Μοντέλα Ανάκτησης Ι (Retrieval Models)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μοντέλα Ανάκτησης Ι (Retrieval Models)"

Transcript

1 Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 006 Διάρθρωση HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Informaion Rerieval (IR) Sysems Μοντέλα Ανάκτησης Ι (Rerieval Models) Εισαγωγή στα Μοντέλα Άντλησης Κατηγορίες Μοντέλων Απόλυτο και Κάλλιστο (ή Βέλτιστο) Ταίριασμα (Exac vs Bes Mach) Τα κλασσικά μοντέλα ανάκτησης Το Boolean Μοντέλο Στατιστικά Μοντέλα - Βάρυνση Όρων Το Διανυσματικό Μοντέλο Το Εκτεταμένο Boolean μοντέλο (Exended Boolean Model) Γιάννης Τζίτζικας ιάλεξη : 3 Ημερομηνία : CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 Αναπαράσταση Εγγράφων: Πως βλέπουμε ένα έγγραφο; Πως βλέπουμε ένα έγγραφο; Ως έχει (full ex); Αγνοώνταςλέξειςπουδενφέρουννόημα(π.χ. τα άρθρα) ; Ως σάκο (bag) όρων ευρετηρίου (bag of index erms), δηλαδή αγνοώντας τη σειρά με την οποία εμφανίζονται οι λέξεις στο κείμενο; Ως σύνολο όρων ευρετηρίου (se of Index erms) Ως δομημένο έγγραφο (π.χ. hyerex, XML) Η απάντηση σε αυτό το ερώτημα θα καθορίσει τη μορφή του ευρετηρίου που πρέπει να κατασκευάσουμε. Ηαπάντησησεαυτότοερώτημαείναισυνυφασμένηκαι με το μοντέλο ανάκτησης που πρόκειται χρησιμοποιήσουμε. CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Μοντέλα Ανάκτησης Ένα μοντέλο ανάκτησης ορίζει Αναπαράσταση Εγγράφων Αναπαράσταση Επερωτήσεων Καθορίζει και ποσοτικοποιεί την έννοια της συνάφειας ο βαθμός συνάφειας μπορεί να είναι δίτιμος (π.χ. {,0}), ή συνεχής(π.χ. [0,]) Έστω D η συλλογή εγγράφων και Q το σύνολο όλων των πληροφοριακών αναγκών που μπορεί να έχει ένας χρήστης. Μπορούμε να δούμε ένα μοντέλο ανάκτησης πληροφορίας ως μια τετράδα [F, D, Q, R] όπου: F: πλαίσιο μοντελοποίησης εγγράφων, επερωτήσεων και των σχέσεων μεταξύ τους D: παράσταση εγγράφων D={ F(d) d D} Q: παράσταση επερωτήσεων Q={ F(q) q Q} R: συνάρτηση κατάταξης που αποδίδει μία τιμή σε κάθε ζεύγος (d,q) D x Q δίτιμη: R: D x Q [True/False] συνεχής R: D x Q [0,] CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Τα τμήματα της αρχιτεκτονικής που εμπλέκονται Κατηγορίες Μοντέλων Ανάκτησης (Ι) user need logical vie Query user feedback Oeraions query rerieved docs ranked docs Searching Ranking User Inerface Tex Oeraions logical vie invered file Indexing Index CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Tex Tex Corus Κλασσικά Μοντέλα Boolean Model Διανυσματικό (Vecor Sace) Πιθανοκρατικό (Probabilisic) Συνολοθεωρητικά (se heoreic) Εκτεταμένο Boolean (Exended Boolean Model) Fuzzy Model (Ασαφές Μοντέλο) Διανυσματικά (στατιστικά/αλγεβρικά) Γενικευμένο Διανυσματικό (Generalized Vecor Sace Model) Laen Semanic Indexing (Λανθάνων/Άδηλος/Υποβόσκων σημασιολογικός ευρετηριασμός) Μοντέλο Νευρωνικού Δικτύου (Neural Neork Model) CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 6

2 Κατηγορίες Μοντέλων Ανάκτησης (ΙΙ) Μια Ταξινομία των Μοντέλων Ανάκτησης Πιθανοκρατικά (Probabilisic) Inference Neork Model (Μοντέλο Δικτύου Επαγωγών) Belief Neork Model (Μοντέλο Δικτύου Πεποιθήσεων) Classic Models boolean vecor robabilisic Se Theoreic Fuzzy Exended Boolean Μοντέλα Βασισμένα στη Λογική Rerieval: Algebraic Generalized Vecor La. Semanic Index Neural Neorks Μοντέλα Δομημένου Κειμένου (Srucured Tex Rerieval Models) Non-Overlaing Liss Proximal Nodes Μοντέλα Ανάκτησης XML Εγγράφων Srucured Models Non-Overlaing Liss Proximal Nodes Probabilisic Inference Neork Belief Neork CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Exac vs. Bes Mach Rerieval Models Exac-mach (Απόλυτου Ταιριάσματος) μια επερώτηση καθορίζει αυστηρά (απόλυτα) κριτήρια ανάκτησης κάθε έγγραφο είτε ταιριάζει είτε όχι με μία επερώτηση το αποτέλεσμα είναι ένα σύνολο κειμένων Bes-mach (Κάλλιστου Ταιριάσματος) μια επερώτηση δεν περιγράφει αυστηρά κριτήρια ανάκτησης κάθε έγγραφο ταιριάζει σε μια επερώτηση σε ένα βαθμό το αποτέλεσμα είναι μια διατεταγμένη λίστα εγγράφων με ένα κατώφλι (στο βαθμό συνάφειας) μπορούμε να ελέγξουμε το μέγεθος της απάντησης «Μικτές προσεγγίσεις» συνδυασμός απόλυτου ταιριάσματος με τρόπους διάταξης του συνόλου της απάντησης E.g., bes-mach query language ha incororaes exac-mach oeraors Informaion Rerieval Models Boolean Rerieval Model Βελτίων = συγκριτικός του αγαθός CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Boolean Rerieval Model Έγγραφο = σύνολο λέξεων κλειδιών (keyords) Επερώτηση = Boolean έκφραση λέξεων κλειδιών (AND,OR, NOT, παρενθέσεις) πχ επερώτησης (( Cree AND Greece) OR (Oia AND Sanorini)) AND Hoel AND-NOT Hilon (( Cree & Greece) (Oia & Sanorini)) & Hoel &! Hilon Απάντηση= σύνολο εγγράφων απουσία διάταξης Παράσταση εγγράφων κατά το Boolean Model k k. k d d d n n n n i,j {0,} K={k,,k } : σύνολο όλων των λέξεων ευρετηρίασης Κάθε έγγραφο d j παριστάνεται με το διάνυσμα d j =(,j,,,j ) όπου: i,j = αν η λέξη k i εμφανίζεται στο κείμενο d j (αλλιώς i,j =0) CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006

