ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 2 του βιβλίου. 2 ο ΜΕΡΟΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 2 του βιβλίου. 2 ο ΜΕΡΟΣ"

Transcript

1 ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) Για το πιθανοκρατικό του καθ. Απ. Παπαδόπουλου (Αριστοτέλειο Παν.) Κεφάλαιο 2 του βιβλίου 2 ο ΜΕΡΟΣ 1 Information Retrieval Models Probabilistic Model Ανάκτηση Πληροφορίας,

2 Κλασικά Μοντέλα Ανάκτησης Τρία είναι τα, λεγόμενα, κλασικά μοντέλα ανάκτησης: Λογικό (Boolean) που βασίζεται στη Θεωρία Συνόλων Διανυσματικό (Vector) που βασίζεται στη Γραμμική Άλγεβρα Πιθανοκρατικό (Probabilistic) που βασίζεται στη Θεωρία Πιθανοτήτων To Διανυσματικό και το Πιθανοκρατικό έχουν σημαντική επικάλυψη αν και στηρίζονται σε εντελώς διαφορετικές θεωρίες. Πιθανοκρατικό Μοντέλο Στόχος: να ορίσουμε το IR πρόβλημα σε πιθανοτικό πλαίσιο Για κάθε ερώτηση q (επερώτημα) υπάρχει ένα ιδανικό σύνολο κειμένων (R) που το ικανοποιεί. Επεξεργαζόμαστε την ερώτηση με βάση τις ιδιότητες αυτού του συνόλου. Ποιες είναι όμως αυτές οι ιδιότητες; Αρχικά γίνεται μία πρόβλεψη και στη συνέχεια η πρόβλεψη βελτιώνεται. Ανάκτηση Πληροφορίας,

3 Πιθανοκρατικό Μοντέλο Αρχικά επιστρέφεται ένα σύνολο εγγράφων. Ο χρήστης εξετάζει τα κείμενα αναζητώντας σχετικά κείμενα. Το σύστημα IR χρησιμοποιεί το feedback του χρήστη ώστε να προσδιοριστεί καλύτερα το ιδανικό σύνολο κειμένων. Η διαδικασία επαναλαμβάνεται. Η περιγραφή του ιδανικού συνόλου κειμένων πραγματοποιείται πιθανοτικά. Ανεξάρτητες Μεταβλητές και Πιθανότητα υπό Συνθήκη Έστω a, και b δύο γεγονότα με πιθανότητες να συμβούν P(a) και P(b) αντίστοιχα. Ανεξάρτητα Γεγονότα Τα γεγονότα a και b είναι ανεξάρτητα αν και μόνο αν: P(a b) = P(b) P(a) Υπό Συνθήκη Πιθανότητα P(a b) είναι η πιθανότητα του a δεδομένου του b. Τα γεγονότα a 1,..., a n καλούνται υπό συνθήκη ανεξάρτητα αν και μόνο αν: P(a i a j ) = P(a i ) για όλα τα i και j Ανάκτηση Πληροφορίας,

4 Παράδειγμα Ι a a είναι η άρνηση του γεγονότος a a b w x z y b P(a) = x + y P(b) = w + x P(a b) = x / (w + x) P(a b) P(b) = P(a b) = P(b a) P(a) Παράδειγμα ΙΙ Ανεξάρτητα γεγονότα Έστω a και b οι τιμές που φέρνουν δύο ίδια ζάρια. Ισχύει: P(a=5 b=3) = P(a=5) = 1 /6 Μη ανεξάρτητα Έστω a και b οι τιμές που φέρνουν δύο ίδια ζάρια και t το άθροισμά τους. Τότε ισχύει: t = a + b P(t=8 a=2) = 1 /6 P(t=8 a=1) = 0 Ανάκτηση Πληροφορίας,

5 Θεώρημα του Bayes Έστω a και b δύο γεγονότα. P(a b) είναι η πιθανότητα να συμβεί το γεγονός a δεδομένου ότι έχει συμβεί το γεγονός b. Θεώρημα Bayes P(a b) = P(b a) P(a) P(b) Ισχύει επίσης ότι: P(a b) P(b) = P(a b) = P(b a) P(a) Θεώρημα Bayes: παράδειγμα Example a βάρος πάνω από 100 κιλά b ύψος πάνω από 2 μέτρα. P(a b) = x / (w+x) = x / P(b) P(b a) = x / (x+y) = x / P(a) x = P(a b) > 100 κιλά x w y > 2 μέτρα z Ανάκτηση Πληροφορίας,

6 Αρχή Πιθανοκρατικής Κατάταξης Probabilistic Ranking Principle (PRP) "If a reference retrieval system s response to each request is a ranking of the documents in the collections in order of decreasing probability of usefulness to the user who submitted the request, where the probabilities are estimated as accurately a possible on the basis of whatever data is made available to the system for this purpose, then the overall effectiveness of the system to its users will be the best that is obtainable on the basis of that data." Εάν η απάντηση ενός συστήματος ανάκτησης σε κάθε ερώτημα είναι μία λίστα εγγράφων ταξινομημένη με φθίνουσα διάταξη ως προς την πιθανότητα σχετικότητας του κάθε εγγράφου ως προς το χρήστη, όπου οι πιθανότητες υπολογίζονται όσο γίνεται ακριβέστερα με βάση τα δεδομένα που είναι διαθέσιμα, η συνολική αποτελεσματικότητα του συστήματος θα είναι η καλύτερη δυνατή. W.S. Cooper Πιθανοκρατική Βαθμολόγηση Για ένα δεδομένο ερώτημα, εάν γνωρίζουμε κάποια από τα σχετικά έγγραφα, οι όροι που εμφανίζονται σε αυτά θα πρέπει να έχουν μεγαλύτερη βαρύτητα κατά την αναζήτηση άλλων σχετικών εγγράφων. Κάνοντας διάφορες παραδοχές σχετικά με την κατανομή των όρων και χρησιμοποιώντας το θεώρημα του Bayes είναι δυνατόν να υπολογίσουμε τα βάρη αυτά. Van Rijsbergen Ανάκτηση Πληροφορίας,

7 Βασικές Έννοιες Η πιθανότητα ένα έγγραφο να είναι σχετικό ως προς το ερώτημα θεωρείται ότι εξαρτάται μόνο από τους όρους που περιέχονται στο έγγραφο και από τους όρους που περιέχονται στο ερώτημα. Η σχετικότητα ενός εγγράφου d ως προς το ερώτημα q δεν εξαρτάται από τη σχετικότητα άλλων εγγράφων της συλλογής. Για κάποιο ερώτημα q το σύνολο των σχετικών εγγράφων R είναι το ιδανικό σύνολο που μπορούμε να έχουμε ως απάντηση. Βασικές Έννοιες Για ένα ερώτημα q και ένα έγγραφο d το πιθανοκρατικό μοντέλο χρειάζεται μία εκτίμηση για την πιθανότητα P(R d) που δηλώνει την πιθανότητα το έγγραφο d να είναι σχετικό ως προς το ερώτημα. P(R d) πιθανότητατοέγγραφοναείναισχετικόμετοερώτημα P(R d) πιθανότητα το έγγραφο να μην είναι σχετικό με το ερώτημα Μέτρο Ομοιότητας (odds of being relevant to q): S(q, d), ομοιότητα του εγγράφου d ως προς το ερώτημα q: πιθανότητα d σχετικό P(R d) = πιθανότητα d μη σχετικό P(R d) Οι τιμές της S( ) μπορεί να είναι από πολύ μικρές έως πολύ μεγάλες και για αυτό χρησιμοποιείται συνήθως ο λογάριθμος για την άμβλυνση των διαφορών. Ανάκτηση Πληροφορίας,

8 Βασικές Έννοιες S (q, d) = P(R d) P(R d) P(d R) P(R) = θεώρημα Bayes P(d R) P(R) P(d R) είναι η πιθανότητα να διαλέξουμε τυχαία το έγγραφο d από τη συλλογή των σχετικών με την ερώτηση εγγράφων R. P(d R) P(R) P(d R) P(R) Ίδια (σταθερά) για όλα τα έγγραφα της συλλογής (έστω μια σταθερά k) Άραπρέπειναεκτιμήσουμε/υπολογίσουμε αυτές τις πιθανότητες Πως; Κοιτάμε τους όρους (terms) που εμφανίζονται στο d Βασικές Έννοιες P(d R) P(R) P(d R) P(R) P(d R): Πιθανότητα να επιλέξουμε το έγγραφο d από τα σχετικά με την ερώτηση Θα χρησιμοποιήσουμε τους όρους k i που έχει το έγγραφο d για να την υπολογίσουμε Ανάκτηση Πληροφορίας,

9 Βασικές Έννοιες Ανάκτηση Δυαδικής Ανεξαρτησίας Βinary Ιndependence Retrieval (BIR) Τα βάρη των όρων είναι δυαδικά και οι όροι είναι ανεξάρτητοι μεταξύ τους (η παρουσία ή μη κάποιου όρου δεν επηρεάζει τους υπόλοιπους). Το βάρος ενός όρου σε ένα έγγραφο είναι είτε 1 (αν ο όρος περιέχεται στο έγγραφο) είτε 0 (σε διαφορετική περίπτωση). Όπως και στο Λογικό αλλά και στο Διανυσματικό μοντέλο, η σχετικότητα ενός εγγράφου καθορίζεται από τους όρους που περιέχονται σε αυτό. Naïve Bayes Έστω x = (x 1, x 2,... x n ) το διάνυσμα του εγγράφου d όπου x i = 1 αν ο i-οστός όρος περιέχεται στο έγγραφο, x i = 0 διαφορετικά. Η εκτίμηση της πιθανότητας P(d R) γίνεται χρησιμοποιώντας την πιθανότητα P(x R) Εάν οι όροι είναι ανεξάρτητοι τότε: P(x R) = P(x 1 R) P(x 2 R)... P(x n R) = P(x 1 R) P(x 2 R)... P(x n R) = P(x i R) P(x i R) είναι η πιθανότητα ο όρος x i να βρίσκεται σε ένα έγγραφο που επιλέγεται τυχαία από το ιδανικό σύνολο R. Αντίστοιχα P(x i R) Το μοντέλο αυτό είναι γνωστό και ως Naive Bayes Ανάκτηση Πληροφορίας,

