Μοντέλα Ανάκτησης Ι (Retrieval Models)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μοντέλα Ανάκτησης Ι (Retrieval Models)"

Transcript

1 Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 006 Διάρθρωση HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Informaion Rerieval (IR) Sysems Μοντέλα Ανάκτησης Ι (Rerieval Models) Εισαγωγή στα Μοντέλα Άντλησης Κατηγορίες Μοντέλων Απόλυτο και Κάλλιστο (ή Βέλτιστο) Ταίριασμα (Exac vs Bes Mach) Τα κλασσικά μοντέλα ανάκτησης Το Boolean Μοντέλο Στατιστικά Μοντέλα - Βάρυνση Όρων Το Διανυσματικό Μοντέλο Το Εκτεταμένο Boolean μοντέλο (Exended Boolean Model) Γιάννης Τζίτζικας ιάλεξη : 3 Ημερομηνία : CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 Αναπαράσταση Εγγράφων: Πως βλέπουμε ένα έγγραφο; Πως βλέπουμε ένα έγγραφο; Ως έχει (full ex); Αγνοώνταςλέξειςπουδενφέρουννόημα(π.χ. τα άρθρα) ; Ως σάκο (bag) όρων ευρετηρίου (bag of index erms), δηλαδή αγνοώντας τη σειρά με την οποία εμφανίζονται οι λέξεις στο κείμενο; Ως σύνολο όρων ευρετηρίου (se of Index erms) Ως δομημένο έγγραφο (π.χ. hyerex, XML) Η απάντηση σε αυτό το ερώτημα θα καθορίσει τη μορφή του ευρετηρίου που πρέπει να κατασκευάσουμε. Ηαπάντησησεαυτότοερώτημαείναισυνυφασμένηκαι με το μοντέλο ανάκτησης που πρόκειται χρησιμοποιήσουμε. CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Μοντέλα Ανάκτησης Ένα μοντέλο ανάκτησης ορίζει Αναπαράσταση Εγγράφων Αναπαράσταση Επερωτήσεων Καθορίζει και ποσοτικοποιεί την έννοια της συνάφειας ο βαθμός συνάφειας μπορεί να είναι δίτιμος (π.χ. {,0}), ή συνεχής(π.χ. [0,]) Έστω D η συλλογή εγγράφων και Q το σύνολο όλων των πληροφοριακών αναγκών που μπορεί να έχει ένας χρήστης. Μπορούμε να δούμε ένα μοντέλο ανάκτησης πληροφορίας ως μια τετράδα [F, D, Q, R] όπου: F: πλαίσιο μοντελοποίησης εγγράφων, επερωτήσεων και των σχέσεων μεταξύ τους D: παράσταση εγγράφων D={ F(d) d D} Q: παράσταση επερωτήσεων Q={ F(q) q Q} R: συνάρτηση κατάταξης που αποδίδει μία τιμή σε κάθε ζεύγος (d,q) D x Q δίτιμη: R: D x Q [True/False] συνεχής R: D x Q [0,] CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Τα τμήματα της αρχιτεκτονικής που εμπλέκονται Κατηγορίες Μοντέλων Ανάκτησης (Ι) user need logical vie Query user feedback Oeraions query rerieved docs ranked docs Searching Ranking User Inerface Tex Oeraions logical vie invered file Indexing Index CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Tex Tex Corus Κλασσικά Μοντέλα Boolean Model Διανυσματικό (Vecor Sace) Πιθανοκρατικό (Probabilisic) Συνολοθεωρητικά (se heoreic) Εκτεταμένο Boolean (Exended Boolean Model) Fuzzy Model (Ασαφές Μοντέλο) Διανυσματικά (στατιστικά/αλγεβρικά) Γενικευμένο Διανυσματικό (Generalized Vecor Sace Model) Laen Semanic Indexing (Λανθάνων/Άδηλος/Υποβόσκων σημασιολογικός ευρετηριασμός) Μοντέλο Νευρωνικού Δικτύου (Neural Neork Model) CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 6

2 Κατηγορίες Μοντέλων Ανάκτησης (ΙΙ) Μια Ταξινομία των Μοντέλων Ανάκτησης Πιθανοκρατικά (Probabilisic) Inference Neork Model (Μοντέλο Δικτύου Επαγωγών) Belief Neork Model (Μοντέλο Δικτύου Πεποιθήσεων) Classic Models boolean vecor robabilisic Se Theoreic Fuzzy Exended Boolean Μοντέλα Βασισμένα στη Λογική Rerieval: Algebraic Generalized Vecor La. Semanic Index Neural Neorks Μοντέλα Δομημένου Κειμένου (Srucured Tex Rerieval Models) Non-Overlaing Liss Proximal Nodes Μοντέλα Ανάκτησης XML Εγγράφων Srucured Models Non-Overlaing Liss Proximal Nodes Probabilisic Inference Neork Belief Neork CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Exac vs. Bes Mach Rerieval Models Exac-mach (Απόλυτου Ταιριάσματος) μια επερώτηση καθορίζει αυστηρά (απόλυτα) κριτήρια ανάκτησης κάθε έγγραφο είτε ταιριάζει είτε όχι με μία επερώτηση το αποτέλεσμα είναι ένα σύνολο κειμένων Bes-mach (Κάλλιστου Ταιριάσματος) μια επερώτηση δεν περιγράφει αυστηρά κριτήρια ανάκτησης κάθε έγγραφο ταιριάζει σε μια επερώτηση σε ένα βαθμό το αποτέλεσμα είναι μια διατεταγμένη λίστα εγγράφων με ένα κατώφλι (στο βαθμό συνάφειας) μπορούμε να ελέγξουμε το μέγεθος της απάντησης «Μικτές προσεγγίσεις» συνδυασμός απόλυτου ταιριάσματος με τρόπους διάταξης του συνόλου της απάντησης E.g., bes-mach query language ha incororaes exac-mach oeraors Informaion Rerieval Models Boolean Rerieval Model Βελτίων = συγκριτικός του αγαθός CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Boolean Rerieval Model Έγγραφο = σύνολο λέξεων κλειδιών (keyords) Επερώτηση = Boolean έκφραση λέξεων κλειδιών (AND,OR, NOT, παρενθέσεις) πχ επερώτησης (( Cree AND Greece) OR (Oia AND Sanorini)) AND Hoel AND-NOT Hilon (( Cree & Greece) (Oia & Sanorini)) & Hoel &! Hilon Απάντηση= σύνολο εγγράφων απουσία διάταξης Παράσταση εγγράφων κατά το Boolean Model k k. k d d d n n n n i,j {0,} K={k,,k } : σύνολο όλων των λέξεων ευρετηρίασης Κάθε έγγραφο d j παριστάνεται με το διάνυσμα d j =(,j,,,j ) όπου: i,j = αν η λέξη k i εμφανίζεται στο κείμενο d j (αλλιώς i,j =0) CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006

