Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση"

Transcript

1 Πίνακες Διασποράς Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση κλειδί k T U : χώρος πιθανών κλειδιών Τ : πίνακας μεγέθους m συνάρτηση διασποράς

2 Καθολική Διασπορά Για κάθε καθορισμένη συνάρτηση διασποράς μπορούμε να επιλέξουμε κλειδιά που θα δίνουν τη χειρότερη δυνατή επίδοση. Προκειμένου να βελτιώσουμε την κατάσταση μπορούμε να βασιστούμε σε τυχαιοκρατικούς αλγόριθμους: Ορίζουμε μία οικογένεια συναρτήσεων και κατά τη διάρκεια της εκτέλεσης επιλέγουμε τυχαία μία από αυτές τις συναρτήσεις ως συνάρτηση διασποράς. Περιορίζουμε την πιθανότητα εμφάνισης παθολογικών περιπτώσεων.

3 Καθολική Διασπορά πεπερασμένη συλλογή συναρτήσεων Η συλλογή είναι καθολική αν για κάθε ζεύγος διαφορετικών κλειδιών υπάρχουν το πολύ συναρτήσεις με

4 Καθολική Διασπορά πεπερασμένη συλλογή συναρτήσεων Η συλλογή είναι καθολική αν για κάθε ζεύγος διαφορετικών κλειδιών υπάρχουν το πολύ συναρτήσεις με Συνεπώς

5 Καθολική Διασπορά πεπερασμένη συλλογή συναρτήσεων Η συλλογή είναι καθολική αν για κάθε ζεύγος διαφορετικών κλειδιών υπάρχουν το πολύ συναρτήσεις με Συνεπώς Πιθανότητα σύμπτωσης όταν και επιλέγονται τυχαία και ανεξάρτητα.

6 Καθολική Διασπορά σύμπαν καθολική συλλογή συναρτήσεων διασποράς που αντιστοιχίζει το στο σύνολο αυθαίρετο υποσύνολο του με αυθαίρετο στοιχείο του τυχαία επιλεγμένη συνάρτηση της αριθμός στοιχειών με (τυχαία μεταβλητή) Για κάθε έχουμε δείκτρια τυχαία μεταβλητή Έχουμε Άρα

7 Καθολική Διασπορά Θεώρημα Έστω ότι επιλέγουμε τυχαία και κάνουμε εισαγωγή κλειδιών σε πίνακα μεγέθους. Έστω. Τότε όπου α = n/m ο συντελεστής πληρότητας. Πόρισμα Ο αναμενόμενος χρόνος εκτέλεσης μίας ακολουθίας πράξεων με πράξεις εισαγωγής είναι Συνεπάγεται από το παραπάνω θεώρημα και την παρατήρηση ότι

8 Καθολικές Οικογένειες Συναρτήσεων Διασποράς πρώτος αριθμός, μεγαλύτερος από κάθε κλειδί Για και Παράδειγμα

9 Καθολικές Οικογένειες Συναρτήσεων Διασποράς πρώτος αριθμός, μεγαλύτερος από κάθε κλειδί Για και Περιλαμβάνει συναρτήσεις

10 Καθολικές Οικογένειες Συναρτήσεων Διασποράς Θα δώσουμε ένα ακόμα παράδειγμα καθολικής οικογένειας συναρτήσεων διασποράς H υποθέτοντας ότι : Το σύνολο των πιθανών κλειδιών περιλαμβάνει U = 2 υ τιμές. Οι συναρτήσεις h H αντιστοιχούν το U σε ένα σύνολο με m = 2 μ τιμές. Άρα ουσιαστικά οι συναρτήσεις της H αντιστοιχούν διανύσματα x (ακολουθίες) των υ bits σε διανύσματα y των μ bits. x 0 1 y υ bits h μ bits

11 Καθολικές Οικογένειες Συναρτήσεων Διασποράς Θα δώσουμε ένα ακόμα παράδειγμα καθολικής οικογένειας συναρτήσεων διασποράς H υποθέτοντας ότι : Το σύνολο των πιθανών κλειδιών περιλαμβάνει U = 2 υ τιμές. Οι συναρτήσεις h H αντιστοιχούν το U σε ένα σύνολο με m = 2 μ τιμές. Άρα ουσιαστικά οι συναρτήσεις της H αντιστοιχούν διανύσματα x (ακολουθίες) των υ bits σε διανύσματα y των μ bits. x 0 1 y Μπορούμε να λάβουμε μια τέτοια αντιστοιχία πολλαπλασιάζοντας το x με ένα μ υ πίνακα Α υ bits h μ bits A x = y 0 1

12 Καθολικές Οικογένειες Συναρτήσεων Διασποράς Θα δώσουμε ένα ακόμα παράδειγμα καθολικής οικογένειας συναρτήσεων διασποράς H υποθέτοντας ότι : Το σύνολο των πιθανών κλειδιών περιλαμβάνει U = 2 υ τιμές. Οι συναρτήσεις h H αντιστοιχούν το U σε ένα σύνολο με m = 2 μ τιμές. Άρα ουσιαστικά οι συναρτήσεις της H αντιστοιχούν διανύσματα x (ακολουθίες) των υ bits σε διανύσματα y των μ bits. Μπορούμε να λάβουμε μια τέτοια αντιστοιχία πολλαπλασιάζοντας το x με ένα Boolean μ υ πίνακα Α, δηλαδή έχουμε y = h(x) = Ax, όπου οι πράξεις γίνονται modulo 2 (δηλαδή = = 0 και = = 1). Η οικογένεια H ορίζεται από όλους τους 2 μυ Boolean μ υ πίνακες Α.

13 Καθολικές Οικογένειες Συναρτήσεων Διασποράς Η οικογένεια H ορίζεται από όλους τους 2 μυ Boolean μ υ πίνακες Α. Θεώρημα Η οικογένεια συναρτήσεων διασποράς H είναι καθολική. Απόδειξη Έστω A ένας τυχαίος Boolean μ υ πίνακας και έστω x y διανύσματα του 0,1 υ. Θα δείξουμε ότι η πιθανότητα σύγκρουσης h(x) = h(y) είναι το πολύ 1/m, δηλαδή Pr h H h x = h(y) 1/m. Έστω h(x) = h(y). Θέτουμε z = x y. Έχουμε Ax = Ay A x y = 0 Az = 0, όπου 0 = το διάνυσμα του 0,1 μ με όλες τις μ συνιστώσες μηδέν. Άρα θέλουμε να δείξουμε ότι Pr h H h z = 0 = Pr h H Az = 0 1/m.

14 Καθολικές Οικογένειες Συναρτήσεων Διασποράς Η οικογένεια H ορίζεται από όλους τους 2 μυ Boolean μ υ πίνακες Α. Θεώρημα Η οικογένεια συναρτήσεων διασποράς H είναι καθολική. Απόδειξη Άρα θέλουμε να δείξουμε ότι Pr h H h z = 0 = Pr h H Az = 0 1/m. Έστω q = q 1, q 2,, q μ = Az. Η συνιστώσα q i προκύπτει από το εσωτερικό γινόμενο της γραμμής i του A με το διάνυσμα z. A i z = q i Εφόσον z = x y και x y, το z έχει τουλάχιστον μία μη μηδενική συνιστώσα, έστω υ z k = 1. Έχουμε q i = σ j=1 A ij z j = A ik z k + σ j k A ij z j = A ik + σ j k A ij z j.

15 Καθολικές Οικογένειες Συναρτήσεων Διασποράς Η οικογένεια H ορίζεται από όλους τους 2 μυ Boolean μ υ πίνακες Α. Θεώρημα Η οικογένεια συναρτήσεων διασποράς H είναι καθολική. Απόδειξη Άρα θέλουμε να δείξουμε ότι Pr h H h z = 0 = Pr h H Az = 0 1/m. Έστω q = q 1, q 2,, q μ = Az. Η συνιστώσα q i προκύπτει από το εσωτερικό γινόμενο της γραμμής i του A με το διάνυσμα z. Επομένως, q i = 0 A ik = σ j k A ij z j. Με τι πιθανότητα μπορεί να συμβεί αυτό;

16 Καθολικές Οικογένειες Συναρτήσεων Διασποράς Η οικογένεια H ορίζεται από όλους τους 2 μυ Boolean μ υ πίνακες Α. Θεώρημα Η οικογένεια συναρτήσεων διασποράς H είναι καθολική. Απόδειξη Άρα θέλουμε να δείξουμε ότι Pr h H h z = 0 = Pr h H Az = 0 1/m. Έστω q = q 1, q 2,, q μ = Az. Η συνιστώσα q i προκύπτει από το εσωτερικό γινόμενο της γραμμής i του A με το διάνυσμα z. Επομένως, q i = 0 A ik = σ j k A ij z j. Με τι πιθανότητα μπορεί να συμβεί αυτό; Αφού ο πίνακας A είναι τυχαίος, κάθε στοιχείο του επιλέγεται ανεξάρτητα. Επομένως, μπορούμε να υποθέσουμε ότι η τιμή (0 ή 1) του στοιχείου A ik επιλέγεται τελευταία. Τη στιγμή που επιλέγουμε αυτήν την τιμή, το άθροισμα c = σ j k A ij z j είναι καθορισμένο, δηλαδή είναι μια σταθερά c 0,1. Συνεπώς η πιθανότητα να επιλέξουμε A ik = c είναι 1/2.

17 Καθολικές Οικογένειες Συναρτήσεων Διασποράς Η οικογένεια H ορίζεται από όλους τους 2 μυ Boolean μ υ πίνακες Α. Θεώρημα Η οικογένεια συναρτήσεων διασποράς H είναι καθολική. Απόδειξη Άρα θέλουμε να δείξουμε ότι Pr h H h z = 0 = Pr h H Az = 0 1/m. Έστω q = q 1, q 2,, q μ = Az. Η συνιστώσα q i προκύπτει από το εσωτερικό γινόμενο της γραμμής i του A με το διάνυσμα z. Επομένως, q i = 0 A ik = σ j k A ij z j. Η πιθανότητα να συμβεί αυτό είναι 1/2. Το ίδιο ισχύει για κάθε συνιστώσα i {1,2,, μ}, δηλαδή μ Pr h H h x = h(y) = Pr h H Az = 0 = 1 2 = 1 m

18 Πλήρης Διασπορά Όταν το σύνολο των κλειδιών είναι στατικό μπορούμε να πετύχουμε άριστη επίδοση : O(1) χρόνο χειρότερης περίπτωσης ανά πράξη

19 Πλήρης Διασπορά Όταν το σύνολο των κλειδιών είναι στατικό μπορούμε να πετύχουμε άριστη επίδοση : O(1) χρόνο χειρότερης περίπτωσης ανά πράξη k 5 k 2 k 5 T 0 Ιδέα: Διασπορά δύο επιπέδων με χρήση καθολικής διασποράς ανά επίπεδο K k 2 k 1 k 4 k 1 k 3 k 4 k 3 m-1

20 Πλήρης Διασπορά Όταν το σύνολο των κλειδιών είναι στατικό μπορούμε να πετύχουμε άριστη επίδοση : O(1) χρόνο χειρότερης περίπτωσης ανά πράξη k 5 k 2 k 5 T 0 Ιδέα: Διασπορά δύο επιπέδων με χρήση καθολικής διασποράς ανά επίπεδο K k 2 k 1 k 4 k 1 k 3 k 4 k 3 m-1 2 ο επίπεδο : δευτερογενής πίνακας διασποράς για κάθεt[i] 1 ο επίπεδο

21 Πλήρης Διασπορά Όταν το σύνολο των κλειδιών είναι στατικό μπορούμε να πετύχουμε άριστη επίδοση : O(1) χρόνο χειρότερης περίπτωσης ανά πράξη k 5 k 2 k 5 T 0 Ιδέα: Διασπορά δύο επιπέδων με χρήση καθολικής διασποράς ανά επίπεδο K k 2 k 1 k 4 k 1 k 3 k 4 k 3 m-1 2 ο επίπεδο : δευτερογενής πίνακας διασποράς για κάθεt[i] 1 ο επίπεδο Στο 2 ο επίπεδο αποφεύγουμε τις συμπτώσεις

22 Πλήρης Διασπορά Παράδειγμα Συνάρτηση διασποράς 1ου επιπέδου : Συνάρτηση διασποράς 2ου επιπέδου :

23 Πλήρης Διασπορά πρωτογενής πίνακας διασποράς με δευτερογενής πίνακας διασποράς με θέσεις και συνάρτηση διασποράς θέσεις και συνάρτηση διασποράς Έστω ο συνολικός αριθμός κλειδιών και ο αριθμός των κλειδιών που αποθηκεύονται στον. Για να αποφύγουμε τις συγκρούσεις στο δεύτερο επίπεδο θα επιλέξουμε. Θα δείξουμε ότι για κατάλληλα επιλεγμένη απαιτείται για τους δευτερογενείς πίνακες είναι ο αναμενόμενος χώρος που

24 Πλήρης Διασπορά Επιλέγουμε την πρωτογενή συνάρτηση διασποράς οικογένεια. από την καθολική Επιλέγουμε κάθε δευτερογενή συνάρτηση διασποράς οικογένεια. από την καθολική

25 Πλήρης Διασπορά Θεώρημα Έστω ότι επιλέγουμε τυχαία μια συνάρτηση διασποράς από καθολική οικογένεια συναρτήσεων διασποράς. Αν αποθηκεύσουμε κλειδιά και το μέγεθος του πίνακα διασποράς είναι τότε η πιθανότητα να υπάρχει σύγκρουση είναι. Ο αριθμός των πιθανών συγκρούσεων είναι κλειδιών., όσα τα διαφορετικά ζεύγη Από τον τρόπο επιλογής της ζεύγους κλειδιών είναι το πολύ. προκύπτει ότι η πιθανότητα σύγκρουσης ενός Άρα ο αναμενόμενος αριθμός συγκρούσεων είναι Από την ανισότητα του Markov έχουμε

26 Πλήρης Διασπορά Θεώρημα Έστω ότι επιλέγουμε τυχαία μια συνάρτηση διασποράς από καθολική οικογένεια συναρτήσεων διασποράς. Αν αποθηκεύσουμε κλειδιά και το μέγεθος του πίνακα διασποράς είναι τότε η πιθανότητα να υπάρχει σύγκρουση είναι. Το παραπάνω θεώρημα συνεπάγεται ότι για μπορούμε να βρούμε με λίγες δοκιμές μια συνάρτηση διασποράς που να μην έχει συγκρούσεις για το σύνολο των κλειδιών που αποθηκεύεται στον.

27 Πλήρης Διασπορά Απομένει να επιλέξουμε μια πρωτογενή συνάρτηση διασποράς έτσι ώστε Θεώρημα Έστω ότι επιλέγουμε τυχαία μια συνάρτηση διασποράς από καθολική οικογένεια συναρτήσεων διασποράς. Αν αποθηκεύσουμε κλειδιά και το μέγεθος του πίνακα διασποράς είναι τότε

28 Πλήρης Διασπορά Θεώρημα Έστω ότι επιλέγουμε τυχαία μια συνάρτηση διασποράς από καθολική οικογένεια συναρτήσεων διασποράς. Αν αποθηκεύσουμε κλειδιά και το μέγεθος του πίνακα διασποράς είναι τότε Για κάθε μη αρνητικό ακέραιο ισχύει άρα έχουμε Καθώς απομένει να δείξουμε ότι

29 Πλήρης Διασπορά Θεώρημα Έστω ότι επιλέγουμε τυχαία μια συνάρτηση διασποράς από καθολική οικογένεια συναρτήσεων διασποράς. Αν αποθηκεύσουμε κλειδιά και το μέγεθος του πίνακα διασποράς είναι τότε Παρατηρούμε ότι αναμενόμενο πλήθος συγκρούσεων, άρα από την επιλογή της έχουμε

30 Πλήρης Διασπορά Θεώρημα Έστω ότι επιλέγουμε τυχαία μια συνάρτηση διασποράς από καθολική οικογένεια συναρτήσεων διασποράς. Αν αποθηκεύσουμε κλειδιά και το μέγεθος του πίνακα διασποράς είναι τότε Άρα ο αναμενόμενος χώρος που απαιτείται για την αποθήκευση όλων των δευτερογενών πινάκων είναι Από την ανισότητα του Markov έχουμε Δηλαδή μπορούμε να βρούμε με λίγες δοκιμές μια κατάλληλη πρωτογενή συνάρτηση διασποράς.

31 Πλήρης Διασπορά Η τεχνική της πλήρους διασποράς μπορεί να επεκταθεί και σε δυναμικά σύνολα [Dietzfelbinger, Karlin, Mehlhorn, Meyer auf der Heide, Rohnert, and Tarjan, 1994] : αντισταθμιστίκο αναμενόμενο κόστος ανά εισαγωγή και διαγραφή.

32 k-καθολική Διασπορά H = πεπερασμένη συλλογή συναρτήσεων διασποράς U K, U > K = m Η συλλογή H είναι k-καθολική (ή k-ανεξάρτητη) αν για κάθε k διαφορετικά κλειδιά x 1, x 2,, x k και k τιμές a 1, a 2,, a k (όχι απαραίτητα διαφορετικές) ισχύει Pr h H h x 1 = a 1 h x 2 = a 2 h x k = a k 1 m k Ιδιότητες Αν η H είναι k-καθολική τότε είναι και (k 1)-καθολική (και καθολική) Για κάθε x U και a K ισχύει Pr h H h x = a = 1/m

33 k-καθολική Διασπορά Η οικογένεια H ορίζεται από όλους τους 2 μυ Boolean μ υ πίνακες Α. Θεώρημα Η οικογένεια συναρτήσεων διασποράς H είναι καθολική. Παρατήρηση Η παραπάνω οικογένεια δεν είναι 2-καθολική Π.χ. για x = 0 έχουμε h(x) = Ax = 0 ανεξάρτητα από την επιλογή του A, δηλαδή Pr h H h x = 0 = 1. Μπορούμε όμως να λάβουμε μια 2-καθολική οικογένεια αν θέσουμε h x = Ax + b όπου b ένα τυχαίο διάνυσμα του 0,1 μ.

34 Φίλτρα Bloom [B. H. Bloom 1970] Απλή δομή δεδομένων η οποία απαντά γρήγορα αν ένα στοιχείο ανήκει σε ένα σύνολο S Βασικές λειτουργίες ανήκει(s, x): ελέγχει αν x S εισαγωγή(s, x): θέτει S S x Ένα φίλτρο Bloom επιτρέπει λανθασμένες θετικές απαντήσεις, δηλαδή μπορεί να επιστρέψει ανήκει(s, x) = true για x S, αλλά με πολύ μικρή πιθανότητα. Γι' αυτό και ονομάζεται «φίλτρο»! (Σε περίπτωση που λάβουμε θετική απάντηση μπορούμε να αναζητήσουμε το x σε μια άλλη δομή η οποία δίνει πάντα τη σωστή απάντηση αλλά μπορεί να είναι πιο αργή.) Τα φίλτρα Bloom χρησιμοποιούνται σε πολλές εφαρμογές κυρίως σε δίκτυα (π.χ. αναφέρεται ότι τα χρησιμοποιεί το Google Chrome), αλλά και αλλού.

35 Φίλτρα Bloom Η δομή αποτελείται από ένα Boolean πίνακα T μεγέθους m και k συναρτήσεις διασποράς h 1, h 2,, h k U {0,1,, m 1} Για την ανάλυση υποθέτουμε ότι οι συναρτήσεις διασποράς ικανοποιούν την υπόθεση της απλής ομοιόμορφης διασποράς: Υπόθεση απλής ομοιόμορφης διασποράς: κάθε νέο στοιχείο που εισαγάγουμε έχει ίση πιθανότητα να διασπαρεί σε οποιαδήποτε από τις m θέσεις του πίνακα T Αρχικά θέτουμε T[i] 0 για i = 0,1,, m 1 εισαγωγή(s, x): θέτουμε όλα τα bit T h 1 (x), T h 2 (x),, T h k x να είναι 1 ανήκει(s, x): επιστρέφουμε true αν όλα τα bit T h 1 (x), T h 2 (x),, T h k x είναι 1, διαφορετικά επιστρέφουμε false

36 Φίλτρα Bloom Αρχικά θέτουμε T[i] 0 για i = 0,1,, m 1 εισαγωγή(s, x): θέτουμε όλα τα bit T h 1 (x), T h 2 (x),, T h k x να είναι 1 T ανήκει(s, x): επιστρέφουμε true αν όλα τα bit T h 1 (x), T h 2 (x),, T h k x είναι 1, διαφορετικά επιστρέφουμε false

37 Φίλτρα Bloom Αρχικά θέτουμε T[i] 0 για i = 0,1,, m 1 εισαγωγή(s, x): θέτουμε όλα τα bit T h 1 (x), T h 2 (x),, T h k x να είναι 1 T h 1 (x) h 2 (x) x h 3 (x) ανήκει(s, x): επιστρέφουμε true αν όλα τα bit T h 1 (x), T h 2 (x),, T h k x είναι 1, διαφορετικά επιστρέφουμε false

38 Φίλτρα Bloom Αρχικά θέτουμε T[i] 0 για i = 0,1,, m 1 εισαγωγή(s, x): θέτουμε όλα τα bit T h 1 (x), T h 2 (x),, T h k x να είναι 1 T h 2 (y) h 1 (y) y h 3 (y) ανήκει(s, x): επιστρέφουμε true αν όλα τα bit T h 1 (x), T h 2 (x),, T h k x είναι 1, διαφορετικά επιστρέφουμε false

39 Φίλτρα Bloom Η δομή αποτελείται από ένα Boolean πίνακα T μεγέθους m και k συναρτήσεις διασποράς h 1, h 2,, h k U {0,1,, m 1} Για την ανάλυση υποθέτουμε ότι οι συναρτήσεις διασποράς ικανοποιούν την υπόθεση της απλής ομοιόμορφης διασποράς: Υπόθεση απλής ομοιόμορφης διασποράς: κάθε νέο στοιχείο που εισαγάγουμε έχει ίση πιθανότητα να διασπαρεί σε οποιαδήποτε από τις m θέσεις του πίνακα T Έστω ένα αυθαίρετο στοιχείο x U και θέση λ 0,1,, m 1 Τότε Pr h i x λ = 1 1/m. Άρα αν κάνουμε n εισαγωγές, η πιθανότητα να έχουμε T λ = 0 είναι p = 1 1/m kn e kn/m

40 Φίλτρα Bloom Έστω ένα αυθαίρετο στοιχείο x U και θέση λ 0,1,, m 1 Τότε Pr h i x λ = 1 1/m. Άρα αν κάνουμε n εισαγωγές, η πιθανότητα να έχουμε T λ = 0 είναι p = 1 1/m kn e kn/m Υπολογίζουμε τώρα την πιθανότητα το φίλτρο Bloom να δώσει λάθος θετική απάντηση. Έστω x S αλλά ανήκει(s, x) = true. Τότε T h 1 (x) = = T h k x = 1 το οποίο συμβαίνει με πιθανότητα (1 p) k 1 e kn/m k Π.χ. για m = 8n και k = 4 έχουμε πιθανότητα σφάλματος < 2,5% Βέλτιστο k = ln 2 m/n. Αν θέλουμε πιθανότητα σφάλματος < ε μπορούμε να θέσουμε m 1.44n log 1/ε

41 Κατανομή Φόρτου Εργασίας Έστω ότι έχουμε n εργασίες οι οποίες πρέπει να εκτελεστούν σε m υπολογιστές. Πως μπορούμε να αναθέσουμε τις εργασίες στους υπολογιστές έτσι ώστε οι υπολογιστές να έχουν περίπου τον ίδιο φορτίο; Αυτό επιτυγχάνεται εύκολα αν έχουμε μια κεντρική εργασία η οποία μπορεί να αναθέτει κάθε νέα εργασία σε κάποιον υπολογιστή, γνωρίζοντας το φορτίο κάθε υπολογιστή. Αν δεν υπάρχει αυτή η δυνατότητα μπορούμε να χρησιμοποιήσουμε συναρτήσεις διασποράς οι οποίες αντιστοιχούν το σύνολο των εργασιών U στους m υπολογιστές.

42 Κατανομή Φόρτου Εργασίας Ρίψη σφαιριδίων σε κάλπες Έχουμε κάλπες στις οποίες τοποθετούμε σφαιρίδια με τυχαίο τρόπο. Α Β Γ Δ Έστω η πιθανότητα ένα σφαιρίδιο να πάει σε μία συγκεκριμένη κάλπη. Έχουμε. Ρίχνουμε σφαίρες. Ποια η πιθανότητα να πάνε ακριβώς σε μία συγκεκριμένη κάλπη; διωνυμική κατανομή

43 Κατανομή Φόρτου Εργασίας Ρίψη σφαιριδίων σε κάλπες Έχουμε Έστω κάλπες στις οποίες τοποθετούμε σφαιρίδια με τυχαίο τρόπο. η πιθανότητα ένα σφαιρίδιο να πάει σε μία συγκεκριμένη κάλπη. Έχουμε. Ρίχνουμε σφαίρες. Ποια η πιθανότητα να πάνε ακριβώς σε μία συγκεκριμένη κάλπη; διωνυμική κατανομή τυχαία μεταβλητή αριθμός σφαιριδίων σε μία συγκεκριμένη κάλπη

44 Κατανομή Φόρτου Εργασίας Ρίψη σφαιριδίων σε κάλπες Έχουμε Έστω κάλπες στις οποίες τοποθετούμε σφαιρίδια με τυχαίο τρόπο. η πιθανότητα ένα σφαιρίδιο να πάει σε μία συγκεκριμένη κάλπη. Έχουμε. Ρίχνουμε σφαίρες. Ποια η πιθανότητα να πάνε ακριβώς σε μία συγκεκριμένη κάλπη; διωνυμική κατανομή τυχαία μεταβλητή αριθμός σφαιριδίων σε μία συγκεκριμένη κάλπη

45 Κατανομή Φόρτου Εργασίας Ρίψη σφαιριδίων σε κάλπες Έχουμε Έστω κάλπες στις οποίες τοποθετούμε σφαιρίδια με τυχαίο τρόπο. η πιθανότητα ένα σφαιρίδιο να πάει σε μία συγκεκριμένη κάλπη. Έχουμε. Ρίχνουμε σφαίρες. Ποια η πιθανότητα να πάνε ακριβώς σε μία συγκεκριμένη κάλπη; διωνυμική κατανομή τυχαία μεταβλητή αριθμός σφαιριδίων σε μία συγκεκριμένη κάλπη αναμενόμενος αριθμός σφαιριδίων σε μία κάλπη

46 Κατανομή Φόρτου Εργασίας Ρίψη σφαιριδίων σε κάλπες Έχουμε Έστω κάλπες στις οποίες τοποθετούμε σφαιρίδια με τυχαίο τρόπο. η πιθανότητα ένα σφαιρίδιο να πάει σε μία συγκεκριμένη κάλπη. Έχουμε. Ρίχνουμε σφαίρες. τυχαία μεταβλητή αριθμός σφαιριδίων σε μία συγκεκριμένη κάλπη αναμενόμενος αριθμός σφαιριδίων σε μία κάλπη

47 Κατανομή Φόρτου Εργασίας Ρίψη σφαιριδίων σε κάλπες Έχουμε Έστω κάλπες στις οποίες τοποθετούμε σφαιρίδια με τυχαίο τρόπο. η πιθανότητα ένα σφαιρίδιο να πάει σε μία συγκεκριμένη κάλπη. Έχουμε. Ρίχνουμε σφαίρες. τυχαία μεταβλητή αριθμός σφαιριδίων σε μία συγκεκριμένη κάλπη αναμενόμενος αριθμός σφαιριδίων σε μία κάλπη Ο υπολογισμός με τη βοήθεια δεικτριών τυχαίων μεταβλητών είναι πολύ πιο απλός!

48 Κατανομή Φόρτου Εργασίας Ρίψη σφαιριδίων σε κάλπες Έχουμε Έστω κάλπες στις οποίες τοποθετούμε σφαιρίδια με τυχαίο τρόπο. η πιθανότητα ένα σφαιρίδιο να πάει σε μία συγκεκριμένη κάλπη. Έχουμε. Ρίχνουμε σφαίρες. τυχαία μεταβλητή αριθμός σφαιριδίων σε μία συγκεκριμένη κάλπη η i-οστη σφαίρα δεν πάει στο συγκεκριμένο κουτί η i-οστη σφαίρα πάει στο συγκεκριμένο κουτί Έχουμε

49 Κατανομή Φόρτου Εργασίας Άρα αν τοποθετήσουμε n εργασίες σε n υπολογιστές με τυχαίο τρόπο τότε το αναμενόμενο φορτίο ανά υπολογιστή είναι 1 εργασία. Ωστόσο μπορούμε να δείξουμε ότι Θεώρημα Το μέγιστο φορτίο ενός υπολογιστή είναι Ο 1 1/n log n log log n με πιθανότητα Σημείωση: Όταν η ανάθεση γίνεται με συνάρτηση διασποράς h, τότε για να ισχύει το παραπάνω θεώρημα πρέπει η h να προέρχεται από k-καθολική log n οικογένεια για k = Ο log log n Μπορούμε να βελτιώσουμε το άνω φράγμα του θεωρήματος με τη βοήθεια περισσότερων συναρτήσεων διασποράς h 1,, h d Κάθε εργασία x αντιστοιχείται σε d 2 υπολογιστές h 1 (x),, h d (x) και τοποθετείται σε αυτόν με το ελάχιστο φορτίο.

50 Κατανομή Φόρτου Εργασίας Χρησιμοποιούμε συναρτήσεις διασποράς h 1,, h d Κάθε εργασία x αντιστοιχείται σε d 2 υπολογιστές h 1 (x),, h d (x) και τοποθετείται σε αυτόν με το ελάχιστο φορτίο. Θεώρημα 1 Ο 1/n Το μέγιστο φορτίο ενός υπολογιστή είναι ln ln n ln d με πιθανότητα

51 Διασπορά του Κούκου (Cuckoo Hashing) Μέθοδος κατακερματισμού ανοικτής διευθυνσιοδότησης, η οποία χρησιμοποιεί την ιδέα των 2 επιλογών. Οι συγκρούσεις επιλύονται με «έξωση» του προηγούμενου κλειδιού. Έχουμε δύο πίνακες διασποράς, T 1 και T 2, m θέσεων και αντίστοιχες συναρτήσεις διασποράς h 1, h 2 : U 0,, m 1, από κάποια οικογένεια H. Εισαγωγή κλειδιού x : Αν κάποια από τις θέσεις T 1 h 1 (x) και T 2 h 2 (x) είναι κενή, τοποθετούμε το εκεί το x. Διαφορετικά έστω ότι T 1 h 1 (x) = y. Κάνουμε «έξωση» στο κλειδί y και τοποθετούμε το x στη θέση του. Όταν γίνεται έξωση σε ένα κλειδί z από τη θέση T j h j (z) (για κάποιο j 1,2 ), τοποθετούμε το z στη θέση T 3 j h 3 j (z), κάνοντας ενδεχομένως έξωση σε κάποιο άλλο κλειδί. Αν συμβούν O log n εξώσεις, επιλέγουμε διαφορετικές συναρτήσεις διασποράς και τοποθετούμε από την αρχή όλα τα αντικείμενα.

52 Διασπορά του Κούκου (Cuckoo Hashing) Μέθοδος κατακερματισμού ανοικτής διευθυνσιοδότησης, η οποία χρησιμοποιεί την ιδέα των 2 επιλογών. Οι συγκρούσεις επιλύονται με «έξωση» του προηγούμενου κλειδιού. Έχουμε δύο πίνακες διασποράς, T 1 και T 2, m θέσεων και αντίστοιχες συναρτήσεις διασποράς h 1, h 2 : U 0,, m 1, από κάποια οικογένεια H. Κάθε κλειδί x βρίσκεται σε μία από τις θέσεις T 1 h 1 (x) και T 2 h 2 (x), άρα η αναζήτηση και η διαγραφή γίνονται σε Ο(1). Για να έχουμε καλή απόδοση στις εισαγωγές πρέπει το m να είναι αρκετά μεγάλο. Θεώρημα Για m 4n, ο αναμενόμενος χρόνος εισαγωγής είναι Ο(1)

Δομές Αναζήτησης. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση

Δομές Αναζήτησης. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση Δομές Αναζήτησης χειρότερη περίπτωση μέση περίπτωση εισαγωγή αναζήτηση επιλογή εισαγωγή αναζήτηση διατεταγμένος πίνακας διατεταγμένη λίστα μη διατεταγμένος πίνακας μη διατεταγμένη λίστα δένδρο αναζήτησης

Διαβάστε περισσότερα

Advanced Data Indexing

Advanced Data Indexing Advanced Data Indexing (Προηγμένη ευρετηρίαση δεδομένων) Κατακερματισμός Hashing (1ο Μέρος) Η Αναζήτηση απαιτεί Δομές Λύσεις Για να υποστηριχθεί η αποδοτική αναζήτηση απαιτείται η χρήση κατάλληλων δομών-ευρετηρίων

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Κατακερματισμός Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Λεξικό Dictionary Ένα λεξικό (dictionary) είναι ένας αφηρημένος τύπος δεδομένων (ΑΤΔ) που διατηρεί

Διαβάστε περισσότερα

Advanced Data Indexing

Advanced Data Indexing Advanced Data Indexing (Προηγμένη ευρετηρίαση δεδομένων) Κατακερματισμός - Hashing (2 ο Μέρος) Μέθοδοι Κατακερματισμού integer universe Direct Addressing Hashing with chaining Hashing by Division Hashing

Διαβάστε περισσότερα

Αριθμοθεωρητικοί Αλγόριθμοι

Αριθμοθεωρητικοί Αλγόριθμοι Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος

Διαβάστε περισσότερα

Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing)

Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing) ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Διαχείριση Συγκρούσεων με Ανοικτή Διεύθυνση a) Linear

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 ΗΔιωνυμική κατανομή για (πολύ) μεγάλα ν και (πολύ) μικρά p Η χρήση του τύπου ν x ν x f ( x)

Διαβάστε περισσότερα

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

ΚΑΤΑΚΕΡΜΑΤΙΣΜΟΣ HASHING

ΚΑΤΑΚΕΡΜΑΤΙΣΜΟΣ HASHING ΚΑΤΑΚΕΡΜΑΤΙΣΜΟΣ HASHING ΣΑΛΤΟΓΙΑΝΝΗ ΑΘΑΝΑΣΙΑ saltogiann@ceid.upatras.gr ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΤΟ ΠΡOΒΛΗΜΑ ΤΟΥ ΚΑΤΑΚΕΡΜΑΤΙΣΜΟY Θέλουμε τα δεδομένα που διαθέτουμε να μπορούν να αποθηκευτούν σε κάποιο πίνακα ή

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ 5η Εργασία ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ Ακαδημαϊκό Έτος : 2013-2014 ΞΑΝΘΗ 15/3/2014 Ασκήσεις: 1. Να δείξετε ότι η μέση τιμή Τ.Μ. που υπακούει στη διωνυμική κατανομή, είναι ίση np. Επειδή η Τ.Μ. που

Διαβάστε περισσότερα

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΚΕΦΑΛΑΙΟ 11 ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ Θα εισαγάγουμε την έννοια του τυχαίου αριθμού με ένα παράδειγμα. Παράδειγμα: Θεωρούμε μια τυχαία μεταβλητή με συνάρτηση πιθανότητας η οποία σε

Διαβάστε περισσότερα

Δίαυλος Πληροφορίας. Η λειτουργία του περιγράφεται από:

Δίαυλος Πληροφορίας. Η λειτουργία του περιγράφεται από: Δίαυλος Πληροφορίας Η λειτουργία του περιγράφεται από: Πίνακας Διαύλου (μαθηματική περιγραφή) Διάγραμμα Διαύλου (παραστατικός τρόπος περιγραφής της λειτουργίας) Πίνακας Διαύλου Χρησιμοποιούμε τις υπό συνθήκη

Διαβάστε περισσότερα

Βάση και Διάσταση Διανυσματικού Χώρου

Βάση και Διάσταση Διανυσματικού Χώρου Βάση και Διάσταση Διανυσματικού Χώρου Έστω V ένας διανυσματικός χώρος επί του σώματος F. Ορισμός : Ένα υποσύνολο S του διανυσματικού χώρου V θα λέμε ότι είναι βάση του V αν ισχύει Α) Η θήκη του S παράγει

Διαβάστε περισσότερα

Εισαγωγή Ορισμός Frequency moments

Εισαγωγή Ορισμός Frequency moments The space complexity of approximating the frequency moments Κωστόπουλος Δημήτριος Μπλα Advanced Data Structures June 2007 Εισαγωγή Ορισμός Frequency moments Έστω ακολουθία Α = {a 1,a 2,...,a m ) με κάθε

Διαβάστε περισσότερα

Προηγμένη Ευρετηρίαση Δεδομένων (ΠΜΣ) Ενδεικτικές ερωτήσεις-θέματα για την εξέταση της θεωρίας

Προηγμένη Ευρετηρίαση Δεδομένων (ΠΜΣ) Ενδεικτικές ερωτήσεις-θέματα για την εξέταση της θεωρίας Προηγμένη Ευρετηρίαση Δεδομένων (ΠΜΣ) Ενδεικτικές ερωτήσεις-θέματα για την εξέταση της θεωρίας 1. Πως δομούνται οι ιεραρχικές μνήμες; Αναφέρετε τα διάφορα επίπεδά τους από τον επεξεργαστή μέχρι τη δευτερεύουσα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. Ακέραια Πολύεδρα

ΚΕΦΑΛΑΙΟ 4. Ακέραια Πολύεδρα ΚΕΦΑΛΑΙΟ 4 Ακέραια Πολύεδρα 1 Ορισμός 4.1 (Convex Hull) Έστω ένα σύνολο S C R n. Ένα σημείο x του R n είναι κυρτός συνδυασμός (convex combination) σημείων του S, αν υπάρχει ένα πεπερασμένο σύνολο σημείων

Διαβάστε περισσότερα

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ Τα μη γραμμικά μοντέλα έχουν την πιο κάτω μορφή: η μορφή αυτή μοιάζει με τη μορφή που έχουμε για τα γραμμικά μοντέλα ( δηλαδή η παρατήρηση Y i είναι το άθροισμα της αναμενόμενης

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

viii 20 Δένδρα van Emde Boas 543

viii 20 Δένδρα van Emde Boas 543 Περιεχόμενα Πρόλογος xi I Θεμελιώδεις έννοιες Εισαγωγή 3 1 Ο ρόλος των αλγορίθμων στις υπολογιστικές διαδικασίες 5 1.1 Αλγόριθμοι 5 1.2 Οι αλγόριθμοι σαν τεχνολογία 12 2 Προκαταρκτικές έννοιες και παρατηρήσεις

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί. q Z, a = b q + r.

2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί. q Z, a = b q + r. Κεφάλαιο 2 Θεωρία Αριθμών Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Hardy and Wright 1979 και Graham, Knuth, and Patashnik 1994. 2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί Θεώρημα 2.1 Αν

Διαβάστε περισσότερα

Δυναμική Διατήρηση Γραμμικής Διάταξης

Δυναμική Διατήρηση Γραμμικής Διάταξης Διατηρεί μια γραμμική διάταξη δυναμικά μεταβαλλόμενης συλλογής στοιχείων. Υποστηρίζει τις λειτουργίες: Εισαγωγή νέου στοιχείου y αμέσως μετά από το στοιχείο x. x y Διαγραφή στοιχείου y. y Έλεγχος της σειράς

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή

Διαβάστε περισσότερα

Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis

Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis Θεώρημα για σφαίρες Θα δείξουμε ότι το γράφημα G(n, 2 ln n n 1 ) έχει μικρή διάμετρο Θα ξεκινήσουμε με ένα θεώρημα για το μέγεθος μιας σφαίρας

Διαβάστε περισσότερα

EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια. Παράδοση: Έως 22/6/2015

EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια. Παράδοση: Έως 22/6/2015 EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Φυλλάδιο 13 Δ. Τουμπακάρης 30 Μαΐου 2015 EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια Παράδοση:

Διαβάστε περισσότερα

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β.

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Η έννοια της ακολουθίας Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Δηλαδή: f : A B Η ακολουθία είναι συνάρτηση.

Διαβάστε περισσότερα

Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing)

Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing) Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανασκόπηση Προβλήματος και Προκαταρκτικών Λύσεων Bit Διανύσματα Τεχνικές Κατακερματισμού & Συναρτήσεις

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 8 KATAKEΡΜΑΤΙΣΜΟΣ (HASHING)

ΕΝΟΤΗΤΑ 8 KATAKEΡΜΑΤΙΣΜΟΣ (HASHING) ΕΝΟΤΗΤΑ 8 KATAKEΡΜΑΤΙΣΜΟΣ (HASHING) Κατακερµατισµός Στόχος Έχουµε ένα σύνολο από κλειδιά {Κ 0,, Κ n-1 } και θέλουµε να υλοποιήσουµε Insert() και LookUp() (ίσως και Delete()) απλά και γρήγορα στην πράξη.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Stream ciphers Η διαδικασία κωδικοποίησης για έναν stream cipher συνοψίζεται παρακάτω: 1.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 11ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 11ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 11ο Συνολοκλήρωσης και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε

Διαβάστε περισσότερα

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς Σημειώσεις Ανάλυσης Ι 1. Οι ρητοί αριθμοί Θεωρούμε γνωστούς τους φυσικούς αριθμούς 1, 2, 3, και τις πράξεις (πρόσθεση - πολλαπλασιασμό)μεταξύ αυτών. Οι φυσικοί αριθμοί είναι επίσης διατεταγμένοι με κάποια

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 2: Θεωρία Απόφασης του Bayes Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Θεωρία

Διαβάστε περισσότερα

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα

Διαβάστε περισσότερα

Θεώρημα κωδικοποίησης πηγής

Θεώρημα κωδικοποίησης πηγής Κωδικοποίηση Kωδικοποίηση πηγής Θεώρημα κωδικοποίησης πηγής Καθορίζει ένα θεμελιώδες όριο στον ρυθμό με τον οποίο η έξοδος μιας πηγής πληροφορίας μπορεί να συμπιεσθεί χωρίς να προκληθεί μεγάλη πιθανότητα

Διαβάστε περισσότερα

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ ΚΕΦ:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ Τετραγωνικές μορφές: Συναρτήσεις με τύπο Q ν α ι j j, j [ ] ν α α ν αν α νν ν Τ Χ ΑΧ Για παράδειγμα εάν v Q α + α + α + α α + α + α + α δηλ a a a a α + α + α

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ Μαθηματικά Πληροφορικής 2ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.

Διαβάστε περισσότερα

Σχεδίαση & Ανάλυση Αλγορίθμων

Σχεδίαση & Ανάλυση Αλγορίθμων Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα

Βασικά μαθηματικά εργαλεία

Βασικά μαθηματικά εργαλεία Παράρτημα Αʹ Βασικά μαθηματικά εργαλεία Σύνοψη Παρατίθενται μια επανάληψη σε βασικές γνώσεις που αφορούν βασικά μαθηματικά εργαλεία, για την αντιμετώπιση προβλημάτων που παρουσιάζονται στο σύγγραμμα, και

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ Τµ. Επιστήµης των Υλικών εσµευµένες Πιθανότητες Εστω (Ω, A, P) ένας πιθανοθεωρητικός χώρος. Αξιωµατικός Ορισµός της Πιθανότητας (Kolmogorov) Θεωρούµε (Ω, A) έναν µετρήσιµο χώρο. Ενα πιθανοθεωρητικό µέτρο

Διαβάστε περισσότερα

Θέματα Συστημάτων Πολυμέσων

Θέματα Συστημάτων Πολυμέσων Θέματα Συστημάτων Πολυμέσων Ενότητα # 6: Στοιχεία Θεωρίας Πληροφορίας Διδάσκων: Γεώργιος K. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

ιδιαιτεραμαθηματα.gr ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ιδιαιτεραμαθηματα.gr ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ [Δεν είναι σκόπιμο να αποκαλύψεις στο παιδί σου ότι οι μεγάλοι άντρες δεν είχαν ιδέα από άλγεβρα] ΕΠΙΜΕΛΕΙΑ ΣΗΜΕΙΩΣΕΩΝ: ΠΑΠΑΔΟΠΟΥΛΟΣ Μ. ΕΠΙΜΕΛΕΙΑ ΣΗΜΕΙΩΣΕΩΝ: ΠΑΠΑΔΟΠΟΥΛΟΣ

Διαβάστε περισσότερα

Γράφημα. Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 4 5 πλήθος κορυφών πλήθος ακμών

Γράφημα. Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 4 5 πλήθος κορυφών πλήθος ακμών Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 1 2 3 4 5 πλήθος κορυφών πλήθος ακμών Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics)

Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics) Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics) Τυχαίο δείγμα και στατιστική συνάρτηση Χ={x 1, x,, x n } τυχαίο δείγμα μεγέθους n προερχόμενο από μια (παραμετρική) κατανομή με σ.π.π. f(x;θ).

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 Κατανομές χρόνου αναμονής (... μέχρι να συμβεί ηπρώτη επιτυχία) 3 Ας θεωρήσουμε μία ακολουθία

Διαβάστε περισσότερα

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα. 1. Τα μέλη ενός Γυμναστηρίου έχουν τη δυνατότητα να επιλέξουν προγράμματα αεροβικής ή γυμναστικής με βάρη. Θεωρούμε τα ενδεχόμενα: Α = Ένα μέλος έχει επιλέξει πρόγραμμα αεροβικής. Β = Ένα μέλος έχει επιλέξει

Διαβάστε περισσότερα

Ενότητα 6: Κατακερματισμός Ασκήσεις και Λύσεις

Ενότητα 6: Κατακερματισμός Ασκήσεις και Λύσεις ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Ενότητα : Κατακερματισμός Ασκήσεις και Λύσεις Άσκηση 1 Χρησιμοποιήστε τη συνάρτηση κατακερματισμού της διαίρεσης ως πρωτεύουσα συνάρτηση κατακερματισμού και τη συνάρτηση

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x = ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 0: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 0 Οκτωβρίου 008 Ημερομηνία παράδοσης της Εργασίας: Νοεμβρίου 008 Πριν

Διαβάστε περισσότερα

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί Αριθμήσιμα σύνολα Μαθηματικά Πληροφορικής 5ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Ορισμός Πόσα στοιχεία έχει το σύνολο {a, b, r, q, x}; Οσα και το σύνολο {,,, 4, 5} που είναι

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ασκήσεις (2) Άσκηση 1

Ασκήσεις (2) Άσκηση 1 Άσκηση 1 Ασκήσεις () Εισαγωγή στην Ανάλυση Αλγορίθμων Υποθέστε ότι συγκρίνουμε την υλοποίηση της ταξινόμησης με εισαγωγή και της ταξινόμησης με συγχώνευση στον ίδιο υπολογιστή. Για εισόδους μεγέθους n,

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ .0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Έστω διανύσματα που ανήκουν στο χώρο δ i = ( a i, ai,, ai) i =,,, και έστω γραμμικός συνδυασμός των i : xδ + x δ + + x δ = b που ισούται με το διάνυσμα b,

Διαβάστε περισσότερα

Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα. Παπαπαύλου Χρήστος ΑΜ: 6609

Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα. Παπαπαύλου Χρήστος ΑΜ: 6609 Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα Παπαπαύλου Χρήστος ΑΜ: 6609 Αναπαράσταση μοντέλου Το 3D μοντέλο το αποθηκεύουμε στην μνήμη με τις εξής δομές δεδομένων: Λίστα κορυφών Λίστα τριγώνων

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης

Ψηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης Ψηφιακές Τηλεπικοινωνίες Θεωρία Ρυθμού Παραμόρφωσης Θεωρία Ρυθμού-Παραμόρφωσης Θεώρημα Κωδικοποίησης Πηγής: αν έχω αρκετά μεγάλο μπλοκ δεδομένων, μπορώ να φτάσω κοντά στην εντροπία Πιθανά Προβλήματα: >

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων 6η Διάλεξη Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη

Διαβάστε περισσότερα

X 1 X 2. X d X = 2 Y (x) = e x 2. f X+Y (x) = f X f Y (x) = f X (y)f Y (x y)dy. exp. exp. dy, (1) f X+Y (x) = j= σ2 2) exp x 2 )

X 1 X 2. X d X = 2 Y (x) = e x 2. f X+Y (x) = f X f Y (x) = f X (y)f Y (x y)dy. exp. exp. dy, (1) f X+Y (x) = j= σ2 2) exp x 2 ) Εστω X : Ω R d τυχαίο διάνυσμα με ΠΟΛΥΔΙΑΣΤΑΤΗ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ X Εχουμε δει ότι η γνώση της κατανομής καθεμιάς από τις X, X,, X d δεν αρκεί για να προσδιορίσουμε την κατανομή του X, αφού δεν περιέχει

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινοµηµένα Αρχεία Φυσική διάταξη των εγγραφών

Διαβάστε περισσότερα

Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί

Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α 1. (2.5 μονάδες) Ο κ. Ζούπας παρέλαβε μία μυστηριώδη τσάντα από το ταχυδρομείο. Όταν

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες

Διαβάστε περισσότερα

Θέματα Συστημάτων Πολυμέσων

Θέματα Συστημάτων Πολυμέσων Θέματα Συστημάτων Πολυμέσων Ενότητα # 5: Βασική Θεωρία Πληροφορίας Διδάσκων: Γεώργιος Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: 5 Φεβρουαρίου 008 Ημερομηνία παράδοσης της Εργασίας: 4 Μαρτίου 008

Διαβάστε περισσότερα

( ) log 2 = E. Σεραφείµ Καραµπογιάς

( ) log 2 = E. Σεραφείµ Καραµπογιάς Παρατηρούµε ότι ο ορισµός της Η βασίζεται στη χρονική µέση τιµή. Για να ισχύει ο ορισµός αυτός και για µέση τιµή συνόλου πρέπει η πηγή να είναι εργοδική, δηλαδή H ( X) ( ) = E log 2 p k Η εντροπία µιας

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

Η ΜΕΤΡΙΚΗ ΤΟΥ ΧΩΡΟΥ. (στην περίπτωση, που γνωρίζουμε το πεδίον ορισμού του δείκτου, θα

Η ΜΕΤΡΙΚΗ ΤΟΥ ΧΩΡΟΥ. (στην περίπτωση, που γνωρίζουμε το πεδίον ορισμού του δείκτου, θα Η ΜΕΤΡΙΚΗ ΤΟΥ ΧΩΡΟΥ Η μετρική του χώρου Στην ορίσαμε το εσωτερικό γινόμενο δύο διανυσμάτων μέσω των συντεταγμένων τους, όταν οι συντεταγμένες αυτές λαβαίνονται σε ένα Καρτεσιανό σύστημα αναφοράς του Ερχόμαστε,

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ

Διαβάστε περισσότερα

Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής

Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής Εννοιολογική αναπαράσταση δίκτυων διανομής Σχηματοποίηση: δικτυακή απεικόνιση των συνιστωσών του φυσικού συστήματος ως συνιστώσες ενός εννοιολογικού μοντέλου

Διαβάστε περισσότερα

CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ

CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Θεώρηµα Cramer-Rao Θεώρηµα Cramer-Rao Εστω X = (X 1, X,...,X n ) ένα δείγµα µε από κοινού πυκνότητα πιθανότητας f X

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ, ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΩΝ ΓΕΩΛΟΓΙΚΟΥ

ΠΙΘΑΝΟΤΗΤΕΣ, ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΩΝ ΓΕΩΛΟΓΙΚΟΥ ΠΙΘΑΝΟΤΗΤΕΣ, ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΙΑ ΣΕΤ ΑΣΚΗΣΕΩΝ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ Στο Σετ αυτό περιλαμβάνονται θέματα Πιθανοτήτων που έχουν δοθεί σε εξετάσεις παρελθόντων ετών στα Τμήματα Γεωλογικό

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ

ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ Συνεκτικότητα Γραφημάτων 123 ΚΕΦΑΛΑΙΟ 4 ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ 4.1 Τοπική και Ολική Συνεκτικότητα Γραφημάτων 4.2 Συνεκτικότητα Μη-κατευθυνόμενων Γραφημάτων 4.3 Συνεκτικότητα Κατευθυνόμενων Γραφημάτων

Διαβάστε περισσότερα