Τεχνητή Νοημοσύνη. 18η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τεχνητή Νοημοσύνη. 18η διάλεξη ( ) Ίων Ανδρουτσόπουλος."

Transcript

1 Τεχνητή Νοημοσύνη 18η διάλεξη ( ) Ίων Ανδρουτσόπουλος 1

2 Οι διαφάνειες αυτής της διάλεξης βασίζονται: στο βιβλίο Machine Learning του T. Mitchell, McGraw- Hill, 1997, σε ύλη των διαλέξεων του μαθήματος Μηχανικής Μάθησης του A. Ng στο Πανεπιστήμιο Stanford (βλ. 2

3 Τι θα ακούσετε σήμερα Γραμμικοί διαχωριστές. Ταξινομητές λογιστικής παλινδρόμησης. Μεγιστοποίηση πιθανοφάνειας με κατάβαση κλίσης. Διαγνωστικοί έλεγχοι κατά τη χρήση επιβλεπόμενης μηχανικής μάθησης. 3

4 Γραμμικοί διαχωριστές Για δύο ιδιότητες x 1, x 2, προσπαθούμε να μάθουμε ευθεία που διαχωρίζει τις δύο κατηγορίες. w2 x2 w1 x1 w0 0 Γενικότερα, για ιδιότητες x 1, x 2,, x n προσπαθούμε να μάθουμε ένα υπερ-επίπεδο που να διαχωρίζει τις δύο κατηγορίες. w x w x w w x w x n n l l l0 Απόφαση κατάταξης: C n Τα σημεία πάνω από την ευθεία έχουν: wx 0 Τα σημεία κάτω από την ευθεία έχουν: wx 0 Θεωρούμε πάλι ότι x 0 = 1. sign( wx) 0

5 Γραμμικοί διαχωριστές συνέχεια Συχνά θέλουμε ο ταξινομητής να επιστρέφει και ένα βαθμό βεβαιότητας. Π.χ. πόσο πιθανό θεωρεί να ανήκει ένα προς κατάταξη κείμενο με διάνυσμα Ԧx στη μία ή την άλλη κατηγορία. Η προσημασμένη απόσταση από το υπερ-επίπεδο διαχωρισμού δεν είναι καλός βαθμός βεβαιότητας. d ( ) w x Δεν είναι περιορισμένη στο [0, 1]. wx w Για μεγάλες (θετικές ή αρνητικές) αποστάσεις θέλουμε η βεβαιότητα να τείνει στο 1. d ( ) w x Χωρίς το w 0. Για μικρές αποστάσεις θέλουμε η βεβαιότητα να τείνει στο 0.

6 Σιγμοειδής συνάρτηση (logistic function) Στην περίπτωσή μας το t θα είναι η προσημασμένη (και μη κανονικοποιημένη) απόσταση από το υπερεπίπεδο διαχωρισμού: t wx Πιθανότητα το x να ανήκει στη θετική κατηγορία: P( c x) 1 1 e wx Πιθανότητα να ανήκει στην αρνητική κατηγορία: g(t) gt () 1 1 e P( c x) 1 P( c x) t t Πηγή εικόνας: Logistic_function

7 Ταξινομητές λογιστικής παλινδρόμησης (logistic regression classifiers) 1 P( c x), wx 1 e P( c x) 1 P( c x) Κατά την εκπαίδευση, επιλέγουν το w που κάνει τον ταξινομητή πιο βέβαιο ότι τα παραδείγματα εκπαίδευσης ανήκουν στις σωστές κατηγορίες. Μεγιστοποιούν τη (δεσμευμένη) «πιθανοφάνεια» των παραδειγμάτων. L w P y y x x w e 1 e (1) ( m) (1) ( m) ( ) (,,,, ; ) wx wx Οι σωστές κατηγορίες των παραδειγμάτων εκπαίδευσης. Τα παραδείγματα εκπαίδευσης.

8 Μεγιστοποίηση πιθανοφάνειας Θεωρώντας ότι τα παραδείγματα εκπαίδευσης έχουν επιλεγεί από τον ίδιο πληθυσμό και είναι ανεξάρτητα: L w P y y x x w (1) ( m) (1) ( m) ( ) (,,,, ; ) m i1 P y x w ( i) ( i) ( ; ) Lw ( ) Αντί να μεγιστοποιήσουμε την, βολεύει να μεγιστοποιήσουμε τη (γνησίως αύξουσα): m ( i) ( i) ( ) log ( ) log ( ; ) l w L w P y x w i1

9 Μεγιστοποίηση πιθανοφάνειας συνέχεια Αν παραστήσουμε τις κατηγορίες με y = 1 (θετική κατηγορία) και y = 0 (αρνητική κατηγορία), τότε: P( y x; w) P( c x; w) y P( c x; w) Για y = 1 (θετική κατηγορία), ο 2 ος όρος εξαφανίζεται. Για y = 0 (αρνητική), ο 1 ος όρος εξαφανίζεται. Οπότε: (1 y) m ( i) ( i) ( i) y ( i) (1 y ) i1 ( i) ( i) ( i) ( i) log ( ; ) (1 )log ( ; ) l( w) log P( c x ; w) log P( c x ; w) m y P c x w y P c x w i1

10 Μεγιστοποίηση πιθανοφάνειας συνέχεια Με ανάβαση κλίσης: w w l( w) καταλήγουμε στον κανόνα ενημέρωσης: m ( i) ( i) ( i) l l [ ( )] l i1 w w y P c x x Εναλλακτικά μπορούμε να χρησιμοποιήσουμε π.χ. στοχαστική ανάβαση κλίσης. Δεν υπάρχει κλειστή λύση. lw ( ) Τώρα μεγιστοποιούμε το, αντί να ελαχιστοποιούμε το Ew ( ).

11 Κανονικοποίηση (regularization) Στην πράξη αντί για το: m ( i) ( i) ( ) log ( ; ) l w P y x w i1 συνήθως μεγιστοποιούμε το: δηλ. επιβραβεύουμε υποψήφια 2 n 2 l l0 l( w) w l( w) w με πολλά μικρά βάρη. Υπάρχει έτσι μικρότερος κίνδυνος υπερ-εφαρμογής. w l Π.χ. αν πολλά βάρη είναι πολύ μικρά, οι αντίστοιχες ιδιότητες ουσιαστικά δεν χρησιμοποιούνται. Με λιγότερες ιδιότητες έχουμε μικρότερο κίνδυνο υπερ-εφαρμογής. λ > 0. Η τιμή του επιλέγεται με δοκιμές σε ξεχωριστά δεδομένα. w

12 Πολυωνυμική λογιστική παλινδρόμηση (multinomial logistic regression) Επέκταση για πολλές κατηγορίες c 1, c 2,, c Κ. Ουσιαστικά μαθαίνουμε έναν ξεχωριστό γραμμικό διαχωριστή για κάθε κατηγορία c i, ο οποίος αποφασίζει αν η περίπτωση που κατατάσσουμε ανήκει ή όχι στη c i. πιθανότητα να ανήκει στην c j P( c x) σταθερά κανονικοποίησης j j ' 1 w x Εκπαιδεύουμε πάλι μεγιστοποιώντας τη (δεσμευμένη) πιθανοφάνεια των παραδειγμάτων εκπαίδευσης. Τύποι/μέθοδοι αντίστοιχοι με της περίπτωσης δύο κατηγοριών. K e e j w j ' x διαφορετικό διάνυσμα βαρών ανά κατηγορία

13 Συμβουλές χρήσης επιβλεπόμενης ΜΜ (βασισμένες σε συμβουλές του A. Ng) Στους περισσότερους αλγορίθμους επιβλεπόμενης μηχανικής μάθησης το συνολικό σφάλμα στα δεδομένα εκπαίδευσης είναι χαμηλότερο από το συνολικό σφάλμα στα δεδομένα αξιολόγησης. Σφάλμα εκπαίδευσης: Πόσο καλά τα πάμε στα ίδια δεδομένα που χρησιμοποιήσαμε για εκπαίδευση. Σφάλμα αξιολόγησης: Πόσο καλά τα πάμε σε διαφορετικά δεδομένα από εκείνα που χρησιμοποιήσαμε για εκπαίδευση. Το σφάλμα εκπαίδευσης συχνά είναι μια χρήσιμη ένδειξη του πόσο καλά μπορούμε να ελπίζουμε ότι θα τα πάμε κατά την αξιολόγηση. Παραστάσεις των δύο ειδών σφαλμάτων συχνά βοηθούν να διαγνώσουμε τι δεν πάει καλά με το σύστημά μας.

14 Διαγνωστικοί έλεγχοι: υπερ-εφαρμογή συνολικό σφάλμα αξιολόγησης περίπτωση high variance συνολικό σφάλμα εκπαίδευσης αριθμός παραδειγμάτων εκπαίδευσης

15 Διαγνωστικοί έλεγχοι: υπερ-εφαρμογή Αν παρατηρούμε τα εξής: Το συνολικό σφάλμα εκπαίδευσης αυξάνεται (χειροτερεύει) απότομα όσο προσθέτουμε παραδείγματα εκπαίδευσης. Το συνολικό σφάλμα αξιολόγησης μειώνεται (βελτιώνεται) απότομα όσο προσθέτουμε παραδείγματα εκπαίδευσης. Κυρίως: υπάρχει μεγάλη διαφορά μεταξύ των δύο σφαλμάτων. Μπορεί το σύστημα να πάσχει από υπερ-εφαρμογή: Τα πηγαίνει πολύ καλύτερα στα δεδομένα εκπαίδευσης από ό,τι στα δεδομένα αξιολόγησης, γιατί μαθαίνει ιδιαιτερότητες των παραδειγμάτων αξιολόγησης. Ευκολότερο να συμβεί με λίγα δεδομένα εκπαίδευσης. Όσο αυξάνονται τα δεδομένα εκπαίδευσης, τόσο δυσκολότερο γίνεται να μάθει ιδιαιτερότητές τους. Πετυχαίνει καλύτερη γενίκευση, οπότε τα πηγαίνει και καλύτερα στα δεδομένα αξιολόγησης.

16 Διαγνωστικοί έλεγχοι: υπερ-εφαρμογή Τι μπορεί να βοηθήσει: Περισσότερα δεδομένα εκπαίδευσης. Λιγότερες (και καλύτερες) ιδιότητες (π.χ. επιλογή ιδιοτήτων, PCA). Απλούστερο μοντέλο υποθέσεων (π.χ. γραμμικές αντί για πολυωνυμικές υποθέσεις υψηλότερου βαθμού ή αντί για μη παραμετρικό μοντέλο όπως ο k-nn). Μεγαλύτερο λ στη λογιστική παλινδρόμηση. Τι δεν θα βοηθήσει μάλλον: Περισσότερες ιδιότητες. Πιο περίπλοκο μοντέλο υποθέσεων (π.χ. μη γραμμικό SVM, πιο περίπλοκο νευρωνικό δίκτυο). Περισσότερες επαναλήψεις στον AdaBoost.

17 Διαγνωστικοί έλεγχοι: πολύ περιορισμένος χώρος αναζήτησης συνολικό σφάλμα αξιολόγησης περίπτωση high bias συνολικό σφάλμα εκπαίδευσης επιθυμητό σφάλμα αξιολόγησης αριθμός παραδειγμάτων εκπαίδευσης

18 Διαγνωστικοί έλεγχοι: περιορισμένος χώρος αναζήτησης Αν παρατηρούμε τα εξής: Το συνολικό σφάλμα εκπαίδευσης αυξάνεται (χειροτερεύει) πολύ λίγο όσο προσθέτουμε παραδείγματα εκπαίδευσης. Το συνολικό σφάλμα αξιολόγησης μειώνεται (βελτιώνεται) πολύ λίγο όσο προσθέτουμε παραδείγματα εκπαίδευσης. Κυρίως: υπάρχει πολύ μικρή διαφορά μεταξύ των δύο σφαλμάτων (και δεν έχουμε φτάσει στο επιθυμητό επίπεδο σφάλματος). Ίσως ο χώρος αναζήτησης είναι υπερβολικά περιορισμένος: Το σύστημα ίσως δεν μπορεί να μάθει αυτό που θέλουμε, γιατί δεν περιλαμβάνεται στο χώρο αναζήτησης. Οι υποθέσεις του χώρου ίσως είναι υπερβολικά απλοϊκές, για να γενικεύσουν τα δεδομένα εκπαίδευσης.

19 Διαγνωστικοί έλεγχοι: περιορισμένος χώρος αναζήτησης Τι μπορεί να βοηθήσει: Περισσότερες ιδιότητες (π.χ. νέες πληροφορίες ή προσθήκη συνδυασμών ιδιοτήτων, όπως λογικό ΚΑΙ ζευγών ιδιοτήτων στη λογιστική παλινδρόμηση). Πιο περίπλοκο μοντέλο υποθέσεων (π.χ. μη γραμμικό SVM, πιο περίπλοκο νευρωνικό δίκτυο). Περισσότερες επαναλήψεις στον AdaBoost. Μικρότερο λ στη λογιστική παλινδρόμηση. Τι δεν θα βοηθήσει μάλλον: Περισσότερα δεδομένα εκπαίδευσης. Λιγότερες ιδιότητες (π.χ. με επιλογή ιδιοτήτων, PCA).

20 Από την παρουσίαση «Introduction to Machine Learning» του P. Vincent στο Deep Learning Summer School 2015 (βλ.

21 Βιβλιογραφία Δεν υπάρχουν ενότητες στα βιβλία των R&N και Βλαχάβα κ.ά. που να αντιστοιχούν στην ύλη αυτής της διάλεξης. Συμβουλευτείτε τις σημειώσεις «Linear regression, classification and logistic regression, generalized linear models» του A. Ng του Πανεπιστημίου Stanford. Βλ. σελ. 1 7, Όσοι ενδιαφέρονται μπορούν να διαβάσουν προαιρετικά (εκτός εξεταστέας ύλης) και τις υπόλοιπες ενότητες. Το Perceptron της ενότητας 6 θα το συναντήσουμε και στην επόμενη διάλεξη. Οι ταξινομητές λογιστικής παλινδρόμησης περιγράφονται και σε πρόσθετο (ηλεκτρονικό) κεφάλαιο του βιβλίου «Machine Learning» του T. Mitchell. Το κεφάλαιο διατίθεται ελεύθερα (βλ. συνδέσμους μαθήματος). Βλ. εισαγωγή ενότητας 3 και υπο-ενότητα 3.2 του κεφαλαίου.

22 Βιβλιογραφία συνέχεια Οι Μηχανές Διανυσμάτων Υποστήριξης (Support Vector Machines, SVM) είναι μια από τις κορυφαίες μεθόδους επιβλεπόμενης μάθησης. Μπορείτε να μάθετε για τα SVM στα μαθήματα «Μηχανική Μάθηση» και «Συστήματα Ανάκτησης Πληροφοριών». Περιγράφονται συνοπτικά στην ενότητα 20.6 των Russel & Norvig και στις διαφάνειες του μεταπτυχιακού μαθήματος «Γλωσσική Τεχνολογία» (βλ. e-class). Περιγράφονται επίσης στο κεφάλαιο 15 του βιβλίου «An Introduction to Information Retrieval» των C.D. Manning, P. Raghavan και H. Schütze, το οποίο διατίθεται ελεύθερα (βλ.

Ασκήσεις μελέτης της 19 ης διάλεξης

Ασκήσεις μελέτης της 19 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 19 ης διάλεξης 19.1. Δείξτε ότι το Perceptron με (α) συνάρτηση ενεργοποίησης

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 17η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 17η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 17η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται: στο βιβλίο Artificia Inteigence A Modern Approach των S. Russe και

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 16η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 16η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 16η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται σε ύλη του βιβλίου Artificial Intelligence A Modern Approach των

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 19η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 19η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 19η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτές βασίζονται σε ύλη των βιβλίων: Artificia Inteigence A Modern Approach των S. Russe και P.

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 14η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 14η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 14η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται σε ύλη του βιβλίου Artificial Intelligence A Modern Approach των

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη ( )

Τεχνητή Νοημοσύνη ( ) Εβδομάδα Διάλεξη Ενδεικτικά θέματα διαλέξεων Ενδεικτικά θέματα εργαστηρίων/φροντιστηρίων 1 1 1 2 2 3 2 4 3 5 3 6 4 7 4 8 5 9 Τεχνητή Νοημοσύνη (2017-18) Γενικές πληροφορίες για το μάθημα. Εισαγωγή στην

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδηµαϊκό έτος 2010-11 Χειµερινό Εξάµηνο Τελική εξέταση Τρίτη, 21 εκεµβρίου 2010,

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 4η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται κυρίως στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β.

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 5η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 5η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 5η διάλεξη (2017-18) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 15η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 15η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 15η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται σε ύλη του βιβλίου Artificial Intelligence A Modern Approach των

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 3η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 16 ης διάλεξης

Ασκήσεις μελέτης της 16 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 16 ης διάλεξης 16.1. (α) Έστω ένα αντικείμενο προς κατάταξη το οποίο

Διαβάστε περισσότερα

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 5η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 5η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 5η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδημαϊκό έτος 2010-11 Χειμερινό Εξάμηνο Practice final exam 1. Έστω ότι για

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 11-12 Γραμμική παλινδρόμηση συνέχεια Γραμμική παλινδρόμηση συνέχεια Γραμμικές διαχωριστικές συναρτήσεις Γραμμική παλινδρόμηση (Linear regression) y = w + wx + + w

Διαβάστε περισσότερα

ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ

ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ Κατευθυνόμενη ταξινόμηση (supervsed cassfcaton) Μη-κατευθυνόμενη ταξινόμηση (unsupervsed cassfcaton) Γραμμική: Lnear Dscrmnant Anayss Μη- Γραμμική: Νευρωνικά δίκτυα κλπ. Ιεραρχική

Διαβάστε περισσότερα

Το μοντέλο Perceptron

Το μοντέλο Perceptron Το μοντέλο Perceptron Αποτελείται από έναν μόνο νευρώνα McCulloch-Pitts w j x x 1, x2,..., w x T 1 1 x 2 w 2 Σ u x n f(u) Άνυσμα Εισόδου s i x j x n w n -θ w w 1, w2,..., w n T Άνυσμα Βαρών 1 Το μοντέλο

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΜΙΑ ΣΥΜΒΑΣΗ: Προκειμένου να καταστήσουμε πιο συμπαγή το συμβολισμό H : ορίζουμε Ετσι έχουμε *=[ ] an *=[ ]. H : * * ΣΗΜΕΙΩΣΗ: Στη συνέχεια εκτός αν ορίζεται

Διαβάστε περισσότερα

Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron Βιολογικός Νευρώνας Δενδρίτες, που αποτελούν τις γραμμές εισόδου των ερεθισμάτων (βιολογικών σημάτων) Σώμα, στο οποίο γίνεται η συσσώρευση των ερεθισμάτων και

Διαβάστε περισσότερα

Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP)

Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP) Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP) x -0,5 a x x 2 0 0 0 0 - -0,5 y y 0 0 x 2 -,5 a 2 θ η τιμή κατωφλίου Μία λύση του προβλήματος XOR Multi Layer Perceptron (MLP) x -0,5 Μία

Διαβάστε περισσότερα

Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Μάθηση και Γενίκευση. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Διαχωριστικές συναρτήσεις Ταξινόμηση κανονικών

Διαβάστε περισσότερα

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων Δρ. Ε. Χάρου Πρόγραμμα υπολογιστικής ευφυίας Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών ΕΚΕΦΕ ΔΗΜΟΚΡΙΤΟΣ exarou@iit.demokritos.gr Μηχανική

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16 HMY 795: Αναγνώριση Προτύπων Διαλέξεις 15-16 Νευρωνικά Δίκτυα(Neural Networks) Fisher s linear discriminant: Μείωση διαστάσεων (dimensionality reduction) y Τ =w x s + s =w S w 2 2 Τ 1 2 W ( ) 2 2 ( ) m2

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 9 10 Γραμμική παλινδρόμηση (Linear regression) Μπεϋζιανή εκτίμηση για την κανονική κατανομή Γνωστή μέση τιμή μ, άγνωστη διασπορά σ 2. Ακρίβεια λ=1/σ 2 : conjugate

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 9 20 Kernel methods Support vector machines Εκπαίδευση νευρωνικών δικτύων backpropagation:. Υπολογισμός μεταβλητών δικτύου «τρέχον» w () () (2) (2) aj = wji xi ak

Διαβάστε περισσότερα

Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν.

Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης Ελαχιστοποίηση συνάρτησης σφάλματος Εκπαίδευση ΤΝΔ: μπορεί να διατυπωθεί ως πρόβλημα ελαχιστοποίησης μιας συνάρτησης σφάλματος E(w)

Διαβάστε περισσότερα

Μέθοδοι εκμάθησης ταξινομητών από θετικά παραδείγματα με αριθμητικά χαρακτηριστικά. Νικόλαος Α. Τρογκάνης Διπλωματική Εργασία

Μέθοδοι εκμάθησης ταξινομητών από θετικά παραδείγματα με αριθμητικά χαρακτηριστικά. Νικόλαος Α. Τρογκάνης Διπλωματική Εργασία Μέθοδοι εκμάθησης ταξινομητών από θετικά παραδείγματα με αριθμητικά χαρακτηριστικά Νικόλαος Α. Τρογκάνης Διπλωματική Εργασία Αντικείμενο Μελέτη και ανάπτυξη μεθόδων από τον χώρο της μηχανικής μάθησης για

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 4: Μάθηση στον απλό τεχνητό νευρώνα (2)

Υπολογιστική Νοημοσύνη. Μάθημα 4: Μάθηση στον απλό τεχνητό νευρώνα (2) Υπολογιστική Νοημοσύνη Μάθημα 4: Μάθηση στον απλό τεχνητό νευρώνα (2) Ο κανόνας Δέλτα για συνεχείς συναρτήσεις ενεργοποίησης (1/2) Για συνεχείς συναρτήσεις ενεργοποίησης, θα θέλαμε να αλλάξουμε περισσότερο

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 9η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 9η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 9η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται εν μέρει στο βιβλίο Artificial Intelligence A Modern Approach των

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Το Πιθανοκρατικό Μοντέλο Κλασικά Μοντέλα Ανάκτησης Τρία είναι τα, λεγόμενα, κλασικά μοντέλα ανάκτησης: Λογικό (Boolean) που βασίζεται στη Θεωρία Συνόλων Διανυσματικό (Vector) που βασίζεται στη Γραμμική

Διαβάστε περισσότερα

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 6: Μάθηση με Οπισθοδιάδοση Σφάλματος Backpropagation Learning

Υπολογιστική Νοημοσύνη. Μάθημα 6: Μάθηση με Οπισθοδιάδοση Σφάλματος Backpropagation Learning Υπολογιστική Νοημοσύνη Μάθημα 6: Μάθηση με Οπισθοδιάδοση Σφάλματος Backpropagation Learning Κεντρική ιδέα Τα παραδείγματα μάθησης παρουσιάζονται στο μηεκπαιδευμένο δίκτυο και υπολογίζονται οι έξοδοι. Για

Διαβάστε περισσότερα

Γλωσσική Τεχνολογία. Εισαγωγή. Ίων Ανδρουτσόπουλος.

Γλωσσική Τεχνολογία. Εισαγωγή. Ίων Ανδρουτσόπουλος. Γλωσσική Τεχνολογία Εισαγωγή 2015 16 Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/in/ Τι θα ακούσετε Εισαγωγή στη γλωσσική τεχνολογία. Ύλη και οργάνωση του μαθήματος. Προαπαιτούμενες γνώσεις και άλλα προτεινόμενα

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Γραµµικοί Ταξινοµητές

Γραµµικοί Ταξινοµητές ΚΕΣ 3: Αναγνώριση Προτύπων και Ανάλυση Εικόνας KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Γραµµικοί Ταξινοµητές ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου 7 Ncolas sapatsouls

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 13-14

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 13-14 HMY 795: Αναγνώριση Προτύπων Διαλέξεις 13-14 Γραμμικές διαχωριστικές συναρτήσεις(συνέχεια) Επιλογή μοντέλου Δεδομένα επικύρωσης Κανονικοποίηση Bayes Model evidence(τεκμήριο): Η πιθανότητα να παρατηρήσουμε

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Η παραπάνω ανάλυση ήταν χρήσιμη προκειμένου να κατανοήσουμε τη λογική των δικτύων perceptrons πολλών επιπέδων

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 15 16 Λογιστική παλινδρόμηση (Logistic regression) Νευρωνικά Δίκτυα (Neural Networks) g ( x) = w x+ w T k k k0 1 ( T T WLS = X X) X T= X T Γραμμικές διαχωριστικές

Διαβάστε περισσότερα

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης Μάθημα 4 ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Διευρυμένη Υπολογιστική Νοημοσύνη (ΥΝ) Επεκτάσεις της Κλασικής ΥΝ. Μεθοδολογίες

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 7η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Bayesian decision Minimum misclassificaxon rate decision: διαλέγουμε την κατηγορία Ck για

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Επανάληψη Expectatio maximizatio for Gaussia mixtures. Αρχικοποιούμε τις άγνωστες παραμέτρους µ k, Σ k και π k 2. Υπολογίσμος των resposibilitiesγ(z k : γ ( z = k π ( x µ ˆ,

Διαβάστε περισσότερα

Ζωντανό Εργαστήριο Thessaloniki Active and Healthy Ageing Living Lab Παρακολούθηση ατόμων στο σπίτι σε πραγματικό χρόνο

Ζωντανό Εργαστήριο Thessaloniki Active and Healthy Ageing Living Lab Παρακολούθηση ατόμων στο σπίτι σε πραγματικό χρόνο 1 Ζωντανό Εργαστήριο Thessaloniki Active and Healthy Ageing Living Lab Παρακολούθηση ατόμων στο σπίτι σε πραγματικό χρόνο Συλλογή δεδομένων Μελέτη κινησιολογικών και συμπεριφορικών συνηθειών Πρόβλεψη ψυχικών

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα & Περιβάλλον

Πληροφοριακά Συστήματα & Περιβάλλον ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Πληροφοριακά Συστήματα & Περιβάλλον Ενότητα 8: Τεχνητά Νευρωνικά Δίκτυα Παναγιώτης Λεφάκης Δασολογίας & Φυσικού Περιβάλλοντος Άδειες Χρήσης

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2 HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Θεωρία πιθανοτήτων Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (αντίθετα με τις ντετερμινιστικές μεταβλητές)

Διαβάστε περισσότερα

Το Πολυεπίπεδο Perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Το Πολυεπίπεδο Perceptron. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Το Πολυ Perceptron Δίκτυα Πρόσθιας Τροφοδότησης (feedforward) Tο αντίστοιχο γράφημα του δικτύου δεν περιλαμβάνει κύκλους: δεν υπάρχει δηλαδή ανατροφοδότηση της εξόδου ενός νευρώνα προς τους νευρώνες από

Διαβάστε περισσότερα

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 2 ο : Βασικές έννοιες. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος:

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 2 ο : Βασικές έννοιες. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος: ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Μάθημα 2 ο : Βασικές έννοιες Γεώργιος Πετάσης Ακαδημαϊκό Έτος: 2012 2013 ΤMHMA MHXANIKΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ, Πανεπιστήμιο Πατρών, 2012 2013 Γλωσσική Τεχνολογία, Μάθημα 2 ο, Βασικές

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 9: Γενίκευση

Υπολογιστική Νοημοσύνη. Μάθημα 9: Γενίκευση Υπολογιστική Νοημοσύνη Μάθημα 9: Γενίκευση Υπερπροσαρμογή (Overfitting) Ένα από τα βασικά προβλήματα που μπορεί να εμφανιστεί κατά την εκπαίδευση νευρωνικών δικτύων είναι αυτό της υπερβολικής εκπαίδευσης.

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Νευρώνας Perceptron Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος Τζώρτζης Γρηγόρης Περιεχόμενα Εισαγωγή

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson Σχεδιαζόντας ταξινομητές: Τα δεδομένα Στην πράξη η γνώση σχετικά διαδικασία γέννεσης των δεδομένων είναι πολύ σπάνια γνωστή. Το μόνο που έχουμε στη διάθεσή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks

Υπολογιστική Νοημοσύνη. Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks Υπολογιστική Νοημοσύνη Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks Γενικά Ένα νευρωνικό δίκτυο λέγεται αναδρομικό, εάν υπάρχει έστω και μια σύνδεση από έναν νευρώνα επιπέδου i προς έναν νευρώνα επιπέδου

Διαβάστε περισσότερα

Μηχανική Μάθηση: γιατί;

Μηχανική Μάθηση: γιατί; Μηχανική Μάθηση Μηχανική Μάθηση: γιατί; Απαραίτητη για να μπορεί ο πράκτορας να ανταπεξέρχεται σε άγνωστα περιβάλλοντα Δεν είναι δυνατόν ο σχεδιαστής να προβλέψει όλα τα ενδεχόμενα περιβάλλοντα. Χρήσιμη

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 1 ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΟΥ ΧΩΡΟΥ ΤΩΝ ΤΑΞΙΝΟΜΗΤΩΝ Ταξινομητές Ταξινομητές συναρτ. διάκρισης Ταξινομητές επιφανειών απόφ. Παραμετρικοί ταξινομητές Μη παραμετρικοί

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διδάσκων: Γεώργιος Μήτσης, Λέκτορας, Τμήμα ΗΜΜΥ Γραφείο: GP401 Ώρες γραφείου: Οποτεδήποτε (κατόπιν επικοινωνίας) Τηλ: 22892239 Ηλ. Ταχ.: gmitsis@ucy.ac.cy Βιβλιογραφία C. M.

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ. Data Mining - Classification

ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ. Data Mining - Classification ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ Data Mining - Classification Data Mining Ανακάλυψη προτύπων σε μεγάλο όγκο δεδομένων. Σαν πεδίο περιλαμβάνει κλάσεις εργασιών: Anomaly Detection:

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 2-22 Support vector machies (συνέχεια) Support vector machies (συνέχεια) Usupervised learig: Clusterig ad Gaussia mixtures Kerel fuctios: k( xx, ') = ϕ ( x) ϕ( x

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 26 Ιανουαρίου 2004 ιάρκεια: 2 ώρες (9:00-:00) Στην παρακάτω

Διαβάστε περισσότερα

3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON

3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON 3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPRON 3. ΕΙΣΑΓΩΓΗ: Το Perceptron είναι η απλούστερη μορφή Νευρωνικού δικτύου, το οποίο χρησιμοποιείται για την ταξινόμηση ενός ειδικού τύπου προτύπων, που είναι γραμμικά διαχωριζόμενα.

Διαβάστε περισσότερα

«Αναγνώριση και Κατάταξη Ονομάτων Οντοτήτων σε Ελληνικά Κείμενα με Χρήση Μηχανών ιανυσμάτων Υποστήριξης»

«Αναγνώριση και Κατάταξη Ονομάτων Οντοτήτων σε Ελληνικά Κείμενα με Χρήση Μηχανών ιανυσμάτων Υποστήριξης» ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ θέμα: «Αναγνώριση και Κατάταξη Ονομάτων Οντοτήτων σε Ελληνικά Κείμενα με Χρήση Μηχανών ιανυσμάτων Υποστήριξης» Βασιλάκος Ξενοφών Επιβλέπων

Διαβάστε περισσότερα

Συγκριτική Μελέτη Μεθόδων Κατηγοριοποίησης σε Ιατρικά Δεδομένα

Συγκριτική Μελέτη Μεθόδων Κατηγοριοποίησης σε Ιατρικά Δεδομένα ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Συγκριτική Μελέτη Μεθόδων Κατηγοριοποίησης σε Ιατρικά Δεδομένα

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων Ακαδ. Έτος Τμήμα Μηχανικών Η/Υ & Πληροφορικής. Παρασκευάς Τσανταρλιώτης Α.Μ. 318

Πανεπιστήμιο Ιωαννίνων Ακαδ. Έτος Τμήμα Μηχανικών Η/Υ & Πληροφορικής. Παρασκευάς Τσανταρλιώτης Α.Μ. 318 Πανεπιστήμιο Ιωαννίνων Ακαδ. Έτος 2014-15 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Εαρινό Εξάμηνο Παρασκευάς Τσανταρλιώτης Α.Μ. 318 Μηχανική Μάθηση Εργασία 1 Άσκηση 1 a. Αρχικά πρέπει να βρούμε τις παραμέτρους

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Ανάπτυξη συστήματος ερωταποκρίσεων για αρχεία ελληνικών εφημερίδων

Ανάπτυξη συστήματος ερωταποκρίσεων για αρχεία ελληνικών εφημερίδων Ανάπτυξη συστήματος ερωταποκρίσεων για αρχεία ελληνικών εφημερίδων Οικονομικό Πανεπιστήμιο Αθηνών Πρόγραμμα Μεταπτυχιακών Σπουδών «Επιστήμη των Υπολογιστών» Διπλωματική Εργασία Μαρία-Ελένη Κολλιάρου 2

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 17 18 Νευρωνικά Δίκτυα (Neural Networks) συνέχεια Minimum squared error procedure for classification 1 ( T T wls = X X) X b= X b Xw = b Logistic sigmoidal function

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Γραμμική παλινδρόμηση (Linear regression) Εμπειρική συνάρτηση μεταφοράς Ομαλοποίηση (smoothing) Y ( ) ( ) ω G ω = U ( ω) ω +Δ ω γ ω Δω = ω +Δω W ( ξ ω ) U ( ξ) G(

Διαβάστε περισσότερα

α n z n = 1 + 2z 2 + 5z 3 n=0

α n z n = 1 + 2z 2 + 5z 3 n=0 Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Η ύλη συνοπτικά... Γεννήτριες συναρτήσεις Τι είναι η γεννήτρια Στην

Διαβάστε περισσότερα

«Τεχνογλωσσία VIII» Εξαγωγή πληροφοριών από κείμενα

«Τεχνογλωσσία VIII» Εξαγωγή πληροφοριών από κείμενα «Τεχνογλωσσία VIII» Εξαγωγή πληροφοριών από κείμενα Σεμινάριο 8: Χρήση Μηχανικής Μάθησης στην Εξαγωγή Πληροφορίας Ευάγγελος Καρκαλέτσης, Γεώργιος Πετάσης Εργαστήριο Τεχνολογίας Γνώσεων & Λογισμικού, Ινστιτούτο

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα. Εισαγωγική Διάλεξη

Επιχειρησιακή Έρευνα. Εισαγωγική Διάλεξη Επιχειρησιακή Έρευνα Εισαγωγική Διάλεξη Πληροφορίες Διδάσκων: Αντώνης Δημάκης (dimakis@aueb.gr) Γραφείο: 506, 5 ος όροφος, Τροίας 2 (νέο κτήριο), Ώρες: Πέμπτη 1-3μμ Τηλ: 210-8203-924 Βοηθός: Δέσποινα Μεντζελιώτου

Διαβάστε περισσότερα

Μελέτη κατηγοριοποίησης δεδομένων με Μηχανές Διανυσμάτων Υποστήριξης (Support Vector Machines) και υλοποίηση εφαρμογής.

Μελέτη κατηγοριοποίησης δεδομένων με Μηχανές Διανυσμάτων Υποστήριξης (Support Vector Machines) και υλοποίηση εφαρμογής. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ Μελέτη κατηγοριοποίησης δεδομένων με Μηχανές Διανυσμάτων Υποστήριξης (Support Vector Machines) και

Διαβάστε περισσότερα

Lecture Notes for Chapter 5. (cont.)

Lecture Notes for Chapter 5. (cont.) Dt Miig Clssifictio: Altertive echiques Lecture otes for Chpter 5 (cot.) Clssifictio roblem Πρόβλημα μάθησης με επίβλεψη (Supervised lerig) Δεδομένα του συνόλου εκπαίδευσης αποτελούμενα από ζεύγη σημείων

Διαβάστε περισσότερα

ΣΥΝΕΛΙΚΤΙΚΑ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΣΥΝΕΛΙΚΤΙΚΑ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΜΑ ΦΥΣΙΚΗΣ - Δ.Π.Μ.Σ. «Ηλεκτρονική και Επεξεργασία της Πληροφορίας» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΥΝΕΛΙΚΤΙΚΑ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΣΤΗΝ ΥΠΟΛΟΓΙΣΤΙΚΗ ΌΡΑΣΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΠΑΠΑΔΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 5: Παραδείγματα. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 5: Παραδείγματα. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 5: Παραδείγματα Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 9-10

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 9-10 HMY 795: Αναγνώριση Προτύπων Διαλέξεις 9-10 Γραμμική παλινδρόμηση (Linear regression) Μπεϋζιανή εκτίμηση για την κανονική κατανομή Γνωστή μέση τιμή μ, άγνωστη διασπορά σ 2. Ακρίβεια λ=1/σ 2 : conjugate

Διαβάστε περισσότερα

Διαχείριση εγγράφων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη

Διαχείριση εγγράφων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη Διαχείριση εγγράφων Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη Απεικόνιση κειμένων για Information Retrieval Δεδομένου ενός κειμένου αναζητούμε μια μεθοδολογία απεικόνισης του γραμματικού χώρου

Διαβάστε περισσότερα

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η (3 μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάση το συντελεστή συσχέτισης. (γράψτε ποιο

Διαβάστε περισσότερα

Ατομική Διπλωματική Εργασία. Πρόβλεψη ποδοσφαιρικών αποτελεσμάτων με την χρήση τεχνητών νευρωνικών δικτύων. Αντρέας Ιακώβου ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

Ατομική Διπλωματική Εργασία. Πρόβλεψη ποδοσφαιρικών αποτελεσμάτων με την χρήση τεχνητών νευρωνικών δικτύων. Αντρέας Ιακώβου ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Ατομική Διπλωματική Εργασία Πρόβλεψη ποδοσφαιρικών αποτελεσμάτων με την χρήση τεχνητών νευρωνικών δικτύων Αντρέας Ιακώβου ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Μάιος 2010 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Ανάδραση Σχετικότητας (Relevance Feedback ή RF) Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Ανάλυση και Σχεδιασμός Μεταφορών Ι Ανάλυση Διακριτών Επιλογών

Ανάλυση και Σχεδιασμός Μεταφορών Ι Ανάλυση Διακριτών Επιλογών Ανάλυση Διακριτών Επιλογών Παναγιώτης Παπαντωνίου Δρ. Πολιτικός Μηχανικός, Συγκοινωνιολόγος Πάτρα, 2017 Περιεχόμενα Αθροιστικά μοντέλα Εξατομικευμένα μοντέλα Μοντέλα Διακριτών Μεταβλητών Θεωρία Μεγιστοποίησης

Διαβάστε περισσότερα

Επικοινωνία Ανθρώπου Υπολογιστή

Επικοινωνία Ανθρώπου Υπολογιστή Επικοινωνία Ανθρώπου Υπολογιστή Α1. Εισαγωγή στην ΕΑΥ και γενικές πληροφορίες για το μάθημα (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Τι θα ακούσετε Τι είναι η Επικοινωνία Ανθρώπου

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Μοντελοποίηση: Πιθανοκρατικό Μοντέλο Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο Ασκήσεις Φροντιστηρίου 4 o Φροντιστήριο Πρόβλημα 1 ο Ο πίνακας συσχέτισης R x του διανύσματος εισόδου x( στον LMS αλγόριθμο 1 0.5 R x = ορίζεται ως: 0.5 1. Ορίστε το διάστημα των τιμών της παραμέτρου μάθησης

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης Αναγνώριση Προτύπων (Pattern Recognton Μπεϋζιανή Θεωρία Αποφάσεων (Bayesan Decson Theory Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Μπεϋζιανή Θεωρία Αποφάσεων (Bayes Decson theory Στατιστικά

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων Διδάσκων: HMY 795: Αναγνώριση Προτύπων Γεώργιος Μήτσης Γραφείο: GP401 Ωρες γραφείου: Οποτεδήποτε (κατόπιν επικοινωνίας) Τηλ: 22892239 Ηλ. Ταχ.: gmitsis@ucy.ac.cy Βιβλιογραφία C. M. Bishop Pa#ern Recogni-on

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Αλεξάνδρειο ΣΕΙ Θεσσαλονίκης 1. Σμήμα Διοίκησης Επιχειρήσεων 2. Σμήμα Μηχανικών Πληροφορικής

Αλεξάνδρειο ΣΕΙ Θεσσαλονίκης 1. Σμήμα Διοίκησης Επιχειρήσεων 2. Σμήμα Μηχανικών Πληροφορικής Εξόρυξη γνώσης από σχόλια σε τουριστικές ιστοσελίδες και παραγοντική ανάλυση του αισθήματος ικανοποίησης των πελατών για το ξενοδοχείο τους Γιώργος ταλίδης 1, Παναγιώτης ταλίδης 2, Κώστας Διαμαντάρας 2

Διαβάστε περισσότερα

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Στατιστική Συμπερασματολογία Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων εκτιμήτρια συνάρτηση, ˆ θ σημειακή εκτίμηση εκτίμηση με διάστημα εμπιστοσύνης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Versio A ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η περίπτωση του ταξινομητή Bayes Εκτίμηση μέγιστης εκ των υστέρων πιθανότητας Maimum Aoseriori

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Πρόβλεψη Αιολικής Ισχύος με χρήση Μηχανών Διανυσμάτων Υποστήριξης και Τεχνητών Νευρωνικών Δικτύων

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Πρόβλεψη Αιολικής Ισχύος με χρήση Μηχανών Διανυσμάτων Υποστήριξης και Τεχνητών Νευρωνικών Δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Πρόβλεψη Αιολικής Ισχύος με χρήση Μηχανών Διανυσμάτων Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Α.Π.Θ Τομέας Ηλεκτρικής Ενέργειας Εργαστήριο Συστημάτων Ηλεκτρικής Ενέργειας

Διαβάστε περισσότερα

Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα

Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Πολυεπίπεδες Perceptron Οαλγόριθµος

Διαβάστε περισσότερα

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ. Καραγιώργου Σοφία

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ. Καραγιώργου Σοφία ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Καραγιώργου Σοφία Εισαγωγή Προσομοιώνει βιολογικές διεργασίες (π.χ. λειτουργία του εγκεφάλου, διαδικασία

Διαβάστε περισσότερα