3 Boolean Rerieval Model: Formally K={k,,k } : σύνολο όλων των λέξεων ευρετηρίασης Κάθε έγγραφο d j παριστάνεται με το διάνυσμα d j =(,j,,,j ) όπου: i,j = αν η λέξη k i εμφανίζεται στο κείμενο d j (αλλιώς i,j =0) Μια επερώτηση q είναι μια λογική έκφραση στο Κ, πχ: q = k and ( k or no k3)) δηλαδή q = k ( k k3)) q DNF = (k k k3) (k k k3) (k k k3) q DNF = (,,) (,,0) (,0,0) R(d,q)= True αν υπάρχει συζευκτική συνιστώσα του q με λέξεις των οποίων τα βάρη είναι τα ίδια με αυτά των αντίστοιχων λέξεων του εγγράφου d False, αλλιώς Boolean Rerieval Model: Ισοδύναμος ορισμός Αποτίμηση επερωτήσεων (με χρήση λογικής) ένα κείμενο d είναι μια σύζευξη όρων, όπου όρος μια λέξη σε θετική ή αρνητική μορφή (σε θετική αν εμφανίζεται στο κείμενο, αλλιώς σε αρνητική) μια επερώτηση q είναι μια οποιαδήποτε λογική έκφραση R(d,q)=True if and only if d =q δηλαδή αν κάθε ερμηνεία που αληθεύει το d αληθεύει και το q CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Boolean Rerieval Model: Ένας εναλλακτικός τρόπος ορισμού Μπορούμε να ορίσουμε ως ερμηνεία μιας λέξης (του Κ) το σύνολο των εγγράφων που την περιέχουν. Άρα η ερμηνεία είναι μια συνάρτηση Ι: K D που ορίζεται ως εξής: I(k) = { d d περιέχει τη λέξη κ} Έστω Ε το σύνολο των λογικών εκφράσεων με λέξεις από το σύνολο Κ. Μπορούμε να επεκτείνουμε μια ερμηνεία Ι του Κ σε μια ερμηνεία J τουεωςεξής J() = I() J(e e ) = J(e) J(e ) J(e e ) = J(e) J(e ) J(e e ) = J(e) \ J(e ) Ηαπάντησημιαςεπερώτησηςq (κατά το Boolean μοντέλο) είναι η εξής: ans(q) = J(q) Οι αδυναμίες του Boolean μοντέλου Η αδυναμία ελέγχου του μεγέθους της απάντησης Παράδειγμα: Anser( Chea Tickes Heraklion ) = Anser( Chea Tickes) = 000 Anser( Chea Heraklion) = 000 Anser( Tickes Heraklion ) = 000 Άρα είτε παίρνουμε μια απάντηση με ένα έγγραφο είτε ένα σύνολο 000 εγγράφων. :( CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Οι αδυναμίες του Boolean μοντέλου Άκαμπτο: AND σημαίνει όλα, OR σημαίνει οποιοδήποτε Δυσκολίες Ο έλεγχος του μεγέθους της απάντησης All mached documens ill be reurned Ικανοποιητική ακρίβεια (recision) συχνά σημαίνει απαράδεκτη ανάκληση (recall) Η διατύπωση των επερωτήσεων είναι δύσκολη για πολλούς χρήστες Η έκφραση σύνθετων πληροφοριακών αναγκών είναι δύσκολη Δεν μας λέει πώς να διατάξουμε την απάντηση All mached documens logically saisfy he query Τα μοντέλα κατάταξης (ranking models) έχουν αποδειχτεί καλύτερα στην πράξη Η υποστήριξη ανάδρασης συνάφειας δεν είναι εύκολη If a documen is idenified by he user as relevan or irrelevan, ho should he query by modified? [Τώραδουλεύουμεσεαυτό] CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Τα θετικά του Boolean μοντέλου Προβλέψιμο, εύκολα εξηγήσιμο Αποτελεσματικό όταν γνωρίζεις ακριβώς τι ψάχνεις και τι περιέχει ησυλλογή Αποδοτική υλοποίηση CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 8

4 Κοινά χαρακτηριστικά των Στατιστικών Μοντέλων Έγγραφο: σάκος (bag) λέξεων Bag = se ha allos mulile occurences of he same elemen So e vie a documen as an unordered se of ords ih frequencies Στατιστικά Μοντέλα Επερώτηση: Σύνολο όρων με προαιρετικά βάρη: Weighed query erms: q=<daabase 0.5, ex 0.8, informaion 0.> Uneighed query erms: q=<daabase ex informaion > No Boolean condiions secified in he query Απάντηση: Διατεταγμένο σύνολο συναφών εγγράφων υπολογίζεται βάσει των συχνοτήτων εμφάνισης των λέξεων στα έγγραφα και στις επερωτήσεις CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Στατιστικά Μοντέλα: Κρίσιμα Ερωτήματα Πώς να καθορίζουμε τη σπουδαιότητα ενός όρου σε ένα έγγραφο και στα πλαίσια ολόκληρης της συλλογής; Πώς να καθορίζουμε το βαθμό ομοιότητας μεταξύ ενός εγγράφου και μιας επερώτησης; Informaion Rerieval Models Vecor Sace Model (Διανυσματικό Μοντέλο) (το πιο διαδεδομένο μοντέλο ανάκτησης) CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 Διανυσματικό Μοντέλο: Εισαγωγή Παράσταση εγγράφων στο Διανυσματικό Μοντέλο K={k,,k } : σύνολο όλων των λέξεων ευρετηρίασης Κάθε έγγραφο d j παριστάνεται με ένα διάνυσμα d j =(,j,,,j ) όπου i,j [0,] (πχ i,j =0.3) Μια επερώτηση q παριστάνεται με ένα διάνυσμα q=(,q,,,q ) όπου πάλι i,q [0,] k k. k d d d n n n n i,j [0,] R(d,q) εκφράζει το βαθμό ομοιότητας των διανυσμάτων d και q K={k,,k } : σύνολο όλων των λέξεων ευρετηρίασης Κάθε έγγραφο d j παριστάνεται με το διάνυσμα d j =(,j,,,j ) όπου: i,j το βάρος της λέξης k i για το κείμενο d j CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 4

5 Βάρη Όρων: Συχνότητα όρου (f) Οι πιο συχνοί όροι σε ένα έγγραφο είναι πιο σημαντικοί (υποδηλώνουν το περιεχόμενο του) freq ij = πλήθος εμφανίσεων του όρου i στο έγγραφο j Κανονικοποίηση f ij =freq ij /max k {freq kj } όπου max k {freq kj } το μεγαλύτερο πλήθος εμφανίσεων ενός όρου στο έγγραφο j Παράδειγμα: Έστω το έγγραφο d = a a a a b b b c c c c freq a = 4, f a = 4/4= freq b = 3, f b = 3/4=0.75 CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Παράδειγμα d = { a a a b c } d = { a a a d e } d3 = { a a a f g} Το a λαμβάνει το μεγαλύτερο βάρος (άρα το μεγαλύτερο f) σε κάθε έγγραφο Ας σκεφτούμε ολόκληρη τη συλλογή. Μας επιτρέπει το a να διακρίνουμε τα κείμενα; Αν όχι μήπως δεν θα έπρεπε να λαμβάνει το μεγαλύτερο βάρος; Αν η συλλογή είχε μόνο αυτά τα 3 έγγραφα (και ήταν σταθερή) θα μπορούσαμε ακόμα και να αγνοήσουμε πλήρως τον όρο a από το ευρετήριο. CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Βάρη Όρων: Αντίστροφη Συχνότητα Εγγράφων (Inverse Documen Frequency) Ιδέα: Όροι που εμφανίζονται σε πολλά διαφορετικά έγγραφα έχουν μικρή διακριτική ικανότητα df i = documen frequency of erm i πλήθος εγγράφων που περιέχουν τον όρο i idf i = inverse documen frequency of erm i := log (N/ df i ) (N: συνολικό πλήθος εγγράφων) Το idf αποτελεί μέτρο της διακριτικής ικανότητας του όρου ο λογάριθμος ελαφραίνει το βάρος του idf σε σχέση με το f Παράδειγμα: Έστω Ν=0 και df comuer =0, df arisole =, Τότε, N/df comuer =0/0=, N/df arisole =0/=5 Τότε, idf comuer =log() =0, idf arisole =log(5)=.3 CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring TF-IDF Weighing (βάρυνση TF-IDF) k k. k d d d n n n n ij = f ij idf i = f ij log (N/ df i ) Ένας όρος που εμφανίζεται συχνά στο έγγραφο, αλλά σπάνια στην υπόλοιπη συλλογή, λαμβάνει υψηλό βάρος. Αν και έχουν προταθεί πολλοί άλλοι τρόποι βάρυνσης, το f-idf δουλεύει πολύ καλά στην πράξη. CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Παράδειγμα υπολογισμού TF-IDF Διάνυσμα Επερώτησης Έστω ένα έγγραφο που περιέχει όρους με τις εξής συχνότητες: Α(3), Β(), C(), πχ. d= A B A B C A Υποθέστε ότι η συλλογή περιέχει έγγραφα και οι συχνότητες κειμένου (documen frequencies) αυτών των όρων είναι: Α(50), Β(300), C(50) Τότε: Α: f=3/3; idf = log(0000/50)= 5.3; f-idf=5.3 B: f=/3; idf = log(0000/300)= ; f-idf=.3 C: f=/3; idf = log(0000/50)= 3.7; f-idf=. Τα διανύσματα των επερωτήσεων θεωρούνται ως έγγραφα και επίσης βαρύνονται με f-idf Μια επερώτηση δεν συγκροτείται πάντα από λίγες λέξεις. Μια επερώτηση μπορεί να έιναι μια παράγραφος κειμένου (ή ένα ολόκληρο έγγραφο) Εναλλακτικά, ο χρήστης μπορεί να δώσει τα βάρη των όρων της επερώτησης k k. k d d d n n n q q q n q i,j [0,] CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring

6 Διανυσματικό Μοντέλο: K={k,,k } : σύνολο όλων των λέξεων ευρετηρίασης Κάθε έγγραφο d j παριστάνεται με ένα διάνυσμα d j =(,j,,,j ) όπου i,j = f ij idf i Μια επερώτηση q παριστάνεται με ένα διάνυσμα q=(,q,,,q ) όπου πάλι i,q = f iq idf i R(d,q) =? Διανυσματικό Μοντέλο: Μέτρο Ομοιότητας Examle: D = T + 3T + 5T 3 D = 3T + 7T + T 3 Q = 0T + 0T + T 3 T 3 D = T + 3T + 5T 3 5 Q = 0T + 0T + T 3 3 T D = 3T + 7T + T 3 T 7 Is D or D more similar o Q? Ho o measure he degree of similariy? Disance? Angle? Projecion? CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Μέτρο Ομοιότητας: Εσωτερικό Γινόμενο (inner roduc) Η ομοιότητα μεταξύ των διανυσμάτων d και q ορίζεται ως το εσωτερικό τους γινόμενο: sim( dj, q) = dj q = ij iq i= όπου ij το βάρος του όρου i στο έγγραφο j και iq το βάρος του όρου i στην επερώτηση Για δυαδικά (0/) διανύσματα το εσωτερικό γινόμενο είναι ο αριθμός των mached query erms in he documen (άρα το μέγεθος της τομής) Για βεβαρημένα διανύσματα, είναι το άθροισμα των γινομένων των βαρών των mached erms CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Binary: Παράδειγμα d =,,, 0,,, 0 q =, 0,, 0, 0,, sim(d, q) = 3 rerieval daabase archiecure comuer ex managemen informaion Weighed: D = T + 3T + 5T 3 D = 3T + 7T + T 3 Q = 0T + 0T + T 3 sim(d, Q) = *0 + 3*0 + 5* = 0 sim(d, Q) = 3*0 + 7*0 + * = Size of vecor = size of vocabulary = 7 0 means corresonding erm no found in documen or query D = T + 3T + 5T 3 D = 3T + 7T + T 3 7 T CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring T 3 Q = 0T + 0T + T 3 3 T Ιδιότητες του Εσωτερικού Γινομένου Μέτρο Ομοιότητας Συνημίτονου (Cosine) Το εσωτερικό γινόμενο δεν είναι φραγμένο (unbounded) ευνοεί (μεροληπτεί) μεγάλα έγγραφα με μεγάλο πλήθος διαφορετικών όρων μετρά το πλήθος των όρων που κάνουν mach, αλλά αγνοεί αυτούς που δεν κάνουν mach Μετρά το συνημίτονο της γωνίας μεταξύ των διανυσμάτων 3 Εσωτερικό γινόμενο κανονικοποιημένο βάσει του μήκους των διανυσμάτων CosSim(d j, q) = d d j j q q = i = ( ij ij i = i = θ D iq ) θ iq Q D D = T + 3T + 5T 3 CosSim(D, Q) = 0 / (4+9+5)(0+0+4) = 0.8 D = 3T + 7T + T 3 CosSim(D, Q) = / (9+49+)(0+0+4) = 0.3 Q = 0T + 0T + T 3 D is 6 imes beer han D using cosine similariy bu only 5 imes beer using inner roduc. CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring

7 Διανυσματικό Μοντέλο: Παρατηρήσεις Πλεονεκτήματα Λαμβάνει υπόψη τις τοπικές (f) και καθολικές (idf) συχνότητες όρων Παρέχει μερικό ταίριασμα (arial maching) και διατεταγμένα αποτελέσματα Τείνει να δουλεύει καλά στην πράξη, παράτιςαδυναμίεςτου Αποδοτική υλοποίηση για μεγάλες συλλογές εγγράφων Αδυναμίες Απουσία Σημασιολογίας (π.χ. σημασίας λέξεων) Απουσία Συντακτικής Πληροφορίας (π.χ. δομή φράσης, σειρά λέξεων, εγγύτητα λέξεων) Υπόθεση Ανεξαρτησίας Όρων (π.χ. αγνοεί τα συνώνυμα) Έλλειψη ελέγχου ala Boolean model (π.χ. δεν μπορούμε να απαιτήσουμε την παρουσία ενός όρου στο έγγραφο) Given a o-erm query q= A B, may refer a documen conaining A frequenly bu no B, over a documen ha conains boh A and B bu boh less frequenly CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Περίληψη του Διανυσματικού Μοντέλου K={k,,k } : σύνολο όλων των λέξεων ευρετηρίασης Κάθε έγγραφο d j παριστάνεται με το διάνυσμα d j =(,j,,,j ) όπου ij = f ij idf i = f ij log (N/ df i ) Μια επερώτηση q παριστάνεται με το διάνυσμα q=(,q,,,q ) όπου iq = f iq idf i = f iq log (N/ df i ) R(d j,q) = CosSim(d j, q) = d j q d j q CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring = i = i ( ij ij = i = iq ) iq Υπολογισμός του βαθμού συνάφειας Απλοϊκή Υλοποίηση ) Φτιάξε το f-idf διάνυσμα για κάθε έγγραφο dj hs συλλογής (έστω V το λεξιλόγιο) ) Φτιάξε το f-idf διάνυσμα q της επερώτησης 3) Για κάθε έγγραφο d j του D Υπολόγισε το σκορ s j = cossim(d j, q) 4) Διέταξε τα έγγραφα σε φθίνουσα σειρά 5) Παρουσίασε τα έγγραφα στο χρήστη Χρονική πολυπλοκότητα του βήματος (3): O( V D ) Πολύ ακριβό αν τα V και D είναι μεγάλα! V = 0,000; D = 00,000; V D =,000,000,000 Υπολογισμός του βαθμού συνάφειας Καλύτερη (γρηγορότερη) Υλοποίηση Ένας όρος που δεν εμφανίζεται και στην επερώτηση και στο έγγραφο δεν επηρεάζει το βαθμό ομοιότητας συνημίτονου Το γινόμενο των βαρών είναι 0 και άρα δεν συνεισφέρει στο εσωτερικό γινόμενο Συνήθως η επερώτηση είναι μικρή, άρα το διάνυσμα της είναι εξαιρετικά «αραιό» => Μπορούμε να χρησιμοποιήσουμε ένα ευρετήριο ώστε να υπολογίσουμε το βαθμό ομοιότητας μόνο εκείνων των εγγράφων που περιέχουν τουλάχιστον έναν όρο της επερώτησης. 3) Για κάθε έγγραφο d j του D Υπολόγισε το σκορ s j = cossim(d j, q) 3 ) Για κάθε έγγραφο d j που περιέχει τουλάχιστον έναν όρο του query Υπολόγισε το σκορ s j = cossim(d j, q) Απλοϊκό Καλύτερο CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Υπολογισμός του βαθμού συνάφειας Καλύτερη (γρηγορότερη) Υλοποίηση (ΙΙ) Q = k k k n D D B D D B D n D nb Ας υποθέσουμε ότι ένας όρος της επερώτησηςεμφανίζεταισεb έγγραφα Τότε η χρονική πολυπλοκότητα είναι O( Q B) Informaion Rerieval Models Exended Boolean Model Το κόστος αυτό είναι συνήθως πολύ μικρότερο του κόστους του απλοϊκού τρόπου (που είχε πολυπλοκότητα Ο( V D ), διότι: Q << V, δηλαδή ο αριθμός των λέξεων στην επερώτησης είναι πολύ μικρότερος του συνολικού αριθμού των λέξεων, και B << D, δηλαδή το πλήθος των έγγράφων που έχουν μια λέξη είναι πολύ μικρότερο του πλήθους των εγγράφων της συλλογής. CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 4

8 Exended Boolean Model Κίνητρο Το Boolean model είναι απλό και κομψό αλλά δεν παρέχει κατάταξη (διαβάθμιση των συναφών εγγράφων) Προσέγγιση Επέκταση του Boolean model με βάρυνση όρων και μερικό ταίριασμα Σκεπτικό / Κίνητρο Έστω q = k x ky. Σύμφωνα με το Boolean model ένα έγγραφο που περιέχει μόνο ένα από τα k x, k y είναι μη-συναφές, και μάλιστα τόσο μη-συναφές, όσο ένα έγγραφο που δεν περιέχει κανένα από τους όρους. Συνδιασμός χαρακτηριστικών του Vecor model και ιδιοτήτων της Boolean algebra [Salon, Fox, and Wu, 983] CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Έστω ότι έχουμε μόνο δύο όρους k x, k y Μπορούμε να θεωρήσουμε κάθε όρο ως μια διάσταση Άρα έγγραφα και επερωτήσεις απεικονίζονται στο D χώρο. Ένα έγγραφο d j τοποθετείται βάσει των, βαρών x,j και y,j. Έστω ότι τα βάρη αυτά είναι κανονικοποιημένα στο [0,], π.χ. : Ηγενικήιδεά (0,) (,) d j+ k y d j (0,) (,) k y d j+ x,j = f x,j idf x y,j = f y,j idf y Για συντομία έστω x = x,j και y = y,j Άρα οι συντεταγμένες του dj είναι οι (x,y) CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring (0,0) (,0) k x Έστω q OR =k x v k y Το σημείο (0,0) είναι η θέση προς αποφυγή. Άραμπορούμεναθεωρήσουμετην απόσταση του dj απόαυτότοσημείο ως το βαθμό ομοιότητας d j (0,0) (,0) k x Έστω q AND =k x Λ k y Το σημείο (,) είναι η πιο επιθυμητή θέση. Άραμπορούμεναθεωρήσουμετο συμπλήρωμα της απόστασης του dj από αυτό το σημείο ως βαθμό ομοιότητας CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Ηγενικήιδεά(ΙΙ) (0,) (,) d j+ k y d j (0,) (,) k y d j+ Γενικεύοντας την ιδέα (για > όρους) Μπορούμε να γενικεύσουμε το προηγούμενο μοντέλο χρησιμοποιώντας την Ευκλείδεια απόσταση στον -διάστατο χώρο Αυτό μπορεί να γίνει χρησιμοποιώντας -norms που γενικεύουν την έννοια της απόστασης, όπου. (0,0) (,0) k x Le q OR =k x v k y x + y sim( q OR, d) = d j (0,0) (,0) k x Le q AND =k x Λ k y ( x) + ( y) sim( q AND, d) = Διαζευκτικές επερωτήσεις q OR = k V k V.. V km Συζευκτικές επερωτήσεις q AND = k Λ k Λ... Λ km sim sim ( x x x m qor, d) m = ( ( x x ) ( m) qand, d) m = ( for normalisaion o [0,]) CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring

9 Ισομετρικές καμπύλες ( x + y ) Μερικές ενδιαφέρουσες ιδιότητες L L L x + y = ( x + y ) = max( x, y) = Μεταβάλλοντας το, μπορούμε να κάνουμε το μοντέλο να συμπεριφέρεται όπως το Vecor, το Fuzzy (που θα δούμε στο επόμενο μάθημα), ή ενδιάμεσα σε αυτά τα δυο. Αν = τότε (Vecor like) sim(q OR,dj) = sim(q AND,dj) = x xm m Αν = τότε (Fuzzy like) sim(q OR,dj) = max (x i ) sim(q AND,dj) = min (x i ) Ερώτηση: Που πήγαν οι όροι της επερώτησης; CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Σύνθετες επερωτήσεις Έστω q = (k Λ k) V k3 Εφαρμόζουμε τους ορισμούς σεβόμενοι τη σειρά, εδώ: ( x x ) ( ) + / ( ( ) ) + x 3 sim( q, d ) = Μερικές Παρατηρήσεις Είναι αρκετά ισχυρό μοντέλο με ενδιαφέρουσες ιδιότητες Η επιμεριστική ιδιότητα δεν ισχύει: q = (k k) k3 q = (k k3) (k k3) sim(q,dj) sim(q,dj) Έστω q = (k V k) Λ k3 K and k should be used as in a vecor sysem bu he resence of k3 is required CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Διάρθρωση Εισαγωγή στα Μοντέλα Άντλησης Κατηγορίες Μοντέλων Απόλυτο και Κάλλιστο (ή Βέλτιστο) Ταίριασμα (Exac vs Bes Mach) Τα κλασσικά μοντέλα ανάκτησης Το Boolean Μοντέλο Στατιστικά Μοντέλα - Βάρυνση Όρων Το Διανυσματικό Μοντέλο Το Εκτεταμένο Boolean μοντέλο (Exended Boolean Model) CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Μοντέλα Ανάκτησης Ι

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Μοντέλα Ανάκτησης Ι Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Μοντέλα Ανάκτησης Ι (Retrieval Models) Γιάννης Τζίτζικας άλ ιάλεξη

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #04 Εισαγωγή στα Μοντέλα Ανάκτησης Πληροφορίας Boolean Μοντέλο 1 Άδεια χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ

ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 Θεωρείστε μια συλλογή κειμένων που περιέχει τα ακόλουθα 5 έγγραφα: Έγγραφο 1: «Computer Games» Έγγραφο 2: «Computer Games Computer Games» Έγγραφο 3: «Games Theory and

Διαβάστε περισσότερα

Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth.

Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth. Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth.gr/~tzitzik/ Γιατοπιθανοτικότουκαθ. Απ. Παπαδόπουλου (Αριστοτέλειο Παν.) Κεφάλαιο 2

Διαβάστε περισσότερα

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 7 ο : Ανάκτηση πληροφορίας. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος:

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 7 ο : Ανάκτηση πληροφορίας. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος: ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Μάθημα 7 ο : Ανάκτηση πληροφορίας Γεώργιος Πετάσης Ακαδημαϊκό Έτος: 2012 2013 ΤMHMA MHXANIKΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ, Πανεπιστήμιο Πατρών, 2012 2013 Οι διαφάνειες αυτού του μαθήματος βασίζονται

Διαβάστε περισσότερα

Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης & Μοντέλα Ανάκτησης)

Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης & Μοντέλα Ανάκτησης) Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών ΗΥ463 Συστήματα Ανάκτησης Πληροφοριών 28-29 Εαρινό Εξάμηνο Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης &

Διαβάστε περισσότερα

Μοντέλα Ανάκτησης IΙ (Retrieval Models)

Μοντέλα Ανάκτησης IΙ (Retrieval Models) Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 006 Διάρθρωση HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Informaion Rerieval (IR) Sysems Μοντέλα Ανάκτησης βασισμένα σε: Θεωρία Ασαφών Συνόλων (Fuzzy

Διαβάστε περισσότερα

6. Βαθμολόγηση, Στάθμιση Όρων, και το Μοντέλο Διανυσματικού Χώρου

6. Βαθμολόγηση, Στάθμιση Όρων, και το Μοντέλο Διανυσματικού Χώρου Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Βαθμολόγηση, Στάθμιση Όρων, και το Μοντέλο Διανυσματικού Χώρου Ανάκτηση Πληροφοριών Χρήστος ουλκερίδης

Διαβάστε περισσότερα

Διαχείριση εγγράφων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη

Διαχείριση εγγράφων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη Διαχείριση εγγράφων Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη Απεικόνιση κειμένων για Information Retrieval Δεδομένου ενός κειμένου αναζητούμε μια μεθοδολογία απεικόνισης του γραμματικού χώρου

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 7: Βαθμολόγηση. Στάθμιση όρων. Το μοντέλο διανυσματικού χώρου. 1 Κεφ. 6 Τι θα δούμε σήμερα; Βαθμολόγηση

Διαβάστε περισσότερα

ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 2 του βιβλίου. 2 ο ΜΕΡΟΣ

ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ.  Κεφάλαιο 2 του βιβλίου. 2 ο ΜΕΡΟΣ ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth.gr/~tzitzik/ Για το πιθανοκρατικό του καθ. Απ. Παπαδόπουλου (Αριστοτέλειο Παν.) Κεφάλαιο 2 του βιβλίου

Διαβάστε περισσότερα

Τι (άλλο) θα δούμε σήμερα;

Τι (άλλο) θα δούμε σήμερα; Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη6: Βαθμολόγηση. Στάθμιση όρων. Το μοντέλο διανυσματικού χώρου. 1 Κεφ. 6 Τι (άλλο) θα δούμε σήμερα;

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Επεξεργασία Ερωτήσεων ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήματος 1. Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασμός) 2. Προγραμματισμός (Σχεσιακή Άλγεβρα, SQL) ημιουργία/κατασκευή Εισαγωγή εδομένων

Διαβάστε περισσότερα

Μοντέλα Ανάκτησης IΙ (Retrieval Models)

Μοντέλα Ανάκτησης IΙ (Retrieval Models) Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2008 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Μοντέλα Ανάκτησης IΙ (Retrieval Models) Γιάννης Τζίτζικας ιάλεξη

Διαβάστε περισσότερα

Εισαγωγή. Γενική Εικόνα του Μαθήµατος. Το εσωτερικό ενός Σ Β. Εισαγωγή. Εισαγωγή Σ Β Σ Β. Αρχεία ευρετηρίου Κατάλογος συστήµατος Αρχεία δεδοµένων

Εισαγωγή. Γενική Εικόνα του Μαθήµατος. Το εσωτερικό ενός Σ Β. Εισαγωγή. Εισαγωγή Σ Β Σ Β. Αρχεία ευρετηρίου Κατάλογος συστήµατος Αρχεία δεδοµένων Βάσεις εδοµένων 2003-2004 Ευαγγελία Πιτουρά 1 ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήµατος Επεξεργασία Ερωτήσεων Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασµός) Προγραµµατισµός (Σχεσιακή Άλγεβρα, SQL)

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Επεξεργασία Ερωτήσεων Αρχεία ευρετηρίου Κατάλογος συστήματος Αρχεία δεδομένων ΒΑΣΗ Ε ΟΜΕΝΩΝ Σύστημα Βάσεων εδομένων (ΣΒ ) Βάσεις Δεδομένων 2007-2008