10 Συνάρτηση Ομοιότητας S(q, d) = k P(x i R) P(x i R) Αφού το κάθε x i είναι 0 ή 1 έχουμε: P(x i = 1 R) P(x i = 0 R) S = k x i = 1 P(x i = 1 R) x i = 0 P(x i = 0 R) Το σπάμε: όροι που το x i είναι 1 καιόροιπουτοx i είναι 0 Συνάρτηση Ομοιότητας Για τους όρους που εμφανίζονται στο ερώτημα θέτουμε: p i = P(x i = 1 R) r i = P(x i = 1 R) Για τους όρους που δεν εμφανίζονται στο ερώτημα έστω: p i = r i όροι με q i = 0 είναι ίσοι με p i /r i = 1 S = k = k p i πιθανότητα ότι ένα έγγραφο που επιλέγεται από το ιδανικό σύνολο έχει τον όρο x i -- ένας όρος εμφανίζεται σε ένα ιδανικό έγγραφο r i τοίδιογιατομηιδανικό p i 1 - p i x i = q i = 1 r i x i = 0, q i = r i p i (1 - r i ) 1 - p i x i = q i = 1 r i (1 - p i ) q i = r i Πολλαπλασιάζουμε το δεξί γινόμενο με τους όρους που υπάρχουν στο έγγραφο και διαιρούμε το αριστερό γινόμενο με τον ίδιο όρο σταθερή ποσότητα για δεδομένο ερώτημα (ανεξάρτητη του εγγράφου) Ανάκτηση Πληροφορίας,

11 Συνάρτηση Ομοιότητας Με λογαρίθμηση της σχέσης και αγνοώντας σταθερούς παράγοντες η συνάρτηση ομοιότητας S prob (q,d) παίρνει τη μορφή: S prob (q,d) = log (S(q,d)) S prob ( q, d ) = pi (1 ri ) log r (1 p ) Όπου η άθροιση αφορά στους όρους που βρίσκονται και στo ερώτημα και στο έγγραφο. i i i Σχέση με το Διανυσματικό Μοντέλο Στο Διανυσματικό μοντέλο ανάκτησης θεωρήστε ότι η i-οστή συνιστώσα του διανύσματος ενός εγγράφου (βάρος) ισούται με την ποσότητα pi (1 ri ) log r (1 p ) i i ενώ το διάνυσμα του ερωτήματος q ισούται με άσσους για τους όρους που ανήκουν στο ερώτημα και μηδενικά διαφορετικά. Τότε, η συνάρτηση ομοιότητας S prob (q,d) ισούται με το εσωτερικό γινόμενο των δύο διανυσμάτων. Αλλάζουμε μόνο τον τρόπο που υπολογίζονται τα βάρη Ανάκτηση Πληροφορίας,

12 Αρχική Εκτίμηση των P(x i R) Αρχικά θέτουμε τιμές στις πιθανότητες : όπου: p i = P(x i R) = c r i = P(x i R) = n i / N p i πιθανότητα ότι ένα έγγραφο που επιλέγεται από το ιδανικό σύνολο έχει τον όρο x i r i τοίδιογιατομηιδανικό c είναι μία τυχαία σταθερά (π.χ., 0.5) ίδια για όλους τους όρους (δεν επηρεάζουν) η κατανομή των όρων ανάμεσα στα μη σχετικά ακολουθεί την κατανομή που ακολουθεί σε όλη τη συλλογή δεν επηρεάζει την επιλογή n i είναι το πλήθος των εγγράφων που περιέχουν τον i-οστό όρο N πλήθος εγγράφων συλλογής (document frequency) The document ranking is determined simply by which query terms appear in the document scaled by their idf weighting Προσαρμογή Τιμών των P(x i R) Είναι προφανές ότι η αυθαίρετη ανάθεση τιμών δεν μπορεί να οδηγεί πάντα σε ικανοποιητικά αποτελέσματα. Για τη βελτίωση της ποιότητας των αποτελεσμάτων οι πρώτες εφαρμογές του Πιθανοκρατικού μοντέλου χρειάζονταν την παρέμβαση του χρήστη για την αναπροσαρμογή των τιμών. Εναλλακτικά μπορεί να χρησιμοποιηθεί και αυτοματοποιημένος τρόπος. Αρχικά εκτελείται το ερώτημα με τις αρχικές εκτιμήσεις. Επιλέγονται τα k καλύτερα έγγραφα. Έστω k i ο αριθμός των εγγράφων που περιέχουν τον i-οστό όρο. Θέτουμε: p i = P(x i R) = k i / k r i = P(x i R) = (n i - k i ) / (N - k) Ανάκτηση Πληροφορίας,

13 Υποθέσεις Υποθέσεις 1. Δυαδική αναπαράσταση ερωτημάτων και κειμένων (0,1 (υπάρχει/δεν υπάρχει ο όρος) 2. Ανεξαρτησία όρων 3. Όροι που δεν εμφανίζονται στην ερώτηση δεν επηρεάζουν το αποτέλεσμα 4. Οι τιμές σχετικότητας των εγγράφων είναι ανεξάρτητες μεταξύ τους (επιλογή όμοιων (ή σχεδόνόμοιων) εγγράφων Πλεονεκτήματα-Μειονεκτήματα Πλεονεκτήματα: 1. Απλό μοντέλο 2. Τα κείμενα ταξινομούνται σε φθίνουσα διάταξη ως προς την πιθανότητα να είναι σχετικά Θεωρητικό τρόπο ορισμού της σχετικότητας Μειονεκτήματα: 1. Χρειάζεται να μαντέψουμε 2. Δε λαμβάνεται υπ όψιν η συχνότητα εμφάνισης 3. Θεωρείότιοιόροιείναιανεξάρτητοι Ανάκτηση Πληροφορίας,

14 Μια Ταξινομία των Μοντέλων Ανάκτησης Set Theoretic Retrieval: Classic Models boolean vector probabilistic Structured Models Non-Overlapping Lists Proximal Nodes Fuzzy Extended Boolean Algebraic Generalized Vector Lat. Semantic Index Neural Networks Probabilistic Inference Network Belief Network CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 27 Information Retrieval Models Extended Boolean Model Ανάκτηση Πληροφορίας,

15 Extended Boolean Model Κίνητρο Το Boolean model είναι απλό και κομψό αλλά δεν παρέχει κατάταξη (διαβάθμιση των συναφών εγγράφων) Προσέγγιση Επέκταση του Boolean model με βάρυνση όρων και μερικό ταίριασμα Συνδυασμός χαρακτηριστικών του Vector model και ιδιοτήτων της Boolean algebra [Salton, Fox, and Wu, 1983] 29 Σκεπτικό / Κίνητρο Έστω q = k x ky. Σύμφωνα με το Boolean model ένα έγγραφο που περιέχει μόνο ένα από τα k x, k y είναι μη-συναφές, και μάλιστα τόσο μησυναφές, όσοέναέγγραφοπουδενπεριέχεικανένα από τους 2 όρους. CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 30 Ανάκτηση Πληροφορίας,

16 Extended Boolean Model Έστω ότι έχουμε μόνο δύο όρους k x, k y Μπορούμε να θεωρήσουμε κάθε όρο ως μια διάσταση Άρα έγγραφα και επερωτήσεις απεικονίζονται στο 2D χώρο. Ένα έγγραφο d j τοποθετείται βάσει των, βαρών w x,j και w y,j. Έστω ότι τα βάρη αυτά είναι κανονικοποιημένα στο [0,1], π.χ. : w x,j = tf x,j idf x w y,j = tf y,j idf y Για συντομία έστω: x = w x,j και y = w y,j Άρα οι συντεταγμένες του d j είναι οι (x, y) 31 Ηγενικήιδέα (0,1) (1,1) d j+1 (0,1) (1,1) k y k y d j+1 d j (0,0) (1,0) k x Έστω q OR =k x v k y Το σημείο (0,0) είναι η θέση προς αποφυγή. Άραμπορούμεναθεωρήσουμετην απόσταση του d j απόαυτότοσημείο ως το βαθμό ομοιότητας (όσο πιο μακριά, τόσο πιο όμοιο) d j (0,0) (1,0) k x Έστω q AND =k x Λ k y Το σημείο (1,1) είναι η πιο επιθυμητή θέση. Άραμπορούμεναθεωρήσουμετο συμπλήρωμα της απόστασης του d j από αυτό το σημείο ως το βαθμό ομοιότητας (όσο πιο κοντά, τόσο πιο όμοιο) 32 Ανάκτηση Πληροφορίας,

17 Ηγενικήιδεά(ΙΙ) (0,1) (1,1) d j+1 (0,1) (1,1) k y k y d j+1 d j (0,0) (1,0) Let q OR =k x v k y k x 2 x + y sim( q OR, d) = 2 2 d j (0,0) (1,0) Let q AND =k x Λ k y k x 2 (1 x) + (1 y) sim( q AND, d) = ( 2 for normalisation to [0,1]) Όταν δυαδικά βάρη (0, 1); 33 Γενικεύοντας την ιδέα (για >2 όρους) Μπορούμε να γενικεύσουμε το προηγούμενο μοντέλο χρησιμοποιώντας την Ευκλείδεια απόσταση στον t-διάστατο χώρο Μπορεί να γενικευτεί επίσης χρησιμοποιώντας p-norms που γενικεύουν την έννοια της απόστασης, όπου 1 p.(ευκλείδεια, p = 2) Διαζευκτικές επερωτήσεις q OR = k1 V k2 V..V km Συζευκτικές επερωτήσεις q AND = k1 Λ k2 Λ...Λ km sim sim 1 p p p ( x x x p m qor, d) m = 1 p p ( (1 x x p 1 ) (1 m) qand, d) 1 m = 34 Ανάκτηση Πληροφορίας,

18 Μερικές ενδιαφέρουσες ιδιότητες Μεταβάλλοντας το p, μπορούμε να κάνουμε το μοντέλο να συμπεριφέρεται όπως το Vector, το Fuzzy, ή ενδιάμεσα σε αυτά τα δυο. Αν p = 1 τότε (Vector like) sim(q OR,d j ) = sim(q AND,d j ) = x x m m Αν p = τότε (Fuzzy like) sim(q OR,d j ) = max (x i ) sim(q AND,d j ) = min (x i ) Σε αυτήν την περίπτωση απλώς αθροίζουμε τα βάρη Ερώτηση: Που πήγαν οι όροι της επερώτησης; 35 Σύνθετες επερωτήσεις Έστω q = (k 1 Λ k 2 ) V k 3 Εφαρμόζουμε τους ορισμούς σεβόμενοι τη σειρά, εδώ: sim( q (1 x1 ) (1 (, d ) = p + (1 x 2 2 p 2 ) 1/ p p ) ) + x p 3 1 p Έστω q = (k 1 V 2 k 2 ) Λ k 3 k 1 and k 2 should be used as in a vector system but the presence of k 3 is required 36 Ανάκτηση Πληροφορίας,

19 Μερικές Παρατηρήσεις Είναι αρκετά ισχυρό μοντέλο με ενδιαφέρουσες ιδιότητες Η επιμεριστική ιδιότητα δεν ισχύει: q 1 = (k 1 k 2 ) k 3 q 2 = (k 1 k 3 ) (k 2 k 3 ) sim(q 1,d j ) sim(q 2,d j ) 37 Ισομετρικές καμπύλες p p p ( x + y ) L 1 L 2 L x + y = 1 ( x + y ) = 1 max( x, y) = 1 Το σύνολο των διανυσμάτων που έχουν νόρμα 1 38 Ανάκτηση Πληροφορίας,

20 Information Retrieval Models Fuzzy Set-based Retrieval Model Μοντέλα Βασισμένα στη Θεωρία Ασαφών Συνόλων (Fuzzy Set-based Retrieval Models) Κίνητρο Επέκταση του Boolean model με μερικό ταίριασμα (και άρα με δυνατότητες διαβάθμισης των στοιχείων των απαντήσεων) Τι είναι ένα ασαφές σύνολο; «Κλασσικά» σύνολα (crispy or Boolean sets): ένα στοιχείο ανήκει ή δεν ανήκει Ασαφή σύνολα: ένα στοιχείο του συνόλου ανήκει με ένα βαθμό συμμετοχής (<=1) Ιδέα: Κάθε όρος της ερώτησης ένα ασαφές σύνολο Ένα έγγραφο ανήκει σε αυτό το ασαφές σύνολο του όρου με ένα βαθμό 40 Ανάκτηση Πληροφορίας,

21 Μοντέλα Βασισμένα στη Θεωρία Ασαφών Συνόλων (Fuzzy Set-based Retrieval Models) Έχουν προταθεί αρκετά μοντέλα που βασίζονται σε fuzzy sets. Εδώ θα δούμε δύο: Ένα απλό μοντέλο που βασίζεται σε TF-IDF και fuzzy theory Το μοντέλο που προτάθηκε στο [Ogawa, Morita, and Kobayashi, 1991] 41 Background: Fuzzy Set Theory [Zadeh 1965] Framework for representing classes whose boundaries are not well defined Key idea is to introduce the notion of a degree of membership (βαθμός συμμετοχής) associated with the elements of a set This degree of membership varies from 0 to 1(τιμές στο διάστημα [0, 1]) and allows modeling the notion of marginal membership Thus, membership is now a gradual notion, contrary to the crispy notion enforced by classic Boolean logic 42 Ανάκτηση Πληροφορίας,

22 Background: Fuzzy Set Theory [Zadeh 1965] U: universe of discourse A fuzzy subset A of U is characterized by a membership function μ A (u) : U [0,1] which associates with each element u of U a number μ A (u) in [0,1] Βασικές πράξεις σε ασαφή σύνολα (συμπλήρωμα, τομή και ένωση) Let A and B be two fuzzy subsets of U, and A be the complement of A. Then, μ A (u) = 1 - μ A (u) μ A B (u) = max(μ A (u), μ B (u)) μ A B (u) = min(μ A (u), μ B (u)) 43 A Simple Retrieval Model based on Fuzzy Theory Παράσταση εγγράφων k 1 k 2. k t d 1 w 11 w 21 w t1 d 2 w 12 w 22 w t2 : : : : : : : : d n w 1n w 2n w tn w i,j [0,1] K={k 1,,k t } : σύνολο όλων των λέξεων ευρετηρίασης Κάθε έγγραφο d j παριστάνεται με το διάνυσμα d j =(w 1,j,,w t,j ) όπου w i,j το βάρος της λέξης k i για το κείμενο d j για παράδειγμα w i,j = tf ij idf i 44 Ανάκτηση Πληροφορίας,

23 A Simple Retrieval Model based on Fuzzy Theory Boolean Queries and Ranking Function Μια επερώτηση q είναι μια λογική έκφραση στο Κ, πχ: q = k1 and ( k2 or not k3)) δηλαδή q = k1 ( k2 k3)) R(d j, q) = μ q (d j ) άρα είναι ο βαθμός συμμετοχής του d j στο σύνολο που προσδιορίζεται από τη λογική έκφραση q. Μπορούμε να υπολογίσουμε το R(d j,q) βάσει των κανόνων της θεωρίας των Fuzzy sets, θεωρώντας ότι R(d j, t i ) = μ ti (d j ) = w i,j Για παράδειγμα R(d j, t1 v t2) = max (R(d j, t1), R(d j, t2)) = max (w 1j, w 2j ). R(d j, t1 t2) = min (R(d j, t1), R(d j, t2)) = min (w 1j, w 2j ). 45 A Simple Retrieval Model based on Fuzzy Theory Παρατηρήσεις Έστω q = k x k y. Σύμφωνα με το Boolean model ένα έγγραφο που περιέχει μόνο έναv από τους όρους k x, k y είναι μη-συναφές, και μάλιστα τόσο μησυναφές, όσο ένα έγγραφο που δεν περιέχει κανένα από τους 2 όρους. Ερώτηση: Τι συμβαίνει εδώ; Απάντηση: Το ίδιο Έστω q = k x v k y. Σύμφωνα με το Boolean model ένα έγγραφο που περιέχει και τους δύο όρους (k x, k y ) είναι το ίδιο συναφές, με ένα έγγραφο που περιέχει έναν από τους 2 όρους. Ερώτηση: Τι συμβαίνει εδώ; Απάντηση:... Άρα το παρόν μοντέλο διαβαθμίζει τα στοιχεία της απάντησης του q = k x v ky (κάτι που δεν είναι δυνατό με το Boolean Μοντέλο). Το παρόν είναι μια ειδική περίπτωση του Εxtended Boolean Model (συγκεκριμένα αντιστοιχεί στην περίπτωση που p = ). 46 Ανάκτηση Πληροφορίας,

24 A Simple Retrieval Model based on Fuzzy Theory Παρατηρήσεις Πως θα υπολογίζουμε τη συνάρτηση συμμετοχής 47 [Ogawa, Morita, and Kobayashi,1991] Ανάκτηση Πληροφορίας,

25 Fuzzy Set Retrieval Model [Ogawa, Morita, and Kobayashi,1991] Εδώ θα δούμε το μοντέλο που προτάθηκε στο [Ogawa,Morita, Kobayashi,1991) Βασική Ιδέα: Έγγραφα και επερωτήσεις παριστάνονται με σύνολα όρων ευρετηρίου (εδώ δεν έχουμε βάρη στο [0,1]) Κάθε όρος συσχετίζεται με ένα fuzzy set Κάθε έγγραφο έχει ένα degree of membership σε αυτό το fuzzy set Παράδειγμα: Έστω επερώτηση q = αυτοκίνητο Έστω έγγραφο d1 που δεν περιέχει τη λέξη αυτοκίνητο αλλά περιέχει τη λέξη «όχημα». Αν υπάρχουν πολλά έγγραφα που περιέχουν και τις δυο λέξεις, τότε, υπάρχει ισχυρή συσχέτιση των δυο αυτών λέξεων, και => άρα το d1 μπορεί να θεωρηθεί συναφές με την επερώτηση q. 49 Fuzzy Set Retrieval Model Πίνακας Συσχέτισης (correlation matrix) και εγγύτητα όρων Πίνακα συσχέτισης μεταξύ των όρων term-term correlation matrix ή keyword connection matrix k 1 k 2. k t k 1 c 11 c 21 c t1 k 2 c 12 c 22 c t2 : : : : : : : : k t c 1n c 2n c tn Ορίζουμε ποσοτικά την εγγύτητα (proximity) μεταξύ δυο όρων k i και k l -> ως την συν-εμφάνισή τους στα έγγραφα της συλλογής c i,l = n i,l n i + n l -n i,l where: n i,l : number of docs which contain both k i and k l n i : number of docs which contain k i n l : number of docs which contain k l 50 Ανάκτηση Πληροφορίας,

26 Fuzzy Set Retrieval Model Πίνακας Συσχέτισης (correlation matrix) και εγγύτητα όρων k 1 k 2. k t k 1 c 11 c 21 c t1 k 2 c 12 c 22 c t2 : : : : : : : : k t c 1n c 2n c tn c(i, l) = c i,l = n i,l n i + n l -n i,l where: n i,l : number of docs which contain both k i and k l n i : number of docs which contain k i n l : number of docs which contain k l Τέτοιες πίνακες είναι αρκετά συνηθισμένοι (θα τους ξαναδούμε σε αλγόριθμους clustering) Πχ n il =0 => c il =0 n il =3, n i =3, n l =9 => c il =0.3 n il =3, n i =3, n l =30 => c il =0.1 n il =3, n i =3, n l =3 => c il =1 51 Fuzzy Set Retrieval Model Μορφή Ευρετηρίου: όπως και στο Boolean model. w i,j {0,1} k 1 k 2. k t d 1 w 11 w 21 w t1 d 2 w 12 w 22 w t2 : : : : : : : : d n w 1n w 2n w tn K={k 1,,k t }: σύνολο όλων των λέξεων ευρετηρίασης Κάθε έγγραφο d j παριστάνεται με το διάνυσμα d j =(w 1,j,,w t,j ) όπου: w i,j = 1 αν η λέξη k i εμφανίζεται στο κείμενο d j (αλλιώς w i,j =0) Βάσει αυτού του πίνακα θα δημιουργήσουμε έναν πίνακα συσχέτισης όρων (για να καταχωρήσουμε σχέσεις όπως «αυτοκίνητο» «όχημα») 52 Ανάκτηση Πληροφορίας,

27 Fuzzy Set Retrieval Model [Ogawa, Morita, and Kobayashi,1991] Έστω όρος k i και έγγραφο d j θέλουμε το βαθμό συμμετοχής του εγγράφου στο ασαφές σύνολο που ορίζει το k i (συνάρτηση συμμετοχής μ i ) μ i (j) = Σ c i,w k w d j Άθροισμα του βαθμού συσχέτισης του k i με τους όρους που εμφανίζονται στο d j (θεωρούμε άθροισμα αντί για max, πιο ήπια διαβάθμιση) = 1 - Π (1 - c i,w ) k w dj Βασίζεται στο: ( A i ) c = A i c A i = Ω- ( A i ) c = Ω- A i c Για παράδειγμα έστω ότι το έγγραφο d j δεν περιέχει τον όρο k i Αν το έγγραφο d j περιέχει έναν όρο k w που σχετίζεται ισχυρά με τον k i τότε θα έχουμε c iw ~ 1 και άρα θα μπορούσαμε να θεωρήσουμε ότι μ i (j) ~ 1. Με άλλα λόγια, αν και ο όρος k i δεν εμφανίζεται στο d j, εντούτοις περιγράφει το περιεχόμενο του d j 53 Fuzzy Set Retrieval Model Fuzzy Information Retrieval Έστω q σε DNF q = cc1 v v cck, όπου cci είναι μια συζευκτική συνιστώσα Σύμφωνα με τη fuzzy set theory: μ q (j)= max(μ cc1 (j),, μ cck (j)) Παρά ταύτα, εδώ προτείνεται η χρήση αθροίσματος αντί του μεγίστου. R(d j,q) = μ q (d j ) = Σ μ cc (d j ) για κάθε συζευκτική συνιστώσα cc του q DNF CS-463, Information Retrieval Systems Yannis Tzitzikas, U. of Crete 54 Ανάκτηση Πληροφορίας,

