 0 =000, l=0.5 Figure.: Fourier transformed potential V q for V 0 =000, l=0.5 8

20 Remark on self-interaction and Feynman rules: Figure.3: Feynman diagram for self-interaction. V x :φ x, tφ x, t: λ :φ x, tφ x, tφ x, tφ x, t:.59 4! 4, 3 4! : :, 4, 3 4! a a a a, 4 3 λ aa 4 Remark on complex elds: φ = φ + i φ.60 L 0 = φ x µ µ m φx.6 L = V xφφ.6 L = L 0 + L In general: L = L [φφ ] It follows that L is invariant under global U-transformation of φ: φx e iα φx.63 9

21 µ α = 0. φ x φ x e iα L[φ] L[φ e iα ] = L[φ].64 Noether theorem: µ j µ = 0 equation of motion.65 j µ = L δφ µ φ.66 Q = d 3 x j 0 Q = 0 Noether theorem for internal Symmetry: L φ L µ = 0 equation of motion µ φ δl = L φ δφ + L µ φ µδφ L = µ δφ + L µ φ µ φ µδφ L = µ δφ = 0 µ φ }{{} j µ µ j µ = 0 and Q = d 3 x j 0 = + d 3 x i j i = 0 No boundary terms..3 Spin Fields Motivation: Algebra of Lorentz group, see.4 on page 5. Boosts K i, Rotations J i N i = J i + i K i N i = J i i K i.67 0

22 SU-algebra [ ] N i, N j = i ε ijk N k.68 We have -dim. representations of the Lorentz group, the spin representations. Example: { } i Λ L = exp σ iω i iv i { } i Λ R = exp σ iω i + iv i left-handed right-handed.69 ω : rotation, v : boost, σ i : Pauli matrices The left-handed spin representation Λ L can be mapped to the right-handed spin representation Λ R by parity transformation. Dirac equation: γ µ are 4 4 matrices Standard representation: ψx = ψ x. ψ 4 x iγ µ µ mψx = 0.70 {γ µ, γ ν } = γ µ γ ν + γ ν γ µ = g µν Cliord algebra.7 γ 0 = γ i = σ i σ i 0 Pauli matrices σ i see.8 on page 0. Remarks:. ψx consists of a two-component left-handed and a two-component right-handed spinor. Chiral representation: γ 0 = γ i = σ i σ i

23 . γ µ transforms as a vector under Lorentztransformations. Equation of motion.70 from Lagrange density: the Dirac conjugate ψ = ψ γ 0. L D = ψ i γ µ µ m ψx.74 L D ψ L D µ = L D = 0.75 µ ψ ψ For the result of equation.75 see equation.70. Also L D L ψ D µ µψ = 0 m ψ i µ ψ γ µ = 0 Classical solution: i γ µ µ m i γ ν ν m ψx =.76 {γµ, γ ν } µ ν +m ψx }{{}}{{} g µν ν µ = [g µν ν µ + m ] ψx = [ + m ] ψx.77 We have ψx e ±ipx plane wave.78 i γ µ µ m e ±ipx = p m e ±ipx.79 p := γ µ p µ = γ 0 p 0 γ p γ p γ 3 p 3. A solution to the Dirac equation reads, s = ± ψx u s p e ipx ψx v s p e ipx.80 p m u s p = 0 = p + m v s p..8 Equation.8 is satised u s = p 0 + m v s = p 0 + m χ s σ p p 0 +m χ s σ p p 0 +m ε χ s ε χ s.8

24 χ = 0, χ = 0 0, ε = 0 p 0 = + p + m, σ : Pauli matrices ε describes the metric in spin space. Additional identity: u s p ū s p = p/ + m s=± v s p v s p = p/ m.83 s=± As for the scalar eld the general solution is given by the Fourier integral: d 3 p { ψx = e ipx π 3 v s p βs p + e ipx u s p α s p }.84 p 0 s=± β s and α s are independent of each other. One gets the Hamiltonian density H D via a Legendre transformation of L D : H D = Π ψ L D It follows Π = L D ψ, Π = L D ψ = 0 Π = ψ i γ 0 = i ψ..85 H D = ψ i γ 0 ψ ψ i γ µ µ m ψ = ψ i γ + m ψ.86 Hamiltonian: H D = = d 3 x ψ i γ + m ψ d 3 x ψ i γ 0 γ + γ 0 m ψ.87 =. Inserting.84 into.87 leads to d 3 p H D = π 3 α p s p α s p p 0 β s p βs p p s=± 3

25 from H D = γ 0 i γ + m u s p = p 0 u s p γ 0 i γ + m v s p = p 0 v s p.89 d 3 p π 3 s=± α s p α s p β s p β s p.90 Negative energy states lead to unbounded Hamiltonian, no classical interpretation! Quantisation: ψx = d 3 p π 3 p 0 s=± anti-commutation relations { e ipx v s p b s p + e ipx u s p a s p }.9 {a r p, a s p } = δ rs π 3 p 0 δ 3 p p {b r p, b s p } = δ rs π 3 p 0 δ 3 p p.9 and Remarks: {a, a } = {b, b } = {a, b } = {a, b } = The anti-commutation relations ACR are a manifestation of the Spin-statics theorem: Spin n+ particles have fermi-statistics ACR, Pauli principle, spin n particles have Bose-statistics.. Electric charge Noether: J µ = e ψ γ µ ψ Q = d 3 x J 0 = e d 3 x ψ ψ = d 3 p e π 3 p 0 a s p a s p + b s p b s p.94 s=± Please notice the positive sign in equation.94, that turns into a minus sign again! Fockspace: Construction as for scalar eld, but ACR anti-symmetric states 4

26 0 : normalised vacuum state, 0 0 = a s p 0 = 0 b s p 0 = 0 One-particle states: e p, s = a s p 0 e + p, s = b s p 0 e p, s / e + p, s describe electron/ positron momentum p and spin s = ± s z in rest-frame. Remark: Prediction of e +, e identical mass is triumpf of the Dirac theory. Orthogonality: e p, s e p, s = 0 a s p a s p 0 = 0 {a s p, a s p} 0 = π 3 p 0 δ s s δ 3 p p Two-particle states: e p, s e p, s = a s p a s p 0 Pauli principle e p, s e p, s = a s p a s p 0 N-particle states: = a s p a s p 0 = e p, s e p, s.95 a s p... a s n p n b r q... b r m q m 0 Finally, ψx = d 3 k π 3 k 0 r=± { e ikx v r k b r k + e ikx u r k a r } k 0 ψx e p, s = u s p e ipx e + p, s ψx 0 = vs p e ipx ψ: Annihilation of an electron/ creation of a positron at x. 0 ψx e + p, s = v s p e ipx e p, s ψx 0 = ūs p e ipx 5

27 ψ: Annihilation of a positron/ creation of an electron at x. Symmetries: S D [ψ, ψ] = d 4 x ψ i γ µ µ m ψ.96. Invariance of S D [ψ, ψ] under orthochronous Poincaré transformations: where S satises and U is unitary. Dirac adjoint spinor: x µ = Λ µ ν x ν + a µ see.3.97 UΛ, a ψx U Λ, a = S Λ ψλx + a S Λ γ µ SΛ = Λ µ ρ γ ρ.98 UΛ, a ψx U Λ, a = ψλx + a SΛ.99 The invariance of S is to show: d 4 x ψ i γ µ µ m ψx d 4 x ψλx + a S i γ µ µ m ψλx + a = d 4 x ψx S i γ µ ν Λ µ ν m S ψx = d 4 x ψx S i Λ ν µ γ µ ν m S ψx = d 4 x ψx S i S γ ν S ν m S ψx = d 4 x ψ i γ µ µ m ψx.00 General bilinears: a ψ ψ scalar: m ψ ψ pseudo scalar later b ψ γ µ ψ vector pseudo vector later c ψ σ µν ψ tensor, σ µν = i [γµ, γ ν ]. Invariance of S D [ψ, ψ] under Parity Λ P = 3 see equation.8.0 6

28 Unitary representation: UP ψ x, t U P = γ 0 ψ x, t UP e p, s = e p, s e +, e are parity 'eigen states'. Relative intrinsic parity can be measured: UP e + p, s = e + p, s.0 3. Invariance of S D [ψ, ψ] under time reversal Λ T = see equation Anti-unitary transformation V : V T ψ x, t V T = ST ψt x, t.04 and ST = i γ γ 5.05 γ 5 = i 4! ε µνρσ γ µ γ ν γ ρ γ σ γ 5 = i γ 0 γ γ γ 3 ε 03 = {γ 5, γ µ } = 0 We have V T e p, s = s e p, s V T e + p, s = s e + p, s Charge conjugation C and C : e + e UC ψx U C = SC ψ T x.07 SC = i γ γ 0 0 ε = ε 0 0 ε = 0 UC e p, s = e + p, s.08 UC e + p, s = e p, s.09 7

29 Bilinears: scalar: ψ ψx generator pseudo-scalar: i ψ γ 5 ψ generator vector: ψ γ µ ψ 4 generators pseudo-vector: ψ γ5 γ µ ψ 4 generators 3 tensor: ψ σ µν ψ 6 generators 6 generators of the Lorentzgroup Remark: σ µν = i [γµ, γ ν ].0 γ µ γ ν γ ρ ε µνρσ γ σ γ σ γ 5 γ σ.4 The interacting fermionic eld a rst glimps of QED Classical: Langrangian density Lx = L D x + L x. = ψxi γ µ µ mψx + e A µ x }{{} ψx γ µ ψx }{{} L D x L x L x = e A µ x ψx γ µ ψx. Since ψxγ µ ψx transforms as a vector under Lorentz transformations, A µ x has to transform as a vector: A µ is a vector eld. Remark: Lx is invariant under Quantisation in interaction picture A µ x Λ µ ν A ν x.3 ψx e ie αx ψ ψx ie αx ψe A µ x A µ x + µ αx j µ = e ψ γ µ ψ.4 i t t = H t t.5 8

30 H t = d 3 x L opx.6 = e d 3 x A µ x : ψxγ µ ψx: A µ can be either a background eld classical or a quantum eld A µop : it is bosonic as a vector spin and commutes ψ, ψ, also: :A µ : = A µ creation/ annihilation operators a µ, a µ. Subtleties concerning the quantisation of A µ later, physical state γ a 0 Equation.5 is solved by t = Ut, t 0 t 0.7 { t } { t } Ut, t 0 = T exp i H t dt = T exp ie d 4 x A µ : ψγ µ ψ : t 0 t 0.8 L couples e ± to the electromagnetic eld A µ, the photon. Similarily we couple µ ± and τ ± to A µ : ψ e ψx = ψ µ ψ τ.9 and L D = ψ e iγ µ µ m e ψ e + ψ µ iγ µ µ m µ ψ µ + ψ τ iγ µ µ m τ ψ τ.0 Computation of transition amplitude Initial state at t 0 : m e = 0, 5 MeV m µ = 05, 7 MeV m τ = 784 MeV L x = e [ ψe A ψ e + ψ µ A ψ µ + ψ τ A ψ τ ]. t 0 = i = e p... e p n e + q... e + q m γk... γk l. and µ s, τ s. Final state at t + : t = f = e p... e p ne + q... e + q mγk... γk l.3 9

31 e.g.: µ p... µ p nµ + q... µ + q mγk... γk l This is related to the S matrix element. Here, we are interested in In general: e p γk l e p γk l e + e µ + µ. e + k + e k µ p + µ + p S fi = f t = = lim t 0 t + = f T exp Expanding T exp{i d 4 x L } leads to First order: t = Ut, t 0 i f Ut, t 0 i.4 { ie L x = ea µ : ψγ µ ψ :. } d 4 xa µ : ψγ µ ψ : i S fi = f i +ie f T d 4 xa µ : }{{} ψγ µ ψ : i + δ fi + ie f d 4 x d 4 x T L x L x i +! ien f d 4 x... d 4 x n T L x... L x n i + n! d 4 x f A µ x : ψxγ µ ψx: i.6 d 4 x f... a µ +... a µ... b sb r +... a sb r +... b s a r +... a sa r i We have the following processes: Time ordered diagrams. Scattering of e + emission/absorption of γ.. Creation of e + e pairs emission/absorption of γ. 30

32 3. Annihilation of e + e pairs emission/absorption of γ. 4. Scattering of e emission/absorption of γ. Higher order processes are composed out of rst order processes, e.g. second order or i γ, f γ Problem: Convergence of expansion in i e + e f µ + µ α = e 4π = 37. Series is an asymptotic series: does not converge. All orders are innite renormalisation. Programme: Write down all diagrams for a given order in α for matrix element f S i. Sort out combinatorics normal ordering, compute the remaining integrals. Feynman rules/ Loop integrals Reminder: dierential cross section page 6 dσ = dγ[i f] Φ = π4 V 4 δ 4 p A + p B p C p D A fi dρ f Φ for two particle scattering. Φ: particle ux, normalisation of the states i, f and A fi = M fi = f H i..7 Example: V d 3 p C V d 3 p D dρ f : π 3 p 0 C π 3 p 0 D e + e µ µ + Cross section dσ: dσ = V d 3 p 3 V d 3 p 4 T π 3 p 0 3 π 3 p 0 4 F µ + p 4 µ p 3 S e + p e p }{{}}{{} spins S-Matrix element phasespace density F is the incident particle ux..8 3

33 Dierential cross-section dσ per unit volume V for e e + µ µ + : dσ = T F d 3 p 3 π 3 p 0 3 d 3 p 4 π 3 p 0 4 µ + p 4 µ p 3 S e + p e p.9 spins incident particle ux F, and unit volume V =. Consider the term between the absolut value bars in.9 rst: S-Matrix: S = T e ie d 4 x A νx : ψγ ν ψx: ψ γ ν ψx = ψ e γ ν ψ e x + ψ µ γ ν ψ µ x. Expansion of S-matrix element for e e + µ µ + :.30 µ + p 4 µ p 3 S e + p e p = = ie µ+ p 4 µ p 3 T d 4 x d 4 x A ν x A µ x Consider the states in.3: Fermionic eld operator d 3 p ψx = π 3 p 0 A µ commutes ψ, ψ: : ψ γ ν ψx: : ψ γ µ ψx : e + p e p + Oe 4.3 e + p e p = b e p a e p 0 s=±/ { e ipx v s p b p + e ipx u s p a p }.3 µ + p 4 µ p 3 S e + p e p = = ie d 4 x d 4 x 0 T A ν x A µ x 0 µ + p 4 µ p 3 T : ψ γ ν ψx: : ψ γ µ ψx : e + p e p + + Oe 4 = ie d 4 x d 4 x 0 T A ν x A µ x 0 µ + p 4 µ p 3 : ψ γ ν ψx: : ψ γ µ ψx : e + p e p + + Oe 4 = ie d 4 x d 4 x 0 T A ν x A µ x 0 µ + p 4 µ p 3 : ψ µ γ ν ψ µ x: : ψ e γ µ ψ e x : e + p e p + + Oe

34 Counting annihilation/creation operators: a, b : µ + p 4 µ p 3 : ψ µ γ ν ψ µ x: : ψ e γ µ ψ e x : e + p e p = = µ + p 4 µ p 3 : ψ µ γ ν ψ µ x: 0 0 : ψ e γ µ ψ e x : e + p e p.34 Further reduction of the last part of.34: 0 : ψ e γ µ ψ e x : e + p e p = 0 : ψ e γ µ ψ e x : b e p a e p 0.35 For the fermionic eld operator ψx see.3. Further reduction of the right side of.35 leads to 0 : ψ e γ µ ψ e x : b e p a e p 0 = 0 ψ e x b e p 0 γ µ 0 ψ e x a e p 0.36 Expectation value 0 ψ e 0 ψ e x a e p 0 = d 3 p π 3 p 0 e ipx s=±/ the commutator trick: 0 ψ e x a d 3 p e p 0 = π 3 p 0 e ipx s=±/ u s p 0 a p a e p 0.37 u s p 0 {a e p, a e p } For more information about the result of the anti-commutation relation above see.9 on page 4. So one gets for 0 ψ e : {a s p, a r p } = π 3 p 0 δ rs δ p p 0 ψ e x a e p 0 = e ipx u e p.39 Analogous one can calculate the expectation value 0 ψ e +. In summary the expectation values 0 ψ e, 0 ψ e + : 0 ψ e x a e p 0 = e ipx u e p.40 0 ψ e x b e p 0 = e ipx v e p.4 It follows a further simplication of.35: 0 : ψ e x γ µ ψ e x : b e p a e p 0 = v e p γ µ u e p e ip+px Similarily for the muon: b µ p 4 a µ p 3 : ψ µ x γ ν ψ µ x: 0 = ū µ p 3 γ ν v µ p 4 e ip3+p4x.44 33

35 Plug the results in.3: µ + p 4 µ p 3 S e + p e p ie d 4 x d 4 x 0 T A ν x A µ x 0 e ip3+p4x e ip+px ū µ p 3 γ ν v µ p 4 v e p γ µ u e p.45 Now consider the photon propagator: 0 T A ν x A µ x 0 = ig µν lim ɛ 0 + d 4 k e ikx x π 4 k + iɛ Momentum conservation d 4 x d 4 x d 4 k e ik p px e ik p3 p4x π 4 k + iɛ the square of the total energy s = p + p leads to µ + p 4 µ p 3 S e + p e p = s π4 δp + p p 3 p 4.46 ig µν s ie π 4 δp + p p 3 p 4 ū µ p 3 γ ν v µ p 4 v e p γ µ u e p i s ie π 4 δp + p p 3 p 4 ū µ p 3 γ ν v µ p 4 v e p γ ν u e p.47 Now the term between the absolut value bars in.9 is calculated. The next step is the averaging over the spins in the initial and the nal state see.9: ū µ,s p 3 γ ν v µ,s p 4 v e,r p γ ν u e,r p = 4 s,s,r,r = ū µ,s p 3 γ ν v µ,s p 4 v µ,s p 4 γ ρ u µ,s p 3 s,s v e,r p γ ν u e,r p ū e,r p γ ρ v e,r p.48 r,r [ ] v r p γ ν u r q = u r q γ ν γ 0 v r p = ū r q γ ν v r p. Consider the rst sum in.48 rst: ū µ,s p 3 γ ν v µ,s p 4 v µ,s p 4 γ ρ u µ,s p 3 = Trp/ 3 + m µ γ ν p/ 4 m µ γ ρ see.83 s,s 34

36 Similarily one gets for the second sum in.48: v e,s p γ ν u e,s p ū e,s p γ ρ v e,s p = Trp/ m e γ ν p/ + m e γ ρ s,s In summary one gets as an intermediate result for the average over the spins in the initial and the nal state see.48: ū µ,s p 3 γ ν v µ,s p 4 v e,r p γ ν u e,r p = 4 s,s,r,r = [p/ 4 Tr 3 + m µ γ ν p/ 4 m µ γ ρ] ] Tr [p/ m e γ ν p/ + m e γ ρ.49 In high energy limit s m µ, m e one can drop m e, m µ in the traces of.49. So.49 turns into ū µ,s p 3 γ ν v µ,s p 4 v e,r p γ ν u e,r p = [ 4 4 Tr p/ 3 γ ν p/ 4 γ ρ] ] Tr [p/ γ ν p/ γ ρ s,s,r,r With the traces Tr γ α γ ν γ β γ ρ = 4 g αν g βρ + g ρα g νβ g αβ g νρ.50 one gets for.48: [ ] ū µ,s p 3 γ ν v µ,s p 4 v e,r p γ ν u e,r p = 4 p p 4 p p 3 +p p 4 p p 3 4 s,s,r,r High energy limit revisited p p 3 = p p 4 = s 4 cos ϑ, p p 4 = p p 3 = s + cos ϑ 4 scattering angle one gets the nal result for.48: 4 cos ϑ = p p 3 p p 3.5 s,s,r,r ū µ,s p 3 γ ν v µ,s p 4 v e,r p γ ν u e,r p = s + cos ϑ.5 Back to the dierential cross-section dσ per unit volume see.9. When one plugs in all results calculated above one gets for the dierential cross-section dσ per unit volume dσ = T F d 3 p 3 π 3 p 0 3 d 3 p 4 π 3 p 0 [π 4 δp + p p 3 p 4 ] e4 s 4 s + cos ϑ.53 35

37 With Fermi's trick and α = e 4π [π 4 δp + p p 3 p 4 ] = π 4 δp + p p 3 p 4 V T = V T π 4 δp + p p 3 p 4 d 4 x e ixp+p p3 p4 one gets for the dierential cross-section dσ per unit volume dσ = α F d 3 p 3 p 0 3 d 3 p 4 p 0 δp + p p 3 p 4 + cos ϑ.54 4 In high energy limit and the CMS-system, i.e. p + p = 0, one gets for the dierential cross-section p 0 + p 0 s dσ dω 3 dσ dω 3 = α F With the ux F 0 d p 3 p 3 the dierential cross-section d 3 p 4 p 4 δ s p 3 p 4 δ p 3 + p 4 + cos ϑ. F = p 0 p 0 p p 0 dσ dω 3 = v A E A E B.55 dσ = α dω cos ϑ.56 dσ and the total cross-section σ = dω 3 dω 3 σ total e e + µ µ + = 4πα 3.57 for e e + µ µ + are calculated. 36

38 Chapter 3 Quantenelectrodynamics QED 3. The electromagnetic eld Maxwell's equations: µ F µν x = j ν x 3. ε µνρσ ν F ρσ x = 0 3. eld strength F µν and 4-vector potential A µ x. 3.3 trivially satises 3.: F µν x = µ A ν x ν A µ x 3.3 ε µνρσ ν ρ A σ = 0 j ν x is the 4-vector current density: j ν x = ρx jx 3.4 and F µν x = 0 E E E 3 E 0 B 3 B E B 3 0 B E 3 B B We use Heaviside units rational, that is removing factors of 4π from the 37

39 equation. Maxwell's equations see 3. reads 3.4 and 3.5: Relation to cgs units: E = ρ B = E t + j 3.6 B = 0 E = B t α = e H 4π c 37 e H = 4π e cgs 3.7 e cgs = e H 4π = e SI 4πε E H = E cgs 4π B H = B cgs 4π The most important values in the cgs-system: Remarks: e cgs = g cm 3 /s, c = cm/s cgs = erg s, erg = g cm /s = 0 7 J. Inhomogeneous Maxwell equation 3.: conserved current! 3.9 ν µ F µν = ν j ν = A µ carries a redundancy, the gauge degrees of freedom: F µν is invariant under A µ x A µ x + µ αx F µν F µν + [ µ, ν ] α = F µν 3. This redundancy can be removed by imposing a constraint on A µ gauge xing condition: Lorentz gauge Landau: µ A µ x = 0 µ F µν = A ν = j ν 3. consistent 3.0. For j ν = 0, each component A ν satises the Klein-Gordon equation. 38

40 Lagrangian density: Lx = 4 F µνx F µν x A µ x j µ x 3.3 Quantisation of free eld: A µ x = d 3 k [ π 3 e ikx a k µ k + e ikx a µ ] k k 0 = k, and the commutators [a ν k, a µ k] = g µν π 3 k 0 δ k k Remarks: [a ν k, a µ k ] = 0. We have the Klein-Gordon equation: but = [a ν k, a µ k ] 3.5 A µ x = µ A µ x ik µ a µ k µ [a ν k, a µ k] = k ν π 3 k 0 δ k k µ F µν [A] Can we do better than 3.4? No, it was not possible to construct A op µ A opµ = 0 + covariant.. Fockspace: vacuum = one particle states norm a µ k 0 = a µ k 0 0 a ν k a µ k 0 = 0 [a ν k, a µ k] = g µν π 3 k 0 δ k k µ = ν = i : positive norm states µ = ν = 0 : negative norm states No physical Hilbertspace no probability interpretation. 39

41 Remedy: Fockspace contains physical subspace F phys µ F µν [A µ ] physical states! = 0 or Evidently 0 F phys. Construction of F phys : k µ a µ k physical states = µ A µ physical states = 0 α 0 k = k kµ a µ k = a 0 k ˆk a k ˆk = k k. α k = ê a k α k = ê a k α 3 k = a 0 k + ˆk a k 3. ê i ˆk = 0 ê i ê j = δ ij Commutators: Physical states: [α 0, α 0 ] = [α 3, α 3 ] = 0 [α 0, α i ] = [α 3, α i ] = 0 [α 0, α ] = π3 k 0 δ [α i, α i ] = π3 k 0 δ 3. α 0 k physical state = One particle states: α 0 k 0, α k 0, α k 0 but zero-norm states 0 α 0 k α 0 k 0 = Physical Hilbertspace H: for = 0 40

42 H = F phys. We have two one particle states in H: k, ε = α k Polarisation ê, ê, g and 0 ε i = êi i =, 3.6 General: k, ε ε 0 = 0 and ε k = 0, ε C 3 E- and B-eld operators: E i x = F 0i = 0 A i i A 0 Ex = = Bx = d 3 k { π 3 ik 0 a k ˆk a 0 e ikx a ˆk a 0 e ikx} 0 d 3 k π 3 k 0 ik 0{ ê α k + ê α k e ikx ê α k + ê α k e ikx} d 3 k {ˆk π 3 ik 0 α0 k k e ikx ˆk α 0 k e ikx} 0 d 3 k π 3 i k { kx ê i α i k e ikx ê i α i k e ikx} Hamiltonian depends on α i, α i. From follows the canonical momentum Hamiltonian density Lx = 4 F µν F µν = E B 3.8 Π i = L 0 A i = F 0i = E i 3.9 H = Π 0 A + 4 F µν F µν = E E B + E A 0 = E + B + EA

43 The last equation follows from E = 0 for ρ = 0. H = d 3 x H = d 3 x E + B 3.3 Use eld operators H d 3 k d 3 k [ π 3 π 3 k 0 k 0 ik0 α i k α i k + α i k α i ] k π 3 δk k = d 3 k [ π 3 k 0 k0 α i k α i k + α i k α i ] k 3.3 Normal ordering causes α i k α i k + α i k α i k to become α i k α i k. Inserting the result of normal ordering in equation 3.3 leads to: but... H d 3 k π 3 k 0 k0 α i k α i k 3.33 Interlude: The Casimir eect Experiment: Lamoreaux et al 997 Solution for E, B: plane waves Boundary conditions: E ε e ±ikx, B ˆk E 3.34 ˆn E x=0, L = 0 ˆn B x=0, L = the polarisation ε and E ε sink x x e ikyy+kzz k0 t 3.36 k 0 = k k x = nπ, n =,,... L Casimir energy: 0 H 0 L = d 3 k π 3 0 α i k α i k 0 = d k L π k nπ + δ L n= k = 0, k y, k z. 4

44 Equation is divergent for large momenta UV. Assume for the moment that the is cut o regularly for high energies/momenta: 0 H 0 L = V d k }{{} L π Area n= where r Λ x Λ 0, r Λ x Λ. R Λ n = E L = E L E : E L = Euler-McLaurin: 0 dn R Λ n = Bernoulli numbers Since E L = 0 H 0 L = 0 k nπ + rλ k nπ L + L V π L 3.38 R Λ n 3.39 n= dk k k nπ + rλ k nπ L + L [ V R Λ n π L n= n= 0 dn R Λ n ] + R Λ [ R Λ n + ] n! B n R n Λ 0 + R Λ0 3.4 B = 6, B 4 = 30, E = V [ π L R Λ 0 + ] 70 R3 Λ R Λ n = = 0 nπ L dk k k nπ + L }{{} k dk k r Λ k r Λ k 3.44 R Λ n = π L R Λ 0 = 0 nπ L rλ nπ L R 3 Λ 0 = π L

45 R i>3 Λ 0 depends on r Λ : R i>3 Λ 0 ΛL i 3. Finally: E = π V/L 70 L 3 for Λ or Force/Area: F = d ε dl = π 40 ε = E V/L = π 70 L c.3 L4 L[m] 4 pa m 4 Summary: Force/Area: nπ L E = π V/L 70 L 3 R Λ n = π L = π 70 V/L L 3 L rλ nπ L i 3 R i>3 Λ 0 ΛL + OR4 Λ 0 for Λ 3.47 E d V/L F = dl = π c.3 L4 L[m] 4 pa m 4 Idea: plates, out plates For high frequencies the dierence between 'plates' and 'no plates' becomes smaller. E = 0 H 0 L 0 H 0 L= is nite. Divergent parts cancel. Computation is performed regularisation nπ Λ : r Λ k + L 3. Lagrangian of QED In equation 3.3 on page 39 the Langrangian density of the electromagnetic eld coupled to an external current j µ x was presented. In QED, j µ describes the coupling to the electron-, muon-, tau-current j µ x = e ψ γ µ ψx

46 where ψ is given by ψ = Together the Dirac term we get ψ e ψ µ ψ τ 3.49 L QED = 4 F µνx F µν x + ψ i γ µ D µ m ψ 3.50 where D µ is the covariant derivative: D µ ψx = µ iea µ x ψx 3.5 and m = m e m µ m τ Gauge invariance: gx = e i αx U and ψx gx ψx = e iαx ψx = ψ g ψx ψx g x = ψx e ieαx = ψ g 3.5 A µ x i e g D µ g = A µ x + µ αx = A g D µ x g D µ g x 4 F µν F µν 4 F µν F µν 3.53 ψ id/ m ψ ψ g igd/g m gψ = ψ id/ m ψ 3.54 D/ = γ µ D µ gg =. Remark: µ µ iea µ is called 'minimal coupling'. A µ is a connection Zusammenhang. Consequences of gauge invariance: Classical action of QED: S QED [A, ψ, ψ] = d 4 x L QED x L QED x from equation Gauge invariance: S[A g, ψ g, ψ g ] = S[A, ψ, ψ] 45

47 Innitesimal = S[A + µ α, + iαe ψ, ψ iαe] S[A, ψ, ψ] = 0 d 4 δ δ x µ αx + ieαx ψx δa µ x δψx ψx δ δ ψx S e.g.: ψ = ψ = 0: d 4 δ x µ αx S[A, 0, 0] = 0 δa µ x d 4 δs[a, 0, 0] x αx µ = 0 δa µ x αx arbitrary: also µ µ δs[a] δa µ x = 0 δ S δa µ xδa ν y A=0 = 0 µ ρ ρ g µν µ ν δx y = 0 Completion of Feynman rules: Physical p states: k, ε i = α i k 0 = ê i a k 0 i =, the 4-vector ε i = êi General states: ε µ ε µ = k, ε = ε µ α µ k 0 = ε a k ε 0 = 0, ε µ k µ = 0, ε k = 0. Norm k, ε ε, k = ε ε π 3 k 0 δ k k 3.57 initial state ε µ nal state ε µ 3.3 Magnetic moment of electron Consider D µ = µ iea µ L D = ψ i γ µ D µ m ψ H D = ψ i γ 0 γ i D i + γ 0 m ψ }{{} 3.58 H 46

48 Evaluate non-relativistic limit of H : First H = γ 0 i γ D + m γ 0 i γ D + m = γ D + m i γ D + m = γ i γ j D i D j + m = D + [γ i, γ j ] D i D j + m = D i e 4 [γ i, γ j ] F ij + m 0 σ and Σ k k = σ k 0 [γ i, γ j ] = iε ijk Σ k H = D e ε ijk F ij + m = D + e Σ B + m Then Remember Σ = S H = m + p e A m + e m Σ B + Om 3.60 i t ψ = p e A m + m + e m S B 3.6 Spin coupling: e g e S m B = µ e B gyromagnetic factor g e =. Experiment: g e = e m g e = s T Anomalous magnetic moment: j op x = e : ψx γ µ ψx: µ op = d 3 x x j op x, t 3.6 e k, s = a s k 0. Expectation value: Non-interacting: e k, r µ e k, s = e d 3 x x e k, r : ψ γ ψ : When one proceeds as scattering, one gets g e =. e k, s

49 Magnetic moment of an electron in general: µt = d 3 x x jx 3.64 Electron: t = 0. e p, r µ e p, s = e = e = e = e d 3 x x e p, r : ψ x, 0 γ ψ x, 0: e p, s d 3 x x 0 a r p : ψ x, 0 γ ψ x, 0: a s p 0 d 3 x x 0 a r p ψ x, ψ x, 0a s p 0 d 3 x e ip p x x ū r p γ u s p Anomalous magnetic moment Classically the interaction is given by = e ψ γ µ A µ ψ Looking for quantum corrections to the Vertex: Lowest order in α and A: e Γ µ q, q + p A µ p Γ µ i m σ µν p ν α π σ µν = i [γµ, γ ν ] For σ µν see page 8. Γ µ A µ x ie m σ α µν π ν A µ x = ie α = 4m π σ µν F νµ x α Σ π B e m One gets the last equation, because E = 0. µ µ + e m α Σ π = e m + α Σ π }{{} S

50 3.4 Renormalisation α higher order term α vacuum polarisation Computation from Feynman rules: Π µν p = ie d 4 q π 4 Tr i i q/ m γµ p/ + q/ m γν 3.69 [v ie Two Problems:. integral is divergent d 4 q q. poles: q = 0, q + p = 0. Remedy: d 4 q π 4 Tr q/ ] q γµ q/ + p/γν p + q. Regularisation: Π Π Λ p, m Casimir = p p µ Wick rotation: t M it E, p 0 M ip0 M, p µp µ p E µ p E µ. There is a one-to-one relation between Euklidean Correlation functions G E and Minkowski Correlation functions G M. How to implement : Photon propagator: A µ ν ν g µρ µ ρ A ρ Z A A ren. µ ν ν g µν µ ρ A ren. ρ 3.7 Demand nite. Z A = + Z A α + Oα lim Z A + Π Λp, m Λ Structure of Π Λ Π Λ p, m = α renormalisation scale µ. Hence Z A ] [f 0 ln p p Λ + f + O Λ +... Z A = α f 0 ln Λ µ + α finite + Oα + Π Λp, m = + α [ ln 49 p µ ] + finite + Oα

51 In summary we demand Computation: µ d dµ Observables = 0 renormalised Π: Π Λ p, m Π Λ 0, m. Π µν p = p g µν p µ p ν Πp 3.7 UV-asymptotics: Πp = α π i m dx x x ln m x xp 0 = α π i m /p dx x x ln m /p x x 0 Πp α ] [ln p m 3π m 5 +O }{{} 3 p finite=c 3.73 α eff p = α α p 3π ln m c lim eff p 0 = 0 lim α eff p m c e 3π/α = here c = e 5 3, αeff c m = α -loop β-function RG-equation: µ d dµ Z A Z A = 3π α = 6π α 50

52 Chapter 4 Quantum Chromodynamics QCD The theory of strong interactions provides the nuclear forces that keep nuclear cores together. Peculiar properties: α s = g s 4π. asymptotic freedom: α s p 0. Nobel Prize 004 for Gross, Wilczek and Politzer. connement: V q q r r for large distances. Millenium Prize riddle Jae, Witten. 3. selnteraction of gauge elds Gauge elds are colour charged. Evidence for ± 3 e, ± 3 e charged hadronic constituents spin : quarks q J. Joyce, and gluonic jets Nobel Prize 969 for Gell-Mann, Zweig. 4. The QCD-Lagrangian Hadronic current: j µ x = e q Q q qx γ µ qx 4. Q u,c,t = 3, Q d,s,b = 3. Hadronic states are invariant under SU3 transformations in colour space: qx U qx µ U = 0 q α x U αβ q β x α, β =,, 3 5

53 SU3 is non-abelian. Innitesimal U SU3: U U = UU = 3, det U =. U = 3 + i δϕ a λ a, a =,..., 8 λ a : generators of SU3 Lie-Algebra of SU3 λ = 0, λ = λ Compare to the generators of SU σ a : Quarks: [σ a, σ b ] = i ε abc σ c qx = q x q x q 3 x Dirac spinors q i, where i, i =,, 3, indicates the colour. 4. In table 4. the avours of quarks, their current masses and their charges are listed. Generation rst second third Charge Mass [ev] Quark u c t 3 Quark d s b 3 Mass [ev] Table 4.: Quarks and some of their properties. Lagrangian: Bound states:. Mesons: q q. Baryons: qqq e.g.: L 0 quark = q qx i / m q qx 4.3 π + u d + u d + u 3 d3 p ε αβγ u α u β d γ ε αβγ u α u β d γ det U 5

54 π + and p are gauge invariant. where f abc are structure constants. [λ a, λ b ] = i f abc λ c Tr λ = 0 Tr λ a λ b = δ ab {λ a, λ b } = 4 3 δab + d abc λ c d abc = Tr λ a {λ b λ c } The Lagrangian L 0 quark x is invariant under q Uq q q U. L 0 quark x q q U i / m Uq 4.4 With U U = 3 : q q U i / m Uq = L 0 quark x 4.5 Gauge principle as in QED: We demand but qx Ux qx qx qx U x L quark x L quark x L 0 quark x L0 quark x + q q U /U q /δ αβ γ µ D αβ µ 4.6 see page 45. SU3: D αβ µ = µ δ αβ i g s A αβ µ, [t a, t b ] = i f abc t c t c = λc 53

55 f abc is anti-symmetric: and λ = f 3 = f 47 = f 56 = f 46 = f 57 = f 345 = f 367 = 3 f 458 = f 678 = λ 4 = λ 7 = i 0 i 0, λ =, λ 5 = 0 i 0 i , λ 8 = 0 0 i i 0 0 3, λ 3 = , λ 6 = Quark colour charge: t a t a = C F C F = 4 3. Gluon colour charge: f abc f abd = C A δ cd C A = ,, tr adj. t c t d = C A δ cd tr fud. t c t d = δcd λ Transformation of A αβ µ = A a a αβ µ : }{{} t a A µ x Ux A µ x U x i g s Ux µ U x = i g s Ux D µ U x D µ x Ux D µ U x 4.7 As in QED we dene the eldstrength F µν : i g s F µν = [D µ, D ν ] = i g s µ A ν ν A µ + ig s [A µ, A ν ] 4.8 and F µν U F µν U [A µ, A ν ] = i f abc A b A c λ a 54

56 or Fµν a = µ A a ν ν A a µ g s f abc A b A c. Pure gauge theory: Yang-Mills L Y M x = Tr F µν F µν = 4 F µν a F aµν 4.9 Full Lagrangian: Lx = 4 F a µν F aµν + q q id/ m q q 4.0 gauge symmetry U SU3: Lx Lx q U q q q U A µ U A µ U i g s U µ U Tr F µν F µν Tr U F µν U U F µν U = Tr F µν F µν Parameters: g s or α s = g s 4π where α s is the strong ne structure constant. m u,d,s,c,b,t are the quark masses. Gauge xing Lorentz Lx Feynman rules for QCD Gauge xing: ζ µ A µ p/+m Quark propagator: i p m +iε δαβ Gluon propagator: i [ ] Ghost propagator:i p +iε k +iε g µν Lx + ζ [ ] ζ kµkν k +iε Tr µ A µ + c D µ c } {{ } ghosts Quark-gluon vertex: i g s t a αβ γ µ 3-gluon vertex: g s f abc [g µν p q ρ g νρ q r µ + g ρµ r p ν ] 4-gluon vertex: ig s[f ead f ebc g µν g σρ g µρ g νσ + +f eac f ebd g µν g σρ g µσ g νρ + +f eab f ecd g µσ g νρ g µρ g νσ ] 4. 55

57 4. Running coupling As in QED we compute the running coupling. Reminder QED page 50 Euklidean computed from β-function: p m Cpt. αp αµ = 4. αµ 3π ln p µ β QED α p p αp = α 3π + Oα3 > 0 β QED = β 0 α β α By comparison of coecients one gets: β 0 = 3π 4.3 QCD: β QCD p p α s p = π 33 N f α s + Oα 3 s 4.4 β 0 = π 33 N f 4.5 α s p = = α s µ + α s µ β 0 ln β 0 ln p Λ QCD p µ 4.6 { µ = Λ QCD exp β } 0 α s µ asymptotic freedom: α s p β 0 ln p 0 µ 4.3 Connement no coloured asymptotic states. Example: q q-pair Λ QCD MeV 56

58 . Denition of q q-state: qy qx not gauge invariant but qy P exp +i g s. gauge trafo: x y dz µ t a A a µz qx }{{} x i g s dz µ t a A a z µ z=y A µ x Ux A µ x U x i g s Ux µ U x see page i g s dz µ t a A a µz = Uz + i g s dz µ t a A a µz U z + µ U z dz µ }{{} P exp +i g s x y lim x y dz µ A µ z qyp exp +i g s Uy P exp +i x in quenched QCD no dynamical quarks Three quarks: Connement Remarks: strong coupling is not enough!! V r = V 0 + κ r e r + f r y x dz µ A µ z qx 0 y g s dz µ A µ z U x mass gap in Yang-Mills pure glue [Millenium Prize Jae, Witten] perturbation theory fails non-perturbation methods lattice: space-time grid 6 4 lattices operator product expansions/sum rules... renormalisation group methods solve theory via relations between correlation functions. 3. Area law of Wilson loop WC x,y = Tr P exp +i g s C x,y dz µ A µ z U z+dz 57

59 QED: { exp i e } d 4 x j µ x A µ x wordline of an electron j µ = C x,y dz µ δx z WC x,y exp { F qx q y } 0 e σa 4. dynamical quarks 4.4 Phase diagram of QCD Order parameter: chiral condensate: qq = σ Polyakov loop L e Fq Remark on phase transitions: 58

60 Chapter 5 Electroweak Theory Quantum Flavourdynamics, QFD In 930 Pauli suggested the existence of the neutrino ν. It was discovered from 953 to 959 by Reines. In the years 933 and 934 Fermi worked out a theory of the β-decay. β-decay: n p + e + ν e Fermi interaction: H = G d 3 x [px γ µ nx][ex γ µ νx] + h.c. 5. G is the Fermi constant: G =. 0 5 GeV. Important: parity violation in β-decay! H = G [ β px γ µ g ][ ] A γ 5 nx ex γ µ γ 5 νx + h.c. g V G β = GeV g A g V =.55 Weak interaction distinguishes between left- and right-handed particles. Universality of weak interaction. γ 5 and handedness. Fermions revisited: compare to page. 59

61 Up = p 0 + m χ = 0 χ s σ p p 0+m χ s, χ = 0 and standard representation γ 0 0 =, γ i 0 σ i = 0 σ i 0 0, γ 5 = 0 For m = 0 we equate p = p 0 = p. With ˆp = p p we get for Up: Up = χ p s σ ˆp χ s Spin-orientation/Helicity: σ ˆp χ ± = ±χ ±. Dene: U ± p = p m = 0: γ 5 U ± p = ±U ± p. We dene left- and right-handed spinors: χ± ±χ ± ψ L/R = γ 5 ψ = ψ ± for m = 0 γ 5 ψ L/R = ψ L/R chirality 5. Lagrange density of electroweak theory Fermi interaction via gauge theory: Consider µ e + ν e + ν µ Gauge principle for the time being we consider massless fermions: ψνe ψνµ ψντ Leptons: Ψ e =, Ψ ψ µ =, Ψ e ψ τ = µ ψ τ Quarks: Ψ q = ψu, Ψ ψ q = d Free Lagrangian for the electron: ψc, Ψ ψ q = s L 0 x = Ψ el i γ µ µ Ψ el + ψ er i γ µ µ ψ er x ψt ψ b 60

62 The second summand is necessary because of QED. L 0 is invariant under global SU rotations of Ψ L : Ψ L U Ψ L U = e iω SU ω = ω a σa Singlet ψ R : ψ R ψ R. σ a are the generators of SU Lie-algebra [ ] σ a, σb abc σc = i ε, ε3 = and Pauli-matrices σ i, i =,, 3 see 0. Local symmetry gauging via minimal coupling L 0 Lx = Ψ el i γ µ D µ Ψ el + ψ er i γ µ µ ψ er and gauge transformations D µ = µ + i g W µ W µ = Wµ a σ a W µ x Ux W µ x U x i g Ux µ U x = i g Ux D µ U x { Ψx exp i ωx γ } 5 Ψx Ux ΨL = ψ R ΨL Ψx =. ψ R Within this notation L reads L = Ψ i γ µ D µ Ψ D µ = µ + i g W µ W µ = Wµ a T a σ a T a =

63 Coupling via Wµ a σ a = Wµ 3 Wµ i Wµ Wµ + i Wµ Wµ 3 where Wµ 3 is neutral and Wµ, Wµ are charged. With W ± = W ± i W we have the interaction, e.g.: g Ψe,L γ µ W µ ψ νe,l = g ψe γ µ W µ γ 5 ψ νe } {{} ψ νe,l = g + γ 5 ψe γ µ Wµ ψ νe = g ψ γ 5 e γ 0 γ µ Wµ ψ ν 5. Diagrammatically neutral gauge boson W 3 µ: is not the photon: no L-R-symmetry additional U gauge boson Z 0 triumph of theory is not Z 0 : no coupling to right-handed fermions Existence of neutral currents, e.g. ν µ + e ν µ + e or ν µ + n ν µ + n. Consider W 3 µ = cos θ W Z 0 µ + sin θ W A µ where A µ represents the photon and θ W is the Weinberg angle weak mixing angle. sin θ W = 0.376, result at SLAC: sin θ W = ± Orthogonal combination: U gauge transformation B µ = sin θ W Z 0 µ + cos θ W A µ Ψ L e i Y L ω ψ R e i Y R ω } ΨL ψ R e iy ω ΨL ψ R 6

64 Hypercharge Y = Y L Y L Y R. 5.3 B µ commutes W µ! SU U The hypercharge Y equals the dierence between the electric charge Q in e and the third component of the isospin I 3 : For right-handed fermions: Y = Q. For left-handed fermions, e.g.: Particle Y Q I 3 ν L 0 e L - u L 6 3 d L 6 3 Interaction term: Ψ = ΨL ψ R Y = Q I 3. Ψ i γ µ D µ Ψ D µ = µ + i g W µ + i g B µ Y where W µ is explained on page 6 and for the Hypercharge Y see page 63. Full Lagrangian: W a µν = µ W a ν ν W a µ g ε abc W b µ W c ν B µν = µ B ν ν B µ L EW = 4 Wa µν W aµν 4 B µν B µν + ψ i γ µ D µ ψ 5.4 General gauge transformation: Neutral gauge bosons: Ψ e i g ωa I a +i g ω Y Ψ 5.5 Ψ γ µ [ g cos θ W Z 0 µ + sin θ W A µ T 3 + g sin θ W Z 0 µ + cos θ W A µ Y ] Ψ 63

65 Coupling to Photon: g sin θ W T 3 + g cos θ W Y = e Q = e T 3 + e Y g sin θ W = e g cos θ W = e Current: e A 0 µ j em. µ j em µ = Ψ γ µ Ψ = ψ R γ µ ψ R + Ψ L γ µ Ψ L Coupling to Z 0 : g cos θ W T 3 g sin θ W Y = = e cos θ W T 3 sin θ W Y sin θ W cos θ W e sin θ W Γ 3 sin θ W Q 5.6 Current: Z 0 µ j µ nc e sin θ W j µ nc = Ψ L γ µ T 3 sin θ W Q }{{} g L = g V g R = ψ γ µ Γ 3 L γ5 Q sin θ W ψ Ψ L + ψ R γ µ sin θ W Q ψ R }{{} g R = g V +g R Electron: = ψ νel γ µ ψ νel ψ el γ µ ψ el sin θ W j µ em Problems:. Masses for W ±, Z 0 : explicit mass-terms break gauge invariance!. Masses for matter elds: couple left- to right-handed elds break weak gauge invariance! 3. Neutrino mixing Resolution to. and.: Higgs-mechanism: masses via spontaneous symmetry breaking. 5. The Higgs sector. W ±, Z 0 are massive, e.g. m Z = 9.88GeV, m W = m Z cos θ W.. Matter-elds are massive: a m W Tr W b m ψ ψ ψ = mψ ψr ψ L + m ψ ψl ψ R 64

66 a and b are not gauge invariant: { ψ exp i γ 5 } ω ψ 5.7 m W Tr W i g m W Tr D W { m ψ ψ ψ mψ ψ exp i + γ } { 5 ω exp i γ } 5 ω ψ Explanation to the last transformation: { ψ ψ exp i γ } 5 γ 0 = ψ γ 0 exp { i + γ 5 = m ψ ψ e i γ 5 ω ψ = m ψ ψr e iω ψ L + ψ L e iω ψ R } { ψ exp i + γ } Innitesimal: ψ ψ i ψ γ 5 ψ Assume we have scalar eld φ φ = v 0. "Massterms": doublet φ: φx = L Y x = h ψ ψ R φ Ψ L + Ψ L φ ψ R Yukawa term 5.9 φ x φ x φ x, φx Ux φ x, U SU φ x Ψ L x φ x U x Ux Ψ L x = φ x ψ L x 5.0 Yukawa term L Y x U L Y x gauge invariant under SU! Hypercharge: φx e i Y H ω φx Y H = Y L Y R =. L Y x ei Y ω L Y x Electric charge: ψ R φ Ψ L = ψ R e i Y R ω φ e i Y L Y R ω e i Y L ω Ψ L = ψ R φ Ψ L 5. 65

67 φ x : Y H + I 3 = φ x : Y H + I 3 = 0 φ = 0 v In summary Lx is gauge invariant, φ couples to W µ and to B µ! 0 Mass term for fermion: φ 0 = v h e ψer φ 0 Ψ L + h.c. = h e v ψer ψ L + h.c. 5. m e = h e v Kinetic term: µ φ µ φ D µ φ D µ φ Higgs Lagrangian: for electron D µ = µ + i g W µ + i g B µ Y H W µ = Wµ a σ a L H x = D µ φ D µ φ h e ψ er φ Ψ el + h.c. V φ φ 5.3 V is gauge invariant, as φ φ φ φ U φ U U φ = φ φ ei Y H ω φ e i Y H ω e i Y H ω φ Mass of Z 0, W ± : Take φ 0 = v D µ φ 0 = iv g W + µ g B µ g W µ g B µ g W µ g 3 = sin θ W B µ cos θ W W µ 3 cos θ W = g Z 0 µ cos θ W 66

68 D µ φ 0 Dµ φ 0 = v g This provides mass terms for Z 0, W ± : 8 Wµ W + µ + cos Z µ Z 0 µ 5.6 θ W m Z = v g cos θ W m W = v g and Full Lagrange density: sin θ W = m W m Z Lx = L EW x + L H x see page 63 and page 65 = 4 Wa µν W aµν 4 B µν B µν + Ψ i γ µ D µ Ψ h ψ ψ R φ Ψ L + Ψ L φ ψ R + D µ φ D µ φ V φ φ Z 0 µ = cos θ W W 3 µ sin θ W B µ A µ = sin θ W W 3 µ + cos θ W B µ and currents e sin θ W Z 0 µ j µ nc, e A µ j µ em j em µ = ψ R γ µ ψ R + Ψ L γ µ Ψ L j nc µ = ψ γ µ Γ 3 L γ5 Q sin θ W ψ Parameters: Measurements:. Fine structure constant g, sin θ W, ν, h ψ α = e 4π = g sin θ W 4π. Fermi coupling constant G F = g 8m W = see QED section = v = GeV 67

69 3. The Z 0 -boson mass m Z = g v cos θ W = 9.88 GeV 4. Fermion masses m f = h f v Mass hierarchy is not understood. 5.3 Spontaneous Symmetry Breaking. Simple example: O-model, φ complex eld invariance global Hamiltonian density Minimum: φ 0 = 0, Minimum: φ 0 = L = µ φ µ φ µ φ φ λφ φ 5.7 φ e iω φ, µ ω = 0 φ φ e iω 5.8 H = µ φ µ φ + V φ φ 5.9 µ φ µ φ = t φ t φ + φ φ V φ φ = µ φ φ + λ φ φ µ λ eiθ Mass: m = V φ φ φ0 = µ Masses: θ = 0, φ = φ + iφ, V φ φ0 = µ, V φ φ0 = 0. massive boson radial mode massless boson Goldstone boson Spontaneous Symmetry breaking: theory rests in given minimum. Remark: In QM the ground state is symmetric! In QFT for d > spontaneous symmetry breaking SSB is possible, for d <= no SSB for a cont. symmetry can occur Mermin-Wagner-Coleman, but discrete SSB. For d < no SSB can occur: QM: d = 0. Lagrangian: φx = v + σx }{{} radialmode + i πx }{{} Goldstone

70 v = µ λ. L = [ ] µ σ µ σ + µ π µ π [ µ v + σ + π ] [v 4 λ + σ + π ] = [ µ σ µ σ m σ σ ] + µπ µ π + interaction-terms + const. 5. m σ = µ. U gauge theory: Abelian Higgs model Lx = 4 B µν B µν + D µ φ D µ φ µ φ φ λφ φ, µ < 0 B µν = µ B ν ν B µ D µ = µ + i g Y B µ Again we have φ 0 = v Mass-term for B µ : R as minimum: D µ φ 0 D µ φ 0 = g Y v B µ B µ 5. mass m B = g Y v. dofs: φ, φ, B ± µ σ, π, B ± µ, B L µ + + [+ω] ± in B µ ± in order to distinguish between the two helicity states and L in Bµ L stands for longitudinal. Perform gauge trafo on φ e iω, ω = arctan π v+σ. φ e iω φ = cos ω + i sin ω v + σ + iπ = v + σ + π = v + σ 5.3 σ = v + σ + π v = σ + π v +... Unitary gauge. The gauge eld has 'eaten up' the Goldstone Boson Higgs-Kibble dinner. 69

71 3. Electroweak theory: SU U SSB U em 4 gen. gen. 3 Goldstone bosons are eaten up. φ 0 = 0 v where φ is neutral. U em is unbroken Symmetry. For the mass terms of W ± and Z 0 see page 67. We have used that φ = e i ωa T a +Y H ω φ 0 to gauge away the Goldstones. We chose SU gauge transformation such that 0 U φx = ρ + v e iωt 3 +Y H φ 0 = φ This is left invariant under the U-transformations It follows that e i ω T 3 +Y H 5.5 a b D µ φ D µ φ = µρ µ ρ + m W + ρ W + v µ W µ + + m Z + ρ Z 0 v µ Z 0µ 5.6 For m W and m Z see page 67. V φ φ = V v + ρ 4 v + ρ = µ v + ρ + λ 4 = m ρ ρ + ρ v + ρ 4 v 5.7 the Higgs mass: m ρ = λ v 5.8 where λ is a parameter. 70

72 c Leptons: electron In general Ψ e i γ µ D µ Ψ e = Ψ e i γ µ µ Ψ e e A 0 µ j em µ e Zµ 0 j nc µ + see page 64 sin θ W + j µ cc = Ψ e γ µ T + i T Ψ e e W + sin θ µ j cc µ + Wµ j cc µ+ W = Ψ e γ µ T + i T γ 5 h ψ ψ R φ Ψ L Ψ L φ ψ R = m e ψe ψ e + ρ v 0 ψ = Ψ e Ψ µ Ψ τ Ψ q allows for mass matrix. Mixing! Kobayashi-Maskawa matrix v, v, v 3, δ. Feynman rules: Propagators: i g : µν q +i ε Feynman gauge : : qµ qν i g µν m W q m W +i ε qµ qν i g µν m Z q m Z i +i ε : q m ρ +i ε 5.9 Ψ e 5.30 Selected vertices: : ie { } k k µ3 g µµ + k k 3 µ g µµ 3 + k 3 k µ g µ3µ : ie cos θ { } W sin θ k W k µ3 g µµ + k k 3 µ g µµ 3 + k 3 k µ g µ3µ : ie { } g µµ 3 g µµ 4 + g µµ 4 g µµ 3 g µµ g µ3µ 4 : ie cos θ { } W sin θ gµµ W 3 g µµ 4 + g µµ 4 g µµ 3 g µµ g µ3µ 4 : ie cos θ W { } sin gµµ θ W { 3 g µµ 4 + g µµ 4 g µµ 3 g µµ g µ3µ 4 } : ie sin gµµ θ W 3 g µµ 4 + g µµ 4 g µµ 3 g µµ g µ3µ