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις

Διαβάστε περισσότερα

Δημιουργία Ευρετηρίων Συλλογής Κειμένων

Δημιουργία Ευρετηρίων Συλλογής Κειμένων Γλωσσική Τεχνολογία Ακαδημαϊκό Έτος 2011-2012 - Project Σεπτεμβρίου Ημερομηνία Παράδοσης: Στην εξέταση του μαθήματος Εξέταση: Προφορική, στο τέλος της εξεταστικής. Θα βγει ανακοίνωση στο forum. Ομάδες

Διαβάστε περισσότερα

ιασπορά πληροφορίας βασισµένη σε σηµασιολογικές συσχετίσεις

ιασπορά πληροφορίας βασισµένη σε σηµασιολογικές συσχετίσεις ιασπορά πληροφορίας βασισµένη σε σηµασιολογικές συσχετίσεις Κατζαγιαννάκη Γ. Ειρήνη Ηλέκτρα Μεταπτυχιακή Εργασία Τµήµα Επιστήµης Υπολογιστών Πανεπιστήµιο Κρήτης Περίληψη Σε ένα σύστηµα επιλεκτικής διασποράς

Διαβάστε περισσότερα

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 10 ο : Αποσαφήνιση εννοιών λέξεων. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος:

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 10 ο : Αποσαφήνιση εννοιών λέξεων. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος: ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Μάθημα 10 ο : Αποσαφήνιση εννοιών λέξεων Γεώργιος Πετάσης Ακαδημαϊκό Έτος: 2012 2013 ΤMHMA MHXANIKΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ, Πανεπιστήμιο Πατρών, 2012 2013 Οι διαφάνειες αυτού του μαθήματος

Διαβάστε περισσότερα

Εργαστήριο Σημασιολογικού Ιστού

Εργαστήριο Σημασιολογικού Ιστού Εργαστήριο Σημασιολογικού Ιστού Ενότητα 8: Εισαγωγή στη SPARQL Βασική Χρήση Μ.Στεφανιδάκης 3-5-2015. Η γλώσσα ερωτημάτων SPARQL Ερωτήσεις (και ενημερώσεις) σε σετ δεδομένων RDF Και σε δεδομένα άλλης μορφής

Διαβάστε περισσότερα

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.

Διαβάστε περισσότερα

Εισαγωγή στην. Εισαγωγή Σ Β. Αρχεία ευρετηρίου Κατάλογος. συστήματος. Αρχεία δεδομένων

Εισαγωγή στην. Εισαγωγή Σ Β. Αρχεία ευρετηρίου Κατάλογος. συστήματος. Αρχεία δεδομένων Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Αρχεία ευρετηρίου Κατάλογος ΒΑΣΗ Ε ΟΜΕΝΩΝ Αρχεία δεδομένων συστήματος Σύστημα Βάσεων εδομένων (ΣΒ ) 2 :

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ & ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ

ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ & ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ & ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ 5//013 ο ΓΛΩΣΣΑ ΚΑΙ ΑΝΑΖΗΤΗΣΗ ΠΛΗΡΟΦΟΡΙΑΣ Ενότητες Εισαγωγή Συστήματα Aνάκτησης πληροφορίας Κατασκευή ερωτημάτων Δεικτοδότηση Αναζήτηση στο

Διαβάστε περισσότερα

Μοντελοποίηση. Μοντέλα IR που έχουν προταθεί και χρησιµοποιούνται από υπάρχοντα συστήµατα.

Μοντελοποίηση. Μοντέλα IR που έχουν προταθεί και χρησιµοποιούνται από υπάρχοντα συστήµατα. Μοντελοποίηση Μοντέλα I που έχουν προταθεί και χρησιµοποιούνται από υπάρχοντα συστήµατα. Ταξινόµηση Μοντέλων I etreval Browsng Κλασικά Μοντέλα Boolean Vector robablstc οµικά Μοντέλα Non-Overlappng Lsts

Διαβάστε περισσότερα

Υποερωτήματα στην SQL Αθανάσιος Σταυρακούδης http://stavrakoudis.econ.uoi.gr 1 / 31 Η ανάγκη για υποερώτημα Ποιος υπάλληλος παίρνει το μεγαλύτερο μισθό; Αν ξέραμε το μεγαλύτερο μισθό, πχ 2000, θα γράφαμε:

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Λανθάνουσα Σημασιολογική Ανάλυση (Latent Semantic Analysis) Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

Posting File. D i. tf key1 [position1 position2 ] D j tf key2... D l.. tf keyl

Posting File. D i. tf key1 [position1 position2 ] D j tf key2... D l.. tf keyl ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΥ463 Συστήµατα Ανάκτησης Πληροφοριών Εργασία: Ανεστραµµένο Ευρετήριο Εισαγωγή Σκοπός της εργασίας είναι η δηµιουργία ενός ανεστραµµένου ευρετηρίου για τη µηχανή αναζήτησης Μίτος, το

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

7. Υπολογισμός Βαθμολογιών σε ένα Πλήρες Σύστημα Αναζήτησης

7. Υπολογισμός Βαθμολογιών σε ένα Πλήρες Σύστημα Αναζήτησης Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 7. Υπολογισμός Βαθμολογιών σε ένα Πλήρες Σύστημα Αναζήτησης Ανάκτηση Πληροφοριών Χρήστος ουλκερίδης Τμήμα

Διαβάστε περισσότερα

Η ακρίβεια ορίζεται σαν το πηλίκο των ευρεθέντων συναφών εγγράφων προς τα ευρεθέντα έγγραφα. Άρα για τα τρία συστήµατα έχουµε τις εξής τιµές:

Η ακρίβεια ορίζεται σαν το πηλίκο των ευρεθέντων συναφών εγγράφων προς τα ευρεθέντα έγγραφα. Άρα για τα τρία συστήµατα έχουµε τις εξής τιµές: Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών HY463 - Συστήµατα Ανάκτησης Πληροφοριών 2005-2006 Εαρινό Εξάµηνο 1 η Σειρά Ασκήσεων (Αξιολόγηση Αποτελεσµατικότητας Ανάκτησης) Άσκηση 1 (4 βαθµοί) Θεωρείστε

Διαβάστε περισσότερα

4 η Σειρά ασκήσεων (Συμπίεση, Ομαδοποίηση, Ευρετηρίαση Πολυμέσων, Κατανεμημένη Ανάκτηση)

4 η Σειρά ασκήσεων (Συμπίεση, Ομαδοποίηση, Ευρετηρίαση Πολυμέσων, Κατανεμημένη Ανάκτηση) Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών HY463 -Συστήματα Ανάκτησης Πληροφοριών 2005-2006 Εαρινό Εξάμηνο 4 η Σειρά ασκήσεων (Συμπίεση, Ομαδοποίηση, Ευρετηρίαση Πολυμέσων, Κατανεμημένη Ανάκτηση)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή 1

Κεφάλαιο 1. Εισαγωγή 1 Κεφάλαιο 1. Εισαγωγή 1 1.1 Η ανάγκη για Ανάκτηση Πληροφορίας Η επιστήµη της Ανάκτησης Πληροφορίας (ΑΠ στο εξής), ασχολείται µε την αναπαράσταση, την αποθήκευση, την οργάνωση και την πρόσβαση σε πληροφοριακά

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο Πρόβλημα ο Ασκήσεις Φροντιστηρίου 5 o Φροντιστήριο Δίνεται το παρακάτω σύνολο εκπαίδευσης: # Είσοδος Κατηγορία 0 0 0 Α 2 0 0 Α 0 Β 4 0 0 Α 5 0 Β 6 0 0 Α 7 0 Β 8 Β α) Στον παρακάτω κύβο τοποθετείστε τα

Διαβάστε περισσότερα

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση ης εργασίας ΕΟ3 03-04 Υποδειγματική λύση (όπως θα παρατηρήσετε η εργασία περιέχει και κάποια επιπλέον σχόλια, για την καλύτερη κατανόηση της μεθοδολογίας, τα οποία φυσικά μπορούν να παραλειφθούν) Άσκηση.