28 Fuzzy Set Retrieval Model Παράδειγμα q = ka (kb kc) vec(q dnf ) = (1,1,1) + (1,1,0) + (1,0,0) = vec(cc1) + vec(cc2) + vec(cc3) cc3 D(ka) D(kb) cc2 cc1 D(kc) // documents containing the term kc 55 Fuzzy Set Retrieval Model Παράδειγμα (II) q = ka (kb kc) vec(q dnf ) = (1,1,1) + (1,1,0) + (1,0,0) = vec(cc1) + vec(cc2) + vec(cc3) μ q (d j ) = μ cc1+cc2+cc3 (d j ) = 1 - Π (1 - μ cci (d j )) i=1..3 = 1 - (1- [1,1,1]) * (1 - [1,1,0]) * (1 - [1,0,0] ) μ a (d j ) μ b (d j ) μ c (d j )) μ a (d j ) μ b (d j ) (1-μ c (d j ))) μ a (d j ) (1- μ b (d j )) (1-μ c (d j ))) CS-463, Information Retrieval Systems Yannis Tzitzikas, U. of Crete 56 Ανάκτηση Πληροφορίας,

29 Fuzzy Set Retrieval Model Σύνοψη K={k 1,,k t } : σύνολο όλων των λέξεων ευρετηρίασης Κάθε έγγραφο d j παριστάνεται με το διάνυσμα d j =(w 1,j,,w t,j ) όπου: w i,j = 1 αν η λέξη k i εμφανίζεται στο κείμενο d j (αλλιώς w i,j =0) Μια επερώτηση q είναι μια λογική έκφραση στο Κ, πχ: q = k1 and ( k2 or not k3)) δηλαδή q = k1 ( k2 k3)) q DNF = (k1 k2 k3) (k1 k2 k3) (k1 k2 k3) q DNF = (1,1,1) (1,1,0) (1,0,0) R(d j,q) = μ q (d j ) = Σ μ cc (d j ) για κάθε συζευκτική συνιστώσα cc του q DNF μ ki (d j ) = 1 - Π (1 - c(k i,k w )) k w d j c(k i,k j ) καθορίζεται από την συνεμφάνιση των όρων k i και k j στη συλλογή CS-463, Information Retrieval Systems Yannis Tzitzikas, U. of Crete 57 Fuzzy Set Retrieval Model Γενικά σχόλια Έχουν συζητηθεί κυρίως στο χώρο της fuzzy theory Δεν έχουμε επαρκή αποτελέσματα πειραματικής αξιολόγησης για να τα αντιπαραβάλλουμε με τα προηγούμενα μοντέλα CS-463, Information Retrieval Systems Yannis Tzitzikas, U. of Crete 58 Ανάκτηση Πληροφορίας,

30 Information Retrieval Models Latent Semantic Indexing (LSI) Λανθάνουσα Σημασιολογική Ευρετηρίαση Σκεπτικό / Κίνητρο Classic IR might lead to poor retrieval due to: relevant documents that do not contain at least one index term are not retrieved A document that shares concepts with another document known to be relevant might be of interest The user information need is more related to concepts and ideas than to index terms We want to capture the concepts instead of the words. Concepts are reflected in the words. However: One term may have multiple meanings (polysemy) Different terms may have the same meaning (synonymy) CS-463, Information Retrieval Systems Yannis Tzitzikas, U. of Crete 60 Ανάκτηση Πληροφορίας,

31 LSI: The approach LSI approach tries to overcome the deficiencies of termmatching retrieval by treating the unreliability of observed term-document association data as a statistical problem. The goal is to find effective models to represent the relationship between terms and documents. Hence a set of terms, which is by itself incomplete and unreliable, will be replaced by some set of entities which are more reliable indicants. 61 Γιατί λέγεται Latent Διότι γίνεται η υπόθεση ότι υπάρχει μια «λανθάνουσα» δομή στον τρόπο χρήσης των λέξεων στα έγγραφα Το LSI αξιοποιεί στατιστικές τεχνικές για την εκτίμησή της 62 Ανάκτηση Πληροφορίας,

32 LSI: The idea The key idea is to map documents and queries into a lower dimensional space (i.e., composed of higher level concepts which are fewer in number than the index terms) Retrieval in the reduced concept space might be superior to retrieval in the space of index terms But how to learn the concepts from data? 63 Μείωση Διαστάσεων και Διακριτική Ικανότητα (μπορεί να έχουμε μείωση της διακριτικής ικανότητας, μπορεί όμως και όχι) Παράδειγμα προβολής 2 διαστάσεων σε μία B w.. A discriminating projection B w. A Ανάκτηση Πληροφορίας,

33 SVD (Singular Value Decomposition) LSI is based on SVD (Singular Value Decomposition) So SVD is applied to derive the latent semantic structure model. What is SVD? A dimensionality reduction technique For more about matrices and SVD see: The Matrix Cookbook understanding.html 65 SVD (HIDE) SVD: Διάσπαση σε ιδιάζουσες τιμές Ένας μεγάλος πίνακας όρων-εγγράφων αναλύεται σε ένα σύνολο από κ ( ) ορθοκανονικούς παράγοντες από τους οποίους ο αρχικός πίνακας μπορεί να προσεγγιστεί με γραμμικό συνδυασμό. Πλέον έγγραφα και επερωτήσεις παριστάνονται βάσει αυτών των κ διαστάσεων Αφού οι διαστάσεις μειώθηκαν, οι λέξεις δεν μπορεί πλέον να είναι ανεξάρτητες 66 Ανάκτηση Πληροφορίας,

34 Definitions t: total number of index terms d: total number of documents (X ij ): be a term-document matrix with t rows and d columns To each element of this matrix a weight w ij associated is assigned with the pair [k i,d j ] The weight w ij can be freq ij (or based on a tf-idf weighting scheme) Αρχικός Πίνακας (t x d) X d 1 d 2. d d k 1 w 11 w 21 w d1 k 2 w 12 w 22 w d2 : : : : : : : : k t w 1t w 2t w dt w i,j [0,1] 67 Latent Semantic Indexing: Ο τρόπος t: total number of index terms d: total number of documents terms documents X = t x d T0 t x m Singular Value Decomposition * * * S * * m x m D 0 0 m x d m=min(t,d) documents Select first k (<m) singular values terms X^ = T * * * * * k x k S D k x d t x d t x k 68 Ανάκτηση Πληροφορίας,

35 t: total number of index terms d: total number of documents terms documents X = t x d T0 t x m Singular Value Decomposition * * * S * * m x m D 0 0 m x d m=min(t,d) documents Select first k (<m) singular values The same terms X^ = T * * * * * k x k S D k x d t x d t x k 69 SVD SVD of the term-by-document matrix X: If the singular values of S 0 are ordered by size, we only keep the first k largest values and get a reduced model: Xˆ X = T 0S0D0 ' ˆ TSD' X = doesn t exactly match X and it gets closer as more and more singular values are kept This is what we want. We don t want perfect fit since we think some of 0 s in X should be 1 and vice versa. It reflects the major associative patterns in the data, and ignores the smaller, less important influence and noise. 70 Ανάκτηση Πληροφορίας,

36 LSI Paper example Index terms in italics 71 term-document Matrix Weight = number of occurrences 72 Ανάκτηση Πληροφορίας,

37 T 0 73 S 0 74 Ανάκτηση Πληροφορίας,

38 D 0 75 SVD with minor terms dropped TS define coordinates for documents in latent space 76 Ανάκτηση Πληροφορίας,

39 Παρατηρήσεις Η παράμετρος k (<m) πρέπει να είναι: large enough to allow fitting the characteristics of the data small enough to filter out the non-relevant representational details 77 Τρόπος Σύγκρισης Όρων και Εγγράφων Τρόπος σύγκρισης 2 όρων: the dot product (or cosine) between two row vectors reflects the extent to which two terms have a similar pattern of occurrence across the set of document. terms documents t x d documents Τρόπος σύγκρισης δύο εγγράφων: dot product (or cosine) between two column vectors terms t x d 78 Ανάκτηση Πληροφορίας,

40 Τρόπος Σύγκρισης Όρων και Εγγράφων Τρόπος σύγκρισης 2 όρων: the dot product (or cosine) between two row vectors reflects the extent to which two terms have a similar pattern of occurrence across the set of document. terms Xˆ documents X^ t x d documents Τρόπος σύγκρισης δύο εγγράφων: dot product (or cosine) between two column vectors terms X^ t x d 79 Terms Graphed in Two Dimensions system user EPS response time computer survey interface human graph trees minors LSA2.SVD.2dimTrmVectors[,1] 80 Ανάκτηση Πληροφορίας,

41 Documents and Terms system c2 c4 c3 user survey response c5time computer interface c1 human EPS m4 graph m3 trees minors m2 m LSA2.SVD.2dimTrmVectors[,1] 81 Change in Text Correlation Correlations between text in raw data c1 c2 c2 c4 c5 m1 m2 m3 m4 c c c c c m m m m Correlations in two-dimensional space c1 c2 c2 c4 c5 m1 m2 m3 m4 c c c c c m m m m Ανάκτηση Πληροφορίας,

42 Latent Semantic Indexing: Ranking Ηεπερώτησηq του χρήστη μοντελοποιείται ως ένα ψευδοέγγραφο στον αρχικό πίνακα Χ X d 1 d 2. d d q k 1 w 11 w 21 w d1 w q1 k 2 w 12 w 22 w d2 w q2 : : : : : : : : k t w 1t w 2t w dt w qt 83 LSI: Συμπεράσματα Latent semantic indexing provides an interesting conceptualization of the IR problem It allows reducing the complexity of the underline representational framework which might be explored, for instance, with the purpose of interfacing with the user Problems If new documents are added then we have to recompute X^ Το υπολογιστικό κόστος για το SVD πολύ μεγάλο Δουλεύει καλύτερα σε εφαρμογές που υπάρχει μικρή επικάλυψη μεταξύ των ερωτημάτων και των εγγράφων Μικρές τιμές του k (εκατοντάδες) Δεν υπάρχει τρόπος να εκφραστεί απουσία όρου και exact match 84 Ανάκτηση Πληροφορίας,

43 Επισκόπηση των Μοντέλων Ανάκτησης που έχουμε εξετάσει μέχρι τώρα Ταξινομία Μοντέλων που εξετάσαμε Set Theoretic Classic Models boolean vector probabilistic Fuzzy Extended Boolean Algebraic Generalized Vector Lat. Semantic Index Neural Networks Probabilistic Inference Network Belief Network CS-463, Information Retrieval Systems Yannis Tzitzikas, U. of Crete 86 Ανάκτηση Πληροφορίας,

44 Ταξινομία Μοντέλων που εξετάσαμε Set Theoretic Classic Models boolean vector probabilistic Fuzzy Extended Boolean Algebraic Generalized Vector Lat. Semantic Index Neural Networks Probabilistic Inference Network Belief Network Partial Matching 87 Ταξινομία Μοντέλων που εξετάσαμε Set Theoretic Classic Models boolean vector probabilistic Fuzzy Extended Boolean Algebraic Generalized Vector Lat. Semantic Index Neural Networks Probabilistic Boolean Queries Inference Network Belief Network Partial Matching 88 Ανάκτηση Πληροφορίας,

45 Βάσει της εκφραστικής τους ικανότητας (incomplete) Extended Boolean Belief Network Fuzzy Inference Network Neural Network Boolean Vector Probabilistic 89 Άλλοι τύποι Μοντέλων Ανάκτησης που ενδεχομένως να προλάβουμε να δούμε αργότερα Μοντέλα Ανάκτησης Πληροφοριών από Ιστοσελίδες Έμφαση στους συνδέσμους Μοντέλα Ανάκτησης Πολυμέσων Μοντέλα Ανάκτησης Δομημένων Εγγράφων (π.χ. XML) Μοντέλα Βασισμένα στη Λογική Θα δούμε τα «κόκκινα» αργότερα στο μάθημα 90 Ανάκτηση Πληροφορίας,

Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth.

Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth. Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth.gr/~tzitzik/ Γιατοπιθανοτικότουκαθ. Απ. Παπαδόπουλου (Αριστοτέλειο Παν.) Κεφάλαιο 2

Διαβάστε περισσότερα

Μοντέλα Ανάκτησης Ι (Retrieval Models)

Μοντέλα Ανάκτησης Ι (Retrieval Models) Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 006 Διάρθρωση HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Informaion Rerieval (IR) Sysems Μοντέλα Ανάκτησης Ι (Rerieval Models) Εισαγωγή στα Μοντέλα

Διαβάστε περισσότερα

Ανάκτηση Δεδομένων (Information Retrieval)

Ανάκτηση Δεδομένων (Information Retrieval) Ανάκτηση Δεδομένων (Information Retrieval) Παύλος Εφραιμίδης Βάσεις Δεδομένων Ανάκτηση Δεδομένων 1 Information Retrieval (1) Βάσεις Δεδομένων: Περιέχουν δομημένη πληροφορία: Πίνακες Ανάκτηση Πληροφορίας

Διαβάστε περισσότερα

Τι (άλλο) θα δούμε σήμερα;

Τι (άλλο) θα δούμε σήμερα; Introduction to Information Retrieval ΠΛΕ70: Ανάκτηση Πληροφορίας Διδάσκουσα: Ευαγγελία Πιτουρά Διάλεξη6: Βαθμολόγηση. Στάθμιση όρων. Το μοντέλο διανυσματικού χώρου. 1 Κεφ. 6 Τι (άλλο) θα δούμε σήμερα;

Διαβάστε περισσότερα

Η ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΣΤΟ ΣΥΓΧΡΟΝΟ ΠΕΡΙΒΑΛΛΟΝ

Η ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΣΤΟ ΣΥΓΧΡΟΝΟ ΠΕΡΙΒΑΛΛΟΝ Η ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΣΤΟ ΣΥΓΧΡΟΝΟ ΠΕΡΙΒΑΛΛΟΝ Ιόνιο Πανεπιστήµιο Τµήµα Αρχειονοµίας-Βιβλιοθηκονοµίας Μεταπτυχιακό Πρόγραµµα Σπουδών2007-2008 ιδάσκουσα: Κατερίνα Τοράκη (Οι διαλέξεις περιλαµβάνουν

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS

EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS Ralf Schenkel, Tom Crecelious, Mouna Kacimi, Sebastian Michel, Thomas Neumann, Josiane Xavier Parreira, Gerhard Weikum ΠΡΟΒΛΗΜΑ Εύρεση ενός αποτελεσματικού

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Διάρθρωση. Στατιστικά Κειμένου Text Statistics. Συχνότητα Εμφάνισης Λέξεων Ο Νόμος του Zipf Ο Νόμος του Heaps. Ανάκτηση Πληροφορίας 2008-2009 1

Διάρθρωση. Στατιστικά Κειμένου Text Statistics. Συχνότητα Εμφάνισης Λέξεων Ο Νόμος του Zipf Ο Νόμος του Heaps. Ανάκτηση Πληροφορίας 2008-2009 1 Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2008 Στατιστικά Κειμένου Text Statistics CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2008 1 Διάρθρωση Συχνότητα Εμφάνισης

Διαβάστε περισσότερα

Εργαστήριο Σημασιολογικού Ιστού

Εργαστήριο Σημασιολογικού Ιστού Εργαστήριο Σημασιολογικού Ιστού Ενότητα 8: Εισαγωγή στη SPARQL Βασική Χρήση Μ.Στεφανιδάκης 3-5-2015. Η γλώσσα ερωτημάτων SPARQL Ερωτήσεις (και ενημερώσεις) σε σετ δεδομένων RDF Και σε δεδομένα άλλης μορφής

Διαβάστε περισσότερα

Chapter 2 * * * * * * * Introduction to Verbs * * * * * * *

Chapter 2 * * * * * * * Introduction to Verbs * * * * * * * Chapter 2 * * * * * * * Introduction to Verbs * * * * * * * In the first chapter, we practiced the skill of reading Greek words. Now we want to try to understand some parts of what we read. There are a

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας. Φροντιστήριο 3

Ανάκτηση Πληροφορίας. Φροντιστήριο 3 Ανάκτηση Πληροφορίας Φροντιστήριο 3 Τσιράκης Νίκος Νοέμβριος 2007 2 Περιεχόμενα Ανεστραμμένα Αρχεία Εισαγωγή Δημιουργία Συμπίεση Πιθανοτικά Μοντέλα 3 Ανεστραμμένα Αρχεία 4 Εισαγωγή Με ποιους τρόπους μπορούμε

Διαβάστε περισσότερα

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade Για να ελέγξετε το λογισμικό που έχει τώρα η συσκευή κάντε κλικ Menu > Options > Device > About Device Versions. Στο πιο κάτω παράδειγμα η συσκευή έχει έκδοση λογισμικού 6.0.0.546 με πλατφόρμα 6.6.0.207.

Διαβάστε περισσότερα

Test Data Management in Practice

Test Data Management in Practice Problems, Concepts, and the Swisscom Test Data Organizer Do you have issues with your legal and compliance department because test environments contain sensitive data outsourcing partners must not see?

Διαβάστε περισσότερα

Λογικά Διανύσματα. >>x = -3/2*pi : pi/100 : 3/2*pi; >>y = tan(x); >>plot(x, y)

Λογικά Διανύσματα. >>x = -3/2*pi : pi/100 : 3/2*pi; >>y = tan(x); >>plot(x, y) Λογικά Διανύσματα Τα λογικά διανύσματα του Matlab είναι πολύ χρήσιμα εργαλεία. Για παράδειγμα ας υποθέσουμε ότι θέλουμε να κάνουμε την γραφική παράσταση της tan(x) στο διάστημα από -3π/2 μέχρι 3π/2. >>x

Διαβάστε περισσότερα

Η θέση ύπνου του βρέφους και η σχέση της με το Σύνδρομο του αιφνίδιου βρεφικού θανάτου. ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Η θέση ύπνου του βρέφους και η σχέση της με το Σύνδρομο του αιφνίδιου βρεφικού θανάτου. ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η θέση ύπνου του βρέφους και η σχέση της με το Σύνδρομο του αιφνίδιου βρεφικού θανάτου. Χρυσάνθη Στυλιανού Λεμεσός 2014 ΤΕΧΝΟΛΟΓΙΚΟ

Διαβάστε περισσότερα

Πληροφοριακά Συστήµατα

Πληροφοριακά Συστήµατα Nell Dale John Lewis Chapter 12 Πληροφοριακά Συστήµατα Στόχοι Ενότητας Η κατανόηση της έννοιας «Πληροφοριακό Σύστηµα» Επεξήγηση της οργάνωσης λογιστικών φύλλων (spreadsheets) Επεξήγηση της ανάλυσης δεδοµένων

Διαβάστε περισσότερα

ΑΠΟΓΡΑΦΙΚΟ ΔΕΛΤΙΟ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ ΤΙΤΛΟΣ Συμπληρώστε τον πρωτότυπο τίτλο της Διδακτορικής διατριβής ΑΡ. ΣΕΛΙΔΩΝ ΕΙΚΟΝΟΓΡΑΦΗΜΕΝΗ

ΑΠΟΓΡΑΦΙΚΟ ΔΕΛΤΙΟ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ ΤΙΤΛΟΣ Συμπληρώστε τον πρωτότυπο τίτλο της Διδακτορικής διατριβής ΑΡ. ΣΕΛΙΔΩΝ ΕΙΚΟΝΟΓΡΑΦΗΜΕΝΗ ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΝΑΓΝΩΣΤΗΡΙΟ Πανεπιστημιούπολη, Κτήρια Πληροφορικής & Τηλεπικοινωνιών 15784 ΑΘΗΝΑ Τηλ.: 210 727 5190, email: library@di.uoa.gr,

Διαβάστε περισσότερα

Κεφάλαιο 1ο. 1.1.5 Πολυπρογραμματισμός 1.1.6 Πολυδιεργασία 1.2.2. Κατηγορίες Λειτουργικών Συστημάτων

Κεφάλαιο 1ο. 1.1.5 Πολυπρογραμματισμός 1.1.6 Πολυδιεργασία 1.2.2. Κατηγορίες Λειτουργικών Συστημάτων Κεφάλαιο 1ο 1.1.5 Πολυπρογραμματισμός 1.1.6 Πολυδιεργασία 1.2.2. Κατηγορίες Λειτουργικών Συστημάτων http://leitourgika-systhmata-epal-b.ggia.info Creative Commons License 3.0 Share-Alike Πολυπρογραμματισμός

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ- TABLE ΤΡΟΠΟΙ ΠΑΡΟΥΣΙΑΣΗΣ ΔΕΔΟΜΕΝΩΝ ΠΙΝΑΚΑΣ 1. ΓΙΑ ΠΟΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Η ΣΤΟΙΧΕΙΑ ΕΙΝΑΙ ΚΑΛΗ ΕΠΙΛΟΓΗ ΕΝΑΣ ΠΙΝΑΚΑΣ; ΚΑΛΗ ΕΠΙΛΟΓΗ

