Μοντέλα Ανάκτησης Ι (Retrieval Models)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μοντέλα Ανάκτησης Ι (Retrieval Models)"

Transcript

1 Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 006 Διάρθρωση HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Informaion Rerieval (IR) Sysems Μοντέλα Ανάκτησης Ι (Rerieval Models) Εισαγωγή στα Μοντέλα Άντλησης Κατηγορίες Μοντέλων Απόλυτο και Κάλλιστο (ή Βέλτιστο) Ταίριασμα (Exac vs Bes Mach) Τα κλασσικά μοντέλα ανάκτησης Το Boolean Μοντέλο Στατιστικά Μοντέλα - Βάρυνση Όρων Το Διανυσματικό Μοντέλο Το Εκτεταμένο Boolean μοντέλο (Exended Boolean Model) Γιάννης Τζίτζικας ιάλεξη : 3 Ημερομηνία : CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 Αναπαράσταση Εγγράφων: Πως βλέπουμε ένα έγγραφο; Πως βλέπουμε ένα έγγραφο; Ως έχει (full ex); Αγνοώνταςλέξειςπουδενφέρουννόημα(π.χ. τα άρθρα) ; Ως σάκο (bag) όρων ευρετηρίου (bag of index erms), δηλαδή αγνοώντας τη σειρά με την οποία εμφανίζονται οι λέξεις στο κείμενο; Ως σύνολο όρων ευρετηρίου (se of Index erms) Ως δομημένο έγγραφο (π.χ. hyerex, XML) Η απάντηση σε αυτό το ερώτημα θα καθορίσει τη μορφή του ευρετηρίου που πρέπει να κατασκευάσουμε. Ηαπάντησησεαυτότοερώτημαείναισυνυφασμένηκαι με το μοντέλο ανάκτησης που πρόκειται χρησιμοποιήσουμε. CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Μοντέλα Ανάκτησης Ένα μοντέλο ανάκτησης ορίζει Αναπαράσταση Εγγράφων Αναπαράσταση Επερωτήσεων Καθορίζει και ποσοτικοποιεί την έννοια της συνάφειας ο βαθμός συνάφειας μπορεί να είναι δίτιμος (π.χ. {,0}), ή συνεχής(π.χ. [0,]) Έστω D η συλλογή εγγράφων και Q το σύνολο όλων των πληροφοριακών αναγκών που μπορεί να έχει ένας χρήστης. Μπορούμε να δούμε ένα μοντέλο ανάκτησης πληροφορίας ως μια τετράδα [F, D, Q, R] όπου: F: πλαίσιο μοντελοποίησης εγγράφων, επερωτήσεων και των σχέσεων μεταξύ τους D: παράσταση εγγράφων D={ F(d) d D} Q: παράσταση επερωτήσεων Q={ F(q) q Q} R: συνάρτηση κατάταξης που αποδίδει μία τιμή σε κάθε ζεύγος (d,q) D x Q δίτιμη: R: D x Q [True/False] συνεχής R: D x Q [0,] CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Τα τμήματα της αρχιτεκτονικής που εμπλέκονται Κατηγορίες Μοντέλων Ανάκτησης (Ι) user need logical vie Query user feedback Oeraions query rerieved docs ranked docs Searching Ranking User Inerface Tex Oeraions logical vie invered file Indexing Index CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Tex Tex Corus Κλασσικά Μοντέλα Boolean Model Διανυσματικό (Vecor Sace) Πιθανοκρατικό (Probabilisic) Συνολοθεωρητικά (se heoreic) Εκτεταμένο Boolean (Exended Boolean Model) Fuzzy Model (Ασαφές Μοντέλο) Διανυσματικά (στατιστικά/αλγεβρικά) Γενικευμένο Διανυσματικό (Generalized Vecor Sace Model) Laen Semanic Indexing (Λανθάνων/Άδηλος/Υποβόσκων σημασιολογικός ευρετηριασμός) Μοντέλο Νευρωνικού Δικτύου (Neural Neork Model) CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 6

2 Κατηγορίες Μοντέλων Ανάκτησης (ΙΙ) Μια Ταξινομία των Μοντέλων Ανάκτησης Πιθανοκρατικά (Probabilisic) Inference Neork Model (Μοντέλο Δικτύου Επαγωγών) Belief Neork Model (Μοντέλο Δικτύου Πεποιθήσεων) Classic Models boolean vecor robabilisic Se Theoreic Fuzzy Exended Boolean Μοντέλα Βασισμένα στη Λογική Rerieval: Algebraic Generalized Vecor La. Semanic Index Neural Neorks Μοντέλα Δομημένου Κειμένου (Srucured Tex Rerieval Models) Non-Overlaing Liss Proximal Nodes Μοντέλα Ανάκτησης XML Εγγράφων Srucured Models Non-Overlaing Liss Proximal Nodes Probabilisic Inference Neork Belief Neork CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Exac vs. Bes Mach Rerieval Models Exac-mach (Απόλυτου Ταιριάσματος) μια επερώτηση καθορίζει αυστηρά (απόλυτα) κριτήρια ανάκτησης κάθε έγγραφο είτε ταιριάζει είτε όχι με μία επερώτηση το αποτέλεσμα είναι ένα σύνολο κειμένων Bes-mach (Κάλλιστου Ταιριάσματος) μια επερώτηση δεν περιγράφει αυστηρά κριτήρια ανάκτησης κάθε έγγραφο ταιριάζει σε μια επερώτηση σε ένα βαθμό το αποτέλεσμα είναι μια διατεταγμένη λίστα εγγράφων με ένα κατώφλι (στο βαθμό συνάφειας) μπορούμε να ελέγξουμε το μέγεθος της απάντησης «Μικτές προσεγγίσεις» συνδυασμός απόλυτου ταιριάσματος με τρόπους διάταξης του συνόλου της απάντησης E.g., bes-mach query language ha incororaes exac-mach oeraors Informaion Rerieval Models Boolean Rerieval Model Βελτίων = συγκριτικός του αγαθός CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Boolean Rerieval Model Έγγραφο = σύνολο λέξεων κλειδιών (keyords) Επερώτηση = Boolean έκφραση λέξεων κλειδιών (AND,OR, NOT, παρενθέσεις) πχ επερώτησης (( Cree AND Greece) OR (Oia AND Sanorini)) AND Hoel AND-NOT Hilon (( Cree & Greece) (Oia & Sanorini)) & Hoel &! Hilon Απάντηση= σύνολο εγγράφων απουσία διάταξης Παράσταση εγγράφων κατά το Boolean Model k k. k d d d n n n n i,j {0,} K={k,,k } : σύνολο όλων των λέξεων ευρετηρίασης Κάθε έγγραφο d j παριστάνεται με το διάνυσμα d j =(,j,,,j ) όπου: i,j = αν η λέξη k i εμφανίζεται στο κείμενο d j (αλλιώς i,j =0) CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006