Διαβάστε περισσότερα

21 a 22 a 2n. a m1 a m2 a mn

21 a 22 a 2n. a m1 a m2 a mn Παράρτημα Α Βασική γραμμική άλγεβρα Στην ενότητα αυτή θα παρουσιαστούν με συνοπτικό τρόπο βασικές έννοιες της γραμμικής άλγεβρας. Ο στόχος της ενότητας είναι να αποτελέσει ένα άμεσο σημείο αναφοράς και

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΧΩΡΟ Στη συνέχεια θα δοθούν ορισμένες βασικές έννοιες μαθηματικών και φυσικήςμηχανικής που είναι απαραίτητες για την κατανόηση του μαθήματος

Διαβάστε περισσότερα

Γλωσσικη τεχνολογια. Προεπεξεργασία Κειμένου

Γλωσσικη τεχνολογια. Προεπεξεργασία Κειμένου Γλωσσικη τεχνολογια Προεπεξεργασία Κειμένου Στόχος Επεξεργασίας Γραπτό κείμενο: Τρόπος επικοινωνίας Φέρει σημασιολογικό περιεχόμενο Αναζητούμε τρόπο να: Μετρήσουμε το πληροφοριακό περιεχόμενο Ποσοτικοποιήσουμε

Διαβάστε περισσότερα

(1) L{a 1 x 1 + a 2 x 2 } = a 1 L{x 1 } + a 2 L{x 2 } (2) x(t) = δ(t t ) x(t ) dt x[i] = δ[i i ] x[i ] (3) h[i, i ] x[i ] (4)

(1) L{a 1 x 1 + a 2 x 2 } = a 1 L{x 1 } + a 2 L{x 2 } (2) x(t) = δ(t t ) x(t ) dt x[i] = δ[i i ] x[i ] (3) h[i, i ] x[i ] (4) Πανεπιστήμιο Θεσσαλίας ΗΥ240: Θεωρία Σημάτων και Συστημάτων Γραμμικά χρονικά μεταβαλλόμενα συστήματα Συνάρτηση συστήματος Ένα σύστημα L απεικονίζει κάθε σήμα εισόδου x σε ένα σήμα εξόδου y, δηλ., συνεχής

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #10 εικτοδότηση και Αναζήτηση Φοίβος Μυλωνάς fmylonas@ionio.gr Ανάκτηση Πληροφορίας 1 Άδεια

Διαβάστε περισσότερα

Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Ευρετήρια Ευαγγελία Πιτουρά 1 τιμή γνωρίσματος Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Περίληψη Αλγόριθµοι Τύπου Μείωσης Προβλήµατος ( Decrease and Conquer ) Μείωση κατά µια σταθερά (decrease by a constant) Μείωση κατά ένα ποσοστό (decrease by a constant

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole

K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Ορισμός της δίτιμης άλγεβρας Boole Περιεχόμενα 1 Ορισμός της

Διαβάστε περισσότερα

Σχέσεις, Ιδιότητες, Κλειστότητες

Σχέσεις, Ιδιότητες, Κλειστότητες Σχέσεις, Ιδιότητες, Κλειστότητες Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σχέσεις 1 / 26 Εισαγωγή & Ορισµοί ιµελής Σχέση R από

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ MATLAB / FUZZY LOGIC TOOLBOX

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ MATLAB / FUZZY LOGIC TOOLBOX ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ MATLAB / FUZZY LOGIC TOOLBOX Σε αυτό το εγχειρίδιο θα περιγράψουμε αναλυτικά τη χρήση του προγράμματος MATLAB στη λύση ασαφών συστημάτων (FIS: FUZZY INFERENCE SYSTEM

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

Μοντέλο Οντοτήτων-Συσχετίσεων

Μοντέλο Οντοτήτων-Συσχετίσεων Μοντέλο Οντοτήτων-Συσχετίσεων 1 Εισαγωγή Σχεδιασμός μιας εφαρμογής ΒΔ: Βήματα 1. Συλλογή και Ανάλυση Απαιτήσεων (requirement analysis) Τι δεδομένα θα αποθηκευτούν, ποιες εφαρμογές θα κτιστούν πάνω στα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στο μάθημα Ανάλυση Ι & Εφαρμογές 26 Φεβρουαρίου 2015

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στο μάθημα Ανάλυση Ι & Εφαρμογές 26 Φεβρουαρίου 2015 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στο μάθημα Ανάλυση Ι & Εφαρμογές 26 Φεβρουαρίου 25 Απαντήστε και στα 4 προβλήματα με σαφήνεια και απλότητα. Όσοι έχουν πάρει προβιβάσιμο βαθμό στην Πρόοδο (πάνω

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Διπλωματική Εργασία Μεταπτυχιακού Διπλώματος Ειδίκευσης Θέμα: Διήθηση ανεπιθύμητης ηλεκτρονικής αλληλογραφίας

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 63 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Η Εξίσωση Αx + Βy + Γ = 0, με Α 0 ή Β 0 Έστω ε μια ευθεία στο καρτεσιανό επίπεδο Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Σ (, 0 β ) και έχει συντελεστή διεύθυνσης

Διαβάστε περισσότερα

ΗΥ-150. Προγραμματισμός

ΗΥ-150. Προγραμματισμός ΗΥ-150 Εντολές Ελέγχου Ροής Σειριακή εκτέλεση εντολών Όλα τα προγράμματα «γράφονται» χρησιμοποιώντας 3 είδη εντολών: Σειριακές εντολές (sequential built in C) Εντολές απόφασης (if, if/else, switch) Περιλαμβάνει

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα IPHO_42_2011_EXP1.DO Experimental ompetition: 14 July 2011 Problem 1 Page 1 of 5 1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα Για ένα πυκνωτή χωρητικότητας ο οποίος είναι μέρος

Διαβάστε περισσότερα

Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis)

Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis) Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis) Η μέθοδος PCA (Ανάλυση Κύριων Συνιστωσών), αποτελεί μία γραμμική μέθοδο συμπίεσης Δεδομένων η οποία συνίσταται από τον επαναπροσδιορισμό των συντεταγμένων ενός

