4 η Σειρά ασκήσεων (Συμπίεση, Ομαδοποίηση, Ευρετηρίαση Πολυμέσων, Κατανεμημένη Ανάκτηση)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4 η Σειρά ασκήσεων (Συμπίεση, Ομαδοποίηση, Ευρετηρίαση Πολυμέσων, Κατανεμημένη Ανάκτηση)"

Transcript

1 Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών HY463 -Συστήματα Ανάκτησης Πληροφοριών Εαρινό Εξάμηνο 4 η Σειρά ασκήσεων (Συμπίεση, Ομαδοποίηση, Ευρετηρίαση Πολυμέσων, Κατανεμημένη Ανάκτηση) Ημερομηνία Ανάθεσης: 5/5/2006 Ημερομηνία Παράδοσης: 5/6/2006 Άσκηση 1 (15 βαθμ.) Θεωρείστε τα εξής λόγια του Σενέκα: «Ο γνωστικός γνωρίζει τον αμαθή γιατί υπήρξε και ο ίδιος αμαθής. Ο αμαθής δεν γνωρίζει τον γνωστικό γιατί δεν υπήρξε ποτέ γνωστικός». α) Θεωρώντας την κάθε λέξη ως σύμβολο του αλφαβήτου, ποια είναι η εντροπία του αλφαβήτου; β) Δώστε τη συμπιεσμένη μορφή του κειμένου χρησιμοποιώντας κανονικοποιημένους κώδικες Huffman. Λύση α) Η έννοια της πληροφοριακής εντροπίας περιγράφει την ποσότητα της πληροφορίας που βρίσκεται μέσα σε ένα σήμα. Παράδειγμα: Έστω ένα κουτί από μπάλες. Αν όλες οι μπάλες έχουν διαφορετικό χρώμα τότε είμαστε αβέβαιοι στο μέγιστο βαθμό όσο αφορά την απάντηση στο ερώτημα τι χρώμα μπάλα θα πάρει κάποιος από το κουτί. Αν όμως ένα χρώμα υπάρχει σε μεγαλύτερη ποσότητα από κάποια άλλα τότε η αβεβαιότητα μας μικραίνει. Τα συστατικά στοιχεία του λόγου του Σενέκα είναι: Λέξη Ο γνωστικός γνωρίζει τον αµαθή γιατί υπήρξε και ο ίδιος αµαθής δεν γνωστικό ποτέ Πιθανότητα εμφάνισης Υπολογισμός εντροπίας: =3,731 bits

2 β) Κωδικοποίηση Huffman Μεθοδολογία: 1. Επιλέγουµε δύο λέξεις µε το χαµηλότερο αριθµό εµφανίσεων. Αν υπάρχουν περισσότερες από δύο, διαλέγουµε τυχαία. 2. Ενώνουµε τις δύο λέξεις µε ένα κοινό πατρικό κόµβο, κατασκευάζοντας ένα υποδένδρο. Αναθέτουµε στον πατρικό κόµβο έναν αριθµό, ο οποίος είναι το άθροισµα των αριθµών των θυγατρικών του κόµβων. 3. Επαναλαμβάνουμε από το πρώτο βήμα έως ότου δεν υπάρχουν ασύνδετες µεταξύ τους λέξεις. Λέξη Huffman code Ο 110 γνωστικός 0001 γνωρίζει 1001 τον 0101 αµαθή 0000 γιατί 1101 υπήρξε 0011 και 1000 ο 0100 ίδιος 1100 αµαθής 1011 δεν 111 γνωστικό 0010 ποτέ 1010

3 Άσκηση 2 (15 βαθμ.) Θεωρείστε 5 έγγραφα,,,, και έστω ότι οι αποστάσεις μεταξύ τους είναι αυτές του παρακάτω πίνακα. Δώστε το δενδρικό διάγραμμα που προκύπτει εφαρμόζοντας ιεραρχική ομαδοποίηση εγγράφων τύπου: (α) SingleLink, (β) ompletelink, και (γ) verage Link. Λύση Insert each document in a different cluster := ; For i=1 to n := U [di] FLS ompute each pairs similarity ompute SIM(c,c ) for each c, c Find the pair with highest (intercluster) similarity { u, v Totallusters == 1 Merge {u,v to one cluster TRU Return cluster hierarchy

4 α) SingleLink Βήμα 1: Βάζουμε κάθε έγγραφο σε διαφορετικό luster = {, = {, = {, = {, = { Βήμα 3: Βρίσκουμε το ζευγάρι με την υψηλότερη (inter-cluster) ομοιότητα., = {, min{6, 8 min{4.2, 5 5 min{4, Βήμα 3: Βρίσκουμε το ζευγάρι με την υψηλότερη (inter-cluster) ομοιότητα., = {, min{4, min{5, 5 Βήμα 3: Βρίσκουμε το ζευγάρι με την υψηλότερη (inter-cluster) ομοιότητα., = {,

5 min{4.2, 5 Βήμα 3: Βρίσκουμε το ζευγάρι με την υψηλότερη (inter-cluster) ομοιότητα., = {, ήμα 5: Έχουμε μόνο ένα luster b) ompletelink Βήμα 1: Βάζουμε κάθε έγγραφο σε διαφορετικό luster = {, = {, = {, = {, = { Βήμα 3: Βρίσκουμε το ζευγάρι με την μικρότερη (inter-cluster) ομοιότητα., = {,

6 max{6, 8 max{4.2, 5 5 max{4, Βήμα 3: Βρίσκουμε το ζευγάρι με την μικρότερη (inter-cluster) ομοιότητα., = {, max{8, 6 5 max{5, 5 Βήμα 3: Βρίσκουμε το ζευγάρι με την μικρότερη (inter-cluster) ομοιότητα., = {, max{8, 5 Βήμα 3: Βρίσκουμε το ζευγάρι με την μικρότερη (inter-cluster) ομοιότητα., = {,

7 ήμα 5: Έχουμε μόνο ένα luster c) veragelink Βήμα 1: Βάζουμε κάθε έγγραφο σε διαφορετικό luster = {, = {, = {, = {, = { Βήμα 3: Βρίσκουμε το ζευγάρι με την μέση (inter-cluster) ομοιότητα., = {, avg{6, 8 avg{4.2, 5 5 avg{4, Βήμα 3: Βρίσκουμε το ζευγάρι με την μέση (inter-cluster) ομοιότητα., = {,

8 avg{7, avg{5, 5 Βήμα 3: Βρίσκουμε το ζευγάρι με την μέση (inter-cluster) ομοιότητα., = {, avg{6, 5 Βήμα 3: Βρίσκουμε το ζευγάρι με την μέση (inter-cluster) ομοιότητα., = {, ήμα 5: Έχουμε μόνο ένα luster

9 Άσκηση 3 (10 βαθμ.) Έστω ότι έχουμε 5 εικόνες,,,, των οποίων οι αποστάσεις είναι αυτές που δίνονται στον πίνακα της Άσκησης 2. Προκειμένου να μπορούμε να απαντήσουμε επερωτήσεις γρήγορα θέλουμε να φτιάξουμε ένα μετρικό ευρετήριο, συγκεκριμένα ένα Vantage-Point-Tree (VTP). Σχεδιάστε το VTP που προκύπτει: α) αν επιλέξουμε την εικόνα ως κεντρική (pivot), β) αν επιλέξουμε την εικόνα ως κεντρική (pivot). Λύση α) Επιλέγοντας την εικόνα Α σαν pivot έχουμε: M d(, ), ), ), ) ,2 = = = = Άρα τα στοιχεία με απόσταση μικρότερη ή ίση του Μ εισάγονται στο αριστερό υποδένδρο, ενώ τα υπόλοιπα στο δεξί. Αναδροµικά, υπολογίζουµε το µέσο όρο των αποστάσεων του αριστερού και του δεξιού υποδένδρου αντίστοιχα. Τα στοιχεία αναδιατάσσονται και το τελικό δένδρο που προκύπτει είναι: <=4,05 >4,05 <=6 <=5

10 β) Επιλέγοντας την εικόνα ως κεντρική (pivot), υπολογίζουµε τον µέσο όρο των αποστάσεων από αυτή την εικόνα: d(, ), ), ), ) M = = = 4,8 4 4 Εποµένως, τα στοιχεία µε απόσταση µικρότερη ή ίση του 4.8 εισάγονται στο αριστερό υποδένδρο, ενώ τα υπόλοιπα στο δεξί. Αναδροµικά, υπολογίζουµε τον µέσο όρο των αποστάσεων µόνο του δεξιού υποδένδρου, αφού το αριστερό περιέχει µόνο ένα στοιχείο. d(, ), ) M ' = = = Τα στοιχεία του δεξιού υποδένδρου αναδιατάσσονται και το δένδρο που προκύπτει είναι, Άσκηση 4 (60 βαθμοί) Θεωρείστε τα ακόλουθα έγγραφα όπου τα γράμματα Α-Ε συμβολίζουν λέξεις. d1 = «ΑΒ Γ», d2 = «ΒΕ Β» d3 = «ΔΒ», d4 = «ΓΕΓ» d5 = «ΔΓΕΓ», d6 = «ΓΕ» d7 = «ΒΔΒ», d8 = «ΕΒ» Έστω ότι τα d1,d5, d6 ανήκουν σε ένα σύστημα S1, τα d2,d4 σε ένα σύστημα S2, και τα υπόλοιπα (d3,d7,d8) σε ένα σύστημα S3. Θέλουμε να φτιάξουμε έναν μεσίτη Μ πάνω από αυτά τα συστήματα. (α) Για την επιλογή πηγής ο Μ θέλει να περιγράψει τα περιεχόμενα της κάθε πηγής με ένα διάνυσμα. Δώστε τα διανύσματα πηγών των S1, S2 και S3. (β) Έστω ότι ο Μ έχει ήδη τα διανύσματα πηγών των S1, S2, S3 και λαμβάνει την επερώτηση q= Γ. Αν θέλει να προωθήσει την επερώτηση q σε μία μόνο πηγή, ποια θα επιλέξει;

11 (γ) Ο Μ λαμβάνει μια επερώτηση, την προωθεί σε όλες τις πηγές, και λαμβάνει τα εξής αποτελέσματα από την κάθε μια: S1: <d1, d6, d5> S2: <d4, d2> S3: <d7, d8, d3> Δώστε την νοποιημένη διάταξη κατά round robin interleaving (δ) Προκειμένου ο μεσίτης να λαμβάνει από τις πηγές απαντήσεις με συγκρίσιμα σκορ, αποφασίζει να κάνει αποτίμηση επερωτήσεων σε δυο φάσεις ώστε οι πηγές να λαμβάνουν τα καθολικά στατιστικά που χρειάζονται για τον σωστό υπολογισμό των σκορ. Δώστε το idf του κάθε όρου στην καθολική συλλογή εγγράφων. (ε) Ο μεσίτης βρίσκει άλλο ένα σύστημα S4 το οποίο έχει την ίδια συλλογή με αυτήν του S1, δηλαδή και αυτό παρέχει πρόσβαση στα έγγραφα d1, d5, d6. Έστω ότι ο Μ προωθεί μια επερώτηση q στα S1 και S4 και λαμβάνει τις εξής απαντήσεις: S1: <d1, d5, d6> S4: <d6, d1, d5> Ποιο είναι το κορυφαίο έγγραφο αν ενοποιήσουμε τις διατάξεις: (i) κατά orda, (ii) κατά ondorcet; Ο Μ αποφασίζει να δίνει στο χρήστη όχι μόνο την ενοποιημένη διάταξη, αλλά και την Kemeny distance μεταξύ των διατάξεων που έλαβε από τα υποσυστήματα (προκειμένου ο χρήστης να παίρνει μια γεύση για το βαθμό συμφωνίας των πηγών). Ποια είναι αυτή η απόσταση στην προκειμένη; (στ) Τα συστήματα S1, S2, S3 δεν θέλουν πλέον να έχουν ανάγκη τον Μ και αποφασίζουν να «ανεξαρτητοποιηθούν» φτιάχνοντας ένα σύστημα ομοτίμων (P2P), συγκεκριμένα ένα δομημένο σύστημα τύπου hord. Προσελκύουν μάλιστα άλλα δυο συστήματα S5 και S6 (τα οποία δεν έχουν καμία συλλογή εγγράφων). Αποφασίζουν να χρησιμοποιήσουν μια συνάρτηση κατακερματισμού h των 3 bits, και έστω ότι h(ipaddress(s1))=1, h(ipaddress(s2))=2, h(ipaddress(s3))=4, h(ipaddress(s5))=7, h(ipaddress(s6))=5 Αποφασίζουν να διανείμουν το ανεστραμμένο ευρετήριο θεωρώντας κάθε όρο σαν κλειδί και έστω ότι h(α)=2, h(β)=3, h(γ)=6 h(δ)=6, h(ε)=5 Δώστε (i) τους πίνακες δρομολόγησης των κόμβων S1 και S3 και (ii) πως θα κατανεμηθεί το ανεστραμμένο ευρετήριο στους κόμβους του δικτύου (δείξτε τι ακριβώς θα έχει κάθε κόμβος)