ΠΙΝΑΚΑΣ- TABLE ΤΡΟΠΟΙ ΠΑΡΟΥΣΙΑΣΗΣ ΔΕΔΟΜΕΝΩΝ ΠΙΝΑΚΑΣ 1. ΓΙΑ ΠΟΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Η ΣΤΟΙΧΕΙΑ ΕΙΝΑΙ ΚΑΛΗ ΕΠΙΛΟΓΗ ΕΝΑΣ ΠΙΝΑΚΑΣ; ΚΑΛΗ ΕΠΙΛΟΓΗ ΤΡΟΠΟΙ ΠΑΡΟΥΣΙΑΣΗΣ ΔΕΔΟΜΕΝΩΝ ΧΡΙΣΤΙΝΑ ΚΑΡΑΤΖΑΦΕΡΗ, PhD ΛΕΚΤΟΡΑΣ ΣΤΗ ΦΥΣΙΟΛΟΓΙΑ ΤΗΣ ΑΣΚΗΣΗΣ Τ.Ε.Φ.Α.Α., Π.Θ. Π.Μ.Σ. ΑΣΚΗΣΗ ΚΑΙ ΥΓΕΙΑ ΦΕΒΡΟΥΑΡΙΟΣ 2007 ΒΑΣΙΚΑ ΚΡΙΤΗΡΙΑ ΕΠΙΛΟΓΗΣ ΑΠΛΟΤΗΤΑ ΝΟΗΜΑΤΙΚΗ ΚΑΘΑΡΟΤΗΤΑ

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΠΕΡΙΛΗΨΗ. Είναι γνωστό άτι καθημερινά διακινούνται δεκάδες μηνύματα (E~mail) μέσω του διαδικτύου

ΠΕΡΙΛΗΨΗ. Είναι γνωστό άτι καθημερινά διακινούνται δεκάδες μηνύματα (E~mail) μέσω του διαδικτύου GREEKLISH: ΜΙΑ ΝΕΑ ΔΙΑΛΕΚΤΟΣ ΤΟΥ ΔΙΑΔΙΚΤΥΟΥ; Α.Καράκος, Λ.Κωτούλας ΠΕΡΙΛΗΨΗ Είναι γνωστό άτι καθημερινά διακινούνται δεκάδες μηνύματα (E~mail) μέσω του διαδικτύου {INTERNEη από την μια άκρη του κόσμου

Διαβάστε περισσότερα

Διάλεξη 6: Δείκτες και Πίνακες

Διάλεξη 6: Δείκτες και Πίνακες Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 6: Δείκτες και Πίνακες (Κεφάλαιο 12, KNK-2ED) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 6-1 Περιεχόμενο

Διαβάστε περισσότερα

SOAP API. https://bulksmsn.gr. Table of Contents

SOAP API. https://bulksmsn.gr. Table of Contents SOAP API https://bulksmsn.gr Table of Contents Send SMS...2 Query SMS...3 Multiple Query SMS...4 Credits...5 Save Contact...5 Delete Contact...7 Delete Message...8 Email: sales@bulksmsn.gr, Τηλ: 211 850

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο. Εξαγωγή σχέσεων μεταξύ οντοτήτων από το αρχείο της εφημερίδας «ΤΑ ΝΕΑ» με χρήση τεχνικών μη-επιβλεπόμενης μάθησης

Εθνικό Μετσόβιο Πολυτεχνείο. Εξαγωγή σχέσεων μεταξύ οντοτήτων από το αρχείο της εφημερίδας «ΤΑ ΝΕΑ» με χρήση τεχνικών μη-επιβλεπόμενης μάθησης Εθνικό Μετσόβιο Πολυτεχνείο Σχολη Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων Τομεας Τεχνολογιας Πληροφορικης και Υπολογιστων Εξαγωγή σχέσεων μεταξύ οντοτήτων από το αρχείο της εφημερίδας «ΤΑ ΝΕΑ»

Διαβάστε περισσότερα

ίκτυο προστασίας για τα Ελληνικά αγροτικά και οικόσιτα ζώα on.net e-foundatio //www.save itute: http:/ toring Insti SAVE-Monit

ίκτυο προστασίας για τα Ελληνικά αγροτικά και οικόσιτα ζώα on.net e-foundatio //www.save itute: http:/ toring Insti SAVE-Monit How to run a Herdbook: Basics and Basics According to the pedigree scheme, you need to write down the ancestors of your animals. Breeders should be able easily to write down the necessary data It is better

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΠΟΥΔΕΣ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ

ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΠΟΥΔΕΣ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 1 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΠΟΥΔΕΣ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΔΥΝΑΜΙΚΗ ΤΩΝ ΣΧΕΣΕΩΝ ΕΚΠΑΙΔΕΥΟΜΕΝΗΣ ΟΜΑΔΑΣ ΕΝΗΛΙΚΩΝ: ΜΙΑ ΠΟΙΟΤΙΚΗ

Διαβάστε περισσότερα

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Business English Ενότητα # 9: Financial Planning Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΘΕΜΑ Α Α. Έστω t,t,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν,

Διαβάστε περισσότερα

LESSON 12 (ΜΑΘΗΜΑ ΔΩΔΕΚΑ) REF : 202/055/32-ADV. 4 February 2014

LESSON 12 (ΜΑΘΗΜΑ ΔΩΔΕΚΑ) REF : 202/055/32-ADV. 4 February 2014 LESSON 12 (ΜΑΘΗΜΑ ΔΩΔΕΚΑ) REF : 202/055/32-ADV 4 February 2014 Somewhere κάπου (kapoo) Nowhere πουθενά (poothena) Elsewhere αλλού (aloo) Drawer το συρτάρι (sirtari) Page η σελίδα (selida) News τα νέα (nea)

Διαβάστε περισσότερα

LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG. 4 March 2014

LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG. 4 March 2014 LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG 4 March 2014 Family η οικογένεια a/one(fem.) μία a/one(masc.) ένας father ο πατέρας mother η μητέρα man/male/husband ο άντρας letter το γράμμα brother ο

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

Risk Management & Business Continuity Τα εργαλεία στις νέες εκδόσεις

Risk Management & Business Continuity Τα εργαλεία στις νέες εκδόσεις Risk Management & Business Continuity Τα εργαλεία στις νέες εκδόσεις Α. Χατζοπούλου Υπεύθυνη Τμήματος Επιθεωρήσεων Πληροφορικής TÜV AUSTRIA HELLAS Οκτώβριος 2014 CLOSE YOUR EYES & THINK OF RISK Μήπως κάποια

Διαβάστε περισσότερα

GREECE BULGARIA 6 th JOINT MONITORING

GREECE BULGARIA 6 th JOINT MONITORING GREECE BULGARIA 6 th JOINT MONITORING COMMITTEE BANSKO 26-5-2015 «GREECE BULGARIA» Timeline 02 Future actions of the new GR-BG 20 Programme June 2015: Re - submission of the modified d Programme according

Διαβάστε περισσότερα

Insert (P) : Προσθέτει ένα νέο πρότυπο P στο λεξικό D. Delete (P) : Διαγράφει το πρότυπο P από το λεξικό D

Insert (P) : Προσθέτει ένα νέο πρότυπο P στο λεξικό D. Delete (P) : Διαγράφει το πρότυπο P από το λεξικό D Dynamic dictionary matching problem Έχουμε ένα σύνολο πρότυπων D = { P1, P2,..., Pk } oπου D το λεξικό και ένα αυθαίρετο κειμενο T [1,n] To σύνολο των πρότυπων αλλάζει με το χρόνο (ρεαλιστική συνθήκη).

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

Quantifying the Financial Benefits of Chemical Inventory Management Using CISPro

Quantifying the Financial Benefits of Chemical Inventory Management Using CISPro of Chemical Inventory Management Using CISPro by Darryl Braaksma Sr. Business and Financial Consultant, ChemSW, Inc. of Chemical Inventory Management Using CISPro Table of Contents Introduction 3 About

Διαβάστε περισσότερα

Από τις Κοινότητες Πρακτικής στις Κοινότητες Μάθησης

Από τις Κοινότητες Πρακτικής στις Κοινότητες Μάθησης Από τις Κοινότητες Πρακτικής στις Κοινότητες Μάθησης Νίκος Καρακαπιλίδης Industrial Management & Information Systems Lab MEAD, University of Patras, Greece nikos@mech.upatras.gr Βασικές έννοιες ιάρθρωση

Διαβάστε περισσότερα

AME SAMPLE REPORT James R. Cole, Ph.D. Neuropsychology

AME SAMPLE REPORT James R. Cole, Ph.D. Neuropsychology Setting the Standard since 1977 Quality and Timely Reports Med-Legal Evaluations Newton s Pyramid of Success AME SAMPLE REPORT Locations: Oakland & Sacramento SCHEDULING DEPARTMENT Ph: 510-208-4700 Fax:

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education www.xtremepapers.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *6301456813* GREEK 0543/03 Paper 3 Speaking Role Play Card One 1 March 30

Διαβάστε περισσότερα

Modern Greek *P40074A0112* P40074A. Edexcel International GCSE. Thursday 31 May 2012 Morning Time: 3 hours. Instructions. Information.

Modern Greek *P40074A0112* P40074A. Edexcel International GCSE. Thursday 31 May 2012 Morning Time: 3 hours. Instructions. Information. Write your name here Surname Other names Edexcel International GCSE Centre Number Modern Greek Candidate Number Thursday 31 May 2012 Morning Time: 3 hours You do not need any other materials. Paper Reference

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ Πτυχιακή εργασία ΕΠΙΠΤΩΣΕΙΣ ΤΗΣ ΚΑΚΗΣ ΔΙΑΤΡΟΦΗΣ ΣΤΗ ΠΡΟΣΧΟΛΙΚΗ ΗΛΙΚΙΑ ΜΕ ΑΠΟΤΕΛΕΣΜΑ ΤΗ ΠΑΧΥΣΑΡΚΙΑ Έλλη Φωτίου 2010364426 Επιβλέπουσα

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Πίνακες Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Πίνακες Πολλές φορές θέλουμε να κρατήσουμε στην μνήμη πολλά αντικείμενα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία Η ΕΦΑΡΜΟΓΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ HACCP ΣΕ ΜΙΚΡΕΣ ΒΙΟΤΕΧΝΙΕΣ ΓΑΛΑΚΤΟΣ ΣΤΗΝ ΕΠΑΡΧΙΑ ΛΕΜΕΣΟΥ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΜΑΘΗΜΑΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΓΙΑ ΑΝΑΛΥΣΗ ΠΙΣΤΟΠΟΙΗΤΙΚΩΝ ΕΝΕΡΓΕΙΑΚΗΣ ΑΠΟΔΟΣΗΣ ΚΤΙΡΙΩΝ Εβελίνα Θεμιστοκλέους

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Modern Greek *P40075A0112* P40075A. Edexcel International GCSE. Monday 3 June 2013 Morning Time: 3 hours. Instructions. Information.

Modern Greek *P40075A0112* P40075A. Edexcel International GCSE. Monday 3 June 2013 Morning Time: 3 hours. Instructions. Information. Write your name here Surname Other names Edexcel International GCSE Centre Number Modern Greek Candidate Number Monday 3 June 2013 Morning Time: 3 hours You do not need any other materials. Paper Reference

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή 1

Κεφάλαιο 1. Εισαγωγή 1 Κεφάλαιο 1. Εισαγωγή 1 1.1 Η ανάγκη για Ανάκτηση Πληροφορίας Η επιστήµη της Ανάκτησης Πληροφορίας (ΑΠ στο εξής), ασχολείται µε την αναπαράσταση, την αποθήκευση, την οργάνωση και την πρόσβαση σε πληροφοριακά

Διαβάστε περισσότερα

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Α.Σ.ΠΑΙ.Τ.Ε.) «Αρχιμήδης ΙΙΙ Ενίσχυση Ερευνητικών ομάδων στην Α.Σ.ΠΑΙ.Τ.Ε.» Υποέργο: 8 Τίτλος: «Εκκεντρότητες αντισεισμικού σχεδιασμού ασύμμετρων

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE)

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE) ΔΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE) ΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE). Εισαγωγή Οι στατιστικές δοκιμασίες που μελετήσαμε μέχρι τώρα ονομάζονται παραμετρικές (paramtrc) διότι χαρακτηρίζονται από υποθέσεις σχετικές είτε για

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Διαχείριση Αποθεμάτων Συστήματα Συνεχούς και Περιοδικής Αναθεώρησης Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Συστήματα ελέγχου αποθεμάτων Σύστημα συνεχούς

Διαβάστε περισσότερα

Advanced Unit 2: Understanding, Written Response and Research

Advanced Unit 2: Understanding, Written Response and Research Write your name here Surname Other names Edexcel GCE Centre Number Candidate Number Greek Advanced Unit 2: Understanding, Written Response and Research Tuesday 18 June 2013 Afternoon Time: 3 hours Paper

Διαβάστε περισσότερα

Τα συστήµατα EUROPA 500. σχεδιάστηκαν για να. δηµιουργούν ανοιγόµενα. κουφώµατα. τέλειας λειτουργικότητας, µε υψηλή αισθητική. και άψογο φινίρισµα.

Τα συστήµατα EUROPA 500. σχεδιάστηκαν για να. δηµιουργούν ανοιγόµενα. κουφώµατα. τέλειας λειτουργικότητας, µε υψηλή αισθητική. και άψογο φινίρισµα. Τα συστήµατα EUROPA 500 σχεδιάστηκαν για να δηµιουργούν ανοιγόµενα κουφώµατα τέλειας λειτουργικότητας, µε υψηλή αισθητική και άψογο φινίρισµα. EUROPA 500 systems are designed in order to create opening

Διαβάστε περισσότερα

ΕΥΧΑΡΙΣΤΙΕΣ. Θεσσαλονίκη, Δεκέμβριος 2005. Κώστας Δόσιος

ΕΥΧΑΡΙΣΤΙΕΣ. Θεσσαλονίκη, Δεκέμβριος 2005. Κώστας Δόσιος ΕΥΧΑΡΙΣΤΙΕΣ Μου δίνεται η ευκαιρία με την περάτωση της παρούσης διδακτορικής διατριβής να σημειώσω ότι, είναι ιδιαίτερα δύσκολο και κοπιαστικό να ολοκληρώσεις το έργο που ξεκινάς κάποια στιγμή έχοντας

Διαβάστε περισσότερα

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education GREEK 0543/03 Paper 3 Speaking Role Play Card One For Examination from 2015 SPECIMEN ROLE PLAY Approx.

Διαβάστε περισσότερα

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client ΕΣΔ 516 Τεχνολογίες Διαδικτύου Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client Περιεχόμενα Περιεχόμενα Javascript και HTML Βασική σύνταξη Μεταβλητές Τελεστές Συναρτήσεις

Διαβάστε περισσότερα

Αρχές Τεχνολογίας Λογισμικού Εργαστήριο

Αρχές Τεχνολογίας Λογισμικού Εργαστήριο Αρχές Τεχνολογίας Λογισμικού Εργαστήριο Κωδικός Μαθήματος: TP323 Ώρες Εργαστηρίου: 2/εβδομάδα (Διαφάνειες Νίκου Βιδάκη) 1 JAVA Inheritance Εβδομάδα Νο. 3 2 Προηγούμενο μάθημα (1/2) Τι είναι αντικείμενο?

Διαβάστε περισσότερα

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού

Διαβάστε περισσότερα

Διόρθωση Περιεχομένου ΑΞΙΟΛΟΓΗΣΗ - ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ. Μιχαλέας Σωτήρης, Φαρμακοποιός MSc. PhD

Διόρθωση Περιεχομένου ΑΞΙΟΛΟΓΗΣΗ - ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ. Μιχαλέας Σωτήρης, Φαρμακοποιός MSc. PhD ΕΘΝΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΦΑΡΜΑΚΩΝ Η νέα κατευθυντήρια οδηγία που αφορά σε μελέτες βιοϊσοδυναμίας: Νομικό πλαίσιο Ευρωπαϊκή πραγματικότητα Εξελίξεις ΑΞΙΟΛΟΓΗΣΗ - ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Μιχαλέας Σωτήρης, Φαρμακοποιός

Διαβάστε περισσότερα

Συνέδριο Επιβίωσης των Κυπριακών Επιχειρήσεων. Επανεξετάζοντας την στρατηγική της επιχείρησης

Συνέδριο Επιβίωσης των Κυπριακών Επιχειρήσεων. Επανεξετάζοντας την στρατηγική της επιχείρησης www.pwc.com Συνέδριο Επιβίωσης των Κυπριακών Επιχειρήσεων Επανεξετάζοντας την στρατηγική της επιχείρησης 2 Στρατηγική Οικονομική διαχείριση Επιβιώνοντας στην κρίση Αναδιοργάνωση / αναδόμηση Ανθρώπινο Δυναμικό

Διαβάστε περισσότερα

Συνόψεις για Δεδομένα XML με Ετερογενές Περιεχόμενο

Συνόψεις για Δεδομένα XML με Ετερογενές Περιεχόμενο are needed to see this picture. Συνόψεις για Δεδομένα XML με Ετερογενές Περιεχόμενο Άλκης Πολυζώτης UC Santa Cruz Μίνως Γαροφαλάκης Intel Research, Berkeley Ανακεφαλαίωση QuickTime and a Ησυνόψιση είναι

Διαβάστε περισσότερα

Η κατάσταση της ιδιωτικότητας Ηλίας Χάντζος, Senior Director EMEA

Η κατάσταση της ιδιωτικότητας Ηλίας Χάντζος, Senior Director EMEA Η κατάσταση της ιδιωτικότητας Ηλίας Χάντζος, Senior Director EMEA Αθήνα 1 η Απριλίου 2015 Και γιατί μας νοιάζει ή μας αφορά; Νέα Ευρωπαική νομοθεσία Τίνος είναι τα προσωπικά δεδομένα; Και λοιπόν; Τα περιστατικά

Διαβάστε περισσότερα

υπηρεσίες / services ΜΕΛΕΤΗ - ΣΧΕΔΙΑΣΜΟΣ PLANNING - DESIGN ΕΜΠΟΡΙΚΗ ΜΕΛΕΤΗ COMMERCIAL PLANNING ΕΠΙΠΛΩΣΗ - ΕΞΟΠΛΙΣΜΟΣ FURNISHING - EQUIPMENT

υπηρεσίες / services ΜΕΛΕΤΗ - ΣΧΕΔΙΑΣΜΟΣ PLANNING - DESIGN ΕΜΠΟΡΙΚΗ ΜΕΛΕΤΗ COMMERCIAL PLANNING ΕΠΙΠΛΩΣΗ - ΕΞΟΠΛΙΣΜΟΣ FURNISHING - EQUIPMENT Αρχιτεκτονικές και διακοσμητικές μελέτες, με λειτουργικό και σύγχρονο σχέδιασμό, βασισμένες στην μοναδικότητα του πελάτη. ΕΜΠΟΡΙΚΗ ΜΕΛΕΤΗ Ανάλυση των χαρακτηριστικών των προϊόντων και ένταξη του τρόπου

Διαβάστε περισσότερα

A ΜΕΡΟΣ. 1 program Puppy_Dog; 2 3 begin 4 end. 5 6 { Result of execution 7 8 (There is no output from this program ) 9 10 }

A ΜΕΡΟΣ. 1 program Puppy_Dog; 2 3 begin 4 end. 5 6 { Result of execution 7 8 (There is no output from this program ) 9 10 } A ΜΕΡΟΣ 1 program Puppy_Dog; begin 4 end. 5 6 { Result of execution 7 (There is no output from this program ) 10 } (* Κεφάλαιο - Πρόγραµµα EX0_.pas *) 1 program Kitty_Cat; begin 4 Writeln('This program');

Διαβάστε περισσότερα

Extensive Games with Imperfect Information

Extensive Games with Imperfect Information Extensive Games with Imperfect Information Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εκτεταµένα παίγνια µε ατελή πληροφόρηση

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

. Εργαστήριο Βάσεων Δεδομένων. Triggers

. Εργαστήριο Βάσεων Δεδομένων. Triggers Εργαστήριο Βάσεων Δεδομένων Triggers Triggers: Βασικές Έννοιες Ένας trigger είναι ένα κομμάτι κώδικα, μια ρουτίνα Συνδέεται με ένα συγκεκριμένο πίνακα Καλείται όταν συμβεί ένα γεγονός στον πίνακα Συχνές

Διαβάστε περισσότερα

Τίτλος Διδακτικού Σεναρίου: «Σχεδίαση και Ανάλυση Τοπικών Δικτύων Υπολογιστών»

Τίτλος Διδακτικού Σεναρίου: «Σχεδίαση και Ανάλυση Τοπικών Δικτύων Υπολογιστών» Τίτλος Διδακτικού Σεναρίου: «Σχεδίαση και Ανάλυση Τοπικών Δικτύων Υπολογιστών» Φάση «3» Τίτλος Φάσης: «Ανάλυση Σχεδιασμού Δικτύου Ελεύθερη Προσομοίωση» Χρόνος Υλοποίησης: 30 Λεπτά Φύλλο Εργασίας 1 Σε αυτό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΉΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/tst25 e-ail:

Διαβάστε περισσότερα

Πτυχιακή εργασία. Παραγωγή Βιοντίζελ από Χρησιμοποιημένα Έλαια

Πτυχιακή εργασία. Παραγωγή Βιοντίζελ από Χρησιμοποιημένα Έλαια ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία Παραγωγή Βιοντίζελ από Χρησιμοποιημένα Έλαια Ελένη Χριστοδούλου Λεμεσός 2014 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

Επίπεδο δικτύου IP διευθυνσιοδότηση

Επίπεδο δικτύου IP διευθυνσιοδότηση Επίπεδο δικτύου IP διευθυνσιοδότηση (πες μου την IP σου να σου πω ποιος είσαι) Εργαστήριο Δικτύων Υπολογιστών 2014-2015 Τμήμα Μηχανικών Η/Υ και Πληροφορικής Επίπεδο δικτύου (Network layer) Επίπεδο εφαρμογής

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ

ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ ΕΙΣΑΓΩΓΗ ΠΙΝΑΚΩΝ ΣΤΟ MATHLAB Αν θέλουμε να εισάγουμε έναν πίνακα στο mathlab και να προβληθεί στην οθόνη βάζουμε τις τιμές του σε άγκιστρα χωρίζοντάς τις με κόμματα ή κενό

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του ΠΕΤΡΟΥ Ι. ΒΕΝΕΤΗ. Καθηγητής Ε..Μ.Π. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του ΠΕΤΡΟΥ Ι. ΒΕΝΕΤΗ. Καθηγητής Ε..Μ.Π. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Αποδοτικά ευρετήρια για ερωτήματα ομοιότητας σε τυχαίους υποχώρους πολυδιάστατων

Διαβάστε περισσότερα

Ηµερίδα: Γεωπληροφορική και Εκπαίδευση Η Ελληνική Πραγµατικότητα Χαροκόπειο Πανεπιστήµιο ευτέρα και Τρίτη, 21-22 Maΐου 2007. Γεώργιος Ν.

Ηµερίδα: Γεωπληροφορική και Εκπαίδευση Η Ελληνική Πραγµατικότητα Χαροκόπειο Πανεπιστήµιο ευτέρα και Τρίτη, 21-22 Maΐου 2007. Γεώργιος Ν. Ηµερίδα: Γεωπληροφορική και Εκπαίδευση Η Ελληνική Πραγµατικότητα Χαροκόπειο Πανεπιστήµιο ευτέρα και Τρίτη, 21-22 Maΐου 2007 Γεώργιος Ν. Φώτης Geoinformatics Geoinformatics is a science which develops and

Διαβάστε περισσότερα

Στην τεχνολογία των CSS, οι κανόνες στυλ (style

Στην τεχνολογία των CSS, οι κανόνες στυλ (style Δικτυακά Πολυμέσα ΙΙ Εργαστήριο #4 0 : CSS: Βασικές και προχωρημένες τεχνικές επιλογής, τα στοιχεία και , ψευδο κλάσεις και ψευδο επιλογείς Γαβαλάς Δαμιανός dgavalas@aegean.gr CSS κανόνες στυλ

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

To SIMULINK του Matlab

To SIMULINK του Matlab ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ Β ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΘ. Κ. ΚΥΠΑΡΙΣΣΙΔΗΣ, ΛΕΚΤΟΡΑΣ Χ. ΧΑΤΖΗΔΟΥΚΑΣ Τ.Θ. 472 54 124 ΘΕΣΣΑΛΟΝΙΚΗ Μάθημα: ΡΥΘΜΙΣΗ ΣΥΣΤΗΜΑΤΩΝ Ακαδ.

Διαβάστε περισσότερα

ΚΑΠΝΙΣΜΑ ΚΑΙ ΣΥΝΔΡΟΜΟ ΑΙΦΝΙΔΙΟΥ ΒΡΕΦΙΚΟΥ ΘΑΝΑΤΟΥ

ΚΑΠΝΙΣΜΑ ΚΑΙ ΣΥΝΔΡΟΜΟ ΑΙΦΝΙΔΙΟΥ ΒΡΕΦΙΚΟΥ ΘΑΝΑΤΟΥ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΚΑΠΝΙΣΜΑ ΚΑΙ ΣΥΝΔΡΟΜΟ ΑΙΦΝΙΔΙΟΥ ΒΡΕΦΙΚΟΥ ΘΑΝΑΤΟΥ Ονοματεπώνυμο: Λοϊζιά Ελένη Λεμεσός 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

Τα ανοικτά Δεδομένα στην Κοινωνία της Γνώσης

Τα ανοικτά Δεδομένα στην Κοινωνία της Γνώσης Τα ανοικτά Δεδομένα στην Κοινωνία της Γνώσης Δρ. Χαράλαμπος Μπράτσας, Πρόεδρος του Ιδρύματος Ανοικτής Γνώσης Ελλάδας Μαθηματικό ΑΠΘ @bratsas, @okfngr http://okfn.gr Ανοικτά δεδομένα; Ανοικτά είναι τα δεδομένα

Διαβάστε περισσότερα

Bring Your Own Device (BYOD) Legal Challenges of the new Business Trend MINA ZOULOVITS LAWYER, PARNTER FILOTHEIDIS & PARTNERS LAW FIRM

Bring Your Own Device (BYOD) Legal Challenges of the new Business Trend MINA ZOULOVITS LAWYER, PARNTER FILOTHEIDIS & PARTNERS LAW FIRM Bring Your Own Device (BYOD) Legal Challenges of the new Business Trend MINA ZOULOVITS LAWYER, PARNTER FILOTHEIDIS & PARTNERS LAW FIRM minazoulovits@phrlaw.gr What is BYOD? Information Commissioner's Office

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ πradio: Εξατομικευμένο Σύστημα Σύστασης Ακρόασης Ηλεκτρονικού Ραδιοφώνου ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ του ΝΤΕΓΙΑΝΝΑΚΗ ΘΕΟΔΟΣΗ Επιβλέπων : Νικόλαος Ματσατσίνης

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

Οδηγίες χρήσης υλικού D U N S Registered

Οδηγίες χρήσης υλικού D U N S Registered Οδηγίες χρήσης υλικού D U N S Registered Οδηγίες ένταξης σήματος D U N S Registered στην ιστοσελίδα σας και χρήσης του στην ηλεκτρονική σας επικοινωνία Για οποιαδήποτε ερώτηση, σας παρακαλούμε επικοινωνήστε

Διαβάστε περισσότερα

Άριστες κατά Pareto Κατανομές

Άριστες κατά Pareto Κατανομές Άριστες κατά Pareto Κατανομές - Ορισμός. Μια κατανομή x = (x, x ) = (( 1, )( 1, )) ονομάζεται άριστη κατά Pareto αν δεν υπάρχει άλλη κατανομή x = ( x, x ) τέτοια ώστε: U j( x j) U j( xj) για κάθε καταναλωτή

Διαβάστε περισσότερα

Terabyte Technology Ltd

Terabyte Technology Ltd Terabyte Technology Ltd is a Web and Graphic design company in Limassol with dedicated staff who will endeavour to deliver the highest quality of work in our field. We offer a range of services such as

Διαβάστε περισσότερα

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος

Διαβάστε περισσότερα

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα

Why do customers abandon your e-shop. The Skroutz Experience

Why do customers abandon your e-shop. The Skroutz Experience Why do customers abandon your e-shop The Skroutz Experience 1 Where are all these data coming from? Skroutz s visitors feedback in UserVoice mechanism 3 When & how do we ask our visitors? As soon as our

Διαβάστε περισσότερα

ΕΣΔ 232: ΟΡΓΑΝΩΣΗ ΔΕΔΟΜΕΝΩΝ ΣΤΗ ΚΟΙΝΩΝΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Ακαδημαϊκό Έτος 2011 2012, Εαρινό Εξάμηνο. Εργαστηριακή Άσκηση 4 7/02/2012

ΕΣΔ 232: ΟΡΓΑΝΩΣΗ ΔΕΔΟΜΕΝΩΝ ΣΤΗ ΚΟΙΝΩΝΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Ακαδημαϊκό Έτος 2011 2012, Εαρινό Εξάμηνο. Εργαστηριακή Άσκηση 4 7/02/2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΕΠΙΚΟΙΝΩΝΙΑΣ & ΣΠΟΥΔΩΝ ΔΙΑΔΙΚΤΥΟΥ ΕΣΔ 232: ΟΡΓΑΝΩΣΗ ΔΕΔΟΜΕΝΩΝ ΣΤΗ ΚΟΙΝΩΝΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Ακαδημαϊκό Έτος 2011 2012, Εαρινό Εξάμηνο Εργαστηριακή Άσκηση 4 7/02/2012

Διαβάστε περισσότερα

Υπολογιστικά Συστήματα

Υπολογιστικά Συστήματα Υπολογιστικά Συστήματα Ενότητα 6: Ασκήσεις στη Visual Basic for Applications (VBA) Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

LESSON 9 (ΜΑΘΗΜΑ ΕΝΝΙΑ) REF : 101/011/9-BEG. 14 January 2013

LESSON 9 (ΜΑΘΗΜΑ ΕΝΝΙΑ) REF : 101/011/9-BEG. 14 January 2013 LESSON 9 (ΜΑΘΗΜΑ ΕΝΝΙΑ) REF : 101/011/9-BEG 14 January 2013 Up πάνω Down κάτω In μέσα Out/outside έξω (exo) In front μπροστά (brosta) Behind πίσω (piso) Put! Βάλε! (vale) From *** από Few λίγα (liga) Many

Διαβάστε περισσότερα

Επερωτήσεις σύζευξης με κατάταξη

Επερωτήσεις σύζευξης με κατάταξη Επερωτήσεις σύζευξης με κατάταξη Επερωτήσεις κατάταξης Top-K queries Οι επερωτήσεις κατάταξης επιστρέφουν τις k απαντήσεις που ταιριάζουν καλύτερα με τις προτιμήσεις του χρήστη. Επερωτήσεις κατάταξης Top-K

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΤΟΥΡΙΣΤΙΚΩΝ ΓΡΑΦΕΙΩΝ (Travel Agency Questionnaire) Εγχειρίδιο χρήσης (Demo Manual)

ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΤΟΥΡΙΣΤΙΚΩΝ ΓΡΑΦΕΙΩΝ (Travel Agency Questionnaire) Εγχειρίδιο χρήσης (Demo Manual) ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΤΟΥΡΙΣΤΙΚΩΝ ΓΡΑΦΕΙΩΝ (Travel Agency Questionnaire) Εγχειρίδιο χρήσης (Demo Manual) «WeKnow»ΔΗΜΗΤΡΙΟΣ ΨΥΧΙΑΣ & ΣΙΑ Ε.Ε. Υποστήριξη Πληροφοριακών Συστημάτων και Επικοινωνιών Σελίδα 1 από 14

Διαβάστε περισσότερα