3 Boolean Rerieval Model: Formally K={k,,k } : σύνολο όλων των λέξεων ευρετηρίασης Κάθε έγγραφο d j παριστάνεται με το διάνυσμα d j =(,j,,,j ) όπου: i,j = αν η λέξη k i εμφανίζεται στο κείμενο d j (αλλιώς i,j =0) Μια επερώτηση q είναι μια λογική έκφραση στο Κ, πχ: q = k and ( k or no k3)) δηλαδή q = k ( k k3)) q DNF = (k k k3) (k k k3) (k k k3) q DNF = (,,) (,,0) (,0,0) R(d,q)= True αν υπάρχει συζευκτική συνιστώσα του q με λέξεις των οποίων τα βάρη είναι τα ίδια με αυτά των αντίστοιχων λέξεων του εγγράφου d False, αλλιώς Boolean Rerieval Model: Ισοδύναμος ορισμός Αποτίμηση επερωτήσεων (με χρήση λογικής) ένα κείμενο d είναι μια σύζευξη όρων, όπου όρος μια λέξη σε θετική ή αρνητική μορφή (σε θετική αν εμφανίζεται στο κείμενο, αλλιώς σε αρνητική) μια επερώτηση q είναι μια οποιαδήποτε λογική έκφραση R(d,q)=True if and only if d =q δηλαδή αν κάθε ερμηνεία που αληθεύει το d αληθεύει και το q CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Boolean Rerieval Model: Ένας εναλλακτικός τρόπος ορισμού Μπορούμε να ορίσουμε ως ερμηνεία μιας λέξης (του Κ) το σύνολο των εγγράφων που την περιέχουν. Άρα η ερμηνεία είναι μια συνάρτηση Ι: K D που ορίζεται ως εξής: I(k) = { d d περιέχει τη λέξη κ} Έστω Ε το σύνολο των λογικών εκφράσεων με λέξεις από το σύνολο Κ. Μπορούμε να επεκτείνουμε μια ερμηνεία Ι του Κ σε μια ερμηνεία J τουεωςεξής J() = I() J(e e ) = J(e) J(e ) J(e e ) = J(e) J(e ) J(e e ) = J(e) \ J(e ) Ηαπάντησημιαςεπερώτησηςq (κατά το Boolean μοντέλο) είναι η εξής: ans(q) = J(q) Οι αδυναμίες του Boolean μοντέλου Η αδυναμία ελέγχου του μεγέθους της απάντησης Παράδειγμα: Anser( Chea Tickes Heraklion ) = Anser( Chea Tickes) = 000 Anser( Chea Heraklion) = 000 Anser( Tickes Heraklion ) = 000 Άρα είτε παίρνουμε μια απάντηση με ένα έγγραφο είτε ένα σύνολο 000 εγγράφων. :( CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Οι αδυναμίες του Boolean μοντέλου Άκαμπτο: AND σημαίνει όλα, OR σημαίνει οποιοδήποτε Δυσκολίες Ο έλεγχος του μεγέθους της απάντησης All mached documens ill be reurned Ικανοποιητική ακρίβεια (recision) συχνά σημαίνει απαράδεκτη ανάκληση (recall) Η διατύπωση των επερωτήσεων είναι δύσκολη για πολλούς χρήστες Η έκφραση σύνθετων πληροφοριακών αναγκών είναι δύσκολη Δεν μας λέει πώς να διατάξουμε την απάντηση All mached documens logically saisfy he query Τα μοντέλα κατάταξης (ranking models) έχουν αποδειχτεί καλύτερα στην πράξη Η υποστήριξη ανάδρασης συνάφειας δεν είναι εύκολη If a documen is idenified by he user as relevan or irrelevan, ho should he query by modified? [Τώραδουλεύουμεσεαυτό] CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Τα θετικά του Boolean μοντέλου Προβλέψιμο, εύκολα εξηγήσιμο Αποτελεσματικό όταν γνωρίζεις ακριβώς τι ψάχνεις και τι περιέχει ησυλλογή Αποδοτική υλοποίηση CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 8

4 Κοινά χαρακτηριστικά των Στατιστικών Μοντέλων Έγγραφο: σάκος (bag) λέξεων Bag = se ha allos mulile occurences of he same elemen So e vie a documen as an unordered se of ords ih frequencies Στατιστικά Μοντέλα Επερώτηση: Σύνολο όρων με προαιρετικά βάρη: Weighed query erms: q=<daabase 0.5, ex 0.8, informaion 0.> Uneighed query erms: q=<daabase ex informaion > No Boolean condiions secified in he query Απάντηση: Διατεταγμένο σύνολο συναφών εγγράφων υπολογίζεται βάσει των συχνοτήτων εμφάνισης των λέξεων στα έγγραφα και στις επερωτήσεις CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Στατιστικά Μοντέλα: Κρίσιμα Ερωτήματα Πώς να καθορίζουμε τη σπουδαιότητα ενός όρου σε ένα έγγραφο και στα πλαίσια ολόκληρης της συλλογής; Πώς να καθορίζουμε το βαθμό ομοιότητας μεταξύ ενός εγγράφου και μιας επερώτησης; Informaion Rerieval Models Vecor Sace Model (Διανυσματικό Μοντέλο) (το πιο διαδεδομένο μοντέλο ανάκτησης) CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 Διανυσματικό Μοντέλο: Εισαγωγή Παράσταση εγγράφων στο Διανυσματικό Μοντέλο K={k,,k } : σύνολο όλων των λέξεων ευρετηρίασης Κάθε έγγραφο d j παριστάνεται με ένα διάνυσμα d j =(,j,,,j ) όπου i,j [0,] (πχ i,j =0.3) Μια επερώτηση q παριστάνεται με ένα διάνυσμα q=(,q,,,q ) όπου πάλι i,q [0,] k k. k d d d n n n n i,j [0,] R(d,q) εκφράζει το βαθμό ομοιότητας των διανυσμάτων d και q K={k,,k } : σύνολο όλων των λέξεων ευρετηρίασης Κάθε έγγραφο d j παριστάνεται με το διάνυσμα d j =(,j,,,j ) όπου: i,j το βάρος της λέξης k i για το κείμενο d j CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 4

5 Βάρη Όρων: Συχνότητα όρου (f) Οι πιο συχνοί όροι σε ένα έγγραφο είναι πιο σημαντικοί (υποδηλώνουν το περιεχόμενο του) freq ij = πλήθος εμφανίσεων του όρου i στο έγγραφο j Κανονικοποίηση f ij =freq ij /max k {freq kj } όπου max k {freq kj } το μεγαλύτερο πλήθος εμφανίσεων ενός όρου στο έγγραφο j Παράδειγμα: Έστω το έγγραφο d = a a a a b b b c c c c freq a = 4, f a = 4/4= freq b = 3, f b = 3/4=0.75 CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Παράδειγμα d = { a a a b c } d = { a a a d e } d3 = { a a a f g} Το a λαμβάνει το μεγαλύτερο βάρος (άρα το μεγαλύτερο f) σε κάθε έγγραφο Ας σκεφτούμε ολόκληρη τη συλλογή. Μας επιτρέπει το a να διακρίνουμε τα κείμενα; Αν όχι μήπως δεν θα έπρεπε να λαμβάνει το μεγαλύτερο βάρος; Αν η συλλογή είχε μόνο αυτά τα 3 έγγραφα (και ήταν σταθερή) θα μπορούσαμε ακόμα και να αγνοήσουμε πλήρως τον όρο a από το ευρετήριο. CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Βάρη Όρων: Αντίστροφη Συχνότητα Εγγράφων (Inverse Documen Frequency) Ιδέα: Όροι που εμφανίζονται σε πολλά διαφορετικά έγγραφα έχουν μικρή διακριτική ικανότητα df i = documen frequency of erm i πλήθος εγγράφων που περιέχουν τον όρο i idf i = inverse documen frequency of erm i := log (N/ df i ) (N: συνολικό πλήθος εγγράφων) Το idf αποτελεί μέτρο της διακριτικής ικανότητας του όρου ο λογάριθμος ελαφραίνει το βάρος του idf σε σχέση με το f Παράδειγμα: Έστω Ν=0 και df comuer =0, df arisole =, Τότε, N/df comuer =0/0=, N/df arisole =0/=5 Τότε, idf comuer =log() =0, idf arisole =log(5)=.3 CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring TF-IDF Weighing (βάρυνση TF-IDF) k k. k d d d n n n n ij = f ij idf i = f ij log (N/ df i ) Ένας όρος που εμφανίζεται συχνά στο έγγραφο, αλλά σπάνια στην υπόλοιπη συλλογή, λαμβάνει υψηλό βάρος. Αν και έχουν προταθεί πολλοί άλλοι τρόποι βάρυνσης, το f-idf δουλεύει πολύ καλά στην πράξη. CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Παράδειγμα υπολογισμού TF-IDF Διάνυσμα Επερώτησης Έστω ένα έγγραφο που περιέχει όρους με τις εξής συχνότητες: Α(3), Β(), C(), πχ. d= A B A B C A Υποθέστε ότι η συλλογή περιέχει έγγραφα και οι συχνότητες κειμένου (documen frequencies) αυτών των όρων είναι: Α(50), Β(300), C(50) Τότε: Α: f=3/3; idf = log(0000/50)= 5.3; f-idf=5.3 B: f=/3; idf = log(0000/300)= ; f-idf=.3 C: f=/3; idf = log(0000/50)= 3.7; f-idf=. Τα διανύσματα των επερωτήσεων θεωρούνται ως έγγραφα και επίσης βαρύνονται με f-idf Μια επερώτηση δεν συγκροτείται πάντα από λίγες λέξεις. Μια επερώτηση μπορεί να έιναι μια παράγραφος κειμένου (ή ένα ολόκληρο έγγραφο) Εναλλακτικά, ο χρήστης μπορεί να δώσει τα βάρη των όρων της επερώτησης k k. k d d d n n n q q q n q i,j [0,] CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring

6 Διανυσματικό Μοντέλο: K={k,,k } : σύνολο όλων των λέξεων ευρετηρίασης Κάθε έγγραφο d j παριστάνεται με ένα διάνυσμα d j =(,j,,,j ) όπου i,j = f ij idf i Μια επερώτηση q παριστάνεται με ένα διάνυσμα q=(,q,,,q ) όπου πάλι i,q = f iq idf i R(d,q) =? Διανυσματικό Μοντέλο: Μέτρο Ομοιότητας Examle: D = T + 3T + 5T 3 D = 3T + 7T + T 3 Q = 0T + 0T + T 3 T 3 D = T + 3T + 5T 3 5 Q = 0T + 0T + T 3 3 T D = 3T + 7T + T 3 T 7 Is D or D more similar o Q? Ho o measure he degree of similariy? Disance? Angle? Projecion? CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Μέτρο Ομοιότητας: Εσωτερικό Γινόμενο (inner roduc) Η ομοιότητα μεταξύ των διανυσμάτων d και q ορίζεται ως το εσωτερικό τους γινόμενο: sim( dj, q) = dj q = ij iq i= όπου ij το βάρος του όρου i στο έγγραφο j και iq το βάρος του όρου i στην επερώτηση Για δυαδικά (0/) διανύσματα το εσωτερικό γινόμενο είναι ο αριθμός των mached query erms in he documen (άρα το μέγεθος της τομής) Για βεβαρημένα διανύσματα, είναι το άθροισμα των γινομένων των βαρών των mached erms CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Binary: Παράδειγμα d =,,, 0,,, 0 q =, 0,, 0, 0,, sim(d, q) = 3 rerieval daabase archiecure comuer ex managemen informaion Weighed: D = T + 3T + 5T 3 D = 3T + 7T + T 3 Q = 0T + 0T + T 3 sim(d, Q) = *0 + 3*0 + 5* = 0 sim(d, Q) = 3*0 + 7*0 + * = Size of vecor = size of vocabulary = 7 0 means corresonding erm no found in documen or query D = T + 3T + 5T 3 D = 3T + 7T + T 3 7 T CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring T 3 Q = 0T + 0T + T 3 3 T Ιδιότητες του Εσωτερικού Γινομένου Μέτρο Ομοιότητας Συνημίτονου (Cosine) Το εσωτερικό γινόμενο δεν είναι φραγμένο (unbounded) ευνοεί (μεροληπτεί) μεγάλα έγγραφα με μεγάλο πλήθος διαφορετικών όρων μετρά το πλήθος των όρων που κάνουν mach, αλλά αγνοεί αυτούς που δεν κάνουν mach Μετρά το συνημίτονο της γωνίας μεταξύ των διανυσμάτων 3 Εσωτερικό γινόμενο κανονικοποιημένο βάσει του μήκους των διανυσμάτων CosSim(d j, q) = d d j j q q = i = ( ij ij i = i = θ D iq ) θ iq Q D D = T + 3T + 5T 3 CosSim(D, Q) = 0 / (4+9+5)(0+0+4) = 0.8 D = 3T + 7T + T 3 CosSim(D, Q) = / (9+49+)(0+0+4) = 0.3 Q = 0T + 0T + T 3 D is 6 imes beer han D using cosine similariy bu only 5 imes beer using inner roduc. CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring

7 Διανυσματικό Μοντέλο: Παρατηρήσεις Πλεονεκτήματα Λαμβάνει υπόψη τις τοπικές (f) και καθολικές (idf) συχνότητες όρων Παρέχει μερικό ταίριασμα (arial maching) και διατεταγμένα αποτελέσματα Τείνει να δουλεύει καλά στην πράξη, παράτιςαδυναμίεςτου Αποδοτική υλοποίηση για μεγάλες συλλογές εγγράφων Αδυναμίες Απουσία Σημασιολογίας (π.χ. σημασίας λέξεων) Απουσία Συντακτικής Πληροφορίας (π.χ. δομή φράσης, σειρά λέξεων, εγγύτητα λέξεων) Υπόθεση Ανεξαρτησίας Όρων (π.χ. αγνοεί τα συνώνυμα) Έλλειψη ελέγχου ala Boolean model (π.χ. δεν μπορούμε να απαιτήσουμε την παρουσία ενός όρου στο έγγραφο) Given a o-erm query q= A B, may refer a documen conaining A frequenly bu no B, over a documen ha conains boh A and B bu boh less frequenly CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Περίληψη του Διανυσματικού Μοντέλου K={k,,k } : σύνολο όλων των λέξεων ευρετηρίασης Κάθε έγγραφο d j παριστάνεται με το διάνυσμα d j =(,j,,,j ) όπου ij = f ij idf i = f ij log (N/ df i ) Μια επερώτηση q παριστάνεται με το διάνυσμα q=(,q,,,q ) όπου iq = f iq idf i = f iq log (N/ df i ) R(d j,q) = CosSim(d j, q) = d j q d j q CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring = i = i ( ij ij = i = iq ) iq Υπολογισμός του βαθμού συνάφειας Απλοϊκή Υλοποίηση ) Φτιάξε το f-idf διάνυσμα για κάθε έγγραφο dj hs συλλογής (έστω V το λεξιλόγιο) ) Φτιάξε το f-idf διάνυσμα q της επερώτησης 3) Για κάθε έγγραφο d j του D Υπολόγισε το σκορ s j = cossim(d j, q) 4) Διέταξε τα έγγραφα σε φθίνουσα σειρά 5) Παρουσίασε τα έγγραφα στο χρήστη Χρονική πολυπλοκότητα του βήματος (3): O( V D ) Πολύ ακριβό αν τα V και D είναι μεγάλα! V = 0,000; D = 00,000; V D =,000,000,000 Υπολογισμός του βαθμού συνάφειας Καλύτερη (γρηγορότερη) Υλοποίηση Ένας όρος που δεν εμφανίζεται και στην επερώτηση και στο έγγραφο δεν επηρεάζει το βαθμό ομοιότητας συνημίτονου Το γινόμενο των βαρών είναι 0 και άρα δεν συνεισφέρει στο εσωτερικό γινόμενο Συνήθως η επερώτηση είναι μικρή, άρα το διάνυσμα της είναι εξαιρετικά «αραιό» => Μπορούμε να χρησιμοποιήσουμε ένα ευρετήριο ώστε να υπολογίσουμε το βαθμό ομοιότητας μόνο εκείνων των εγγράφων που περιέχουν τουλάχιστον έναν όρο της επερώτησης. 3) Για κάθε έγγραφο d j του D Υπολόγισε το σκορ s j = cossim(d j, q) 3 ) Για κάθε έγγραφο d j που περιέχει τουλάχιστον έναν όρο του query Υπολόγισε το σκορ s j = cossim(d j, q) Απλοϊκό Καλύτερο CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Υπολογισμός του βαθμού συνάφειας Καλύτερη (γρηγορότερη) Υλοποίηση (ΙΙ) Q = k k k n D D B D D B D n D nb Ας υποθέσουμε ότι ένας όρος της επερώτησηςεμφανίζεταισεb έγγραφα Τότε η χρονική πολυπλοκότητα είναι O( Q B) Informaion Rerieval Models Exended Boolean Model Το κόστος αυτό είναι συνήθως πολύ μικρότερο του κόστους του απλοϊκού τρόπου (που είχε πολυπλοκότητα Ο( V D ), διότι: Q << V, δηλαδή ο αριθμός των λέξεων στην επερώτησης είναι πολύ μικρότερος του συνολικού αριθμού των λέξεων, και B << D, δηλαδή το πλήθος των έγγράφων που έχουν μια λέξη είναι πολύ μικρότερο του πλήθους των εγγράφων της συλλογής. CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring 006 4

8 Exended Boolean Model Κίνητρο Το Boolean model είναι απλό και κομψό αλλά δεν παρέχει κατάταξη (διαβάθμιση των συναφών εγγράφων) Προσέγγιση Επέκταση του Boolean model με βάρυνση όρων και μερικό ταίριασμα Σκεπτικό / Κίνητρο Έστω q = k x ky. Σύμφωνα με το Boolean model ένα έγγραφο που περιέχει μόνο ένα από τα k x, k y είναι μη-συναφές, και μάλιστα τόσο μη-συναφές, όσο ένα έγγραφο που δεν περιέχει κανένα από τους όρους. Συνδιασμός χαρακτηριστικών του Vecor model και ιδιοτήτων της Boolean algebra [Salon, Fox, and Wu, 983] CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Έστω ότι έχουμε μόνο δύο όρους k x, k y Μπορούμε να θεωρήσουμε κάθε όρο ως μια διάσταση Άρα έγγραφα και επερωτήσεις απεικονίζονται στο D χώρο. Ένα έγγραφο d j τοποθετείται βάσει των, βαρών x,j και y,j. Έστω ότι τα βάρη αυτά είναι κανονικοποιημένα στο [0,], π.χ. : Ηγενικήιδεά (0,) (,) d j+ k y d j (0,) (,) k y d j+ x,j = f x,j idf x y,j = f y,j idf y Για συντομία έστω x = x,j και y = y,j Άρα οι συντεταγμένες του dj είναι οι (x,y) CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring (0,0) (,0) k x Έστω q OR =k x v k y Το σημείο (0,0) είναι η θέση προς αποφυγή. Άραμπορούμεναθεωρήσουμετην απόσταση του dj απόαυτότοσημείο ως το βαθμό ομοιότητας d j (0,0) (,0) k x Έστω q AND =k x Λ k y Το σημείο (,) είναι η πιο επιθυμητή θέση. Άραμπορούμεναθεωρήσουμετο συμπλήρωμα της απόστασης του dj από αυτό το σημείο ως βαθμό ομοιότητας CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Ηγενικήιδεά(ΙΙ) (0,) (,) d j+ k y d j (0,) (,) k y d j+ Γενικεύοντας την ιδέα (για > όρους) Μπορούμε να γενικεύσουμε το προηγούμενο μοντέλο χρησιμοποιώντας την Ευκλείδεια απόσταση στον -διάστατο χώρο Αυτό μπορεί να γίνει χρησιμοποιώντας -norms που γενικεύουν την έννοια της απόστασης, όπου. (0,0) (,0) k x Le q OR =k x v k y x + y sim( q OR, d) = d j (0,0) (,0) k x Le q AND =k x Λ k y ( x) + ( y) sim( q AND, d) = Διαζευκτικές επερωτήσεις q OR = k V k V.. V km Συζευκτικές επερωτήσεις q AND = k Λ k Λ... Λ km sim sim ( x x x m qor, d) m = ( ( x x ) ( m) qand, d) m = ( for normalisaion o [0,]) CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring

9 Ισομετρικές καμπύλες ( x + y ) Μερικές ενδιαφέρουσες ιδιότητες L L L x + y = ( x + y ) = max( x, y) = Μεταβάλλοντας το, μπορούμε να κάνουμε το μοντέλο να συμπεριφέρεται όπως το Vecor, το Fuzzy (που θα δούμε στο επόμενο μάθημα), ή ενδιάμεσα σε αυτά τα δυο. Αν = τότε (Vecor like) sim(q OR,dj) = sim(q AND,dj) = x xm m Αν = τότε (Fuzzy like) sim(q OR,dj) = max (x i ) sim(q AND,dj) = min (x i ) Ερώτηση: Που πήγαν οι όροι της επερώτησης; CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Σύνθετες επερωτήσεις Έστω q = (k Λ k) V k3 Εφαρμόζουμε τους ορισμούς σεβόμενοι τη σειρά, εδώ: ( x x ) ( ) + / ( ( ) ) + x 3 sim( q, d ) = Μερικές Παρατηρήσεις Είναι αρκετά ισχυρό μοντέλο με ενδιαφέρουσες ιδιότητες Η επιμεριστική ιδιότητα δεν ισχύει: q = (k k) k3 q = (k k3) (k k3) sim(q,dj) sim(q,dj) Έστω q = (k V k) Λ k3 K and k should be used as in a vecor sysem bu he resence of k3 is required CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring Διάρθρωση Εισαγωγή στα Μοντέλα Άντλησης Κατηγορίες Μοντέλων Απόλυτο και Κάλλιστο (ή Βέλτιστο) Ταίριασμα (Exac vs Bes Mach) Τα κλασσικά μοντέλα ανάκτησης Το Boolean Μοντέλο Στατιστικά Μοντέλα - Βάρυνση Όρων Το Διανυσματικό Μοντέλο Το Εκτεταμένο Boolean μοντέλο (Exended Boolean Model) CS463 - Informaion Rerieval Sysems Yannis Tzizikas, U. of Cree, Sring

Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth.

Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth. Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth.gr/~tzitzik/ Γιατοπιθανοτικότουκαθ. Απ. Παπαδόπουλου (Αριστοτέλειο Παν.) Κεφάλαιο 2

Διαβάστε περισσότερα

Τι (άλλο) θα δούμε σήμερα;

Τι (άλλο) θα δούμε σήμερα; Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη6: Βαθμολόγηση. Στάθμιση όρων. Το μοντέλο διανυσματικού χώρου. 1 Κεφ. 6 Τι (άλλο) θα δούμε σήμερα;

Διαβάστε περισσότερα

Εργαστήριο Σημασιολογικού Ιστού

Εργαστήριο Σημασιολογικού Ιστού Εργαστήριο Σημασιολογικού Ιστού Ενότητα 8: Εισαγωγή στη SPARQL Βασική Χρήση Μ.Στεφανιδάκης 3-5-2015. Η γλώσσα ερωτημάτων SPARQL Ερωτήσεις (και ενημερώσεις) σε σετ δεδομένων RDF Και σε δεδομένα άλλης μορφής

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή 1

Κεφάλαιο 1. Εισαγωγή 1 Κεφάλαιο 1. Εισαγωγή 1 1.1 Η ανάγκη για Ανάκτηση Πληροφορίας Η επιστήµη της Ανάκτησης Πληροφορίας (ΑΠ στο εξής), ασχολείται µε την αναπαράσταση, την αποθήκευση, την οργάνωση και την πρόσβαση σε πληροφοριακά

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

Η ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΣΤΟ ΣΥΓΧΡΟΝΟ ΠΕΡΙΒΑΛΛΟΝ

Η ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΣΤΟ ΣΥΓΧΡΟΝΟ ΠΕΡΙΒΑΛΛΟΝ Η ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΣΤΟ ΣΥΓΧΡΟΝΟ ΠΕΡΙΒΑΛΛΟΝ Ιόνιο Πανεπιστήµιο Τµήµα Αρχειονοµίας-Βιβλιοθηκονοµίας Μεταπτυχιακό Πρόγραµµα Σπουδών2007-2008 ιδάσκουσα: Κατερίνα Τοράκη (Οι διαλέξεις περιλαµβάνουν

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 12 Δομές (Structures) Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Αφαιρετικότητα Με τις συναρτήσεις επιτυγχάνουμε αφαιρετικότητα

Διαβάστε περισσότερα

Εξεταστέα Ύλη (Syllabus) Έκδοση 5.0

Εξεταστέα Ύλη (Syllabus) Έκδοση 5.0 Εξεταστέα Ύλη (Syllabus) Έκδοση 5.0 Πνευματικά Δικαιώματα 2007 Ίδρυμα ECDL (ECDL Foundation www.ecdl.org) Όλα τα δικαιώματα είναι κατοχυρωμένα. Κανένα μέρος αυτού του εγγράφου δεν μπορεί να αναπαραχθεί

Διαβάστε περισσότερα

Οικονοµικό Πανεπιστήµιο Αθηνών. ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Ανάπτυξη φίλτρου διήθησης ηλεκτρονικής αλληλογραφίας για το Mozilla Thunderbird» ηµήτρης Μπόχτης

Οικονοµικό Πανεπιστήµιο Αθηνών. ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Ανάπτυξη φίλτρου διήθησης ηλεκτρονικής αλληλογραφίας για το Mozilla Thunderbird» ηµήτρης Μπόχτης Οικονοµικό Πανεπιστήµιο Αθηνών ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Ανάπτυξη φίλτρου διήθησης ηλεκτρονικής αλληλογραφίας για το Mozlla Thunderbrd» ηµήτρης Μπόχτης Επιβλέπων: Ίων Ανδρουτσόπουλος ΑΘΗΝΑ, ΟΚΤΩΒΡΙΟΣ 2007 Περιεχόµενα

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

Πληρουορική Γ Γσμμασίοσ

Πληρουορική Γ Γσμμασίοσ Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:

Διαβάστε περισσότερα

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας. Φροντιστήριο 3

Ανάκτηση Πληροφορίας. Φροντιστήριο 3 Ανάκτηση Πληροφορίας Φροντιστήριο 3 Τσιράκης Νίκος Νοέμβριος 2007 2 Περιεχόμενα Ανεστραμμένα Αρχεία Εισαγωγή Δημιουργία Συμπίεση Πιθανοτικά Μοντέλα 3 Ανεστραμμένα Αρχεία 4 Εισαγωγή Με ποιους τρόπους μπορούμε

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη 5(α): Συμπίεση Ευρετηρίου 1 ΣΤΑΤΙΣΤΙΚΑ ΣΥΛΛΟΓΗΣ 2 Κεφ. 5 Στατιστικά στοιχεία Πόσο μεγάλο είναι το

Διαβάστε περισσότερα

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ENOTHTA. ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΜΕΡΟΣ ο. Πώς προσδιορίζουμε τη θέση των αντικειμένων; A O M B ' y P Ì(,y) Ð Για τον προσδιορισμό της θέσης πάνω σε μία ευθεία πρέπει να έχουμε ένα σημείο της

Διαβάστε περισσότερα

ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης

ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Πανεπιστήµιο Κρήτης Τµήµα Επιστήµης Υπολογιστών ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Ονοµατεπώνυµο: Αριθµός Μητρώου: Επαναληπτική Εξέταση (3 ώρες) Ηµεροµηνία:

Διαβάστε περισσότερα

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου 1 ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΚΑΙ ΠΡΟΤΕΡΑΙΟΤΗΤΑ ΠΡΑΞΕΩΝ 1.1 Προτεραιότητα Πράξεων Η προτεραιότητα των πράξεων είναι: (Από τις πράξεις που πρέπει να γίνονται πρώτες,

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο. Εξαγωγή σχέσεων μεταξύ οντοτήτων από το αρχείο της εφημερίδας «ΤΑ ΝΕΑ» με χρήση τεχνικών μη-επιβλεπόμενης μάθησης

Εθνικό Μετσόβιο Πολυτεχνείο. Εξαγωγή σχέσεων μεταξύ οντοτήτων από το αρχείο της εφημερίδας «ΤΑ ΝΕΑ» με χρήση τεχνικών μη-επιβλεπόμενης μάθησης Εθνικό Μετσόβιο Πολυτεχνείο Σχολη Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων Τομεας Τεχνολογιας Πληροφορικης και Υπολογιστων Εξαγωγή σχέσεων μεταξύ οντοτήτων από το αρχείο της εφημερίδας «ΤΑ ΝΕΑ»

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

Λογικά Διανύσματα. >>x = -3/2*pi : pi/100 : 3/2*pi; >>y = tan(x); >>plot(x, y)

Λογικά Διανύσματα. >>x = -3/2*pi : pi/100 : 3/2*pi; >>y = tan(x); >>plot(x, y) Λογικά Διανύσματα Τα λογικά διανύσματα του Matlab είναι πολύ χρήσιμα εργαλεία. Για παράδειγμα ας υποθέσουμε ότι θέλουμε να κάνουμε την γραφική παράσταση της tan(x) στο διάστημα από -3π/2 μέχρι 3π/2. >>x

Διαβάστε περισσότερα

Βάσεις δεδομένων. (10 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr

Βάσεις δεδομένων. (10 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Βάσεις δεδομένων (10 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Περιεχόμενα Ευρετήρια Σκανδάλες PL/SQL Δείκτες/Δρομείς 2 Αποθήκευση δεδομένων Πρωτεύουσα αποθήκευση Κύρια μνήμη (main memory) ή κρυφή μνήμη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΉΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/tst25 e-ail:

Διαβάστε περισσότερα

«Μηχανή Αναζήτησης Αρχείων» Ημερομηνία Παράδοσης: 30/04/2015, 09:00 π.μ.

«Μηχανή Αναζήτησης Αρχείων» Ημερομηνία Παράδοσης: 30/04/2015, 09:00 π.μ. ΕΡΓΑΣΙΑ 4 «Μηχανή Αναζήτησης Αρχείων» Ημερομηνία Παράδοσης: 30/04/2015, 09:00 π.μ. Στόχος Στόχος της Εργασίας 4 είναι να η εξοικείωση με την αντικειμενοστρέφεια (object oriented programming). Πιο συγκεκριμένα,

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client ΕΣΔ 516 Τεχνολογίες Διαδικτύου Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client Περιεχόμενα Περιεχόμενα Javascript και HTML Βασική σύνταξη Μεταβλητές Τελεστές Συναρτήσεις

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

SOAP API. https://bulksmsn.gr. Table of Contents

SOAP API. https://bulksmsn.gr. Table of Contents SOAP API https://bulksmsn.gr Table of Contents Send SMS...2 Query SMS...3 Multiple Query SMS...4 Credits...5 Save Contact...5 Delete Contact...7 Delete Message...8 Email: sales@bulksmsn.gr, Τηλ: 211 850

Διαβάστε περισσότερα

Ανάκτηση Δεδομένων (Information Retrieval)

Ανάκτηση Δεδομένων (Information Retrieval) Ανάκτηση Δεδομένων (Information Retrieval) Παύλος Εφραιμίδης Βάσεις Δεδομένων Ανάκτηση Δεδομένων 1 Information Retrieval (1) Βάσεις Δεδομένων: Περιέχουν δομημένη πληροφορία: Πίνακες Ανάκτηση Πληροφορίας

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Περίληψη Αλγόριθµοι τύπου Brute-Force Παραδείγµατα Αναζήτησης Ταξινόµησης Πλησιέστερα σηµεία Convex hull Βελτιστοποίηση Knapsack problem Προβλήµατα Ανάθεσης

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 5/06/2015 ΤΑΞΗ: A Αριθμητικά... ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... Ολογράφως:...

Διαβάστε περισσότερα

Ευφυείς Τεχνικές για Εφαρμογές Αποθετηρίων

Ευφυείς Τεχνικές για Εφαρμογές Αποθετηρίων Ευφυείς Τεχνικές για Εφαρμογές Αποθετηρίων Α.-Γ. Σταφυλοπάτης Ερευνητικό Πανεπιστημιακό Ινστιτούτο Συστημάτων Επικοινωνιών και Υπολογιστών Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

Κεφάλαιο 14. οµές Ευρετηρίων για Αρχεία. ιαφάνεια 14-1

Κεφάλαιο 14. οµές Ευρετηρίων για Αρχεία. ιαφάνεια 14-1 ιαφάνεια 14-1 Κεφάλαιο 14 οµές Ευρετηρίων για Αρχεία Copyright 2007 Ramez Elmasri and Shamkant B. NavatheΕλληνικήΈκδοση, ιαβλος, Επιµέλεια Μ.Χατζόπουλος 1 Θα µιλήσουµε για Τύποι Ταξινοµηµένων Ευρετηρίων

Διαβάστε περισσότερα

Παρουσίαση Παρεχόμενων Υπηρεσιών Πληροφορικής της DBS AE

Παρουσίαση Παρεχόμενων Υπηρεσιών Πληροφορικής της DBS AE Παρουσίαση Παρεχόμενων Υπηρεσιών Πληροφορικής της DBS AE Βασικές Παρεχόμενες Υπηρεσίες Α. Διαδικασία Μετάπτωσης Δεδομένων Β. Μεθοδολογία Ψηφιοποίησης Εγγράφων Γ. Οργάνωση και Τεκμηρίωση Υλικού Δ. Διαχείριση

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαχείριση ιαμερίσεων Συνόλου Στοιχεία

Διαβάστε περισσότερα

Μονάδες 12 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

Μονάδες 12 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 5 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος»

Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος» Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος» Σωτήρης Τσαντίλας (PhD, MSc), Μαθηματικός Αστροφυσικός Σύντομη περιγραφή: Χρησιμοποιώντας δεδομένα από το διαστημικό τηλεσκόπιο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Robert Sedgewick, Αλγόριθμοι σε C, Μέρη 1-4 (Θεμελιώδεις Έννοιες, Δομές Δεδομένων, Ταξινόμηση,

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1 ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 00 ΘΕΜΑ : (α) Ταχύτητα ΚΜ: u KM = mu + mu m = u + u Εποµένως u = u u + u = u u, u = u u + u = u u (β) Διατήρηση ορµής στο ΚΜ: mu + mu = mv + mv u + u = V + V = 0 V = V

Διαβάστε περισσότερα

Enhancing the Teaching and Learning of Early Statistical Reasoning in European Schools

Enhancing the Teaching and Learning of Early Statistical Reasoning in European Schools Enhancing the Teaching and Learning of Early Statistical Reasoning in European Schools SOCRATES-COMENIUS Action Project 226573-CP-1-2005-1-CY-COMENIUS-C21 Διδακτικό Σενάριο 9 Συγγραφική Ομάδα: Universidad

Διαβάστε περισσότερα

ECDL Module 5 Χρήση Βάσεων εδοµένων Εξεταστέα Ύλη, έκδοση 5.0 (Syllabus Version 5.0)

ECDL Module 5 Χρήση Βάσεων εδοµένων Εξεταστέα Ύλη, έκδοση 5.0 (Syllabus Version 5.0) ECDL Module 5 Χρήση Βάσεων εδοµένων Εξεταστέα Ύλη, έκδοση 5.0 (Syllabus Version 5.0) (Module 5 Using Databases) Συνολική ιάρκεια: Προτεινόµενο * Χρονοδιάγραµµα Εκπαίδευσης 10-16 (δέκα έως δεκαέξι) ώρες

Διαβάστε περισσότερα

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis)

ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΚΕΦΑΛΑΙΟ 23 ΜΕΤΑ-ΑΝΑΛΥΣΗ (Meta-Analysis) ΕΙΣΑΓΩΓΗ Έχοντας παρουσιάσει τις βασικές έννοιες των ελέγχων υποθέσεων, θα ήταν, ίσως, χρήσιμο να αναφερθούμε σε μια άλλη περιοχή στατιστικής συμπερασματολογίας

Διαβάστε περισσότερα

Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ

Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Εκθετική Παράσταση (Exponential Notation) Οι επόµενες είναι ισοδύναµες παραστάσεις του 1,234 123,400.0

Διαβάστε περισσότερα

METALIB Σύστημα μετα-αναζήτησης για ηλεκτρονικές πηγές πληροφόρησης

METALIB Σύστημα μετα-αναζήτησης για ηλεκτρονικές πηγές πληροφόρησης METALIB Σύστημα μετα-αναζήτησης για ηλεκτρονικές πηγές πληροφόρησης Βιβλιοθήκη & Κέντρο Πληροφόρησης, Πανεπιστημίου Λευκωσίας E-mail: libithelp@unic.ac.cy Τηλ: 22444772 Έκδοση: Μάρτιος 2013 (ES, GC, KP)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI Δομές Ευρετηρίων και Κατακερματισμός Αρχείων II Β. Μεγαλοοικονόμου Δ. Χριστοδουλάκης (παρουσίαση βασισμένη εν μέρη σε σημειώσεις των Silberchatz, Korth και

Διαβάστε περισσότερα

Μεταφραστής (Compiler)

Μεταφραστής (Compiler) Windows Καθαρισµος οθονης cls Unix clear Τελεστες ανακατευθυνσης > > >> >> < < Εντολες σε αρχεια * * (wild card) del Α rm Α ιαγραφη type Α cat Α Εµφανιση copy Α Β cp Α Β Αντιγραφη ren Α Β mv Α Β Αλλαγη

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

Enhancing the Teaching and Learning of Early Statistical Reasoning in European Schools

Enhancing the Teaching and Learning of Early Statistical Reasoning in European Schools Enhancing the Teaching and Learning of Early Statistical Reasoning in European Schools SOCRATES-COMENIUS Action Project 226573-CP-1-2005-1-CY-COMENIUS-C21 Διδακτικό Σενάριο 7 Συγγραφική Ομάδα: Cyprus College,

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 3 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων Επανάληψη: Διακριτά στοιχεία μηχανικών δυναμικών συστημάτων Δυναμικά

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΟΜΑΔΑ Α Α1. Για τις ημιτελείς προτάσεις Α1.1 και Α1. να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές

Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Μορφές Εντολών Είδη εντολών Απλές εντολές Εκτελούν κάποια ενέργεια Εντολές ελέγχου Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Εντολές και παραστάσεις Μιαεντολήείναιμιαπαράστασηπου ακολουθείται

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης ΚΕΦΑΛΑΙΟ 1ο 3ο 1. Συμπληρώστε τα κενά με τη λέξη που λείπει. α. Ένα πρόβλημα το χωρίζουμε σε άλλα απλούστερα, όταν είναι ή όταν έχει τρόπο επίλυσης. β. Η επίλυση ενός προβλήματος προϋποθέτει την του. γ.

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ O z είναι πραγματικός, αν και μόνο αν Ο z είναι φανταστικός, αν και μόνο αν β) Αν και να αποδείξετε ότι ο αριθμός είναι πραγματικός, ενώ ο αριθμός είναι φανταστικός. 9. Να βρείτε το γεωμετρικό τόπο των

Διαβάστε περισσότερα

Περιεχόμενα. Πίνακας συμβόλων σελίδα 10 Πρόλογος 13

Περιεχόμενα. Πίνακας συμβόλων σελίδα 10 Πρόλογος 13 Περιεχόμενα Πίνακας συμβόλων σελίδα 10 Πρόλογος 13 1 Ανάκτηση Boole 21 1.1 Παράδειγμα προβλήματος ανάκτησης πληροφοριών 23 1.2 Μια πρώτη ματιά στη δημιουργία αντεστραμμένων ευρετηρίων 27 1.3 Επεξεργασία

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ

ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ ΕΙΣΑΓΩΓΗ ΠΙΝΑΚΩΝ ΣΤΟ MATHLAB Αν θέλουμε να εισάγουμε έναν πίνακα στο mathlab και να προβληθεί στην οθόνη βάζουμε τις τιμές του σε άγκιστρα χωρίζοντάς τις με κόμματα ή κενό

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. Ερώτηση 1 Κατά τη Φυσική Αποθήκευση (Physical storage) μιας ΒΔ αποθηκεύονται στον δίσκο τα:

ΘΕΜΑΤΑ. Ερώτηση 1 Κατά τη Φυσική Αποθήκευση (Physical storage) μιας ΒΔ αποθηκεύονται στον δίσκο τα: ΘΕΜΑΤΑ Θέμα 1 ο Σε μία βάση δεδομένων χρηματιστηριακών συναλλαγών υπάρχουν οι παρακάτω πίνακες που αποτελούνται από τα εξής πεδία : : ΚΣ, ΗΜΝΙΑ, ΩΡΑ, ΚΜ, ΤΙΜΗ ΜΕΤΟΧΗ : ΚΜ, ΟΝΟΜΑ, ΕΤΟΣ_ΙΔΡΥΣΗΣ, ΚΚ, ΚΑΤΗΓΟΡΙΑ

Διαβάστε περισσότερα

Διαδανεισμός, Πρωτόκολλο z39.50 Στρατηγικές αναζήτησης

Διαδανεισμός, Πρωτόκολλο z39.50 Στρατηγικές αναζήτησης Διαδανεισμός, Πρωτόκολλο z39.50 Στρατηγικές αναζήτησης Σεμινάρια Βιβλιοθηκονόμων ΕΠΕΑΕΚ 2000 Φίλιππος Τσιμπόγλου Διευθυντής Βιβλιοθήκης Πανεπιστημίου Κύπρου e-mail ftsimp@ucy.ac.cy 2 3 Πρωτόκολλο Z.3950

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2008 ΔΙΔΑΣΚΩΝ: ΑΝΤΩΝΙΟΣ ΣΑΒΒΙΔΗΣ ΒΑΣΙΚΗ ΕΡΓΑΣΙΑ ΦΑΣΗ 2η από 5 Παράδοση: Πέμπτη 10 Απριλίου 2008, 24:00 (μεσάνυχτα)

Διαβάστε περισσότερα

Μέρος Γ Συστήματα Ομοτίμων (Peer to Peer Systems) και Ανάκτηση Πληροφοριών

Μέρος Γ Συστήματα Ομοτίμων (Peer to Peer Systems) και Ανάκτηση Πληροφοριών HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Μέρος Γ Συστήματα Ομοτίμων (Peer to Peer Systems) και Ανάκτηση Πληροφοριών CS463 - Information Retrieval Yannis Tzitzikas, U.

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Οργάνωση εδομένων Κεφάλαιο 11ο ομές εδομένων

Εισαγωγή στην επιστήμη των υπολογιστών. Οργάνωση εδομένων Κεφάλαιο 11ο ομές εδομένων Εισαγωγή στην επιστήμη των υπολογιστών Οργάνωση εδομένων Κεφάλαιο 11ο ομές εδομένων 1 ομή εδομένων Μια δομή δεδομένων (data structure) χρησιμοποιεί μια συλλογή από σχετικές μεταξύ τους μεταβλητές, οι οποίες

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07 Ακαδ έτος 2007-2008 ΠΛΗΡΟΦΟΡΙΚΗ Ι Φερεντίνος 22/11/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με ΑΜ σε 3, 7, 8 & 9 22/11/07 Παράδειγμα με if/else if και user input: import javautil*; public class Grades public

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ.Χατζόπουλος 2 Δένδρο αναζήτησης είναι ένας ειδικός τύπος δένδρου που χρησιμοποιείται για να καθοδηγήσει την αναζήτηση μιας

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων

Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιγραφή

Διαβάστε περισσότερα

Διόρθωση Περιεχομένου ΑΞΙΟΛΟΓΗΣΗ - ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ. Μιχαλέας Σωτήρης, Φαρμακοποιός MSc. PhD

Διόρθωση Περιεχομένου ΑΞΙΟΛΟΓΗΣΗ - ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ. Μιχαλέας Σωτήρης, Φαρμακοποιός MSc. PhD ΕΘΝΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΦΑΡΜΑΚΩΝ Η νέα κατευθυντήρια οδηγία που αφορά σε μελέτες βιοϊσοδυναμίας: Νομικό πλαίσιο Ευρωπαϊκή πραγματικότητα Εξελίξεις ΑΞΙΟΛΟΓΗΣΗ - ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Μιχαλέας Σωτήρης, Φαρμακοποιός

Διαβάστε περισσότερα

Σύβακας Σταύρος ΠΕ19,MSc. IT ΣΥΒΑΚΑΣ ΣΤΑΥΡΟΣ ΕΡΩΤΗΜΑΤΑ

Σύβακας Σταύρος ΠΕ19,MSc. IT ΣΥΒΑΚΑΣ ΣΤΑΥΡΟΣ ΕΡΩΤΗΜΑΤΑ Σύβακας Σταύρος ΠΕ19,MSc. IT Εισαγωγή Τα ερωτήματα (queries) είναι μία από τις πιο σημαντικές δυνατότητες που προφέρει ένα Σ%Β% αφού επιτρέπουν: Ανάκτηση και ανάλυση των δεδομένων στην επιθυμητή μορφή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2010 Ι ΑΣΚΩΝ: ΑΝΤΩΝΙΟΣ ΣΑΒΒΙ ΗΣ ΒΑΣΙΚΗ ΕΡΓΑΣΙΑ ΦΑΣΗ 2η από 5 Ανάθεση: Πέµπτη 15 Απριλίου 2010, 11:00 (πρωί)

Διαβάστε περισσότερα

Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Αυτοματισμού. Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου. Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB

Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Αυτοματισμού. Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου. Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB Σχολή Τεχνολογικών Εφαρμογών Τμήμα Αυτοματισμού Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB Επιμέλεια: Ξανθή Παπαγεωργίου E-mail: xanthi.papageorgiou@gmail.com Τμήματα:

Διαβάστε περισσότερα