3 Boolean Rerieval Model: Formally K={k,,k } : σύνολο όλων των λέξεων ευρετηρίασης Κάθε έγγραφο d j παριστάνεται με το διάνυσμα d j =(,j,,,j ) όπου: i,j = αν η λέξη k i εμφανίζεται στο κείμενο d j (αλλιώς i,j =0) Μια επερώτηση q είναι μια λογική έκφραση στο Κ, πχ: q = k and ( k or no k3)) δηλαδή q = k ( k k3)) q DNF = (k k k3) (k k k3) (k k k3) q DNF = (,,) (,,0) (,0,0) R(d,q)= True αν υπάρχει συζευκτική συνιστώσα του q με λέξεις των οποίων τα βάρη είναι τα ίδια με αυτά των αντίστοιχων λέξεων του εγγράφου d False, αλλιώς Boolean Rerieval Model: Ισοδύναμος ορισμός Αποτίμηση επερωτήσεων (με χρήση λογικής) ένα κείμενο d είναι μια σύζευξη όρων, όπου όρος μια λέξη σε θετική ή αρνητική μορφή (σε θετική αν εμφανίζεται στο κείμενο, αλλιώς σε αρνητική) μια επερώτηση q είναι μια οποιαδήποτε λογική έκφραση R(d,q)=True if and only if d =q δηλαδή αν κάθε ερμηνεία που αληθεύει το d αληθεύει και το q CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Boolean Rerieval Model: Ένας εναλλακτικός τρόπος ορισμού Μπορούμε να ορίσουμε ως ερμηνεία μιας λέξης (του Κ) το σύνολο των εγγράφων που την περιέχουν. Άρα η ερμηνεία είναι μια συνάρτηση Ι: K D που ορίζεται ως εξής: I(k) = { d d περιέχει τη λέξη κ} Έστω Ε το σύνολο των λογικών εκφράσεων με λέξεις από το σύνολο Κ. Μπορούμε να επεκτείνουμε μια ερμηνεία Ι του Κ σε μια ερμηνεία J τουεωςεξής J() = I() J(e e ) = J(e) J(e ) J(e e ) = J(e) J(e ) J(e e ) = J(e) \ J(e ) Ηαπάντησημιαςεπερώτησηςq (κατά το Boolean μοντέλο) είναι η εξής: ans(q) = J(q) Οι αδυναμίες του Boolean μοντέλου Η αδυναμία ελέγχου του μεγέθους της απάντησης Παράδειγμα: Anser( Chea Tickes Heraklion ) = Anser( Chea Tickes) = 000 Anser( Chea Heraklion) = 000 Anser( Tickes Heraklion ) = 000 Άρα είτε παίρνουμε μια απάντηση με ένα έγγραφο είτε ένα σύνολο 000 εγγράφων. :( CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Οι αδυναμίες του Boolean μοντέλου Άκαμπτο: AND σημαίνει όλα, OR σημαίνει οποιοδήποτε Δυσκολίες Ο έλεγχος του μεγέθους της απάντησης All mached documens ill be reurned Ικανοποιητική ακρίβεια (recision) συχνά σημαίνει απαράδεκτη ανάκληση (recall) Η διατύπωση των επερωτήσεων είναι δύσκολη για πολλούς χρήστες Η έκφραση σύνθετων πληροφοριακών αναγκών είναι δύσκολη Δεν μας λέει πώς να διατάξουμε την απάντηση All mached documens logically saisfy he query Τα μοντέλα κατάταξης (ranking models) έχουν αποδειχτεί καλύτερα στην πράξη Η υποστήριξη ανάδρασης συνάφειας δεν είναι εύκολη If a documen is idenified by he user as relevan or irrelevan, ho should he query by modified? [Τώραδουλεύουμεσεαυτό] CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Τα θετικά του Boolean μοντέλου Προβλέψιμο, εύκολα εξηγήσιμο Αποτελεσματικό όταν γνωρίζεις ακριβώς τι ψάχνεις και τι περιέχει ησυλλογή Αποδοτική υλοποίηση CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 8

4 Κοινά χαρακτηριστικά των Στατιστικών Μοντέλων Έγγραφο: σάκος (bag) λέξεων Bag = se ha allos mulile occurences of he same elemen So e vie a documen as an unordered se of ords ih frequencies Στατιστικά Μοντέλα Επερώτηση: Σύνολο όρων με προαιρετικά βάρη: Weighed query erms: q=<daabase 0.5, ex 0.8, informaion 0.> Uneighed query erms: q=<daabase ex informaion > No Boolean condiions secified in he query Απάντηση: Διατεταγμένο σύνολο συναφών εγγράφων υπολογίζεται βάσει των συχνοτήτων εμφάνισης των λέξεων στα έγγραφα και στις επερωτήσεις CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Στατιστικά Μοντέλα: Κρίσιμα Ερωτήματα Πώς να καθορίζουμε τη σπουδαιότητα ενός όρου σε ένα έγγραφο και στα πλαίσια ολόκληρης της συλλογής; Πώς να καθορίζουμε το βαθμό ομοιότητας μεταξύ ενός εγγράφου και μιας επερώτησης; Informaion Rerieval Models Vecor Sace Model (Διανυσματικό Μοντέλο) (το πιο διαδεδομένο μοντέλο ανάκτησης) CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 Διανυσματικό Μοντέλο: Εισαγωγή Παράσταση εγγράφων στο Διανυσματικό Μοντέλο K={k,,k } : σύνολο όλων των λέξεων ευρετηρίασης Κάθε έγγραφο d j παριστάνεται με ένα διάνυσμα d j =(,j,,,j ) όπου i,j [0,] (πχ i,j =0.3) Μια επερώτηση q παριστάνεται με ένα διάνυσμα q=(,q,,,q ) όπου πάλι i,q [0,] k k. k d d d n n n n i,j [0,] R(d,q) εκφράζει το βαθμό ομοιότητας των διανυσμάτων d και q K={k,,k } : σύνολο όλων των λέξεων ευρετηρίασης Κάθε έγγραφο d j παριστάνεται με το διάνυσμα d j =(,j,,,j ) όπου: i,j το βάρος της λέξης k i για το κείμενο d j CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 4