Διαβάστε περισσότερα

Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Μάθηση και Γενίκευση. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες

Διαβάστε περισσότερα

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Χρησιμοποιείται μόνο όταν οι τιμές της μεταβλητής έχουν ένα σταθερό άθροισμα (συνήθως 100%, όταν μιλάμε για σχετικές συχνότητες) Είναι χρήσιμο μόνο

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Model) Retrieval Model)... 18

Model) Retrieval Model)... 18 Πανεπιστήμιο Πατρών Πολυτεχνική Σχολή Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Αποδοτική Ιεραρχημένη Ανάκτηση Κοινωνικού Περιεχομένου με Χρήση Ταξονομιών Ετικετών Κοντοτάσιου Ιωάννα ΑΜ:

Διαβάστε περισσότερα

EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS

EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS Ralf Schenkel, Tom Crecelious, Mouna Kacimi, Sebastian Michel, Thomas Neumann, Josiane Xavier Parreira, Gerhard Weikum ΠΡΟΒΛΗΜΑ Εύρεση ενός αποτελεσματικού

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval. Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, Karl Aberer

Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval. Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, Karl Aberer Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, Karl Aberer Περιγραφή του προβλήματος Ευρετηριοποίηση μεγάλων συλλογών εγγράφων

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Εισαγωγή ΣΔΒΔ Σύνολο από προγράμματα γιατηδιαχείρισητηςβδ Αρχεία ευρετηρίου Αρχεία δεδομένων Κατάλογος συστήματος ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ Σύστημα Βάσεων Δεδομένων (ΣΒΔ) 2 :

Διαβάστε περισσότερα

Κανόνας της αλυσίδας. J ανοικτά διαστήματα) ώστε ( ), ( ) ( ) ( ) fog ' x = f ' g x g ' x, x I (2)

Κανόνας της αλυσίδας. J ανοικτά διαστήματα) ώστε ( ), ( ) ( ) ( ) fog ' x = f ' g x g ' x, x I (2) 8 Κανόνας της αλυσίδας Από τον Απειροστικό Λογισμό για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι: Αν g : I R R και f : J R R είναι συναρτήσεις ( όπου I, J ανοικτά διαστήματα ώστε, g( τότε η : I g I J

Διαβάστε περισσότερα

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση Διμελής Σχέση Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Επιμέλεια διαφανειών: Δ. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διατεταγμένο ζεύγος (α, β): Δύο αντικείμενα

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Συστήματα συντεταγμένων Χρησιμοποιούνται για την περιγραφή της θέσης ενός σημείου στον χώρο. Κοινά συστήματα συντεταγμένων: Καρτεσιανό (x, y, z) Πολικό (r, θ) Καρτεσιανό σύστημα συντεταγμένων Οι άξονες

Διαβάστε περισσότερα

Οι διαθέσιμες μέθοδοι σε γενικές γραμμές είναι:

Οι διαθέσιμες μέθοδοι σε γενικές γραμμές είναι: Χωρική Ανάλυση Ο σκοπός χρήσης των ΣΓΠ δεν είναι μόνο η δημιουργία μίας Β.Δ. για ψηφιακές αναπαραστάσεις των φαινομένων του χώρου, αλλά κυρίως, η βοήθειά του προς την κατεύθυνση της υπόδειξης τρόπων διαχείρισής

Διαβάστε περισσότερα

Γενικό πλαίσιο. Απαιτήσεις Μοντέλο εδοµένων. MinusXLRequirements. Απόστολος Ζάρρας http://www.cs.uoi.gr/~zarras/se.htm

Γενικό πλαίσιο. Απαιτήσεις Μοντέλο εδοµένων. MinusXLRequirements. Απόστολος Ζάρρας http://www.cs.uoi.gr/~zarras/se.htm MinusXLRequirements Απόστολος Ζάρρας http://www.cs.uoi.gr/~zarras/se.htm Γενικό πλαίσιο Μια από τις πιο γνωστές και ευρέως διαδεδομένες εμπορικές εφαρμογές για τη διαχείριση λογιστικών φύλλων είναι το

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΥΑΓΓΕΛΙΑΣ Π. ΛΟΥΚΟΓΕΩΡΓΑΚΗ Διπλωματούχου Πολιτικού Μηχανικού ΟΛΟΚΛΗΡΩΜΕΝΟ

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #03

Ανάκτηση Πληροφορίας. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #03 Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #03 Βασικές έννοιες Ανάκτησης Πληροφορίας Δομή ενός συστήματος IR Αναζήτηση με keywords ευφυής

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

Διακριτός Μετασχηματισμός Fourier

Διακριτός Μετασχηματισμός Fourier Διακριτός Μετασχηματισμός Fourier 1 Διακριτός Μετασχηματισμός Fourier Ο μετασχηματισμός Fourier αποτελεί τον ακρογωνιαίο λίθο της επεξεργασίας σήματος αλλά και συχνή αιτία πονοκεφάλου για όσους πρωτοασχολούνται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Πράξεις με δυαδικούς

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο

Διαβάστε περισσότερα

Θεωρία πληροφοριών. Τεχνολογία Πολυµέσων 07-1

Θεωρία πληροφοριών. Τεχνολογία Πολυµέσων 07-1 Θεωρία πληροφοριών Εισαγωγή Αµοιβαία πληροφορία Εσωτερική πληροφορία Υπό συνθήκη πληροφορία Παραδείγµατα πληροφορίας Μέση πληροφορία και εντροπία Παραδείγµατα εντροπίας Εφαρµογές Τεχνολογία Πολυµέσων 07-

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2014-2015 Κβάντιση Δρ. Ν. Π. Σγούρος 2 Άσκηση 5.1 Για ένα σήμα που έχει τη σ.π.π. του σχήματος να υπολογίσετε: μήκος του δυαδικού κώδικα για Ν επίπεδα κβάντισης για σταθερό μήκος λέξης;

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα ΦΥΕ 4 Διανύσματα Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα τμήματα Δύο διανύσματα θα θεωρούμε ότι είναι ίσα, εάν έχουν το ίδιο μήκος

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks

Υπολογιστική Νοημοσύνη. Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks Υπολογιστική Νοημοσύνη Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks Γενικά Ένα νευρωνικό δίκτυο λέγεται αναδρομικό, εάν υπάρχει έστω και μια σύνδεση από έναν νευρώνα επιπέδου i προς έναν νευρώνα επιπέδου

Διαβάστε περισσότερα

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1 Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -

Διαβάστε περισσότερα

Εργαστήριο Προγραμματισμού και τεχνολογίας Ευφυών συστημάτων (intelligence)

Εργαστήριο Προγραμματισμού και τεχνολογίας Ευφυών συστημάτων (intelligence) Εργαστήριο Προγραμματισμού και τεχνολογίας Ευφυών συστημάτων (intelligence) http://www.intelligence.tuc.gr Τμήμα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Το εργαστήριο Ένα από τα 3 εργαστήρια του

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα