Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση"

Transcript

1 Πίνακες Διασποράς Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση κλειδί k T U : χώρος πιθανών κλειδιών Τ : πίνακας μεγέθους m συνάρτηση διασποράς

2 Καθολική Διασπορά Για κάθε καθορισμένη συνάρτηση διασποράς μπορούμε να επιλέξουμε κλειδιά που θα δίνουν τη χειρότερη δυνατή επίδοση. Προκειμένου να βελτιώσουμε την κατάσταση μπορούμε να βασιστούμε σε τυχαιοκρατικούς αλγόριθμους: Ορίζουμε μία οικογένεια συναρτήσεων και κατά τη διάρκεια της εκτέλεσης επιλέγουμε τυχαία μία από αυτές τις συναρτήσεις ως συνάρτηση διασποράς. Περιορίζουμε την πιθανότητα εμφάνισης παθολογικών περιπτώσεων.

3 Καθολική Διασπορά πεπερασμένη συλλογή συναρτήσεων Η συλλογή είναι καθολική αν για κάθε ζεύγος διαφορετικών κλειδιών υπάρχουν το πολύ συναρτήσεις με

4 Καθολική Διασπορά πεπερασμένη συλλογή συναρτήσεων Η συλλογή είναι καθολική αν για κάθε ζεύγος διαφορετικών κλειδιών υπάρχουν το πολύ συναρτήσεις με Συνεπώς

5 Καθολική Διασπορά πεπερασμένη συλλογή συναρτήσεων Η συλλογή είναι καθολική αν για κάθε ζεύγος διαφορετικών κλειδιών υπάρχουν το πολύ συναρτήσεις με Συνεπώς Πιθανότητα σύμπτωσης όταν και επιλέγονται τυχαία και ανεξάρτητα.

6 Καθολική Διασπορά σύμπαν καθολική συλλογή συναρτήσεων διασποράς που αντιστοιχίζει το στο σύνολο αυθαίρετο υποσύνολο του με αυθαίρετο στοιχείο του τυχαία επιλεγμένη συνάρτηση της αριθμός στοιχειών με (τυχαία μεταβλητή) Για κάθε έχουμε δείκτρια τυχαία μεταβλητή Έχουμε Άρα

7 Καθολική Διασπορά Θεώρημα Έστω ότι επιλέγουμε τυχαία και κάνουμε εισαγωγή κλειδιών σε πίνακα μεγέθους. Έστω. Τότε όπου α = n/m ο συντελεστής πληρότητας. Πόρισμα Ο αναμενόμενος χρόνος εκτέλεσης μίας ακολουθίας πράξεων με πράξεις εισαγωγής είναι Συνεπάγεται από το παραπάνω θεώρημα και την παρατήρηση ότι

8 Καθολικές Οικογένειες Συναρτήσεων Διασποράς πρώτος αριθμός, μεγαλύτερος από κάθε κλειδί Για και Παράδειγμα

9 Καθολικές Οικογένειες Συναρτήσεων Διασποράς πρώτος αριθμός, μεγαλύτερος από κάθε κλειδί Για και Περιλαμβάνει συναρτήσεις

10 Καθολικές Οικογένειες Συναρτήσεων Διασποράς Θα δώσουμε ένα ακόμα παράδειγμα καθολικής οικογένειας συναρτήσεων διασποράς H υποθέτοντας ότι : Το σύνολο των πιθανών κλειδιών περιλαμβάνει U = 2 υ τιμές. Οι συναρτήσεις h H αντιστοιχούν το U σε ένα σύνολο με m = 2 μ τιμές. Άρα ουσιαστικά οι συναρτήσεις της H αντιστοιχούν διανύσματα x (ακολουθίες) των υ bits σε διανύσματα y των μ bits. x 0 1 y υ bits h μ bits

11 Καθολικές Οικογένειες Συναρτήσεων Διασποράς Θα δώσουμε ένα ακόμα παράδειγμα καθολικής οικογένειας συναρτήσεων διασποράς H υποθέτοντας ότι : Το σύνολο των πιθανών κλειδιών περιλαμβάνει U = 2 υ τιμές. Οι συναρτήσεις h H αντιστοιχούν το U σε ένα σύνολο με m = 2 μ τιμές. Άρα ουσιαστικά οι συναρτήσεις της H αντιστοιχούν διανύσματα x (ακολουθίες) των υ bits σε διανύσματα y των μ bits. x 0 1 y Μπορούμε να λάβουμε μια τέτοια αντιστοιχία πολλαπλασιάζοντας το x με ένα μ υ πίνακα Α υ bits h μ bits A x = y 0 1

12 Καθολικές Οικογένειες Συναρτήσεων Διασποράς Θα δώσουμε ένα ακόμα παράδειγμα καθολικής οικογένειας συναρτήσεων διασποράς H υποθέτοντας ότι : Το σύνολο των πιθανών κλειδιών περιλαμβάνει U = 2 υ τιμές. Οι συναρτήσεις h H αντιστοιχούν το U σε ένα σύνολο με m = 2 μ τιμές. Άρα ουσιαστικά οι συναρτήσεις της H αντιστοιχούν διανύσματα x (ακολουθίες) των υ bits σε διανύσματα y των μ bits. Μπορούμε να λάβουμε μια τέτοια αντιστοιχία πολλαπλασιάζοντας το x με ένα Boolean μ υ πίνακα Α, δηλαδή έχουμε y = h(x) = Ax, όπου οι πράξεις γίνονται modulo 2 (δηλαδή = = 0 και = = 1). Η οικογένεια H ορίζεται από όλους τους 2 μυ Boolean μ υ πίνακες Α.

13 Καθολικές Οικογένειες Συναρτήσεων Διασποράς Η οικογένεια H ορίζεται από όλους τους 2 μυ Boolean μ υ πίνακες Α. Θεώρημα Η οικογένεια συναρτήσεων διασποράς H είναι καθολική. Απόδειξη Έστω A ένας τυχαίος Boolean μ υ πίνακας και έστω x y διανύσματα του 0,1 υ. Θα δείξουμε ότι η πιθανότητα σύγκρουσης h(x) = h(y) είναι το πολύ 1/m, δηλαδή Pr h H h x = h(y) 1/m. Έστω h(x) = h(y). Θέτουμε z = x y. Έχουμε Ax = Ay A x y = 0 Az = 0, όπου 0 = το διάνυσμα του 0,1 μ με όλες τις μ συνιστώσες μηδέν. Άρα θέλουμε να δείξουμε ότι Pr h H h z = 0 = Pr h H Az = 0 1/m.

14 Καθολικές Οικογένειες Συναρτήσεων Διασποράς Η οικογένεια H ορίζεται από όλους τους 2 μυ Boolean μ υ πίνακες Α. Θεώρημα Η οικογένεια συναρτήσεων διασποράς H είναι καθολική. Απόδειξη Άρα θέλουμε να δείξουμε ότι Pr h H h z = 0 = Pr h H Az = 0 1/m. Έστω q = q 1, q 2,, q μ = Az. Η συνιστώσα q i προκύπτει από το εσωτερικό γινόμενο της γραμμής i του A με το διάνυσμα z. A i z = q i Εφόσον z = x y και x y, το z έχει τουλάχιστον μία μη μηδενική συνιστώσα, έστω υ z k = 1. Έχουμε q i = σ j=1 A ij z j = A ik z k + σ j k A ij z j = A ik + σ j k A ij z j.

15 Καθολικές Οικογένειες Συναρτήσεων Διασποράς Η οικογένεια H ορίζεται από όλους τους 2 μυ Boolean μ υ πίνακες Α. Θεώρημα Η οικογένεια συναρτήσεων διασποράς H είναι καθολική. Απόδειξη Άρα θέλουμε να δείξουμε ότι Pr h H h z = 0 = Pr h H Az = 0 1/m. Έστω q = q 1, q 2,, q μ = Az. Η συνιστώσα q i προκύπτει από το εσωτερικό γινόμενο της γραμμής i του A με το διάνυσμα z. Επομένως, q i = 0 A ik = σ j k A ij z j. Με τι πιθανότητα μπορεί να συμβεί αυτό;

16 Καθολικές Οικογένειες Συναρτήσεων Διασποράς Η οικογένεια H ορίζεται από όλους τους 2 μυ Boolean μ υ πίνακες Α. Θεώρημα Η οικογένεια συναρτήσεων διασποράς H είναι καθολική. Απόδειξη Άρα θέλουμε να δείξουμε ότι Pr h H h z = 0 = Pr h H Az = 0 1/m. Έστω q = q 1, q 2,, q μ = Az. Η συνιστώσα q i προκύπτει από το εσωτερικό γινόμενο της γραμμής i του A με το διάνυσμα z. Επομένως, q i = 0 A ik = σ j k A ij z j. Με τι πιθανότητα μπορεί να συμβεί αυτό; Αφού ο πίνακας A είναι τυχαίος, κάθε στοιχείο του επιλέγεται ανεξάρτητα. Επομένως, μπορούμε να υποθέσουμε ότι η τιμή (0 ή 1) του στοιχείου A ik επιλέγεται τελευταία. Τη στιγμή που επιλέγουμε αυτήν την τιμή, το άθροισμα c = σ j k A ij z j είναι καθορισμένο, δηλαδή είναι μια σταθερά c 0,1. Συνεπώς η πιθανότητα να επιλέξουμε A ik = c είναι 1/2.

17 Καθολικές Οικογένειες Συναρτήσεων Διασποράς Η οικογένεια H ορίζεται από όλους τους 2 μυ Boolean μ υ πίνακες Α. Θεώρημα Η οικογένεια συναρτήσεων διασποράς H είναι καθολική. Απόδειξη Άρα θέλουμε να δείξουμε ότι Pr h H h z = 0 = Pr h H Az = 0 1/m. Έστω q = q 1, q 2,, q μ = Az. Η συνιστώσα q i προκύπτει από το εσωτερικό γινόμενο της γραμμής i του A με το διάνυσμα z. Επομένως, q i = 0 A ik = σ j k A ij z j. Η πιθανότητα να συμβεί αυτό είναι 1/2. Το ίδιο ισχύει για κάθε συνιστώσα i {1,2,, μ}, δηλαδή μ Pr h H h x = h(y) = Pr h H Az = 0 = 1 2 = 1 m

18 Πλήρης Διασπορά Όταν το σύνολο των κλειδιών είναι στατικό μπορούμε να πετύχουμε άριστη επίδοση : O(1) χρόνο χειρότερης περίπτωσης ανά πράξη

19 Πλήρης Διασπορά Όταν το σύνολο των κλειδιών είναι στατικό μπορούμε να πετύχουμε άριστη επίδοση : O(1) χρόνο χειρότερης περίπτωσης ανά πράξη k 5 k 2 k 5 T 0 Ιδέα: Διασπορά δύο επιπέδων με χρήση καθολικής διασποράς ανά επίπεδο K k 2 k 1 k 4 k 1 k 3 k 4 k 3 m-1

20 Πλήρης Διασπορά Όταν το σύνολο των κλειδιών είναι στατικό μπορούμε να πετύχουμε άριστη επίδοση : O(1) χρόνο χειρότερης περίπτωσης ανά πράξη k 5 k 2 k 5 T 0 Ιδέα: Διασπορά δύο επιπέδων με χρήση καθολικής διασποράς ανά επίπεδο K k 2 k 1 k 4 k 1 k 3 k 4 k 3 m-1 2 ο επίπεδο : δευτερογενής πίνακας διασποράς για κάθεt[i] 1 ο επίπεδο

21 Πλήρης Διασπορά Όταν το σύνολο των κλειδιών είναι στατικό μπορούμε να πετύχουμε άριστη επίδοση : O(1) χρόνο χειρότερης περίπτωσης ανά πράξη k 5 k 2 k 5 T 0 Ιδέα: Διασπορά δύο επιπέδων με χρήση καθολικής διασποράς ανά επίπεδο K k 2 k 1 k 4 k 1 k 3 k 4 k 3 m-1 2 ο επίπεδο : δευτερογενής πίνακας διασποράς για κάθεt[i] 1 ο επίπεδο Στο 2 ο επίπεδο αποφεύγουμε τις συμπτώσεις

22 Πλήρης Διασπορά Παράδειγμα Συνάρτηση διασποράς 1ου επιπέδου : Συνάρτηση διασποράς 2ου επιπέδου :

23 Πλήρης Διασπορά πρωτογενής πίνακας διασποράς με δευτερογενής πίνακας διασποράς με θέσεις και συνάρτηση διασποράς θέσεις και συνάρτηση διασποράς Έστω ο συνολικός αριθμός κλειδιών και ο αριθμός των κλειδιών που αποθηκεύονται στον. Για να αποφύγουμε τις συγκρούσεις στο δεύτερο επίπεδο θα επιλέξουμε. Θα δείξουμε ότι για κατάλληλα επιλεγμένη απαιτείται για τους δευτερογενείς πίνακες είναι ο αναμενόμενος χώρος που

24 Πλήρης Διασπορά Επιλέγουμε την πρωτογενή συνάρτηση διασποράς οικογένεια. από την καθολική Επιλέγουμε κάθε δευτερογενή συνάρτηση διασποράς οικογένεια. από την καθολική

25 Πλήρης Διασπορά Θεώρημα Έστω ότι επιλέγουμε τυχαία μια συνάρτηση διασποράς από καθολική οικογένεια συναρτήσεων διασποράς. Αν αποθηκεύσουμε κλειδιά και το μέγεθος του πίνακα διασποράς είναι τότε η πιθανότητα να υπάρχει σύγκρουση είναι. Ο αριθμός των πιθανών συγκρούσεων είναι κλειδιών., όσα τα διαφορετικά ζεύγη Από τον τρόπο επιλογής της ζεύγους κλειδιών είναι το πολύ. προκύπτει ότι η πιθανότητα σύγκρουσης ενός Άρα ο αναμενόμενος αριθμός συγκρούσεων είναι Από την ανισότητα του Markov έχουμε

26 Πλήρης Διασπορά Θεώρημα Έστω ότι επιλέγουμε τυχαία μια συνάρτηση διασποράς από καθολική οικογένεια συναρτήσεων διασποράς. Αν αποθηκεύσουμε κλειδιά και το μέγεθος του πίνακα διασποράς είναι τότε η πιθανότητα να υπάρχει σύγκρουση είναι. Το παραπάνω θεώρημα συνεπάγεται ότι για μπορούμε να βρούμε με λίγες δοκιμές μια συνάρτηση διασποράς που να μην έχει συγκρούσεις για το σύνολο των κλειδιών που αποθηκεύεται στον.

27 Πλήρης Διασπορά Απομένει να επιλέξουμε μια πρωτογενή συνάρτηση διασποράς έτσι ώστε Θεώρημα Έστω ότι επιλέγουμε τυχαία μια συνάρτηση διασποράς από καθολική οικογένεια συναρτήσεων διασποράς. Αν αποθηκεύσουμε κλειδιά και το μέγεθος του πίνακα διασποράς είναι τότε

28 Πλήρης Διασπορά Θεώρημα Έστω ότι επιλέγουμε τυχαία μια συνάρτηση διασποράς από καθολική οικογένεια συναρτήσεων διασποράς. Αν αποθηκεύσουμε κλειδιά και το μέγεθος του πίνακα διασποράς είναι τότε Για κάθε μη αρνητικό ακέραιο ισχύει άρα έχουμε Καθώς απομένει να δείξουμε ότι

29 Πλήρης Διασπορά Θεώρημα Έστω ότι επιλέγουμε τυχαία μια συνάρτηση διασποράς από καθολική οικογένεια συναρτήσεων διασποράς. Αν αποθηκεύσουμε κλειδιά και το μέγεθος του πίνακα διασποράς είναι τότε Παρατηρούμε ότι αναμενόμενο πλήθος συγκρούσεων, άρα από την επιλογή της έχουμε

30 Πλήρης Διασπορά Θεώρημα Έστω ότι επιλέγουμε τυχαία μια συνάρτηση διασποράς από καθολική οικογένεια συναρτήσεων διασποράς. Αν αποθηκεύσουμε κλειδιά και το μέγεθος του πίνακα διασποράς είναι τότε Άρα ο αναμενόμενος χώρος που απαιτείται για την αποθήκευση όλων των δευτερογενών πινάκων είναι Από την ανισότητα του Markov έχουμε Δηλαδή μπορούμε να βρούμε με λίγες δοκιμές μια κατάλληλη πρωτογενή συνάρτηση διασποράς.

31 Πλήρης Διασπορά Η τεχνική της πλήρους διασποράς μπορεί να επεκταθεί και σε δυναμικά σύνολα [Dietzfelbinger, Karlin, Mehlhorn, Meyer auf der Heide, Rohnert, and Tarjan, 1994] : αντισταθμιστίκο αναμενόμενο κόστος ανά εισαγωγή και διαγραφή.

32 k-καθολική Διασπορά H = πεπερασμένη συλλογή συναρτήσεων διασποράς U K, U > K = m Η συλλογή H είναι k-καθολική (ή k-ανεξάρτητη) αν για κάθε k διαφορετικά κλειδιά x 1, x 2,, x k και k τιμές a 1, a 2,, a k (όχι απαραίτητα διαφορετικές) ισχύει Pr h H h x 1 = a 1 h x 2 = a 2 h x k = a k 1 m k Ιδιότητες Αν η H είναι k-καθολική τότε είναι και (k 1)-καθολική (και καθολική) Για κάθε x U και a K ισχύει Pr h H h x = a = 1/m

33 k-καθολική Διασπορά Η οικογένεια H ορίζεται από όλους τους 2 μυ Boolean μ υ πίνακες Α. Θεώρημα Η οικογένεια συναρτήσεων διασποράς H είναι καθολική. Παρατήρηση Η παραπάνω οικογένεια δεν είναι 2-καθολική Π.χ. για x = 0 έχουμε h(x) = Ax = 0 ανεξάρτητα από την επιλογή του A, δηλαδή Pr h H h x = 0 = 1. Μπορούμε όμως να λάβουμε μια 2-καθολική οικογένεια αν θέσουμε h x = Ax + b όπου b ένα τυχαίο διάνυσμα του 0,1 μ.

34 Φίλτρα Bloom [B. H. Bloom 1970] Απλή δομή δεδομένων η οποία απαντά γρήγορα αν ένα στοιχείο ανήκει σε ένα σύνολο S Βασικές λειτουργίες ανήκει(s, x): ελέγχει αν x S εισαγωγή(s, x): θέτει S S x Ένα φίλτρο Bloom επιτρέπει λανθασμένες θετικές απαντήσεις, δηλαδή μπορεί να επιστρέψει ανήκει(s, x) = true για x S, αλλά με πολύ μικρή πιθανότητα. Γι' αυτό και ονομάζεται «φίλτρο»! (Σε περίπτωση που λάβουμε θετική απάντηση μπορούμε να αναζητήσουμε το x σε μια άλλη δομή η οποία δίνει πάντα τη σωστή απάντηση αλλά μπορεί να είναι πιο αργή.) Τα φίλτρα Bloom χρησιμοποιούνται σε πολλές εφαρμογές κυρίως σε δίκτυα (π.χ. αναφέρεται ότι τα χρησιμοποιεί το Google Chrome), αλλά και αλλού.

35 Φίλτρα Bloom Η δομή αποτελείται από ένα Boolean πίνακα T μεγέθους m και k συναρτήσεις διασποράς h 1, h 2,, h k U {0,1,, m 1} Για την ανάλυση υποθέτουμε ότι οι συναρτήσεις διασποράς ικανοποιούν την υπόθεση της απλής ομοιόμορφης διασποράς: Υπόθεση απλής ομοιόμορφης διασποράς: κάθε νέο στοιχείο που εισαγάγουμε έχει ίση πιθανότητα να διασπαρεί σε οποιαδήποτε από τις m θέσεις του πίνακα T Αρχικά θέτουμε T[i] 0 για i = 0,1,, m 1 εισαγωγή(s, x): θέτουμε όλα τα bit T h 1 (x), T h 2 (x),, T h k x να είναι 1 ανήκει(s, x): επιστρέφουμε true αν όλα τα bit T h 1 (x), T h 2 (x),, T h k x είναι 1, διαφορετικά επιστρέφουμε false

36 Φίλτρα Bloom Αρχικά θέτουμε T[i] 0 για i = 0,1,, m 1 εισαγωγή(s, x): θέτουμε όλα τα bit T h 1 (x), T h 2 (x),, T h k x να είναι 1 T ανήκει(s, x): επιστρέφουμε true αν όλα τα bit T h 1 (x), T h 2 (x),, T h k x είναι 1, διαφορετικά επιστρέφουμε false

37 Φίλτρα Bloom Αρχικά θέτουμε T[i] 0 για i = 0,1,, m 1 εισαγωγή(s, x): θέτουμε όλα τα bit T h 1 (x), T h 2 (x),, T h k x να είναι 1 T h 1 (x) h 2 (x) x h 3 (x) ανήκει(s, x): επιστρέφουμε true αν όλα τα bit T h 1 (x), T h 2 (x),, T h k x είναι 1, διαφορετικά επιστρέφουμε false

38 Φίλτρα Bloom Αρχικά θέτουμε T[i] 0 για i = 0,1,, m 1 εισαγωγή(s, x): θέτουμε όλα τα bit T h 1 (x), T h 2 (x),, T h k x να είναι 1 T h 2 (y) h 1 (y) y h 3 (y) ανήκει(s, x): επιστρέφουμε true αν όλα τα bit T h 1 (x), T h 2 (x),, T h k x είναι 1, διαφορετικά επιστρέφουμε false

39 Φίλτρα Bloom Η δομή αποτελείται από ένα Boolean πίνακα T μεγέθους m και k συναρτήσεις διασποράς h 1, h 2,, h k U {0,1,, m 1} Για την ανάλυση υποθέτουμε ότι οι συναρτήσεις διασποράς ικανοποιούν την υπόθεση της απλής ομοιόμορφης διασποράς: Υπόθεση απλής ομοιόμορφης διασποράς: κάθε νέο στοιχείο που εισαγάγουμε έχει ίση πιθανότητα να διασπαρεί σε οποιαδήποτε από τις m θέσεις του πίνακα T Έστω ένα αυθαίρετο στοιχείο x U και θέση λ 0,1,, m 1 Τότε Pr h i x λ = 1 1/m. Άρα αν κάνουμε n εισαγωγές, η πιθανότητα να έχουμε T λ = 0 είναι p = 1 1/m kn e kn/m

40 Φίλτρα Bloom Έστω ένα αυθαίρετο στοιχείο x U και θέση λ 0,1,, m 1 Τότε Pr h i x λ = 1 1/m. Άρα αν κάνουμε n εισαγωγές, η πιθανότητα να έχουμε T λ = 0 είναι p = 1 1/m kn e kn/m Υπολογίζουμε τώρα την πιθανότητα το φίλτρο Bloom να δώσει λάθος θετική απάντηση. Έστω x S αλλά ανήκει(s, x) = true. Τότε T h 1 (x) = = T h k x = 1 το οποίο συμβαίνει με πιθανότητα (1 p) k 1 e kn/m k Π.χ. για m = 8n και k = 4 έχουμε πιθανότητα σφάλματος < 2,5% Βέλτιστο k = ln 2 m/n. Αν θέλουμε πιθανότητα σφάλματος < ε μπορούμε να θέσουμε m 1.44n log 1/ε

41 Κατανομή Φόρτου Εργασίας Έστω ότι έχουμε n εργασίες οι οποίες πρέπει να εκτελεστούν σε m υπολογιστές. Πως μπορούμε να αναθέσουμε τις εργασίες στους υπολογιστές έτσι ώστε οι υπολογιστές να έχουν περίπου τον ίδιο φορτίο; Αυτό επιτυγχάνεται εύκολα αν έχουμε μια κεντρική εργασία η οποία μπορεί να αναθέτει κάθε νέα εργασία σε κάποιον υπολογιστή, γνωρίζοντας το φορτίο κάθε υπολογιστή. Αν δεν υπάρχει αυτή η δυνατότητα μπορούμε να χρησιμοποιήσουμε συναρτήσεις διασποράς οι οποίες αντιστοιχούν το σύνολο των εργασιών U στους m υπολογιστές.

42 Κατανομή Φόρτου Εργασίας Ρίψη σφαιριδίων σε κάλπες Έχουμε κάλπες στις οποίες τοποθετούμε σφαιρίδια με τυχαίο τρόπο. Α Β Γ Δ Έστω η πιθανότητα ένα σφαιρίδιο να πάει σε μία συγκεκριμένη κάλπη. Έχουμε. Ρίχνουμε σφαίρες. Ποια η πιθανότητα να πάνε ακριβώς σε μία συγκεκριμένη κάλπη; διωνυμική κατανομή

43 Κατανομή Φόρτου Εργασίας Ρίψη σφαιριδίων σε κάλπες Έχουμε Έστω κάλπες στις οποίες τοποθετούμε σφαιρίδια με τυχαίο τρόπο. η πιθανότητα ένα σφαιρίδιο να πάει σε μία συγκεκριμένη κάλπη. Έχουμε. Ρίχνουμε σφαίρες. Ποια η πιθανότητα να πάνε ακριβώς σε μία συγκεκριμένη κάλπη; διωνυμική κατανομή τυχαία μεταβλητή αριθμός σφαιριδίων σε μία συγκεκριμένη κάλπη

44 Κατανομή Φόρτου Εργασίας Ρίψη σφαιριδίων σε κάλπες Έχουμε Έστω κάλπες στις οποίες τοποθετούμε σφαιρίδια με τυχαίο τρόπο. η πιθανότητα ένα σφαιρίδιο να πάει σε μία συγκεκριμένη κάλπη. Έχουμε. Ρίχνουμε σφαίρες. Ποια η πιθανότητα να πάνε ακριβώς σε μία συγκεκριμένη κάλπη; διωνυμική κατανομή τυχαία μεταβλητή αριθμός σφαιριδίων σε μία συγκεκριμένη κάλπη

45 Κατανομή Φόρτου Εργασίας Ρίψη σφαιριδίων σε κάλπες Έχουμε Έστω κάλπες στις οποίες τοποθετούμε σφαιρίδια με τυχαίο τρόπο. η πιθανότητα ένα σφαιρίδιο να πάει σε μία συγκεκριμένη κάλπη. Έχουμε. Ρίχνουμε σφαίρες. Ποια η πιθανότητα να πάνε ακριβώς σε μία συγκεκριμένη κάλπη; διωνυμική κατανομή τυχαία μεταβλητή αριθμός σφαιριδίων σε μία συγκεκριμένη κάλπη αναμενόμενος αριθμός σφαιριδίων σε μία κάλπη

46 Κατανομή Φόρτου Εργασίας Ρίψη σφαιριδίων σε κάλπες Έχουμε Έστω κάλπες στις οποίες τοποθετούμε σφαιρίδια με τυχαίο τρόπο. η πιθανότητα ένα σφαιρίδιο να πάει σε μία συγκεκριμένη κάλπη. Έχουμε. Ρίχνουμε σφαίρες. τυχαία μεταβλητή αριθμός σφαιριδίων σε μία συγκεκριμένη κάλπη αναμενόμενος αριθμός σφαιριδίων σε μία κάλπη

47 Κατανομή Φόρτου Εργασίας Ρίψη σφαιριδίων σε κάλπες Έχουμε Έστω κάλπες στις οποίες τοποθετούμε σφαιρίδια με τυχαίο τρόπο. η πιθανότητα ένα σφαιρίδιο να πάει σε μία συγκεκριμένη κάλπη. Έχουμε. Ρίχνουμε σφαίρες. τυχαία μεταβλητή αριθμός σφαιριδίων σε μία συγκεκριμένη κάλπη αναμενόμενος αριθμός σφαιριδίων σε μία κάλπη Ο υπολογισμός με τη βοήθεια δεικτριών τυχαίων μεταβλητών είναι πολύ πιο απλός!

48 Κατανομή Φόρτου Εργασίας Ρίψη σφαιριδίων σε κάλπες Έχουμε Έστω κάλπες στις οποίες τοποθετούμε σφαιρίδια με τυχαίο τρόπο. η πιθανότητα ένα σφαιρίδιο να πάει σε μία συγκεκριμένη κάλπη. Έχουμε. Ρίχνουμε σφαίρες. τυχαία μεταβλητή αριθμός σφαιριδίων σε μία συγκεκριμένη κάλπη η i-οστη σφαίρα δεν πάει στο συγκεκριμένο κουτί η i-οστη σφαίρα πάει στο συγκεκριμένο κουτί Έχουμε

49 Κατανομή Φόρτου Εργασίας Άρα αν τοποθετήσουμε n εργασίες σε n υπολογιστές με τυχαίο τρόπο τότε το αναμενόμενο φορτίο ανά υπολογιστή είναι 1 εργασία. Ωστόσο μπορούμε να δείξουμε ότι Θεώρημα Το μέγιστο φορτίο ενός υπολογιστή είναι Ο 1 1/n log n log log n με πιθανότητα Σημείωση: Όταν η ανάθεση γίνεται με συνάρτηση διασποράς h, τότε για να ισχύει το παραπάνω θεώρημα πρέπει η h να προέρχεται από k-καθολική log n οικογένεια για k = Ο log log n Μπορούμε να βελτιώσουμε το άνω φράγμα του θεωρήματος με τη βοήθεια περισσότερων συναρτήσεων διασποράς h 1,, h d Κάθε εργασία x αντιστοιχείται σε d 2 υπολογιστές h 1 (x),, h d (x) και τοποθετείται σε αυτόν με το ελάχιστο φορτίο.

50 Κατανομή Φόρτου Εργασίας Χρησιμοποιούμε συναρτήσεις διασποράς h 1,, h d Κάθε εργασία x αντιστοιχείται σε d 2 υπολογιστές h 1 (x),, h d (x) και τοποθετείται σε αυτόν με το ελάχιστο φορτίο. Θεώρημα 1 Ο 1/n Το μέγιστο φορτίο ενός υπολογιστή είναι ln ln n ln d με πιθανότητα

51 Διασπορά του Κούκου (Cuckoo Hashing) Μέθοδος κατακερματισμού ανοικτής διευθυνσιοδότησης, η οποία χρησιμοποιεί την ιδέα των 2 επιλογών. Οι συγκρούσεις επιλύονται με «έξωση» του προηγούμενου κλειδιού. Έχουμε δύο πίνακες διασποράς, T 1 και T 2, m θέσεων και αντίστοιχες συναρτήσεις διασποράς h 1, h 2 : U 0,, m 1, από κάποια οικογένεια H. Εισαγωγή κλειδιού x : Αν κάποια από τις θέσεις T 1 h 1 (x) και T 2 h 2 (x) είναι κενή, τοποθετούμε το εκεί το x. Διαφορετικά έστω ότι T 1 h 1 (x) = y. Κάνουμε «έξωση» στο κλειδί y και τοποθετούμε το x στη θέση του. Όταν γίνεται έξωση σε ένα κλειδί z από τη θέση T j h j (z) (για κάποιο j 1,2 ), τοποθετούμε το z στη θέση T 3 j h 3 j (z), κάνοντας ενδεχομένως έξωση σε κάποιο άλλο κλειδί. Αν συμβούν O log n εξώσεις, επιλέγουμε διαφορετικές συναρτήσεις διασποράς και τοποθετούμε από την αρχή όλα τα αντικείμενα.

52 Διασπορά του Κούκου (Cuckoo Hashing) Μέθοδος κατακερματισμού ανοικτής διευθυνσιοδότησης, η οποία χρησιμοποιεί την ιδέα των 2 επιλογών. Οι συγκρούσεις επιλύονται με «έξωση» του προηγούμενου κλειδιού. Έχουμε δύο πίνακες διασποράς, T 1 και T 2, m θέσεων και αντίστοιχες συναρτήσεις διασποράς h 1, h 2 : U 0,, m 1, από κάποια οικογένεια H. Κάθε κλειδί x βρίσκεται σε μία από τις θέσεις T 1 h 1 (x) και T 2 h 2 (x), άρα η αναζήτηση και η διαγραφή γίνονται σε Ο(1). Για να έχουμε καλή απόδοση στις εισαγωγές πρέπει το m να είναι αρκετά μεγάλο. Θεώρημα Για m 4n, ο αναμενόμενος χρόνος εισαγωγής είναι Ο(1)

Δυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή

Δυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής διαγραφή εισαγωγή Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής

Διαβάστε περισσότερα

Δομές Αναζήτησης. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση

Δομές Αναζήτησης. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση Δομές Αναζήτησης χειρότερη περίπτωση μέση περίπτωση εισαγωγή αναζήτηση επιλογή εισαγωγή αναζήτηση διατεταγμένος πίνακας διατεταγμένη λίστα μη διατεταγμένος πίνακας μη διατεταγμένη λίστα δένδρο αναζήτησης

Διαβάστε περισσότερα

Δυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή

Δυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής διαγραφή εισαγωγή Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής

Διαβάστε περισσότερα

Πίνακες Συμβόλων. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση

Πίνακες Συμβόλων. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση Πίνακες Συμβόλων χειρότερη περίπτωση μέση περίπτωση εισαγωγή αναζήτηση επιλογή εισαγωγή αναζήτηση διατεταγμένος πίνακας διατεταγμένη λίστα μη διατεταγμένος πίνακας μη διατεταγμένη λίστα δένδρο αναζήτησης

Διαβάστε περισσότερα

Advanced Data Indexing

Advanced Data Indexing Advanced Data Indexing (Προηγμένη ευρετηρίαση δεδομένων) Κατακερματισμός Hashing (1ο Μέρος) Η Αναζήτηση απαιτεί Δομές Λύσεις Για να υποστηριχθεί η αποδοτική αναζήτηση απαιτείται η χρήση κατάλληλων δομών-ευρετηρίων

Διαβάστε περισσότερα

Κεφα λαιο 9 Κατακερματισμός

Κεφα λαιο 9 Κατακερματισμός Κεφα λαιο 9 Κατακερματισμός Περιεχόμενα 9.1 Εισαγωγή... 197 9.2 Συναρτήσεις Κατακερματισμού... 199 9.3 Επίλυση συγκρούσεων... 200 9.3.1 Ξεχωριστές αλυσίδες... 200 9.3.2 Μεταβλητές διευθύνσεις... 201 Ανάλυση

Διαβάστε περισσότερα

Ο ΑΤΔ Λεξικό. Σύνολο στοιχείων με βασικές πράξεις: Δημιουργία Εισαγωγή Διαγραφή Μέλος. Υλοποιήσεις

Ο ΑΤΔ Λεξικό. Σύνολο στοιχείων με βασικές πράξεις: Δημιουργία Εισαγωγή Διαγραφή Μέλος. Υλοποιήσεις Ο ΑΤΔ Λεξικό Σύνολο στοιχείων με βασικές πράξεις: Δημιουργία Εισαγωγή Διαγραφή Μέλος Υλοποιήσεις Πίνακας με στοιχεία bit (0 ή 1) (bit vector) Λίστα ακολουθιακή (πίνακας) ή συνδεδεμένη Είναι γνωστό το μέγιστο

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Κατακερματισμός Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Λεξικό Dictionary Ένα λεξικό (dictionary) είναι ένας αφηρημένος τύπος δεδομένων (ΑΤΔ) που διατηρεί

Διαβάστε περισσότερα

Advanced Data Indexing

Advanced Data Indexing Advanced Data Indexing (Προηγμένη ευρετηρίαση δεδομένων) Κατακερματισμός - Hashing (2 ο Μέρος) Μέθοδοι Κατακερματισμού integer universe Direct Addressing Hashing with chaining Hashing by Division Hashing

Διαβάστε περισσότερα

Δυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή

Δυναμικά Σύνολα. Δυναμικό σύνολο. Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής. διαγραφή. εισαγωγή Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής και διαγραφής διαγραφή εισαγωγή Δυναμικά Σύνολα Δυναμικό σύνολο Tα στοιχεία του μεταβάλλονται μέσω εντολών εισαγωγής

Διαβάστε περισσότερα

Αριθμοθεωρητικοί Αλγόριθμοι

Αριθμοθεωρητικοί Αλγόριθμοι Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος

Διαβάστε περισσότερα

Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing)

Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing) ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Διαχείριση Συγκρούσεων με Ανοικτή Διεύθυνση a) Linear

Διαβάστε περισσότερα

ILP-Feasibility conp

ILP-Feasibility conp Διάλεξη 19: 23.12.2014 Θεωρία Γραμμικού Προγραμματισμού Γραφέας: Χαρίλαος Τζόβας Διδάσκων: Σταύρος Κολλιόπουλος 19.1 Θεωρία Πολυπλοκότητας και προβλήματα απόφασης Για να μιλήσουμε για προβλήματα και τον

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται

Διαβάστε περισσότερα

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Συναίνεση χωρίς την παρουσία σφαλμάτων Κατανεμημένα Συστήματα Ι 4η Διάλεξη 27 Οκτωβρίου 2016 Παναγιώτα Παναγοπούλου Κατανεμημένα Συστήματα Ι 4η Διάλεξη 1 Συναίνεση χωρίς την παρουσία σφαλμάτων Προηγούμενη

Διαβάστε περισσότερα

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή: Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον

Διαβάστε περισσότερα

Μία απεικόνιση από ένα διανυσματικό χώρο V στον εαυτό του, L : V V την ονομάζουμε γραμμικό τελεστή στο V (ή ενδομορφισμό του V ). Ορισμός. L : V V γρα

Μία απεικόνιση από ένα διανυσματικό χώρο V στον εαυτό του, L : V V την ονομάζουμε γραμμικό τελεστή στο V (ή ενδομορφισμό του V ). Ορισμός. L : V V γρα Γραμμική Άλγεβρα ΙΙ Διάλεξη 15 Αναλλοίωτοι Υπόχωροι, Ιδιόχωροι Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 2/5/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 15 2/5/2014 1 / 12 Μία απεικόνιση από ένα διανυσματικό

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 ΗΔιωνυμική κατανομή για (πολύ) μεγάλα ν και (πολύ) μικρά p Η χρήση του τύπου ν x ν x f ( x)

Διαβάστε περισσότερα

ΚΑΤΑΚΕΡΜΑΤΙΣΜΟΣ HASHING

ΚΑΤΑΚΕΡΜΑΤΙΣΜΟΣ HASHING ΚΑΤΑΚΕΡΜΑΤΙΣΜΟΣ HASHING ΣΑΛΤΟΓΙΑΝΝΗ ΑΘΑΝΑΣΙΑ saltogiann@ceid.upatras.gr ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΤΟ ΠΡOΒΛΗΜΑ ΤΟΥ ΚΑΤΑΚΕΡΜΑΤΙΣΜΟY Θέλουμε τα δεδομένα που διαθέτουμε να μπορούν να αποθηκευτούν σε κάποιο πίνακα ή

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμένο Όριο στο R - Κεφ..7: Όρια Συνάρτησης

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ 5η Εργασία ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ Ακαδημαϊκό Έτος : 2013-2014 ΞΑΝΘΗ 15/3/2014 Ασκήσεις: 1. Να δείξετε ότι η μέση τιμή Τ.Μ. που υπακούει στη διωνυμική κατανομή, είναι ίση np. Επειδή η Τ.Μ. που

Διαβάστε περισσότερα

Το φασματικό Θεώρημα

Το φασματικό Θεώρημα Το φασματικό Θεώρημα 1 Το φάσμα ενός τελεστή Λήμμα 1.1 Έστω A B(H) φυσιολογικός τελεστής. Αν x H είναι ιδιοδιάνυσμα του A με ιδιοτιμή λ, τότε A x = λx. Έπεται ότι οι ιδιόχωροι ενός φυσιολογικού τελεστή

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 9 : Κανάλι-Σύστημα Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Χωρητικότητα Χ ό καναλιού Το Gaussian κανάλι επικοινωνίας Τα διακριτά

Διαβάστε περισσότερα

Τυχαία Διανύσματα και Ανεξαρτησία

Τυχαία Διανύσματα και Ανεξαρτησία Τυχαία Διανύσματα και Ανεξαρτησία Θα γενικεύσουμε την έννοια της τυχαίας μεταβλητής από συνάρτηση στο R σε συνάρτηση στο R n. Ακολούθως, θα επεκτείνουμε τις έννοιες με τις οποίες ασχοληθήκαμε μέχρι τώρα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@fme.aegean.gr Τηλ: 7035468 σ-άλγεβρα

Διαβάστε περισσότερα

Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την

Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την Μαθηματικά Πληροφορικής 8ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε

Διαβάστε περισσότερα

επιστρέφει το αμέσως μεγαλύτερο από το x στοιχείο του S επιστρέφει το αμέσως μικρότερο από το x στοιχείο του S

επιστρέφει το αμέσως μεγαλύτερο από το x στοιχείο του S επιστρέφει το αμέσως μικρότερο από το x στοιχείο του S Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών,, τα οποίo είναι υποσύνολο του. Υποστηριζόμενες λειτουργίες αναζήτηση(s,x): εισαγωγή(s,x): διαγραφή(s,x): διάδοχος(s,x): προκάτοχος(s,x):

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

Εισαγωγή Ορισμός Frequency moments

Εισαγωγή Ορισμός Frequency moments The space complexity of approximating the frequency moments Κωστόπουλος Δημήτριος Μπλα Advanced Data Structures June 2007 Εισαγωγή Ορισμός Frequency moments Έστω ακολουθία Α = {a 1,a 2,...,a m ) με κάθε

Διαβάστε περισσότερα

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 Περιεχόμενα 1 Εισαγωγή 2 2 Μεγιστικός τελέστης στην μπάλα 2 2.1 Βασικό θεώρημα........................ 2 2.2 Γενική περίπτωση μπάλας.................. 6 2.2.1 Στο

Διαβάστε περισσότερα

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΚΕΦΑΛΑΙΟ 11 ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ Θα εισαγάγουμε την έννοια του τυχαίου αριθμού με ένα παράδειγμα. Παράδειγμα: Θεωρούμε μια τυχαία μεταβλητή με συνάρτηση πιθανότητας η οποία σε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. Ακέραια Πολύεδρα

ΚΕΦΑΛΑΙΟ 4. Ακέραια Πολύεδρα ΚΕΦΑΛΑΙΟ 4 Ακέραια Πολύεδρα 1 Ορισμός 4.1 (Convex Hull) Έστω ένα σύνολο S C R n. Ένα σημείο x του R n είναι κυρτός συνδυασμός (convex combination) σημείων του S, αν υπάρχει ένα πεπερασμένο σύνολο σημείων

Διαβάστε περισσότερα

Δίαυλος Πληροφορίας. Η λειτουργία του περιγράφεται από:

Δίαυλος Πληροφορίας. Η λειτουργία του περιγράφεται από: Δίαυλος Πληροφορίας Η λειτουργία του περιγράφεται από: Πίνακας Διαύλου (μαθηματική περιγραφή) Διάγραμμα Διαύλου (παραστατικός τρόπος περιγραφής της λειτουργίας) Πίνακας Διαύλου Χρησιμοποιούμε τις υπό συνθήκη

Διαβάστε περισσότερα

Βάση και Διάσταση Διανυσματικού Χώρου

Βάση και Διάσταση Διανυσματικού Χώρου Βάση και Διάσταση Διανυσματικού Χώρου Έστω V ένας διανυσματικός χώρος επί του σώματος F. Ορισμός : Ένα υποσύνολο S του διανυσματικού χώρου V θα λέμε ότι είναι βάση του V αν ισχύει Α) Η θήκη του S παράγει

Διαβάστε περισσότερα

α n z n = 1 + 2z 2 + 5z 3 n=0

α n z n = 1 + 2z 2 + 5z 3 n=0 Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Η ύλη συνοπτικά... Γεννήτριες συναρτήσεις Τι είναι η γεννήτρια Στην

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

Προηγμένη Ευρετηρίαση Δεδομένων (ΠΜΣ) Ενδεικτικές ερωτήσεις-θέματα για την εξέταση της θεωρίας

Προηγμένη Ευρετηρίαση Δεδομένων (ΠΜΣ) Ενδεικτικές ερωτήσεις-θέματα για την εξέταση της θεωρίας Προηγμένη Ευρετηρίαση Δεδομένων (ΠΜΣ) Ενδεικτικές ερωτήσεις-θέματα για την εξέταση της θεωρίας 1. Πως δομούνται οι ιεραρχικές μνήμες; Αναφέρετε τα διάφορα επίπεδά τους από τον επεξεργαστή μέχρι τη δευτερεύουσα

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 Νοεµβρίου 2009 Γεωµετρική κατανοµή Ορισµός Εστω X ο αριθµός των δοκιµών µέχρι την πρώτη επιτυχία σε µια ακολουθία ανεξαρτήτων δοκιµών Bernoulli µε πιθανότητα επιτυχίας

Διαβάστε περισσότερα

x 3 = 0 x 6 = 0 x 4 = 0 x 5 = 0 x 2 = 0 x 1 = 0 aff(p )

x 3 = 0 x 6 = 0 x 4 = 0 x 5 = 0 x 2 = 0 x 1 = 0 aff(p ) Διάλεξη 5: 22.10.2014 Θεωρία Γραμμικού Προγραμματισμού Διδάσκων: Σταύρος Κολλιόπουλος Γραφείς: Ζακυνθινού Λυδία & Τζιώτης Ισίδωρος 5.1 Εκφυλισμένες βασικές λύσεις Ορισμός 5.1 Εστω πολύεδρο P = {x Ax b}

Διαβάστε περισσότερα

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ Τα μη γραμμικά μοντέλα έχουν την πιο κάτω μορφή: η μορφή αυτή μοιάζει με τη μορφή που έχουμε για τα γραμμικά μοντέλα ( δηλαδή η παρατήρηση Y i είναι το άθροισμα της αναμενόμενης

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι Ονοματεπώνυμο: Όνομα Πατρός:... ΑΜ:. Ημερομηνία: Σ Παρακαλώ μη γράφετε στα παρακάτω τετράγωνα Μέρος

Διαβάστε περισσότερα

viii 20 Δένδρα van Emde Boas 543

viii 20 Δένδρα van Emde Boas 543 Περιεχόμενα Πρόλογος xi I Θεμελιώδεις έννοιες Εισαγωγή 3 1 Ο ρόλος των αλγορίθμων στις υπολογιστικές διαδικασίες 5 1.1 Αλγόριθμοι 5 1.2 Οι αλγόριθμοι σαν τεχνολογία 12 2 Προκαταρκτικές έννοιες και παρατηρήσεις

Διαβάστε περισσότερα

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι: Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του

Διαβάστε περισσότερα

Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing)

Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing) Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανασκόπηση Προβλήματος και Προκαταρκτικών Λύσεων Bit Διανύσματα Τεχνικές Κατακερματισμού & Συναρτήσεις

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 2 : Πληροφορία και Εντροπία Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Πληροφορία Μέτρο πληροφορίας Μέση πληροφορία ή Εντροπία Από κοινού εντροπία

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Εκλογή αρχηγού σε γενικά δίκτυα 20 Οκτωβρίου 2016 Παναγιώτα Παναγοπούλου Εκλογή αρχηγού σε γενικά δίκτυα Προηγούμενη διάλεξη Σύγχρονα Κατανεμημένα Συστήματα Μοντελοποίηση συστήματος Πρόβλημα εκλογής αρχηγού

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 11ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 11ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 11ο Συνολοκλήρωσης και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης

Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης Ψηφιακές Τηλεπικοινωνίες Βέλτιστος Δέκτης Σύνδεση με τα Προηγούμενα Επειδή το πραγματικό κανάλι είναι αναλογικό, κατά τη διαβίβαση ψηφιακής πληροφορίας, αντιστοιχίζουμε τα σύμβολα σε αναλογικές κυματομορφές

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Εισαγωγή. Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση. υϊσµός

Εισαγωγή. Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση. υϊσµός Εισαγωγή Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση Εισαγωγή Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση Σε περιπτώσεις

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ),

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ), Α Δ Ι Α - Φ 4 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 15 Νοεμβρίου

Διαβάστε περισσότερα

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 2: Θεωρία Απόφασης του Bayes Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Θεωρία

Διαβάστε περισσότερα

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς Σημειώσεις Ανάλυσης Ι 1. Οι ρητοί αριθμοί Θεωρούμε γνωστούς τους φυσικούς αριθμούς 1, 2, 3, και τις πράξεις (πρόσθεση - πολλαπλασιασμό)μεταξύ αυτών. Οι φυσικοί αριθμοί είναι επίσης διατεταγμένοι με κάποια

Διαβάστε περισσότερα

2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί. q Z, a = b q + r.

2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί. q Z, a = b q + r. Κεφάλαιο 2 Θεωρία Αριθμών Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Hardy and Wright 1979 και Graham, Knuth, and Patashnik 1994. 2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί Θεώρημα 2.1 Αν

Διαβάστε περισσότερα

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5.

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Εξίσωση γραμμής Συντελεστής διεύθυνσης ευθείας Συνθήκες καθετότητας και παραλληλίας ευθειών Εξίσωση ευθείας ειδικές περιπτώσεις Το σημείο είναι ο θεμελιώδης λίθος της Γεωμετρίας.

Διαβάστε περισσότερα

Δυναμική Διατήρηση Γραμμικής Διάταξης

Δυναμική Διατήρηση Γραμμικής Διάταξης Διατηρεί μια γραμμική διάταξη δυναμικά μεταβαλλόμενης συλλογής στοιχείων. Υποστηρίζει τις λειτουργίες: Εισαγωγή νέου στοιχείου y αμέσως μετά από το στοιχείο x. x y Διαγραφή στοιχείου y. y Έλεγχος της σειράς

Διαβάστε περισσότερα

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q 7ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 7ο Μάθημα Πιθανότητες

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος. Δείξτε ότι ο V R εφοδιασμένος με τις ακόλουθες πράξεις (, a b) + (, d) ( a+, b+ d) και k ( ab, ) ( kakb,

Διαβάστε περισσότερα

P(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n!

P(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n! Διακριτά Μαθηματικά Σύνοψη Θεωρίας Τυπολόγιο Αναστασία Κόλλια 20/11/2016 1 / 55 Κανόνες γινομένου και αθροίσματος Κανόνας αθροίσματος: Αν ένα γεγονός μπορεί να συμβεί κατά m τρόπους και ένα άλλο γεγονός

Διαβάστε περισσότερα

Θεώρημα κωδικοποίησης πηγής

Θεώρημα κωδικοποίησης πηγής Κωδικοποίηση Kωδικοποίηση πηγής Θεώρημα κωδικοποίησης πηγής Καθορίζει ένα θεμελιώδες όριο στον ρυθμό με τον οποίο η έξοδος μιας πηγής πληροφορίας μπορεί να συμπιεσθεί χωρίς να προκληθεί μεγάλη πιθανότητα

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #06 Πιθανοτικό Μοντέλο 1 Άδεια χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β.

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Η έννοια της ακολουθίας Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Δηλαδή: f : A B Η ακολουθία είναι συνάρτηση.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Γραμμικοί Κώδικες. 2.1 Η έννοια του Γραμμικού κώδικα

ΚΕΦΑΛΑΙΟ 2. Γραμμικοί Κώδικες. 2.1 Η έννοια του Γραμμικού κώδικα ΚΕΦΑΛΑΙΟ 2 Γραμμικοί Κώδικες 2.1 Η έννοια του Γραμμικού κώδικα Μέχρι τώρα θεωρούσαμε έναν κώδικα C με παραμέτρους (n, M, d) απλώς ως ένα υποσύνολο του συνόλου A n, όπου A είναι ένα αλφάβητο. Είχαμε, όμως,

Διαβάστε περισσότερα

Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis

Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis Θεώρημα για σφαίρες Θα δείξουμε ότι το γράφημα G(n, 2 ln n n 1 ) έχει μικρή διάμετρο Θα ξεκινήσουμε με ένα θεώρημα για το μέγεθος μιας σφαίρας

Διαβάστε περισσότερα

x P (x) c P (x) = c P (x), x S : x c

x P (x) c P (x) = c P (x), x S : x c Κεφάλαιο 9 Ανισότητες, από κοινού κατανομή, Νόμος των Μεγάλων Αριθμών 9.1 Ανισότητες Markov και Chebychev Ξεκινάμε αυτό το κεφάλαιο με δύο σημαντικά αποτελέσματα τα οποία, πέραν της μεγάλης χρησιμότητάς

Διαβάστε περισσότερα

APEIROSTIKOS LOGISMOS I

APEIROSTIKOS LOGISMOS I APEIROSTIKOS LOGISMOS I ΟΛΟΗΜΕΡΟ ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΒΛΗΜΑΤΩΝ Λύσεις ασκήσεων φυλλαδίου 4. Άσκηση : Υπολογίστε, αν υπάρχουν, τα παρακάτω όρια. Αν χρειάζεται, υπολογίστε τα αντίστοιχα πλευρικά όρια. + 4 3 + +,

Διαβάστε περισσότερα

Κεφάλαιο 10 Ψηφιακά Λεξικά

Κεφάλαιο 10 Ψηφιακά Λεξικά Κεφάλαιο 10 Ψηφιακά Λεξικά Περιεχόμενα 10.1 Εισαγωγή... 213 10.2 Ψηφιακά Δένδρα... 214 10.3 Υλοποίηση σε Java... 222 10.4 Συμπιεσμένα και τριαδικά ψηφιακά δένδρα... 223 Ασκήσεις... 225 Βιβλιογραφία...

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 8 KATAKEΡΜΑΤΙΣΜΟΣ (HASHING)

ΕΝΟΤΗΤΑ 8 KATAKEΡΜΑΤΙΣΜΟΣ (HASHING) ΕΝΟΤΗΤΑ 8 KATAKEΡΜΑΤΙΣΜΟΣ (HASHING) Κατακερµατισµός Στόχος Έχουµε ένα σύνολο από κλειδιά {Κ 0,, Κ n-1 } και θέλουµε να υλοποιήσουµε Insert() και LookUp() (ίσως και Delete()) απλά και γρήγορα στην πράξη.

Διαβάστε περισσότερα

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ Μαθηματικά Πληροφορικής 2ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.

Διαβάστε περισσότερα

10. Πίνακες Κατακερματισμού

10. Πίνακες Κατακερματισμού Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 10. Πίνακες Κατακερματισμού 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 16/12/2016 Πίνακες

Διαβάστε περισσότερα

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Stream ciphers Η διαδικασία κωδικοποίησης για έναν stream cipher συνοψίζεται παρακάτω: 1.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

(p 1) (p m) (m 1) (p 1)

(p 1) (p m) (m 1) (p 1) ΠΑΡΑΓΟΝΤΙΚΗ ΑΝΑΛΥΣΗ Σκοπός της παραγοντικής ανάλυσης είναι να περιγράψει την συνδιασπορά μεταξύ των μεταβλητών με την βοήθεια τυχαίων άγνωστων ποσοτήτων που ονομάζονται παράγοντες. Το μοντέλο είναι το

Διαβάστε περισσότερα

h(x, y) = card ({ 1 i n : x i y i

h(x, y) = card ({ 1 i n : x i y i Κεφάλαιο 1 Μετρικοί χώροι 1.1 Ορισμός και παραδείγματα Ορισμός 1.1.1 μετρική). Εστω X ένα μη κενό σύνολο. Μετρική στο X λέγεται κάθε συνάρτηση ρ : X X R με τις παρακάτω ιδιότητες: i) ρx, y) για κάθε x,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z) ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια

Διαβάστε περισσότερα

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά

Διαβάστε περισσότερα

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ ΚΕΦ:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ Τετραγωνικές μορφές: Συναρτήσεις με τύπο Q ν α ι j j, j [ ] ν α α ν αν α νν ν Τ Χ ΑΧ Για παράδειγμα εάν v Q α + α + α + α α + α + α + α δηλ a a a a α + α + α

Διαβάστε περισσότερα

Ενότητα 6: Κατακερματισμός Ασκήσεις και Λύσεις

Ενότητα 6: Κατακερματισμός Ασκήσεις και Λύσεις ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Ενότητα : Κατακερματισμός Ασκήσεις και Λύσεις Άσκηση 1 Χρησιμοποιήστε τη συνάρτηση κατακερματισμού της διαίρεσης ως πρωτεύουσα συνάρτηση κατακερματισμού και τη συνάρτηση

Διαβάστε περισσότερα

EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια. Παράδοση: Έως 22/6/2015

EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια. Παράδοση: Έως 22/6/2015 EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Φυλλάδιο 13 Δ. Τουμπακάρης 30 Μαΐου 2015 EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια Παράδοση:

Διαβάστε περισσότερα

4.4 ΜΕΓΙΣΤΟΣ ΚΟΙΝΟΣ ΔΙΑΙΡΕΤΗΣ - ΕΛΑΧΙΣΤΟ ΚΟΙΝΟ ΠΟΛΛΑΠΛΑΣΙΟ

4.4 ΜΕΓΙΣΤΟΣ ΚΟΙΝΟΣ ΔΙΑΙΡΕΤΗΣ - ΕΛΑΧΙΣΤΟ ΚΟΙΝΟ ΠΟΛΛΑΠΛΑΣΙΟ 158 44 ΜΕΓΙΣΤΟΣ ΚΟΙΝΟΣ ΔΙΑΙΡΕΤΗΣ - ΕΛΑΧΙΣΤΟ ΚΟΙΝΟ ΠΟΛΛΑΠΛΑΣΙΟ Μέγιστος Κοινός Διαιρέτης Έστω α, β δύο ακέραιοι Ένας ακέραιος δ λέγεται κοινός διαιρέτης των α και β, όταν είναι διαιρέτης και του α και του

Διαβάστε περισσότερα

ΑΚΟΛΟΥΘΙΕΣ ΣΕΙΡΕΣ. Ορισμός 1. Μια 1 1 (ένα προς ένα) συνάρτηση με πεδίο ορισμού το και πεδίο τιμών ένα υποσύνολο X του, δηλαδή μία 1 1 συνάρτηση

ΑΚΟΛΟΥΘΙΕΣ ΣΕΙΡΕΣ. Ορισμός 1. Μια 1 1 (ένα προς ένα) συνάρτηση με πεδίο ορισμού το και πεδίο τιμών ένα υποσύνολο X του, δηλαδή μία 1 1 συνάρτηση ΑΚΟΛΟΥΘΙΕΣ ΣΕΙΡΕΣ 1. ΑΚΟΛΟΥΘΙΕΣ Ορισμός 1. Μια 1 1 (ένα προς ένα) συνάρτηση με πεδίο ορισμού το και πεδίο τιμών ένα υποσύνολο X του, δηλαδή μία 1 1 συνάρτηση : 1 λέγεται ακολουθία πραγματικών αριθμών ή

Διαβάστε περισσότερα

Κεφάλαιο 11 Ένωση Ξένων Συνόλων

Κεφάλαιο 11 Ένωση Ξένων Συνόλων Κεφάλαιο 11 Ένωση Ξένων Συνόλων Περιεχόμενα 11.1 Εισαγωγή... 227 11.2 Εφαρμογή στο Πρόβλημα της Συνεκτικότητας... 228 11.3 Δομή Ξένων Συνόλων με Συνδεδεμένες Λίστες... 229 11.4 Δομή Ξένων Συνόλων με Ανοδικά

Διαβάστε περισσότερα

Γραμμική Άλγεβρα Ενότητα 2: Διανυσματικοί χώροι

Γραμμική Άλγεβρα Ενότητα 2: Διανυσματικοί χώροι Γραμμική Άλγεβρα Ενότητα 2: Διανυσματικοί χώροι Ευάγγελος Ράπτης Τμήμα Πληροφορικής 5 Μάθημα 5 Τετάρτη 10 Οκτωβρίου 2012 Με το σημερινό 9 μάθημα αρχίζουμε τη μελέτη των Διανυσματικών χώρων, μία πολύ βασική

Διαβάστε περισσότερα

n 5 = 7 ε (π.χ. ορίζοντας n0 = 1+ ε συνεπώς (σύμϕωνα με τις παραπάνω ισοδυναμίες) an 5 < ε. Επομένως a n β n 23 + β n+1

n 5 = 7 ε (π.χ. ορίζοντας n0 = 1+ ε συνεπώς (σύμϕωνα με τις παραπάνω ισοδυναμίες) an 5 < ε. Επομένως a n β n 23 + β n+1 Θέμα 1 (α) Υποθέτουμε (προς απαγωγή σε άτοπο) ότι το σύνολο A έχει μέγιστο στοιχείο, έστω a = max A Τότε, εϕόσον a A, έχουμε a R Q και a M Ομως ο αριθμός μητρώου M είναι ρητός αριθμός, άρα (εϕόσον ο a

Διαβάστε περισσότερα

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό 81 3.2 Το θεώρημα Tychooff. Στην παράγραφο αυτή θα ασχοληθούμε με το θεώρημα Tychooff, δηλαδή ότι ένα αυθαίρετο καρτεσιανό γινόμενο συμπαγών χώρων είναι, με την τοπολογία γινόμενο, συμπαγής χώρος. Το θεώρημα

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων

Σχεδίαση και Ανάλυση Αλγορίθμων Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4.0 Επιλογή Αλγόριθμοι Επιλογής Select και Quick-Select Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros

Διαβάστε περισσότερα