12 Λύση α) S1: d1= «ΑΒΓ», d5= «ΔΓ ΕΓ», d6= «Γ Ε» S2: d2= «ΒΕΒ», d4= «Γ ΕΓ» S3: d3= «ΔΒ», d7= «ΒΔΒ», d8= «ΕΒ» term i Fi1 Fi2 Fi3 Tfi1 Tfi2 Tfi3 idfi Tfi1*idfi Tfi2*idfi Tfi3*idfi Α ¼ 0/2 0/4 3/1 ¾ 0 0 Β ¼ 2/2 4/4 3/3 ¼ 1 1 Γ /4 2/2 0/4 3/2 3/2 3/2 0 Δ ¼ 0/2 2/4 3/2 3/8 0 ¾ Ε /4 2/2 1/4 3/3 1/2 1 1/4 S1=< 3/4, 1/4, 3/2, 3/8, 1/2> S2=<0,1, 3/2,0,1> S3=<0,1, 0, 3/4,1/4> β) q= <1*3,0*3,1*3/2,0*3 /2,0*3/ 2> = <3,0,1.5,0,0> S1 = sqrt( )= 1.8 S2 = sqrt( ) = 2.06 S3 = sqrt( ) = 1.27 q = sqrt( ) = 3.35 Simos 1 =(0,75*3)+1,5*1,5/(1.8*3.35) = 0.74 Simos 2 =(1.5*1.5)/(2.06*3.35) = 0.33 Simos3= 0 Άρα η επερώτηση θα προωθηθεί στην S1. γ) Round robin interleaving: < {d1, d4, d7, {d6, d2, d8, {d5, d3 > δ) Παραλείποντας τους λογάριθμους τα idf κάθε όρου στην καθολική συλλογή εγγράφων: : 8/1, Β: 8/5, Γ: 8/4, Δ: 8/3, Ε: 8/5 ε) Παίρνουμε τις εξής απαντήσεις για την επερώτησή μας για τα συστήματα S1 S4 S1: <d1, d5, d6> S4: <d6, d1, d5> orda: d1 = = 3 d5 = = 5 d6 = = 4 Άρα κορυφαίο έγγραφο είναι το d1.

13 ondorset: d1:d5 = 2:0 d5 d6 = 1:1 d1:d6 = 1:1 Kemenyistance (S1,S2) = 2 ( d1<s1 d6, d6<s2 d1) ( d5<s1 d6, d6<s2 d5) στ) i) Ο πίνακας δρομολόγησης του κόμβου S1 θα είναι: finger[1] = succ(h(ipaddress(s1)) + 20) = succ(2) = 2 (S2) finger[2] = succ(h(ipaddress(s1)) + 21) = succ(3) = 4 (S3) finger[3] = succ(h(ipaddress(s1)) + 22) = succ(5) = 5 (S6) Ο πίνακας δρομολόγησης του κόμβου S3 θα είναι: finger[1] = succ(h(ipaddress(s3)) + 20) = succ(5) = 5 (S6) finger[2] = succ(h(ipaddress(s3)) + 21) = succ(6) = 7 (S5) finger[3] = succ(h(ipaddress(s3)) + 22) = succ(8) = 1 (S1) ii) To ανεστραμμένο αρχείο είναι: : <d1,1> : <d1,1>, <d2,2>, <d3,1>, <d7,2>, <d8,1> Γ: <d1,1>, <d4,2>, <d5,2>, <d6,1> Δ: <d3,1>, <d5,1>, <d7,1> : <d2,1>, <d4,1>, <d5,1>, <d6,1>, <d8,1> Για κάθε όρο έχουμε: O στον κόμβο S2, γιατί h() = 2 και h(ipaddress(s2)) = 2 O Β στον κόμβο S3, γιατί h(β) = 3 και h(ipaddress(s3)) = 4 O Γ στον κόμβο S5, γιατί h(γ) = 6 και h(ipaddress(s5)) = 7 O Δ στον κόμβο S5, γιατί h(δ) = 6 και h(ipaddress(s5)) = 7 O Ε στον κόμβο S6, γιατί h(ε) = 5 και h(ipaddress(s6)) = 5 Άρα η κατανομή τους ανεστραμμένου ευρετηρίου στους κόμβους θα είναι: S2: : <d1,1> S3: : <d1,1>, < d2,2>, <d3,1>, <d7,2>, <d8,1> S5: Γ: <d1,1>, <d4,2>, <d5,2>, <d6,1> S5: Δ: <d3,1>, <d5,1>, <d7,1> S6: : <d2,1>, <d4,1>, <d5,1>, <d6,1>, <d8,1>

Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης & Μοντέλα Ανάκτησης)

Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης & Μοντέλα Ανάκτησης) Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών ΗΥ463 Συστήματα Ανάκτησης Πληροφοριών 28-29 Εαρινό Εξάμηνο Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης &

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ

ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 Θεωρείστε μια συλλογή κειμένων που περιέχει τα ακόλουθα 5 έγγραφα: Έγγραφο 1: «Computer Games» Έγγραφο 2: «Computer Games Computer Games» Έγγραφο 3: «Games Theory and

Διαβάστε περισσότερα

Συμπίεση χωρίς Απώλειες

Συμπίεση χωρίς Απώλειες Συμπίεση χωρίς Απώλειες Στόχοι της συμπίεσης δεδομένων: Μείωση του απαιτούμενου χώρου αποθήκευσης των δεδομένων. Περιορισμός της απαιτούμενης χωρητικότητας διαύλου επικοινωνίας για την μετάδοση. μείωση

Διαβάστε περισσότερα

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης

Διαβάστε περισσότερα

Η ακρίβεια ορίζεται σαν το πηλίκο των ευρεθέντων συναφών εγγράφων προς τα ευρεθέντα έγγραφα. Άρα για τα τρία συστήµατα έχουµε τις εξής τιµές:

Η ακρίβεια ορίζεται σαν το πηλίκο των ευρεθέντων συναφών εγγράφων προς τα ευρεθέντα έγγραφα. Άρα για τα τρία συστήµατα έχουµε τις εξής τιµές: Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών HY463 - Συστήµατα Ανάκτησης Πληροφοριών 2005-2006 Εαρινό Εξάµηνο 1 η Σειρά Ασκήσεων (Αξιολόγηση Αποτελεσµατικότητας Ανάκτησης) Άσκηση 1 (4 βαθµοί) Θεωρείστε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 422: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος 2004 2005, Χειµερινό Εξάµηνο Φροντιστηριακή Άσκηση 3: Εντροπία, κωδικοποίηση Quadtree 1. Εντροπία 22 Σεπτεµβρίου 2004

Διαβάστε περισσότερα

Κωδικοποίηση εικόνων κατά JPEG

Κωδικοποίηση εικόνων κατά JPEG Κωδικοποίηση εικόνων κατά JPEG Εισαγωγή Προετοιµασία της εικόνας ρυθµός Ακολουθιακός απωλεστικός ρυθµός Εκτεταµένος απωλεστικός ρυθµός Μη απωλεστικός ρυθµός Ιεραρχικός ρυθµός Τεχνολογία Πολυµέσων 09-1

Διαβάστε περισσότερα

ΛΥΣΗ ΤΗΣ ΔΕΥΤΕΡΗΣ ΑΣΚΗΣΗΣ Όλγα Γκουντούνα

ΛΥΣΗ ΤΗΣ ΔΕΥΤΕΡΗΣ ΑΣΚΗΣΗΣ Όλγα Γκουντούνα ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΚΑΔ. ΕΤΟΣ 2011-12 ΔΙΔΑΣΚΟΝΤΕΣ Ιωάννης Βασιλείου Καθηγητής Τιμολέων Σελλής Καθηγητής Άσκηση 1

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 20 Huffman codes 1 / 12 Κωδικοποίηση σταθερού μήκους Αν χρησιμοποιηθεί κωδικοποίηση σταθερού μήκους δηλαδή

Διαβάστε περισσότερα

Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε.

Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε. Ψηφιακά Δένδρα Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών τα οποία είναι ακολουθίες συμβάλλων από ένα πεπερασμένο αλφάβητο Ένα στοιχείο γράφεται ως, όπου κάθε. Μπορούμε να

Διαβάστε περισσότερα

Posting File. D i. tf key1 [position1 position2 ] D j tf key2... D l.. tf keyl

Posting File. D i. tf key1 [position1 position2 ] D j tf key2... D l.. tf keyl ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΥ463 Συστήµατα Ανάκτησης Πληροφοριών Εργασία: Ανεστραµµένο Ευρετήριο Εισαγωγή Σκοπός της εργασίας είναι η δηµιουργία ενός ανεστραµµένου ευρετηρίου για τη µηχανή αναζήτησης Μίτος, το

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Διακριτές Πηγές Πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

12ο ΓΕΛ ΠΕΙΡΑΙΑ Οµάδα Α. Στις παρακάτω ερωτήσεις να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή απάντηση:

12ο ΓΕΛ ΠΕΙΡΑΙΑ Οµάδα Α. Στις παρακάτω ερωτήσεις να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή απάντηση: 12ο ΓΕΛ ΠΕΙΡΑΙΑ Οµάδα Α ΔΙΑΓΩΝΙΣΜΑ Α ΤΕΤΡ/ΝΟΥ ΣΤΗ ΦΥΣΙΚΗ Ονοµατεπώνυµο: Τµήµα: Ηµεροµηνία: 17/12/2010 Ζήτηµα 1ο Στις παρακάτω ερωτήσεις να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή απάντηση: 1) Μια

Διαβάστε περισσότερα

Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο

Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο Σχεδίαση Αλγορίθμων Άπληστοι Αλγόριθμοι http://delab.csd.auth.gr/~gounaris/courses/ad 1 Άπληστοι αλγόριθμοι Προβλήματα βελτιστοποίησης ηςλύνονται με μια σειρά επιλογών που είναι: εφικτές τοπικά βέλτιστες

Διαβάστε περισσότερα

BΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2005

BΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2005 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ BΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2005 ΛΥΣΕΙΣ Ι. Βασιλείου -----------------------------------------------------------------------------------------------------

Διαβάστε περισσότερα

Δημιουργία Ευρετηρίων Συλλογής Κειμένων

Δημιουργία Ευρετηρίων Συλλογής Κειμένων Γλωσσική Τεχνολογία Ακαδημαϊκό Έτος 2011-2012 - Project Σεπτεμβρίου Ημερομηνία Παράδοσης: Στην εξέταση του μαθήματος Εξέταση: Προφορική, στο τέλος της εξεταστικής. Θα βγει ανακοίνωση στο forum. Ομάδες

Διαβάστε περισσότερα

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Τι θα δούμε Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί Σωροί Ουρές Fibonacci Αναπαράσταση Πράξεις Ανάλυση Συγκρίσεις Ουρές προτεραιότητας

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης

Ψηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης Ψηφιακές Τηλεπικοινωνίες Θεωρία Ρυθμού Παραμόρφωσης Θεωρία Ρυθμού-Παραμόρφωσης Θεώρημα Κωδικοποίησης Πηγής: αν έχω αρκετά μεγάλο μπλοκ δεδομένων, μπορώ να φτάσω κοντά στην εντροπία Πιθανά Προβλήματα: >

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Μετρήσεις Τεχνικών Μεγεθών Τελική Εξέταση Ι (Ιουνίου Εαρινό Εξάμηνο 9 Πρόβλημα Α Ένας μηχανικός, με βάση τις μετρήσεις

Διαβάστε περισσότερα

( ) log 2 = E. Σεραφείµ Καραµπογιάς

( ) log 2 = E. Σεραφείµ Καραµπογιάς Παρατηρούµε ότι ο ορισµός της Η βασίζεται στη χρονική µέση τιµή. Για να ισχύει ο ορισµός αυτός και για µέση τιµή συνόλου πρέπει η πηγή να είναι εργοδική, δηλαδή H ( X) ( ) = E log 2 p k Η εντροπία µιας

Διαβάστε περισσότερα

Αρχές κωδικοποίησης. Τεχνολογία Πολυµέσων 08-1

Αρχές κωδικοποίησης. Τεχνολογία Πολυµέσων 08-1 Αρχές κωδικοποίησης Απαιτήσεις κωδικοποίησης Είδη κωδικοποίησης Βασικές τεχνικές κωδικοποίησης Κωδικοποίηση Huffman Κωδικοποίηση µετασχηµατισµών Κβαντοποίηση διανυσµάτων ιαφορική κωδικοποίηση Τεχνολογία

Διαβάστε περισσότερα

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9 Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις

Διαβάστε περισσότερα

Θεωρία τησ Πληροφορίασ (Θ) ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ

Θεωρία τησ Πληροφορίασ (Θ) ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ Θεωρία τησ Πληροφορίασ (Θ) Ενότητα 4: Συμπίεςη χωρίσ Απώλειεσ ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΣΕ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Θέματα Συστημάτων Πολυμέσων

Θέματα Συστημάτων Πολυμέσων Θέματα Συστημάτων Πολυμέσων Ενότητα # 6: Στοιχεία Θεωρίας Πληροφορίας Διδάσκων: Γεώργιος K. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

9. Συστολικές Συστοιχίες Επεξεργαστών

9. Συστολικές Συστοιχίες Επεξεργαστών Κεφάλαιο 9: Συστολικές συστοιχίες επεξεργαστών 208 9. Συστολικές Συστοιχίες Επεξεργαστών Οι συστολικές συστοιχίες επεξεργαστών είναι επεξεργαστές ειδικού σκοπού οι οποίοι είναι συνήθως προσκολλημένοι σε

Διαβάστε περισσότερα

P (Ā) = k P ( C A) = 0

P (Ā) = k P ( C A) = 0 ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Τμήμα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τηλεπικοινωνιών ΤΗΛ : ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΤΥΧΑΙΑ ΣΗΜΑΤΑ 4ο Εξάμηνο 9- η ΕΡΓΑΣΙΑ ΑΣΚΗΣΗ Το διαστημόπλοιο Άριαν αποτελείται από

Διαβάστε περισσότερα

Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing)

Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing) Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανασκόπηση Προβλήματος και Προκαταρκτικών Λύσεων Bit Διανύσματα Τεχνικές Κατακερματισμού & Συναρτήσεις

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΔΕΥΤΕΡΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος:

Διαβάστε περισσότερα

Συμπίεση Δεδομένων Δοκιμής (Test Data Compression) Νικολός Δημήτριος, Τμήμα Μηχ. Ηλεκτρονικών Υπολογιστών & Πληροφορικής, Παν Πατρών

Συμπίεση Δεδομένων Δοκιμής (Test Data Compression) Νικολός Δημήτριος, Τμήμα Μηχ. Ηλεκτρονικών Υπολογιστών & Πληροφορικής, Παν Πατρών Συμπίεση Δεδομένων Δοκιμής (Test Data Compression), Παν Πατρών Test resource partitioning techniques ΑΤΕ Automatic Test Equipment (ATE) based BIST based Έλεγχος παραγωγής γής βασισμένος σε ΑΤΕ Μεγάλος

Διαβάστε περισσότερα

Αρχές κωδικοποίησης. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 08-1

Αρχές κωδικοποίησης. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 08-1 Αρχές κωδικοποίησης Απαιτήσεις κωδικοποίησης Είδη κωδικοποίησης Κωδικοποίηση εντροπίας Διαφορική κωδικοποίηση Κωδικοποίηση μετασχηματισμών Στρωματοποιημένη κωδικοποίηση Κβαντοποίηση διανυσμάτων Τεχνολογία

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΑ. ΕΤΟΣ 2012-13 Ι ΑΣΚΟΝΤΕΣ Ιωάννης Βασιλείου Καθηγητής, Τοµέας Τεχνολογίας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Δίαυλος Πληροφορίας. Η λειτουργία του περιγράφεται από:

Δίαυλος Πληροφορίας. Η λειτουργία του περιγράφεται από: Δίαυλος Πληροφορίας Η λειτουργία του περιγράφεται από: Πίνακας Διαύλου (μαθηματική περιγραφή) Διάγραμμα Διαύλου (παραστατικός τρόπος περιγραφής της λειτουργίας) Πίνακας Διαύλου Χρησιμοποιούμε τις υπό συνθήκη

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων Θέμα 1: [14 μονάδες] 1. [5] Έστω Y(x): «Το αντικείμενο x είναι ηλεκτρονικός υπολογιστής», Φ(y):

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Τελικές εξετάσεις Παρασκευή 4 Ιουλίου 2014, 18:00-21:00

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Τελικές εξετάσεις Παρασκευή 4 Ιουλίου 2014, 18:00-21:00 ΘΕΜΑ 1 ο (2 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙ ΜΑΚΕΔΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΣΜΕΝΗΣ ΠΛΗΡΦΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΗΜΣΥΝΗ Τελικές εξετάσεις Παρασκευή 4 Ιουλίου 2014, 18:00-21:00 Δίνεται ο παρακάτω χάρτης πόλεων της Ρουμανίας με τις μεταξύ

Διαβάστε περισσότερα

Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 14: Δέντρα IV B Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: 2 3 Δένδρα, Εισαγωγή και άλλες πράξεις Άλλα Δέντρα: Β δένδρα, Β+ δέντρα, R δέντρα Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231

Διαβάστε περισσότερα

Διαχείριση εγγράφων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη

Διαχείριση εγγράφων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη Διαχείριση εγγράφων Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη Απεικόνιση κειμένων για Information Retrieval Δεδομένου ενός κειμένου αναζητούμε μια μεθοδολογία απεικόνισης του γραμματικού χώρου

Διαβάστε περισσότερα

Προηγμένη Ευρετηρίαση Δεδομένων (ΠΜΣ) Ενδεικτικές ερωτήσεις-θέματα για την εξέταση της θεωρίας

Προηγμένη Ευρετηρίαση Δεδομένων (ΠΜΣ) Ενδεικτικές ερωτήσεις-θέματα για την εξέταση της θεωρίας Προηγμένη Ευρετηρίαση Δεδομένων (ΠΜΣ) Ενδεικτικές ερωτήσεις-θέματα για την εξέταση της θεωρίας 1. Πως δομούνται οι ιεραρχικές μνήμες; Αναφέρετε τα διάφορα επίπεδά τους από τον επεξεργαστή μέχρι τη δευτερεύουσα

Διαβάστε περισσότερα

ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος Παναγιώτα Φατούρου. Προγραµµατιστική Εργασία 1 ο Μέρος

ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος Παναγιώτα Φατούρου. Προγραµµατιστική Εργασία 1 ο Μέρος Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών 15 Οκτωβρίου 2008 ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος 2008-09 Παναγιώτα Φατούρου Προγραµµατιστική Εργασία 1 ο Μέρος Ηµεροµηνία Παράδοσης:

Διαβάστε περισσότερα

EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια. Παράδοση: Έως 22/6/2015

EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια. Παράδοση: Έως 22/6/2015 EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Φυλλάδιο 13 Δ. Τουμπακάρης 30 Μαΐου 2015 EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια Παράδοση:

Διαβάστε περισσότερα

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η (3 μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάση το συντελεστή συσχέτισης. (γράψτε ποιο

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G,k η G είναι μια ασυμφραστική γραμματική η οποία παράγει κάποια λέξη 1 n όπου n k } (β) { Μ,k η Μ είναι

Διαβάστε περισσότερα

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5 IOYNIOΣ 23 Δίνονται τα εξής πρότυπα: x! = 2.5 Άσκηση η (3 µονάδες) Χρησιµοποιώντας το κριτήριο της οµοιότητας να απορριφθεί ένα χαρακτηριστικό µε βάση το συντελεστή συσχέτισης. Γράψτε εδώ το χαρακτηριστικό

Διαβάστε περισσότερα

Δομές δεδομένων. Ενότητα 8: Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών

Δομές δεδομένων. Ενότητα 8: Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 8: Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 8 Ξένα Σύνολα

Διαβάστε περισσότερα

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 2 6 20 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 0 με τις ακόλουθες ιδιότητες 9 7 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση ροής:

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

Πληροφορική 2. Δομές δεδομένων και αρχείων

Πληροφορική 2. Δομές δεδομένων και αρχείων Πληροφορική 2 Δομές δεδομένων και αρχείων 1 2 Δομή Δεδομένων (data structure) Δομή δεδομένων είναι μια συλλογή δεδομένων που έχουν μεταξύ τους μια συγκεκριμένη σχέση Παραδείγματα δομών δεδομένων Πίνακες

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή ισχύει ότι S i S j =, για κάθε i,j µε i j και S 1 S k = U. Λειτουργίες q MakeSet(X): επιστρέφει

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 3 Λειτουργίες σε Bits, Αριθμητικά Συστήματα Χρήστος Γκουμόπουλος Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Φύση υπολογιστών Η

Διαβάστε περισσότερα

Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί

Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 2o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδες Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Άσκηση 8 9. Ιδια με την άσκηση 8, αλλά τώρα η συνισταμένη έχει αντίθετη κατεύθυνση.

Άσκηση 8 9. Ιδια με την άσκηση 8, αλλά τώρα η συνισταμένη έχει αντίθετη κατεύθυνση. 1. Επιλέξτε τη σωστή απάντηση: Η συνισταμένη δύο δυνάμεων είναι μία δύναμη που a. έχει μέτρο ίσο με το άθροισμα των μέτρων των δύο δυνάμεων. b. έχει μέτρο πάντα μεγαλύτερο από το μέτρο της κάθε επί μέρους

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2014-2015 Κβάντιση Δρ. Ν. Π. Σγούρος 2 Άσκηση 5.1 Για ένα σήμα που έχει τη σ.π.π. του σχήματος να υπολογίσετε: μήκος του δυαδικού κώδικα για Ν επίπεδα κβάντισης για σταθερό μήκος λέξης;

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2014-2015 Ρυθμός κωδικοποίησης Ένας κώδικας που απαιτεί L bits για την κωδικοποίηση μίας συμβολοσειράς N συμβόλων που εκπέμπει μία πηγή έχει ρυθμό κωδικοποίησης (μέσο μήκος λέξης) L

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Διακριτά Μαθηματικά Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Συνδυαστική ανάλυση μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση:

Διαβάστε περισσότερα

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν

Διαβάστε περισσότερα

Detecting Duplicates over Distributed Data Sources. Δημήτρης Σουραβλιάς

Detecting Duplicates over Distributed Data Sources. Δημήτρης Σουραβλιάς Detecting Duplicates over Distributed Data Sources Δημήτρης Σουραβλιάς Δομή παρουσίασης Εισαγωγή Ορισμός του προβλήματος Παράδειγμα Αρχιτεκτονικές ανίχνευσης διπλότυπων Γενικές παρατηρήσεις Αναφορές DMOD

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις στα Σύνολα

Επαναληπτικές Ασκήσεις στα Σύνολα Επαναληπτικές Ασκήσεις στα Σύνολα ) Εξετάστε αν η παρακάτω πρόταση είναι αληθής για οποιαδήποτε σύνολα Α,Β,C. Δικαιολογήστε την απάντηση σας Αν A B και B C, τότε Α C έστω Β {α,β,γ}, αφού Α B τότε ένα παράδειγμα

Διαβάστε περισσότερα

Κωδικοποίηση Πηγής. Η λειτουργία ενός συστήματος επικοινωνίας (γενικό διάγραμμα):

Κωδικοποίηση Πηγής. Η λειτουργία ενός συστήματος επικοινωνίας (γενικό διάγραμμα): Κωδικοποίηση Πηγής Η λειτουργία ενός συστήματος επικοινωνίας (γενικό διάγραμμα): Coder Decoder Μεταξύ πομπού-καναλιού παρεμβάλλεται ο κωδικοποιητής (coder). Έργο του: η αντικατάσταση των συμβόλων πληροφορίας

Διαβάστε περισσότερα

Άσκηση 1. με κόκκινο χρώμα σημειώνονται οι κρίσιμοι κόμβοι

Άσκηση 1. με κόκκινο χρώμα σημειώνονται οι κρίσιμοι κόμβοι Άσκηση 1 α) Παρουσιάστε τα AVL δέντρα που προκύπτουν από τις εισαγωγές των κλειδιών 1, 4, 9,, 7,,, 1, 4 και σε ένα αρχικά άδειο AVL δέντρο με κόκκινο χρώμα σημειώνονται οι κρίσιμοι κόμβοι +4 +9 + 1 1 1

Διαβάστε περισσότερα

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 7 ο : Ανάκτηση πληροφορίας. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος:

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 7 ο : Ανάκτηση πληροφορίας. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος: ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Μάθημα 7 ο : Ανάκτηση πληροφορίας Γεώργιος Πετάσης Ακαδημαϊκό Έτος: 2012 2013 ΤMHMA MHXANIKΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ, Πανεπιστήμιο Πατρών, 2012 2013 Οι διαφάνειες αυτού του μαθήματος βασίζονται

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου Εαρινό Εξάµηνο 2009 Κάτια Παπακωνσταντινοπούλου 1. Εστω A ένα µη κενό σύνολο. Να δείξετε ότι η αλγεβρική δοµή (P(A), ) είναι αβελιανή οµάδα. 2. Εστω ένα ξενοδοχείο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Άσκηση 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών HY460 Συστήματα Διαχείρισης Βάσεων Δεδομένων Διδάσκοντες: Δημήτρης

Διαβάστε περισσότερα

2 ο Σύνολο Ασκήσεων. Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1

2 ο Σύνολο Ασκήσεων. Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 2 ο Σύνολο Ασκήσεων Οι βαθμοί θα ανακοινωθούν αύριο μαζί με τους βαθμούς της προγραμματιστικής άσκησης Τα αστεράκια δείχνουν τον εκτιμώμενο βαθμό δυσκολίας (*) εύκολο (**) μέτριο (***) δύσκολο Βάσεις Δεδομένων

Διαβάστε περισσότερα

6. ΓΕΩΓΡΑΦΙΚΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

6. ΓΕΩΓΡΑΦΙΚΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ 6. ΓΕΩΓΡΑΦΙΚΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Στη διάρκεια αυτού του εργαστηρίου θα δούμε τα δεδομένα της ICAP από μια διαφορετική οπτική γωνία, με τη χρήση συστημάτων GIS, κατά γεωγραφική περιοχή και ειδικά κατά

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης

Διαβάστε περισσότερα

Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort

Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα

Διαβάστε περισσότερα

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2010 11 Ιστοσελίδα μαθήματος: http://eclass.teilam.gr/di288 1 Συμπίεση

Διαβάστε περισσότερα

ΗΥ486 - Αρχές Κατανεμημένου Υπολογισμού Εαρινό Εξάμηνο Δεύτερη Προγραμματιστική Εργασία

ΗΥ486 - Αρχές Κατανεμημένου Υπολογισμού Εαρινό Εξάμηνο Δεύτερη Προγραμματιστική Εργασία ΗΥ486 - Αρχές Κατανεμημένου Υπολογισμού Εαρινό Εξάμηνο 2015-2016 Δεύτερη Προγραμματιστική Εργασία Γενική περιγραφή Στη δεύτερη προγραμματιστική εργασία καλείστε να υλοποιήσετε ένα διομότιμο σύστημα (Peer-to-

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Μη Ασυμφραστικές Γλώσσες (2.3) Λήμμα Άντλησης για Ασυμφραστικές Γλώσσες Παραδείγματα

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 6 : Κωδικοποίηση & Συμπίεση εικόνας Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #08 Συµπίεση Κειµένων Φοίβος Μυλωνάς fmylonas@ionio.gr Ανάκτηση Πληροφορίας 1 Άδεια χρήσης

Διαβάστε περισσότερα

Σχεδίαση & Ανάλυση Αλγορίθμων

Σχεδίαση & Ανάλυση Αλγορίθμων Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε

Διαβάστε περισσότερα

Τεράστιες ανάγκες σε αποθηκευτικό χώρο

Τεράστιες ανάγκες σε αποθηκευτικό χώρο ΣΥΜΠΙΕΣΗ Τεράστιες ανάγκες σε αποθηκευτικό χώρο Παράδειγμα: CD-ROM έχει χωρητικότητα 650MB, χωρά 75 λεπτά ασυμπίεστου στερεοφωνικού ήχου, αλλά 30 sec ασυμπίεστου βίντεο. Μαγνητικοί δίσκοι χωρητικότητας

Διαβάστε περισσότερα

Αλγόριθμοι για αυτόματα

Αλγόριθμοι για αυτόματα Κεφάλαιο 8 Αλγόριθμοι για αυτόματα Κύρια βιβλιογραφική αναφορά για αυτό το Κεφάλαιο είναι η Hopcroft, Motwani, and Ullman 2007. 8.1 Πότε ένα DFA αναγνωρίζει κενή ή άπειρη γλώσσα Δοθέντος ενός DFA M καλούμαστε

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδημαϊκό έτος 2010-11 Χειμερινό Εξάμηνο Practice final exam 1. Έστω ότι για

Διαβάστε περισσότερα

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να - Παράδειγμα. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να αποκρούσει ένας τερματοφύλακας. - Αν οι δύο παίκτες επιλέξουν

Διαβάστε περισσότερα

Μέρος Γ Συστήματα Ομοτίμων (Peer to Peer Systems) και Ανάκτηση Πληροφοριών

Μέρος Γ Συστήματα Ομοτίμων (Peer to Peer Systems) και Ανάκτηση Πληροφοριών HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Μέρος Γ Συστήματα Ομοτίμων (Peer to Peer Systems) και Ανάκτηση Πληροφοριών CS463 - Information Retrieval Yannis Tzitzikas, U.

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

Advanced Data Indexing

Advanced Data Indexing Advanced Data Indexing (Προηγμένη ευρετηρίαση δεδομένων) Κατακερματισμός Hashing (1ο Μέρος) Η Αναζήτηση απαιτεί Δομές Λύσεις Για να υποστηριχθεί η αποδοτική αναζήτηση απαιτείται η χρήση κατάλληλων δομών-ευρετηρίων

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 3 η Παρουσίαση : Συμπίεση Διδάσκων: Γιάννης Ντόκας Εισαγωγή 2 Συμπίεση πληροφορίας πολυμέσων 3 Γιατί χρειάζεται συμπίεση? 4

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες

Ψηφιακές Τηλεπικοινωνίες Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Χωρητικότητα Καναλιού Χωρητικότητα Καναλιού Η θεωρία πληροφορίας περιλαμβάνει μεταξύ άλλων: κωδικοποίηση πηγής κωδικοποίηση καναλιού Κωδικοποίηση πηγής: πόση

Διαβάστε περισσότερα

Ασκήσεις Κεφαλαίου 2

Ασκήσεις Κεφαλαίου 2 Άνοιξη 2010 4/3/2010 Ασκήσεις Κεφαλαίου 2 1. Για να κερδίσουμε το ΛΟΤΤΟ πρέπει να διαλέξουμε 6 διαφορετικούς αριθμούς από τους 49 διαθέσιμους. Η σειρά επιλογής των αριθμών δεν παίζει κανέναν ρόλο. Αν θέλουμε

Διαβάστε περισσότερα

Διοίκηση Λειτουργιών. Διοίκηση Έργων II (Δίκτυα Έργων & Χρονοπρογραμματισμός) - 6 ο μάθημα -

Διοίκηση Λειτουργιών. Διοίκηση Έργων II (Δίκτυα Έργων & Χρονοπρογραμματισμός) - 6 ο μάθημα - Διοίκηση Λειτουργιών Διοίκηση Έργων II (Δίκτυα Έργων & Χρονοπρογραμματισμός) - 6 ο μάθημα - Θεματολογία Μορφές δικτύων έργων Χρονικός προγραμματισμός έργων Ανδρέας Νεάρχου Συμβολισμοί για δίκτυα έργων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

Πανεπιστήµιο Αιγαίου Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων. 3η Άσκηση Logical Effort - Ένα ολοκληρωµένο παράδειγµα σχεδίασης

Πανεπιστήµιο Αιγαίου Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων. 3η Άσκηση Logical Effort - Ένα ολοκληρωµένο παράδειγµα σχεδίασης Πανεπιστήµιο Αιγαίου Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων Εισαγωγή σε VLSI 3η Άσκηση Logical Effort - Ένα ολοκληρωµένο παράδειγµα σχεδίασης Μανόλης Καλλίγερος (kalliger@aegean.gr)

Διαβάστε περισσότερα

Δηλώσεις Εργαστηρίων 7ου Εξαμήνου

Δηλώσεις Εργαστηρίων 7ου Εξαμήνου Δηλώσεις Εργαστηρίων 7ου Εξαμήνου Η δήλωση των εργαστηρίων του 7ου εξαμήνου θα γίνει μέσω της ηλεκτρονικής σελίδας: http://hydra.it.teithe.gr/diloseis/ Η διαδικασία των ηλεκτρονικών δηλώσεων θα ξεκινήσει

Διαβάστε περισσότερα

ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/4η ΟΣΣ/ Κώδικες ελέγχου Σφαλμάτων /

ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/4η ΟΣΣ/ Κώδικες ελέγχου Σφαλμάτων / βλ. αρχείο PLH22_OSS4_slides διαφάνειες 47-57 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/4η ΟΣΣ/ Κώδικες ελέγχου Σφαλμάτων/ Ν.Δημητρίου σελ. 1 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/4η ΟΣΣ/ Κώδικες ελέγχου Σφαλμάτων/ Ν.Δημητρίου σελ. 2 ΕΑΠ/ΠΛΗ22/ΑΘΗ.4/4η

Διαβάστε περισσότερα

Κωδικοποίηση βίντεο (H.261 / DVI)

Κωδικοποίηση βίντεο (H.261 / DVI) Κωδικοποίηση βίντεο (H.261 / DVI) Αρχές κωδικοποίησης βίντεο Εισαγωγή στο H.261 Κωδικοποίηση βίντεο Ροή δεδοµένων Εισαγωγή στο DVI Κωδικοποίηση ήχου και εικόνων Κωδικοποίηση βίντεο Ροή δεδοµένων Τεχνολογία

Διαβάστε περισσότερα