5 Βάρη Όρων: Συχνότητα όρου (f) Οι πιο συχνοί όροι σε ένα έγγραφο είναι πιο σημαντικοί (υποδηλώνουν το περιεχόμενο του) freq ij = πλήθος εμφανίσεων του όρου i στο έγγραφο j Κανονικοποίηση f ij =freq ij /max k {freq kj } όπου max k {freq kj } το μεγαλύτερο πλήθος εμφανίσεων ενός όρου στο έγγραφο j Παράδειγμα: Έστω το έγγραφο d = a a a a b b b c c c c freq a = 4, f a = 4/4= freq b = 3, f b = 3/4=0.75 CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Παράδειγμα d = { a a a b c } d = { a a a d e } d3 = { a a a f g} Το a λαμβάνει το μεγαλύτερο βάρος (άρα το μεγαλύτερο f) σε κάθε έγγραφο Ας σκεφτούμε ολόκληρη τη συλλογή. Μας επιτρέπει το a να διακρίνουμε τα κείμενα; Αν όχι μήπως δεν θα έπρεπε να λαμβάνει το μεγαλύτερο βάρος; Αν η συλλογή είχε μόνο αυτά τα 3 έγγραφα (και ήταν σταθερή) θα μπορούσαμε ακόμα και να αγνοήσουμε πλήρως τον όρο a από το ευρετήριο. CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Βάρη Όρων: Αντίστροφη Συχνότητα Εγγράφων (Inverse Documen Frequency) Ιδέα: Όροι που εμφανίζονται σε πολλά διαφορετικά έγγραφα έχουν μικρή διακριτική ικανότητα df i = documen frequency of erm i πλήθος εγγράφων που περιέχουν τον όρο i idf i = inverse documen frequency of erm i := log (N/ df i ) (N: συνολικό πλήθος εγγράφων) Το idf αποτελεί μέτρο της διακριτικής ικανότητας του όρου ο λογάριθμος ελαφραίνει το βάρος του idf σε σχέση με το f Παράδειγμα: Έστω Ν=0 και df comuer =0, df arisole =, Τότε, N/df comuer =0/0=, N/df arisole =0/=5 Τότε, idf comuer =log() =0, idf arisole =log(5)=.3 CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring TF-IDF Weighing (βάρυνση TF-IDF) k k. k d d d n n n n ij = f ij idf i = f ij log (N/ df i ) Ένας όρος που εμφανίζεται συχνά στο έγγραφο, αλλά σπάνια στην υπόλοιπη συλλογή, λαμβάνει υψηλό βάρος. Αν και έχουν προταθεί πολλοί άλλοι τρόποι βάρυνσης, το f-idf δουλεύει πολύ καλά στην πράξη. CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Παράδειγμα υπολογισμού TF-IDF Διάνυσμα Επερώτησης Έστω ένα έγγραφο που περιέχει όρους με τις εξής συχνότητες: Α(3), Β(), C(), πχ. d= A B A B C A Υποθέστε ότι η συλλογή περιέχει έγγραφα και οι συχνότητες κειμένου (documen frequencies) αυτών των όρων είναι: Α(50), Β(300), C(50) Τότε: Α: f=3/3; idf = log(0000/50)= 5.3; f-idf=5.3 B: f=/3; idf = log(0000/300)= ; f-idf=.3 C: f=/3; idf = log(0000/50)= 3.7; f-idf=. Τα διανύσματα των επερωτήσεων θεωρούνται ως έγγραφα και επίσης βαρύνονται με f-idf Μια επερώτηση δεν συγκροτείται πάντα από λίγες λέξεις. Μια επερώτηση μπορεί να έιναι μια παράγραφος κειμένου (ή ένα ολόκληρο έγγραφο) Εναλλακτικά, ο χρήστης μπορεί να δώσει τα βάρη των όρων της επερώτησης k k. k d d d n n n q q q n q i,j [0,] CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring

6 Διανυσματικό Μοντέλο: K={k,,k } : σύνολο όλων των λέξεων ευρετηρίασης Κάθε έγγραφο d j παριστάνεται με ένα διάνυσμα d j =(,j,,,j ) όπου i,j = f ij idf i Μια επερώτηση q παριστάνεται με ένα διάνυσμα q=(,q,,,q ) όπου πάλι i,q = f iq idf i R(d,q) =? Διανυσματικό Μοντέλο: Μέτρο Ομοιότητας Examle: D = T + 3T + 5T 3 D = 3T + 7T + T 3 Q = 0T + 0T + T 3 T 3 D = T + 3T + 5T 3 5 Q = 0T + 0T + T 3 3 T D = 3T + 7T + T 3 T 7 Is D or D more similar o Q? Ho o measure he degree of similariy? Disance? Angle? Projecion? CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Μέτρο Ομοιότητας: Εσωτερικό Γινόμενο (inner roduc) Η ομοιότητα μεταξύ των διανυσμάτων d και q ορίζεται ως το εσωτερικό τους γινόμενο: sim( dj, q) = dj q = ij iq i= όπου ij το βάρος του όρου i στο έγγραφο j και iq το βάρος του όρου i στην επερώτηση Για δυαδικά (0/) διανύσματα το εσωτερικό γινόμενο είναι ο αριθμός των mached query erms in he documen (άρα το μέγεθος της τομής) Για βεβαρημένα διανύσματα, είναι το άθροισμα των γινομένων των βαρών των mached erms CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Binary: Παράδειγμα d =,,, 0,,, 0 q =, 0,, 0, 0,, sim(d, q) = 3 rerieval daabase archiecure comuer ex managemen informaion Weighed: D = T + 3T + 5T 3 D = 3T + 7T + T 3 Q = 0T + 0T + T 3 sim(d, Q) = *0 + 3*0 + 5* = 0 sim(d, Q) = 3*0 + 7*0 + * = Size of vecor = size of vocabulary = 7 0 means corresonding erm no found in documen or query D = T + 3T + 5T 3 D = 3T + 7T + T 3 7 T CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring T 3 Q = 0T + 0T + T 3 3 T Ιδιότητες του Εσωτερικού Γινομένου Μέτρο Ομοιότητας Συνημίτονου (Cosine) Το εσωτερικό γινόμενο δεν είναι φραγμένο (unbounded) ευνοεί (μεροληπτεί) μεγάλα έγγραφα με μεγάλο πλήθος διαφορετικών όρων μετρά το πλήθος των όρων που κάνουν mach, αλλά αγνοεί αυτούς που δεν κάνουν mach Μετρά το συνημίτονο της γωνίας μεταξύ των διανυσμάτων 3 Εσωτερικό γινόμενο κανονικοποιημένο βάσει του μήκους των διανυσμάτων CosSim(d j, q) = d d j j q q = i = ( ij ij i = i = θ D iq ) θ iq Q D D = T + 3T + 5T 3 CosSim(D, Q) = 0 / (4+9+5)(0+0+4) = 0.8 D = 3T + 7T + T 3 CosSim(D, Q) = / (9+49+)(0+0+4) = 0.3 Q = 0T + 0T + T 3 D is 6 imes beer han D using cosine similariy bu only 5 imes beer using inner roduc. CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring

7 Διανυσματικό Μοντέλο: Παρατηρήσεις Πλεονεκτήματα Λαμβάνει υπόψη τις τοπικές (f) και καθολικές (idf) συχνότητες όρων Παρέχει μερικό ταίριασμα (arial maching) και διατεταγμένα αποτελέσματα Τείνει να δουλεύει καλά στην πράξη, παράτιςαδυναμίεςτου Αποδοτική υλοποίηση για μεγάλες συλλογές εγγράφων Αδυναμίες Απουσία Σημασιολογίας (π.χ. σημασίας λέξεων) Απουσία Συντακτικής Πληροφορίας (π.χ. δομή φράσης, σειρά λέξεων, εγγύτητα λέξεων) Υπόθεση Ανεξαρτησίας Όρων (π.χ. αγνοεί τα συνώνυμα) Έλλειψη ελέγχου ala Boolean model (π.χ. δεν μπορούμε να απαιτήσουμε την παρουσία ενός όρου στο έγγραφο) Given a o-erm query q= A B, may refer a documen conaining A frequenly bu no B, over a documen ha conains boh A and B bu boh less frequenly CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Περίληψη του Διανυσματικού Μοντέλου K={k,,k } : σύνολο όλων των λέξεων ευρετηρίασης Κάθε έγγραφο d j παριστάνεται με το διάνυσμα d j =(,j,,,j ) όπου ij = f ij idf i = f ij log (N/ df i ) Μια επερώτηση q παριστάνεται με το διάνυσμα q=(,q,,,q ) όπου iq = f iq idf i = f iq log (N/ df i ) R(d j,q) = CosSim(d j, q) = d j q d j q CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring = i = i ( ij ij = i = iq ) iq Υπολογισμός του βαθμού συνάφειας Απλοϊκή Υλοποίηση ) Φτιάξε το f-idf διάνυσμα για κάθε έγγραφο dj hs συλλογής (έστω V το λεξιλόγιο) ) Φτιάξε το f-idf διάνυσμα q της επερώτησης 3) Για κάθε έγγραφο d j του D Υπολόγισε το σκορ s j = cossim(d j, q) 4) Διέταξε τα έγγραφα σε φθίνουσα σειρά 5) Παρουσίασε τα έγγραφα στο χρήστη Χρονική πολυπλοκότητα του βήματος (3): O( V D ) Πολύ ακριβό αν τα V και D είναι μεγάλα! V = 0,000; D = 00,000; V D =,000,000,000 Υπολογισμός του βαθμού συνάφειας Καλύτερη (γρηγορότερη) Υλοποίηση Ένας όρος που δεν εμφανίζεται και στην επερώτηση και στο έγγραφο δεν επηρεάζει το βαθμό ομοιότητας συνημίτονου Το γινόμενο των βαρών είναι 0 και άρα δεν συνεισφέρει στο εσωτερικό γινόμενο Συνήθως η επερώτηση είναι μικρή, άρα το διάνυσμα της είναι εξαιρετικά «αραιό» => Μπορούμε να χρησιμοποιήσουμε ένα ευρετήριο ώστε να υπολογίσουμε το βαθμό ομοιότητας μόνο εκείνων των εγγράφων που περιέχουν τουλάχιστον έναν όρο της επερώτησης. 3) Για κάθε έγγραφο d j του D Υπολόγισε το σκορ s j = cossim(d j, q) 3 ) Για κάθε έγγραφο d j που περιέχει τουλάχιστον έναν όρο του query Υπολόγισε το σκορ s j = cossim(d j, q) Απλοϊκό Καλύτερο CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Υπολογισμός του βαθμού συνάφειας Καλύτερη (γρηγορότερη) Υλοποίηση (ΙΙ) Q = k k k n D D B D D B D n D nb Ας υποθέσουμε ότι ένας όρος της επερώτησηςεμφανίζεταισεb έγγραφα Τότε η χρονική πολυπλοκότητα είναι O( Q B) Informaion Rerieval Models Exended Boolean Model Το κόστος αυτό είναι συνήθως πολύ μικρότερο του κόστους του απλοϊκού τρόπου (που είχε πολυπλοκότητα Ο( V D ), διότι: Q << V, δηλαδή ο αριθμός των λέξεων στην επερώτησης είναι πολύ μικρότερος του συνολικού αριθμού των λέξεων, και B << D, δηλαδή το πλήθος των έγγράφων που έχουν μια λέξη είναι πολύ μικρότερο του πλήθους των εγγράφων της συλλογής. CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 4

8 Exended Boolean Model Κίνητρο Το Boolean model είναι απλό και κομψό αλλά δεν παρέχει κατάταξη (διαβάθμιση των συναφών εγγράφων) Προσέγγιση Επέκταση του Boolean model με βάρυνση όρων και μερικό ταίριασμα Σκεπτικό / Κίνητρο Έστω q = k x ky. Σύμφωνα με το Boolean model ένα έγγραφο που περιέχει μόνο ένα από τα k x, k y είναι μη-συναφές, και μάλιστα τόσο μη-συναφές, όσο ένα έγγραφο που δεν περιέχει κανένα από τους όρους. Συνδιασμός χαρακτηριστικών του Vecor model και ιδιοτήτων της Boolean algebra [Salon, Fox, and Wu, 983] CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Έστω ότι έχουμε μόνο δύο όρους k x, k y Μπορούμε να θεωρήσουμε κάθε όρο ως μια διάσταση Άρα έγγραφα και επερωτήσεις απεικονίζονται στο D χώρο. Ένα έγγραφο d j τοποθετείται βάσει των, βαρών x,j και y,j. Έστω ότι τα βάρη αυτά είναι κανονικοποιημένα στο [0,], π.χ. : Ηγενικήιδεά (0,) (,) d j+ k y d j (0,) (,) k y d j+ x,j = f x,j idf x y,j = f y,j idf y Για συντομία έστω x = x,j και y = y,j Άρα οι συντεταγμένες του dj είναι οι (x,y) CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring (0,0) (,0) k x Έστω q OR =k x v k y Το σημείο (0,0) είναι η θέση προς αποφυγή. Άραμπορούμεναθεωρήσουμετην απόσταση του dj απόαυτότοσημείο ως το βαθμό ομοιότητας d j (0,0) (,0) k x Έστω q AND =k x Λ k y Το σημείο (,) είναι η πιο επιθυμητή θέση. Άραμπορούμεναθεωρήσουμετο συμπλήρωμα της απόστασης του dj από αυτό το σημείο ως βαθμό ομοιότητας CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Ηγενικήιδεά(ΙΙ) (0,) (,) d j+ k y d j (0,) (,) k y d j+ Γενικεύοντας την ιδέα (για > όρους) Μπορούμε να γενικεύσουμε το προηγούμενο μοντέλο χρησιμοποιώντας την Ευκλείδεια απόσταση στον -διάστατο χώρο Αυτό μπορεί να γίνει χρησιμοποιώντας -norms που γενικεύουν την έννοια της απόστασης, όπου. (0,0) (,0) k x Le q OR =k x v k y x + y sim( q OR, d) = d j (0,0) (,0) k x Le q AND =k x Λ k y ( x) + ( y) sim( q AND, d) = Διαζευκτικές επερωτήσεις q OR = k V k V.. V km Συζευκτικές επερωτήσεις q AND = k Λ k Λ... Λ km sim sim ( x x x m qor, d) m = ( ( x x ) ( m) qand, d) m = ( for normalisaion o [0,]) CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring

9 Ισομετρικές καμπύλες ( x + y ) Μερικές ενδιαφέρουσες ιδιότητες L L L x + y = ( x + y ) = max( x, y) = Μεταβάλλοντας το, μπορούμε να κάνουμε το μοντέλο να συμπεριφέρεται όπως το Vecor, το Fuzzy (που θα δούμε στο επόμενο μάθημα), ή ενδιάμεσα σε αυτά τα δυο. Αν = τότε (Vecor like) sim(q OR,dj) = sim(q AND,dj) = x xm m Αν = τότε (Fuzzy like) sim(q OR,dj) = max (x i ) sim(q AND,dj) = min (x i ) Ερώτηση: Που πήγαν οι όροι της επερώτησης; CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Σύνθετες επερωτήσεις Έστω q = (k Λ k) V k3 Εφαρμόζουμε τους ορισμούς σεβόμενοι τη σειρά, εδώ: ( x x ) ( ) + / ( ( ) ) + x 3 sim( q, d ) = Μερικές Παρατηρήσεις Είναι αρκετά ισχυρό μοντέλο με ενδιαφέρουσες ιδιότητες Η επιμεριστική ιδιότητα δεν ισχύει: q = (k k) k3 q = (k k3) (k k3) sim(q,dj) sim(q,dj) Έστω q = (k V k) Λ k3 K and k should be used as in a vecor sysem bu he resence of k3 is required CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Διάρθρωση Εισαγωγή στα Μοντέλα Άντλησης Κατηγορίες Μοντέλων Απόλυτο και Κάλλιστο (ή Βέλτιστο) Ταίριασμα (Exac vs Bes Mach) Τα κλασσικά μοντέλα ανάκτησης Το Boolean Μοντέλο Στατιστικά Μοντέλα - Βάρυνση Όρων Το Διανυσματικό Μοντέλο Το Εκτεταμένο Boolean μοντέλο (Exended Boolean Model) CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Μοντέλα Ανάκτησης Ι

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Μοντέλα Ανάκτησης Ι Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Μοντέλα Ανάκτησης Ι (Retrieval Models) Γιάννης Τζίτζικας άλ ιάλεξη

Διαβάστε περισσότερα

Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth.

Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth. Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth.gr/~tzitzik/ Γιατοπιθανοτικότουκαθ. Απ. Παπαδόπουλου (Αριστοτέλειο Παν.) Κεφάλαιο 2

Διαβάστε περισσότερα

Τι (άλλο) θα δούμε σήμερα;

Τι (άλλο) θα δούμε σήμερα; Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη6: Βαθμολόγηση. Στάθμιση όρων. Το μοντέλο διανυσματικού χώρου. 1 Κεφ. 6 Τι (άλλο) θα δούμε σήμερα;

Διαβάστε περισσότερα

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.

Διαβάστε περισσότερα

Εργαστήριο Σημασιολογικού Ιστού

Εργαστήριο Σημασιολογικού Ιστού Εργαστήριο Σημασιολογικού Ιστού Ενότητα 8: Εισαγωγή στη SPARQL Βασική Χρήση Μ.Στεφανιδάκης 3-5-2015. Η γλώσσα ερωτημάτων SPARQL Ερωτήσεις (και ενημερώσεις) σε σετ δεδομένων RDF Και σε δεδομένα άλλης μορφής

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

Posting File. D i. tf key1 [position1 position2 ] D j tf key2... D l.. tf keyl

Posting File. D i. tf key1 [position1 position2 ] D j tf key2... D l.. tf keyl ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΥ463 Συστήµατα Ανάκτησης Πληροφοριών Εργασία: Ανεστραµµένο Ευρετήριο Εισαγωγή Σκοπός της εργασίας είναι η δηµιουργία ενός ανεστραµµένου ευρετηρίου για τη µηχανή αναζήτησης Μίτος, το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή 1

Κεφάλαιο 1. Εισαγωγή 1 Κεφάλαιο 1. Εισαγωγή 1 1.1 Η ανάγκη για Ανάκτηση Πληροφορίας Η επιστήµη της Ανάκτησης Πληροφορίας (ΑΠ στο εξής), ασχολείται µε την αναπαράσταση, την αποθήκευση, την οργάνωση και την πρόσβαση σε πληροφοριακά

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΧΩΡΟ Στη συνέχεια θα δοθούν ορισμένες βασικές έννοιες μαθηματικών και φυσικήςμηχανικής που είναι απαραίτητες για την κατανόηση του μαθήματος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση ης εργασίας ΕΟ3 03-04 Υποδειγματική λύση (όπως θα παρατηρήσετε η εργασία περιέχει και κάποια επιπλέον σχόλια, για την καλύτερη κατανόηση της μεθοδολογίας, τα οποία φυσικά μπορούν να παραλειφθούν) Άσκηση.

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis)

Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis) Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis) Η μέθοδος PCA (Ανάλυση Κύριων Συνιστωσών), αποτελεί μία γραμμική μέθοδο συμπίεσης Δεδομένων η οποία συνίσταται από τον επαναπροσδιορισμό των συντεταγμένων ενός

Διαβάστε περισσότερα

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση Διμελής Σχέση Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Επιμέλεια διαφανειών: Δ. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διατεταγμένο ζεύγος (α, β): Δύο αντικείμενα

Διαβάστε περισσότερα

EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS

EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS Ralf Schenkel, Tom Crecelious, Mouna Kacimi, Sebastian Michel, Thomas Neumann, Josiane Xavier Parreira, Gerhard Weikum ΠΡΟΒΛΗΜΑ Εύρεση ενός αποτελεσματικού

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ MATLAB / FUZZY LOGIC TOOLBOX

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ MATLAB / FUZZY LOGIC TOOLBOX ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ MATLAB / FUZZY LOGIC TOOLBOX Σε αυτό το εγχειρίδιο θα περιγράψουμε αναλυτικά τη χρήση του προγράμματος MATLAB στη λύση ασαφών συστημάτων (FIS: FUZZY INFERENCE SYSTEM

Διαβάστε περισσότερα

Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Μάθηση και Γενίκευση. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Περίληψη Αλγόριθµοι Τύπου Μείωσης Προβλήµατος ( Decrease and Conquer ) Μείωση κατά µια σταθερά (decrease by a constant) Μείωση κατά ένα ποσοστό (decrease by a constant

Διαβάστε περισσότερα

Μοντέλο Οντοτήτων-Συσχετίσεων

Μοντέλο Οντοτήτων-Συσχετίσεων Μοντέλο Οντοτήτων-Συσχετίσεων 1 Εισαγωγή Σχεδιασμός μιας εφαρμογής ΒΔ: Βήματα 1. Συλλογή και Ανάλυση Απαιτήσεων (requirement analysis) Τι δεδομένα θα αποθηκευτούν, ποιες εφαρμογές θα κτιστούν πάνω στα

Διαβάστε περισσότερα

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1 Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval. Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, Karl Aberer

Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval. Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, Karl Aberer Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, Karl Aberer Περιγραφή του προβλήματος Ευρετηριοποίηση μεγάλων συλλογών εγγράφων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

Πληρουορική Γ Γσμμασίοσ

Πληρουορική Γ Γσμμασίοσ Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:

Διαβάστε περισσότερα

Διακριτός Μετασχηματισμός Fourier

Διακριτός Μετασχηματισμός Fourier Διακριτός Μετασχηματισμός Fourier 1 Διακριτός Μετασχηματισμός Fourier Ο μετασχηματισμός Fourier αποτελεί τον ακρογωνιαίο λίθο της επεξεργασίας σήματος αλλά και συχνή αιτία πονοκεφάλου για όσους πρωτοασχολούνται

Διαβάστε περισσότερα

Γενικό πλαίσιο. Απαιτήσεις Μοντέλο εδοµένων. MinusXLRequirements. Απόστολος Ζάρρας http://www.cs.uoi.gr/~zarras/se.htm

Γενικό πλαίσιο. Απαιτήσεις Μοντέλο εδοµένων. MinusXLRequirements. Απόστολος Ζάρρας http://www.cs.uoi.gr/~zarras/se.htm MinusXLRequirements Απόστολος Ζάρρας http://www.cs.uoi.gr/~zarras/se.htm Γενικό πλαίσιο Μια από τις πιο γνωστές και ευρέως διαδεδομένες εμπορικές εφαρμογές για τη διαχείριση λογιστικών φύλλων είναι το

Διαβάστε περισσότερα

Νικόλαος Τσιγγίλης Τμήμα Δημοσιογραφίας και ΜΜΕ, ΑΠΘ ntsigilis@jour.auth.gr

Νικόλαος Τσιγγίλης Τμήμα Δημοσιογραφίας και ΜΜΕ, ΑΠΘ ntsigilis@jour.auth.gr Εφαρμογές της Θεωρίας Απόκρισης Ερωτήματος (Item Response Theory) για την εξέταση των ψυχομετρικών ιδιοτήτων ερωτηματολογίων και κλιμάκων μέτρησης στις κοινωνικές επιστήμες Νικόλαος Τσιγγίλης Τμήμα Δημοσιογραφίας

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ 4 5 Γιάννης Ζαµπέλης Μαθηµατικός 867 (Αναρτήθηκε 8 4 ) ίνονται τα διανύσµατα a και b µε µέτρα, 6 αντίστοιχα και ϕ [, π] a b+ x+ a b y 5= () δίνεται η εξίσωση ( ) ( ) α) Να αποδείξετε

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -

Διαβάστε περισσότερα

ΤΑΞΙΝΟΜΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΕΡΩΤΗΜΑΤΟΣ

ΤΑΞΙΝΟΜΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΕΡΩΤΗΜΑΤΟΣ ΤΑΞΙΝΟΜΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΕΡΩΤΗΜΑΤΟΣ Η συνθήκη WHERE βάζει περιορισμούς στις εγγραφές που επιστρέφονται. Ο όρος ORDER BY ταξινομεί τις εγγραφές που επιστρέφονται. Παράδειγμα: SELECT * FROM table_name ORDER

Διαβάστε περισσότερα

Ευρετηρίαση, Αποθήκευση και Οργάνωση Αρχείων (Indexing, Storage and File Organization) ΜΕΡΟΣ Ι

Ευρετηρίαση, Αποθήκευση και Οργάνωση Αρχείων (Indexing, Storage and File Organization) ΜΕΡΟΣ Ι Ευρετηρίαση, Αποθήκευση και Οργάνωση Αρχείων (Indexing, Storage and File Organization) ΜΕΡΟΣ Ι Κεφάλαιο 8 Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 Ανάκτηση Πληροφορίας 2009-2010 1 Δομές

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

( ) ( ) University of Hertfordshire - IST Studies School of Computer Science COMPUTER SYSTEMS ARCHITECTURE 1

( ) ( ) University of Hertfordshire - IST Studies School of Computer Science COMPUTER SYSTEMS ARCHITECTURE 1 University of Hertfordshire - IST Studies School of omputer Science OMPUTER SYSTEMS RHITETURE 1 1. Simplify the function Y ( ) ( ) 2. Simplify the function Y (( 1) )( (0)) 3. Simplify the function Y 4.

Διαβάστε περισσότερα

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit! Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς

Διαβάστε περισσότερα

Η Εντροπία. Δρ. Αθανάσιος Χρ. Τζέμος. Κέντρο Ερευνών Αστρονομίας και Εφηρμοσμένων Μαθηματικών Ακαδημία Αθηνών

Η Εντροπία. Δρ. Αθανάσιος Χρ. Τζέμος. Κέντρο Ερευνών Αστρονομίας και Εφηρμοσμένων Μαθηματικών Ακαδημία Αθηνών Η Εντροπία Δρ. Αθανάσιος Χρ. Τζέμος Κέντρο Ερευνών Αστρονομίας και Εφηρμοσμένων Μαθηματικών Ακαδημία Αθηνών Θερμοδυναμική +Στατιστική Μηχανική= Θερμική Φυσική Η Θερμοδυναμική ασχολείται με τις μακροσκοπικές

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Εφαρμοσμένα Μαθηματικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 6: Διπλά Ολοκληρώματα Δρ. Περικλής Παπαδόπουλος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΝΕΟΦΥΤΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2010 2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011

ΛΥΚΕΙΟ ΑΓΙΟΥ ΝΕΟΦΥΤΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2010 2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΛΥΚΕΙΟ ΑΓΙΟΥ ΝΕΟΦΥΤΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2010 2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΗΜΕΡΟΜΗΝΙΑ: 07/06/2011 ΤΑΞΗ: Β ΛΥΚΕΙΟΥ ΩΡΑ: 11:00 ΑΡ. ΣΕΛΙΔΩΝ: 14 ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 12 Δομές (Structures) Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Αφαιρετικότητα Με τις συναρτήσεις επιτυγχάνουμε αφαιρετικότητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Έλεγχος Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Σχεσιακοί Τελεστές και Ισότητας Ένα πρόγραμμα εκτός από αριθμητικές πράξεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα

K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Λογικές πύλες Περιεχόμενα 1 Λογικές πύλες

Διαβάστε περισσότερα

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing

Διαβάστε περισσότερα

Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα. Παπαπαύλου Χρήστος ΑΜ: 6609

Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα. Παπαπαύλου Χρήστος ΑΜ: 6609 Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα Παπαπαύλου Χρήστος ΑΜ: 6609 Αναπαράσταση μοντέλου Το 3D μοντέλο το αποθηκεύουμε στην μνήμη με τις εξής δομές δεδομένων: Λίστα κορυφών Λίστα τριγώνων

Διαβάστε περισσότερα

Αναγνώριση Υφολογικού Είδους Κειµένου µε τεχνικές Μηχανικής Μάθησης Η ιπλωµατική Εργασία παρουσιάστηκε ενώπιον του ιδακτικού Προσωπικού του Πανεπιστηµίου Αιγαίου Σε Μερική Εκπλήρωση των Απαιτήσεων για

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

BΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2005

BΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2005 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ BΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2005 ΛΥΣΕΙΣ Ι. Βασιλείου -----------------------------------------------------------------------------------------------------

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Επιστημονικός Υπολογισμός (set3) Δρ. Γιώργος Τσιρογιάννης

Επιστημονικός Υπολογισμός (set3) Δρ. Γιώργος Τσιρογιάννης Επιστημονικός Υπολογισμός (set3) Δρ. Γιώργος Τσιρογιάννης Μοντέλο Αριθμητικής και Σφάλματα υπολογισμού Απώλεια πληροφορίας λόγω: Μαθηματικής μοντελοποίησης και αποστεύσεων Διακριτοποίηση Σφάλματα στρογγύλευσης

Διαβάστε περισσότερα

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere

Διαβάστε περισσότερα

Η ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΣΤΟ ΣΥΓΧΡΟΝΟ ΠΕΡΙΒΑΛΛΟΝ

Η ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΣΤΟ ΣΥΓΧΡΟΝΟ ΠΕΡΙΒΑΛΛΟΝ Η ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΣΤΟ ΣΥΓΧΡΟΝΟ ΠΕΡΙΒΑΛΛΟΝ Ιόνιο Πανεπιστήµιο Τµήµα Αρχειονοµίας-Βιβλιοθηκονοµίας Μεταπτυχιακό Πρόγραµµα Σπουδών2007-2008 ιδάσκουσα: Κατερίνα Τοράκη (Οι διαλέξεις περιλαµβάνουν

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς ΙΙ Πειραιάς 2007 1 2 Από κοινού συνάρτηση πυκνότητας μιας δισδιάστατης συνεχούς τυχαίας μεταβλητής Μία διδιάστατη συνεχής τυχαία μεταβλητή

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης

ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Πανεπιστήµιο Κρήτης Τµήµα Επιστήµης Υπολογιστών ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Ονοµατεπώνυµο: Αριθµός Μητρώου: Επαναληπτική Εξέταση (3 ώρες) Ηµεροµηνία:

Διαβάστε περισσότερα

Απεικόνιση Υφής. Μέρος B Δημιουργία Συντεταγμένων Υφής

Απεικόνιση Υφής. Μέρος B Δημιουργία Συντεταγμένων Υφής Απεικόνιση Γραφικά ΥφήςΥπολογιστών Απεικόνιση Υφής Μέρος B Δημιουργία Συντεταγμένων Υφής Γ. Γ. Παπαϊωάννου, - 2008 Γενικά Είδαμε ότι μπορούμε να αποθηκεύσουμε συντεταγμένες υφής στις κορυφές των τριγώνων

Διαβάστε περισσότερα

Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ

Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ ΜΑΘΗΜΑ 1: Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ Τίποτε δεν θεωρώ μεγαλύτερο αίνιγμα από το χρόνο και το χώρο Εντούτοις, τίποτε δεν με απασχολεί λιγότερο από αυτά επειδή ποτέ δεν τα σκέφτομαι Charles

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

Δυαδικη παρασταση αριθμων και συμβολων

Δυαδικη παρασταση αριθμων και συμβολων Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a

Διαβάστε περισσότερα

Βάσεις Δεδομένων. Εργαστήριο ΙV. Τμήμα Πληροφορικής ΑΠΘ 2014-2015

Βάσεις Δεδομένων. Εργαστήριο ΙV. Τμήμα Πληροφορικής ΑΠΘ 2014-2015 Βάσεις Δεδομένων Εργαστήριο ΙV Τμήμα Πληροφορικής ΑΠΘ 2014-2015 2 Σκοπός του 4 ου εργαστηρίου Σκοπός αυτού του εργαστηρίου είναι: η μελέτη ερωτημάτων σύνδεσης η μελέτη ερωτημάτων συνάθροισης 3 Εκφράσεις

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. H διαδικασία ανεύρεσης λογικών λαθών περιλαμβάνει : β- Σωστό. Διαπίστωση του είδους του λάθους γ- Σωστό δ- Λάθος

ΑΠΑΝΤΗΣΕΙΣ. H διαδικασία ανεύρεσης λογικών λαθών περιλαμβάνει : β- Σωστό. Διαπίστωση του είδους του λάθους γ- Σωστό δ- Λάθος ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 08/04/2015 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΚΤΩ (8) ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α1. Α2. α-

Διαβάστε περισσότερα

Η έννοια της κοινωνικής αλλαγής στη θεωρία του Tajfel. Ο Tajfel θεωρούσε ότι η κοινωνική ταυτότητα είναι αιτιακός παράγοντας κοινωνικής αλλαγής.

Η έννοια της κοινωνικής αλλαγής στη θεωρία του Tajfel. Ο Tajfel θεωρούσε ότι η κοινωνική ταυτότητα είναι αιτιακός παράγοντας κοινωνικής αλλαγής. Η έννοια της κοινωνικής αλλαγής στη θεωρία του Tajfel. Ο Tajfel θεωρούσε ότι η κοινωνική ταυτότητα είναι αιτιακός παράγοντας κοινωνικής αλλαγής. Τρεις κατηγορίες κοινωνικών καταστάσεων είναι για τον Tajfel

Διαβάστε περισσότερα

Εξεταστέα Ύλη (Syllabus) Έκδοση 5.0

Εξεταστέα Ύλη (Syllabus) Έκδοση 5.0 Εξεταστέα Ύλη (Syllabus) Έκδοση 5.0 Πνευματικά Δικαιώματα 2007 Ίδρυμα ECDL (ECDL Foundation www.ecdl.org) Όλα τα δικαιώματα είναι κατοχυρωμένα. Κανένα μέρος αυτού του εγγράφου δεν μπορεί να αναπαραχθεί

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 7 Στατιστικός έλεγχος υποθέσεων ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/10/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/10/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 214-2 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/1/214 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

Επανάληψη Μιγαδικών Αριθμών

Επανάληψη Μιγαδικών Αριθμών Σήματα και Συστήματα ΗΜΥ0 //006 Επανάληψη Μιγαδικών Αριμών Δημήτρης Ηλιάδης, eldemet@ucy.ac.cy Που χρησιμεύει: Από τη εωρία των Σειρών Fourier, γνωρίζουμε πως οποιοδήποτε περιοδικό σήμα ανεξαρτήτως πολυπλοκότητας,

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΒΙΒΛΙΟΓΡΑΦΙΑ H.D. H.D. Young Πανεπιστημιακή Φυσική Εκδόσεις Παπαζήση Alonso Alonso / Finn Θεμελιώδης Πανεπιστημιακή Φυσική Α. Φίλιππας, Λ. Ρεσβάνης (Μετ.) R. A. Seway Φυσική

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 5(α): Συμπίεση Ευρετηρίου 1 ΣΤΑΤΙΣΤΙΚΑ ΣΥΛΛΟΓΗΣ 2 Κεφ. 5 Στατιστικά στοιχεία Πόσο μεγάλο είναι το

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

8. 1 Βαθμωτά και διανυσματικά πεδία

8. 1 Βαθμωτά και διανυσματικά πεδία 8. 1 Βαθμωτά και διανυσματικά πεδία Ας θεωρήσουμε τη συνάρτηση f : 2 Ø που έχει ως πεδίο ορισμού ολόκληρο το επίπεδο 2 και τύπο f Hx, yl = 2 xy. Επειδή τα στοιχεία του ονομάζονται και βαθμωτά, η παραπάνω

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΣΥΝΔΥΑΣΤΙΚΗΔΟΜΗ:

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα