Constitutive Relations in Chiral Media
|
|
- Σαβαώθ Ζαφειρόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1
2 Constitutive Relations in Chiral Media Covariance and Chirality Coefficients in Biisotropic Materials Roger Scott Montana State University, Department of Physics March 2 nd, 2010
3 Optical Activity Polarization Rotation - Observed early 19 th century - Independent of wave-vector orientation - Independent of linear polarization Resolved though Biisotropic Constitutive Relations - Consistent with treatment of sub-wavelength chiral objects - Constrained by Covariance Requirements
4 Example of Chiral Object
5 Induced Dipole Moments Direct Dependencies p = 1 2 l ldlλ and m = l r 2 dl I
6 Induced Dipole Moments Direct Dependencies p = 1 2 Specific Case - Solenoid l ldlλ and m = l r 2 dl I p 1 2ẑ h hdh λ h = ẑnπr h hdh λ l m ı πr r I ı = (±)ẑnπr 2 h dh I l
7 Dipole Interdependence Inspection of Magnetic Dipole m z = (±)nπr 2 h dh I l
8 Dipole Interdependence Inspection of Magnetic Dipole m z = (±)nπr 2 h dh I l = (±)nπr 2 h [d(hi l) h I l h dh] = ( )nπr 2 l h h h I l l dh = (±)nπr 2 2nπr h hdh λ l t = (±)nπr 2 2 t (nπr h hdhλ l)
9 Dipole Interdependence Inspection of Magnetic Dipole m z = (±)nπr 2 h dh I l = (±)nπr 2 h [d(hi l) h I l h dh] = ( )nπr 2 l h h h I l l dh = (±)nπr 2 2nπr h hdh λ l t = (±)nπr 2 2 t (nπr h hdhλ l) Dipole Coupling m = (±)2nπr 2 t p harmonic case m = (±)2nπr 2 ıω p
10 Constitutive Relations Polarization Vectors p =γ pe E ẑ +γ pb B ẑ m =γ mb Ḃ ẑ +γ me Ė ẑ
11 Constitutive Relations Polarization Vectors p =γ pe E ẑ +γ pb B ẑ m =γ mb Ḃ ẑ +γ me Ė ẑ P =ǫ o {χ e E +χ eb B} M = 1 µ o {χ b B +χ be E}
12 Constitutive Relations Polarization Vectors p =γ pe E ẑ +γ pb B ẑ m =γ mb Ḃ ẑ +γ me Ė ẑ P =ǫ o {χ e E +χ eb B} M = 1 µ o {χ b B +χ be E} Example Cases D =ǫe +ξ db B H = 1 µ B +ξ hee } with ξ db =ξ he =ξ
13 Constitutive Relations Polarization Vectors p =γ pe E ẑ +γ pb B ẑ m =γ mb Ḃ ẑ +γ me Ė ẑ P =ǫ o {χ e E +χ eb B} M = 1 µ o {χ b B +χ be E} Example Cases D =ǫe +ξ db B H = 1 µ B +ξ hee } with ξ db =ξ he =ξ General Linear Form D =ǫe +αb H = 1 µ B +βe } with {α, β} unrelated
14 Maxwell s Wave Equation Source Free, Harmonic Maxwell Equations B = 0 E ıωb = 0 D = 0 H+ ıωd = 0
15 Maxwell s Wave Equation Source Free, Harmonic Maxwell Equations B = 0 E ıωb = 0 D = 0 H+ ıωd = 0 Use of Constitutive Equations ( 1 B +βe) = ıω(ǫe +αb) µ
16 Maxwell s Wave Equation Source Free, Harmonic Maxwell Equations B = 0 E ıωb = 0 D = 0 H+ ıωd = 0 Use of Constitutive Equations ( 1 B +βe) = ıω(ǫe +αb) µ Curl Wave Equation E = ıω B
17 Maxwell s Wave Equation Source Free, Harmonic Maxwell Equations B = 0 E ıωb = 0 D = 0 H+ ıωd = 0 Use of Constitutive Equations ( 1 B +βe) = ıω(ǫe +αb) µ Curl Wave Equation E = ıω B 2 E +κ 2 E +δ E = 0 κ 2 = ω2 c2, δ = ıωµ(α +β)
18 Maxwell Revisited Divergeance of D D = (ǫe +αb) E = 0
19 Maxwell Revisited Divergeance of D D = (ǫe +αb) E = 0 Curl of H H+ ıωd = ( 1 B +βe) + ıω(ǫe +αb) µ = 1 B+ ıωǫe + [β E+ ıωαb] µ B+ ıωµǫe = µ[α +β] E
20 Maxwell Revisited Divergeance of D Curl of H D = (ǫe +αb) E = 0 H+ ıωd = ( 1 B +βe) + ıω(ǫe +αb) µ = 1 B+ ıωǫe + [β E+ ıωαb] µ B+ ıωµǫe = µ[α +β] E Ambiguous Representations D =ǫe +αb D =ǫe H = 1 µ B αe H = 1 µ B for α = β
21 Four-Vector and Tensor Notation Invariance of Charge s := { ρ, J} A := { ϕ, A }
22 Four-Vector and Tensor Notation Invariance of Charge s := { ρ, J} A := { ϕ, A } Vacuum Field Tensor F µν = µ A ν ν A µ A ν = g νσ A σ
23 Four-Vector and Tensor Notation Invariance of Charge s := { ρ, J} A := { ϕ, A } Vacuum Field Tensor F µν = µ A ν ν A µ A ν = g νσ A σ Covariant Maxwell s Equations [σ F µν] = 0 and ν G µν = s µ
24 Field Tensor Elements Vacuum Field Tensor [F µν ] = 0 E x E y E z E x 0 B z B y E y B z 0 B x E z B y B x 0 Material Field Tensor [G µν ] = 0 D x D y D z D x 0 H z H y D y H z 0 H x D z H y H x 0
25 Field Tensor Elements Vacuum Field Tensor [F µν ] = 0 E x E y E z E x 0 B z B y E y B z 0 B x E z B y B x 0 Material Field Tensor [G µν ] = 0 D x D y D z D x 0 H z H y D y H z 0 H x D z H y H x 0 Covariant Constitutive Relation G σκ =χ σκµν F µν
26 Constitutive Tensor Relation General Linear Medium χ σκµν F 01 F 02 F 03 F 23 F 31 F 12 E x E y E z B x B y B z G 01 D x ǫ 11 ǫ 12 ǫ 13 α 11 α 12 α 13 G 02 D y ǫ 21 ǫ 22 ǫ 23 α 21 α 22 α 23 G 03 D z ǫ 31 ǫ 32 ǫ 33 α 31 α 32 α 33 G 23 H x β 11 β 12 β 13 ζ 11 ζ 12 ζ 13 G 31 H y β 21 β 22 β 23 ζ 21 ζ 22 ζ 23 G 12 H z β 31 β 32 β 33 ζ 31 ζ 32 ζ 33 Linear Biisotropic Medium χ σκµν F 01 F 02 F 03 F 23 F 31 F 12 E x E y E z B x B y B z G 01 D x ǫ 0 0 α 0 0 G 02 D y 0 ǫ 0 0 α 0 G 03 D z 0 0 ǫ 0 0 α G 23 H x β 0 0 ζ 0 0 G 31 H y 0 β 0 0 ζ 0 G 12 H z 0 0 β 0 0 ζ
27 Immediate Antisymmetry and the Lagrangian First Antisymmetry G σκ =χ σκµν F µν
28 Immediate Antisymmetry and the Lagrangian First Antisymmetry G σκ =χ σκµν F µν χ σκµν = χ κσµν = χ σκνµ
29 Immediate Antisymmetry and the Lagrangian First Antisymmetry G σκ =χ σκµν F µν χ σκµν = χ κσµν = χ σκνµ Lagrangian L = 1 8 χµνσκ F µν F σκ
30 Immediate Antisymmetry and the Lagrangian First Antisymmetry G σκ =χ σκµν F µν χ σκµν = χ κσµν = χ σκνµ Lagrangian L = 1 8 χµνσκ F µν F σκ Euler-Lagrange Derivitive uniform media L x λ ( A η / x λ ) = ( L ),λ = 0 A η,λ
31 Consequence of Lagrange Derivitive Computing the Lagrange Derivitive 4 L =χ µνσκ (F µνf σκ) A η,λ (A η,λ )
32 Consequence of Lagrange Derivitive Computing the Lagrange Derivitive 4 L =χ µνσκ (F µνf σκ) A η,λ (A η,λ ) =A [µ,ν] (χ µνηλ χ µνλη ) +A [σ,κ] (χ ηλσκ χ λησκ ) = F µν (χ µνηλ +χ ηλµν ) = F µν χ µνηλ + G ηλ
33 Consequence of Lagrange Derivitive Computing the Lagrange Derivitive 4 L =χ µνσκ (F µνf σκ) A η,λ (A η,λ ) =A [µ,ν] (χ µνηλ χ µνλη ) +A [σ,κ] (χ ηλσκ χ λησκ ) = F µν (χ µνηλ +χ ηλµν ) = F µν χ µνηλ + G ηλ ( L A η,λ ),λ = 0 F µν,λ χ µνηλ + G ηλ,λ = 0
34 General Symmetry Second Antisymmetry F µν,λ χ µνηλ = 0 χ ηλµν =±χ µνηλ
35 General Symmetry Second Antisymmetry F µν,λ χ µνηλ = 0 χ ηλµν =±χ µνηλ Sub-Matrix Symmetries ǫ ij =ǫ ji ζ kl =ζ lk α mn =±β nm
36 General Symmetry Second Antisymmetry F µν,λ χ µνηλ = 0 χ ηλµν =±χ µνηλ Sub-Matrix Symmetries ǫ ij =ǫ ji ζ kl =ζ lk α mn =±β nm Uniform Biisotropic Linear Media α =β = ıγ
37 General Symmetry Second Antisymmetry F µν,λ χ µνηλ = 0 χ ηλµν =±χ µνηλ Sub-Matrix Symmetries ǫ ij =ǫ ji ζ kl =ζ lk α mn =±β nm Uniform Biisotropic Linear Media α =β = ıγ This is the punch-line!
38 Concluding Remarks Chiral Coupling D =ǫe H = 1 µ B Coupling Coefficients D =ǫe +αb H = 1 µ B +βe α =β required for covariant theory Antisymmetric Biisotropic Media is A BooJum, You See!
39 Sources Texts 1 Jackson, J.D. : Classical Electrodynamics, Third Edition, Kritikos and Jaggard : Recent Advances in Electromagnetic Theory, Lakhtakia et al : Time-Harmonic Electromagnetic Fields in Chiral Media, Post, E. J. : Formal Structure of Electromagnetics, Shelkunoff, I.S. : Antennas: Theory and Practice, 1952 Papers 1 Jaggard et al : On Electromagnetic Waves in Chiral Media, Lakhtakia and Weiglhofer : Are Linear, Nonreciprocal, Biisotropic Media Forbidden?, Lakhtakia, A. : The Tellegen Medium is a A BooJum, You See, Tellegen, B. D. H., The gyrator, A New Electric Network Element, 1948
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Geodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
Note: Please use the actual date you accessed this material in your citation.
MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
3+1 Splitting of the Generalized Harmonic Equations
3+1 Splitting of the Generalized Harmonic Equations David Brown North Carolina State University EGM June 2011 Numerical Relativity Interpret general relativity as an initial value problem: Split spacetime
Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering
Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering Dan Censor Ben Gurion University of the Negev Department of Electrical and Computer Engineering Beer Sheva,
Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
Tutorial problem set 6,
GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant
1 Lorentz transformation of the Maxwell equations
1 Lorentz transformation of the Maxwell equations 1.1 The transformations of the fields Now that we have written the Maxwell equations in covariant form, we know exactly how they transform under Lorentz
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Dark matter from Dark Energy-Baryonic Matter Couplings
Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Symmetric Stress-Energy Tensor
Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor
The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog
Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA
Supporting Information Pb 3 B 6 O 11 F 2 : A First Noncentrocentric Lead Fluoroborate with Large Second Harmonic Generation Response Hongyi Li, a Hongping Wu, a * Xin Su, a Hongwei Yu, a,b Shilie Pan,
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
The Jordan Form of Complex Tridiagonal Matrices
The Jordan Form of Complex Tridiagonal Matrices Ilse Ipsen North Carolina State University ILAS p.1 Goal Complex tridiagonal matrix α 1 β 1. γ T = 1 α 2........ β n 1 γ n 1 α n Jordan decomposition T =
Physics 582, Problem Set 2 Solutions
Physics 582, Problem Set 2 Solutions TAs: Hart Goldman and Ramanjit Sohal Fall 2018 Symmetries and Conservation Laws In this problem set we return to a study of scalar electrodynamics which has the Lagrangian
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def
Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
For a wave characterized by the electric field
Problem 7.9 For a wave characterized by the electric field E(z,t) = ˆxa x cos(ωt kz)+ŷa y cos(ωt kz+δ) identify the polarization state, determine the polarization angles (γ, χ), and sketch the locus of
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4
Fig. A-1-1. Te(OH) NH H PO (NH ) HPO (TAAP). Projection of the crystal structure along the b direction [Ave]. 9 1. 7.5 ( a a )/ a [1 ] ( b b )/ b [1 ] 5..5 1.5 1 1.5 ( c c )/ c [1 ].5 1. 1.5. Angle β 1.
Symmetry. March 31, 2013
Symmetry March 3, 203 The Lie Derivative With or without the covariant derivative, which requires a connection on all of spacetime, there is another sort of derivation called the Lie derivative, which
Dirac Matrices and Lorentz Spinors
Dirac Matrices and Lorentz Spinors Background: In 3D, the spinor j = 1 representation of the Spin3) rotation group is constructed from the Pauli matrices σ x, σ y, and σ k, which obey both commutation
Ó³ Ÿ , º 3(194).. 673Ä677. Š Œ œ ƒˆˆ ˆ ˆŠ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ,ˆ..Š Ö, Ÿ. ʲ ±μ ±
Ó³ Ÿ. 2015.. 12, º 3(194.. 673Ä677 Š Œ œ ƒˆˆ ˆ ˆŠ ˆŸ ˆ Šˆ ˆ ˆ Œ ˆŠ ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ,ˆ..Š Ö, Ÿ. ʲ ±μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ˆ É ÉÊÉ Ö μ Ë ± μ²ó ±μ ± ³ ʱ, Š ±μ, μ²óï μé É ² Ò Ê Ö Ö Î ² Ò Ê²ÓÉ ÉÒ,
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Eulerian Simulation of Large Deformations
Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications
MATSEC Intermediate Past Papers Index L. Bonello, A. Vella
2009 MATSEC Intermediate Past Papers Index Louisella Bonello Antonia Vella The Junior College Physics Department 2009 MATSEC INTERMEDIATE PAST PAPERS INDEX WITH ANSWERS TO NUMERICAL PROBLEMS by Louisella
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Example 1: THE ELECTRIC DIPOLE
Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2
ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation
ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied
Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 2006.. 3, º 2(131).. 105Ä110 Š 537.311.5; 538.945 Œ ƒ ˆ ƒ Ÿ ˆŠ ˆ ƒ Ÿ ƒ ˆ œ ƒ Œ ƒ ˆ ˆ Š ˆ 4 ². ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö μ ² ³ μ É ³ Í ² Ö Ê³ μ μ ³ É μ μ μ²ö
Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation
KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
TUNING FORK TUNES. exploring new scanning probe applications
TUNING FORK TUNES exploring new scanning probe applications /463 38 /-3 77 / 4630.6 :+2 9 78 4630.6 / 4630.6 6./# 8 4630.6 3 /6.6 % 7- /6.6 # /6 4630.6 9 4/67 4630.6 6 &/6 +/1/2 463 3836 :336 88/6 7/-6/8+6
Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 018.. 49.. 4.. 907Ä917 Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ.. ³μ, ˆ. ˆ. Ë μ μ,.. ³ ʲ μ ± Ë ²Ó Ò Ö Ò Í É Å μ ± ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö μ ² Ìμ μé Ê Ö ±
ADVANCED STRUCTURAL MECHANICS
VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
CURVILINEAR COORDINATES
CURVILINEAR COORDINATES Cartesian Co-ordinate System A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a pair of numerical coordinates, which are the
THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY
THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY Walter Wyss Department of Physics University of Colorado Boulder, CO 80309 (Received 14 July 2005) My friend, Asim Barut, was always interested in classical
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Jordan Form of a Square Matrix
Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =
Quantum Electrodynamics
Quantum Electrodynamics Ling-Fong Li Institute Slide_06 QED / 35 Quantum Electrodynamics Lagrangian density for QED, Equations of motion are Quantization Write L= L 0 + L int L = ψ x γ µ i µ ea µ ψ x mψ
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl
Topic 4 Linear Wire and Small Circular Loop Antennas Tamer Abuelfadl Electronics and Electrical Communications Department Faculty of Engineering Cairo University Tamer Abuelfadl (EEC, Cairo University)
Electronic Supplementary Information (ESI)
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) Cyclopentadienyl iron dicarbonyl (CpFe(CO) 2 ) derivatives
g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King
Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
ΤΗΛ412 Ανάλυση & Σχεδίαση (Σύνθεση) Τηλεπικοινωνιακών Διατάξεων. Διαλέξεις 8-9. Άγγελος Μπλέτσας ΗΜΜΥ Πολυτεχνείου Κρήτης, Φθινόπωρο 2014
ΤΗΛ412 Ανάλυση & Σχεδίαση (Σύνθεση) Τηλεπικοινωνιακών Διατάξεων Διαλέξεις 8-9 Άγγελος Μπλέτσας ΗΜΜΥ Πολυτεχνείου Κρήτης, Φθινόπωρο 2014 1 Διαλέξεις 8-9 Κεραίες (Από την οπτική γωνία του µηχανικού!) Εξισώσεις
Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA
Ó³ Ÿ. 2006.. 3, º 7(136).. 78Ä83 Š 537.533.33, 621.384.60-833 Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA ( ).. μ²éêï±,.. Ò±μ ±,. ƒ. Šμ Í,.. Šμ μé,. ˆ. μì³ Éμ,.. Œ ² Ìμ, ˆ.. Œ ϱμ,.. ²μ,.., ˆ.. ²,.. μ,.. ³ μ,. Œ. Ò,
Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F
ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric
Calculating the propagation delay of coaxial cable
Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Γe jβ 0 z Be jβz 0 < z < t t < z The associated magnetic fields are found using Maxwell s equation H = 1. e jβ 0 z = ˆx β 0
ECE 6310 Spring 01 Assignment 3 Solutions Balanis 5.10 The plane waves in the three regions are given by E i ŷe 0 e jβ 0 z E r ŷe 0 Γe jβ 0 z z < 0 E a ŷe 0 Ae jβz E b ŷe 0 Be jβz 0 < z < t E t ŷe 0 Te
Relativistic particle dynamics and deformed symmetry
Relativistic particle dynamics and deformed Poincare symmetry Department for Theoretical Physics, Ivan Franko Lviv National University XXXIII Max Born Symposium, Wroclaw Outline Lorentz-covariant deformed
1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]
3. 3 2 2) [2] ) ) Newton[4] Colton-Kress[2] ) ) OK) [5] [] ) [2] Matsumura[3] Kikuchi[] ) [2] [3] [] 2 ) 3 2 P P )+ P + ) V + + P H + ) [2] [3] [] P V P ) ) V H ) P V ) ) ) 2 C) 25473) 2 3 Dermenian-Guillot[3]
Dynamics of cold molecules in external electromagnetic fields. Roman Krems University of British Columbia
Dynamics of cold molecules in external electromagnetic fields Roman Krems University of British Columbia UBC group: Zhiying Li Timur Tscherbul Erik Abrahamsson Sergey Alyabishev Chris Hemming Collaborations:
A Short Introduction to Tensors
May 2, 2007 Tensors: Scalars and Vectors Any physical quantity, e.g. the velocity of a particle, is determined by a set of numerical values - its components - which depend on the coordinate system. Studying
ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.
Ó³ Ÿ. 2017.. 14, º 6(211).. 630Ä636 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. Š ˆŒ ˆ Š ˆŸ ˆŸ ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ. œ.., 1,.. ³,. ƒ. Š ² ±μ,.. ³ ±,.. ³ μ,. ˆ. É ²μ,. ˆ. ÕÉÕ ±μ, ƒ.. Ë,, ˆ.. ±μ ˆ É ÉÊÉ μ Ð Ë ± ³.. Œ.
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
PHASE TRANSITIONS IN QED THROUGH THE SCHWINGER DYSON FORMALISM
PHASE TRANSITIONS IN THROUGH THE SCHWINGER DYSON FORMALISM Spyridon Argyropoulos University of Athens Physics Department Division of Nuclear Physics and Elementary Particles Supervisor: C.N. Ktorides Athens
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
Errata 18/05/2018. Chapter 1. Chapter 2
Errata 8/05/08 Fundamentals of Neutrino Physics and Astrophysics C. Giunti and C.W. Kim Oxford University Press publication date: 5 March 007; 78 pages ± Lines are calculated before or after + the Anchor.
Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines
Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 740Ä744 ˆ Œˆ ƒ Š Œ ˆ Œˆ ˆŸ ˆ ˆ ˆŸ ˆˆ ƒ ˆ Šˆ ˆ.. Œμ Ìμ ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö ±μ³ ² ± ÒÌ ³μ ʲÖÌ Ð É Ò³ ² ³ в ËËμ Î É μ - ³ μ É Ò Ë ³ μ Ò ³ Ò Å ²μ ÉÉ. Ì
= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.
PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D
Thirring Model. Brian Williams. April 13, 2010
Thirring Model Brian Williams April 13, 2010 1 Introduction The Thirring model is a completely soluble, covariant (1+1)-dimensional quantum field theory of a two-component Dirac spinor We can write the
14 Lesson 2: The Omega Verb - Present Tense
Lesson 2: The Omega Verb - Present Tense Day one I. Word Study and Grammar 1. Most Greek verbs end in in the first person singular. 2. The present tense is formed by adding endings to the present stem.
Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw
Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships
ANTENNAS and WAVE PROPAGATION. Solution Manual
ANTENNAS and WAVE PROPAGATION Solution Manual A.R. Haish and M. Sachidananda Depatment of Electical Engineeing Indian Institute of Technolog Kanpu Kanpu - 208 06, India OXFORD UNIVERSITY PRESS 2 Contents
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Generating Set of the Complete Semigroups of Binary Relations
Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
Hadronic Tau Decays at BaBar
Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Dirac Matrices and Lorentz Spinors
Dirac Matrices and Lorentz Spinors Background: In 3D, the spinor j = 2 1 representation of the Spin3) rotation group is constructed from the Pauli matrices σ x, σ y, and σ z, which obey both commutation
Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.
Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author. 2012, Γεράσιμος Χρ. Σιάσος / Gerasimos Siasos, All rights reserved. Στοιχεία επικοινωνίας συγγραφέα / Author
Sampling Basics (1B) Young Won Lim 9/21/13
Sampling Basics (1B) Copyright (c) 2009-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any