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia http://arxiv.org/pd/0705.464 The Standard Mode Antonio Pich IFIC, CSIC Univ. Vaencia Gauge Invariance: QED, QCD Eectroweak Uniication: SU() Symmetry Breaking: Higgs Mechanism Eectroweak Phenomenoogy Favour

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Particle Physics: Introduction to the Standard Model

Particle Physics: Introduction to the Standard Model Particle Physics: Introduction to the Standard Model Electroweak theory (I) Frédéric Machefert frederic@cern.ch Laboratoire de l accélérateur linéaire (CNRS) Cours de l École Normale Supérieure 4, rue

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Non-Abelian Gauge Fields

Non-Abelian Gauge Fields Chapter 5 Non-Abelian Gauge Fields The simplest example starts with two Fermions Dirac particles) ψ 1, ψ 2, degenerate in mass, and hence satisfying in the absence of interactions γ 1 i + m)ψ 1 = 0, γ

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Symmetric Stress-Energy Tensor

Symmetric Stress-Energy Tensor Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor

Διαβάστε περισσότερα

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar Homework 3 Solutions 3.1: U(1) symmetry for complex scalar 1 3.: Two complex scalars The Lagrangian for two complex scalar fields is given by, L µ φ 1 µ φ 1 m φ 1φ 1 + µ φ µ φ m φ φ (1) This can be written

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Homework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4

Homework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4 Homework 4 Solutions 4.1 - Weyl or Chiral representation for γ-matrices 4.1.1: Anti-commutation relations We can write out the γ µ matrices as where ( ) 0 σ γ µ µ = σ µ 0 σ µ = (1, σ), σ µ = (1 2, σ) The

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Quantum Electrodynamics

Quantum Electrodynamics Quantum Electrodynamics Ling-Fong Li Institute Slide_06 QED / 35 Quantum Electrodynamics Lagrangian density for QED, Equations of motion are Quantization Write L= L 0 + L int L = ψ x γ µ i µ ea µ ψ x mψ

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

UV fixed-point structure of the 3d Thirring model

UV fixed-point structure of the 3d Thirring model UV fixed-point structure of the 3d Thirring model arxiv:1006.3747 [hep-th] (PRD accepted) Lukas Janssen in collaboration with Holger Gies Friedrich-Schiller-Universität Jena Theoretisch-Physikalisches

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Physics 582, Problem Set 2 Solutions

Physics 582, Problem Set 2 Solutions Physics 582, Problem Set 2 Solutions TAs: Hart Goldman and Ramanjit Sohal Fall 2018 Symmetries and Conservation Laws In this problem set we return to a study of scalar electrodynamics which has the Lagrangian

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

Dirac Matrices and Lorentz Spinors

Dirac Matrices and Lorentz Spinors Dirac Matrices and Lorentz Spinors Background: In 3D, the spinor j = 1 representation of the Spin3) rotation group is constructed from the Pauli matrices σ x, σ y, and σ k, which obey both commutation

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Tutorial problem set 6,

Tutorial problem set 6, GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant

Διαβάστε περισσότερα

Relativistic particle dynamics and deformed symmetry

Relativistic particle dynamics and deformed symmetry Relativistic particle dynamics and deformed Poincare symmetry Department for Theoretical Physics, Ivan Franko Lviv National University XXXIII Max Born Symposium, Wroclaw Outline Lorentz-covariant deformed

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Section 9: Quantum Electrodynamics

Section 9: Quantum Electrodynamics Physics 8.33 Section 9: Quantum Electrodynamics May c W. Taylor 8.33 Section 9: QED / 6 9. Feynman rules for QED Field content: A µ(x) gauge field, ψ(x) Dirac spinor Action Z» S = d x ψ(iγ µ D µ m)ψ Z

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

4 Dirac Equation. and α k, β are N N matrices. Using the matrix notation, we can write the equations as imc

4 Dirac Equation. and α k, β are N N matrices. Using the matrix notation, we can write the equations as imc 4 Dirac Equation To solve the negative probability density problem of the Klein-Gordon equation, people were looking for an equation which is first order in / t. Such an equation is found by Dirac. It

Διαβάστε περισσότερα

Hartree-Fock Theory. Solving electronic structure problem on computers

Hartree-Fock Theory. Solving electronic structure problem on computers Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

The Feynman-Vernon Influence Functional Approach in QED

The Feynman-Vernon Influence Functional Approach in QED The Feynman-Vernon Influence Functional Approach in QED Mark Shleenkov, Alexander Biryukov Samara State University General and Theoretical Physics Department The XXII International Workshop High Energy

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

SPONTANEOUS GENERATION OF GEOMETRY IN 4D

SPONTANEOUS GENERATION OF GEOMETRY IN 4D SPONTANEOUS GENERATION OF GEOMETRY IN 4D Dani Puigdomènch Dual year Russia-Spain: Particle Physics, Nuclear Physics and Astroparticle Physics 10/11/11 Based on arxiv: 1004.3664 and wor on progress. by

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II 8.324 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall 200 Lecture 2 3: GENERAL ASPECTS OF QUANTUM ELECTRODYNAMICS 3.: RENORMALIZED LAGRANGIAN Consider the Lagrangian

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Three coupled amplitudes for the πη, K K and πη channels without data

Three coupled amplitudes for the πη, K K and πη channels without data Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY

THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY Walter Wyss Department of Physics University of Colorado Boulder, CO 80309 (Received 14 July 2005) My friend, Asim Barut, was always interested in classical

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors BYU PHYS 73 Statistical Mechanics Chapter 7: Sethna Professor Manuel Berrondo Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids,

Διαβάστε περισσότερα

Particle Physics Formula Sheet

Particle Physics Formula Sheet Particle Physics Formula Sheet Special Relativity Spacetime Coordinates: x µ = (c t, x) x µ = (c t, x) x = (x, x, x ) = (x, y, z) 4-Momentum: p µ = (E/c, p) p µ = (E/c, p) p = (p, p, p ) = (p x, p y, p

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

PHY 396 K/L. Solutions for problem set #12. Problem 1: Note the correct muon decay amplitude. The complex conjugate of this amplitude

PHY 396 K/L. Solutions for problem set #12. Problem 1: Note the correct muon decay amplitude. The complex conjugate of this amplitude PHY 396 K/L. Solutions for problem set #. Problem : Note the correct muon decay amplitude M(µ e ν µ ν e = G F ū(νµ ( γ 5 γ α u(µ ū(e ( γ 5 γ α v( ν e. ( The complex conjugate of this amplitude M = G F

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Constitutive Relations in Chiral Media

Constitutive Relations in Chiral Media Constitutive Relations in Chiral Media Covariance and Chirality Coefficients in Biisotropic Materials Roger Scott Montana State University, Department of Physics March 2 nd, 2010 Optical Activity Polarization

Διαβάστε περισσότερα

Lecture 21: Scattering and FGR

Lecture 21: Scattering and FGR ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

LIGHT UNFLAVORED MESONS (S = C = B = 0)

LIGHT UNFLAVORED MESONS (S = C = B = 0) LIGHT UNFLAVORED MESONS (S = C = B = 0) For I = 1 (π, b, ρ, a): ud, (uu dd)/ 2, du; for I = 0 (η, η, h, h, ω, φ, f, f ): c 1 (uu + d d) + c 2 (s s) π ± I G (J P ) = 1 (0 ) Mass m = 139.57018 ± 0.00035

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

PHASE TRANSITIONS IN QED THROUGH THE SCHWINGER DYSON FORMALISM

PHASE TRANSITIONS IN QED THROUGH THE SCHWINGER DYSON FORMALISM PHASE TRANSITIONS IN THROUGH THE SCHWINGER DYSON FORMALISM Spyridon Argyropoulos University of Athens Physics Department Division of Nuclear Physics and Elementary Particles Supervisor: C.N. Ktorides Athens

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα