ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη 03: Προεπεξεργασία & Επιλογή Δεδομένων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη 03: Προεπεξεργασία & Επιλογή Δεδομένων"

Transcript

1 ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη 03: Προεπεξεργασία & Επιλογή Δεδομένων

2 Προεπεξεργασία δεδομένων Ο μετασχηματισμός των δεδομένων σε μορφή κατάλληλη και αποδοτική για την επιλεγμένη (?) μέθοδο μάθησης Σύνολο τεχνασμάτων που εφαρμόζονται με κύριο στόχο την αύξηση του βαθμού αξιοπιστίας Κάποιες φορές λειτουργούν, κάποιες όχι, και, μέχρι σήμερα, είναι δύσκολο να γνωρίζει κανείς εκ των προτέρων την αποτελεσματικότητά τους Καθώςοπλέοναξιόπιστοςοδηγόςείναιημέθοδος δοκιμής & σφάλματος ( trial & error ), ηγνώσηκαι κατανόηση των τεχνασμάτων αυτών είναι εξαιρετικά σημαντική 2

3 Τεχνοτροπίες προεπεξεργασίας δεδομένων Επιλογή χαρακτηριστικών (attributes) Διακριτοποίηση χαρακτηριστικών Μετασχηματισμός δεδομένων Καθαρισμός δεδομένων 3

4 Επιλογή χαρακτηριστικών Στις περισσότερες εφαρμογές, ο αριθμός των χαρακτηριστικών είναι υπερβολικά μεγάλος για τον αποτελεσματικό χειρισμό τους από τα σχήματα εκμάθησης Τα περισσότερα χαρακτηριστικά συχνά η συντριπτική πλειοψηφία τους είναι ευκρινώς μη συσχετιζόμενα ή περιττά. Κατά συνέπεια, πρέπει να επιλεγεί υποσύνολο των δεδομένων προς χρήση στη διαδικασία εκμάθησης Οι μέθοδοι εκμάθησης εκ φύσεως επιτελούν τη διαδικασία επιλογής των κατάλληλων χαρακτηριστικών και απόρριψης των υπολοίπων Ωστόσο η αποδοτικότητά τους μπορεί συχνά να βελτιωθεί μέσω της προεπιλογής 4

5 Διακριτοποίηση χαρακτηριστικών Απολύτως αναγκαία στην περίπτωση που κάποια χαρακτηριστικά είναι αριθμητικά αλλά η επιλεγμένη μέθοδος εκμάθησης μπορεί να χειριστεί μόνο ρητά (categorical) χαρακτηριστικά Ακόμα και οι μέθοδοι που μπορούν να χειριστούν αριθμητικά χαρακτηριστικά πολλές φορές παράγουν καλύτερα αποτελέσματα ή λειτουργούν ταχύτερα αν τα χαρακτηριστικά έχουν διακριτοποιηθεί Το αντίστροφο πρόβλημα, στο οποίο κατηγορικά χαρακτηριστικά μετατρέπονται σε αριθμητικά, προκύπτει επίσης, αν και λιγότερο συχνά 5

6 Μετασχηματισμός δεδομένων Ημορφήτωνδεδομένων, είτεηφύσητουαλγορίθμου εκμάθησης, συχνά υποδεικνύουν διάφορους μετασχηματισμούς των δεδομένων Αναγκαίοι για την ανάδειξη ιδιαιτεροτήτων ή και διαφορετικών γωνιών θέασης του συνόλου των δεδομένων Πλήθος τεχνικών Μαθηματικοί μετασχηματισμοί Βασισμένοι στη γνώση πεδίου Λογικοί μετασχηματισμοί Αλλαγή δομής / μορφής δεδομένων 6

7 Καθαρισμός δεδομένων Τα ακάθαρτα δεδομένα συνιστούν σημαντικό πρόβλημα Η αναγκαιότητα εξοικείωσης με τα δεδομένα έχει ήδη υποδειχθεί: Κατανόηση περιεχομένου χαρακτηριστικών, συμβάσεων κωδικοποίησης, σημαντικότητας άγνωστων ή και επαναλαμβανόμενων τιμών, θορύβου μέτρησης, λαθών καταγραφής, συστηματικών λαθών Απλές μέθοδοι οπτικοποίησης συχνά βοηθούν κατά πολύ Αυτοματοποιημένες μέθοδοι καθαρισμού δεδομένων, εντοπισμού τιμών προς εξαίρεση και ανωμαλιών 7

8 Επιλογή χαρακτηριστικών Οι περισσότεροι αλγόριθμοι εκμάθησης έχουν σχεδιαστεί ώστε να επιλέγουν τα πλέον κατάλληλα χαρακτηριστικά για τη διαμόρφωση των αποφάσεών τους Η ύπαρξη περισσότερων χαρακτηριστικών επομένως οδηγεί κατά τη θεωρία σε περισσότερο αποδοτική εκπαίδευση Ωστόσο: "Ποια η διαφορά μεταξύ θεωρίας και πράξης; Δεν υπάρχει διαφορά - στη θεωρία. Αλλά στην πράξη υπάρχει." Στην πράξη, ηπροσθήκημησχετικώνχαρακτηριστικών συχνά συγχύζει τα συστήματα μηχανικής μάθησης 8

9 Επιλογή χαρακτηριστικών Βέλτιστη μέθοδος επιλογής: χειροκίνητη, βασισμένη σε βαθιά κατανόηση του προβλήματος και των εκφραζόμενων από τα χαρακτηριστικά Αυτοματοποιημένες μέθοδοι: επίσης χρήσιμες Η μείωση των διαστάσεων των δεδομένων Βελτιώνει την απόδοση των αλγορίθμων εκπαίδευσης Παρέχει μία περισσότερο συμπαγή και κατανοητή απεικόνιση της αντίληψης στόχου, εστιάζοντας στις συναφείς μεταβλητές 9

10 Επιλογή χαρακτηριστικών Δύο μέθοδοι επιλογής υποσυνόλου χαρακτηριστικών Μέθοδος διήθησης (filter): ανεξάρτητη αποτίμηση, βασισμένη στα γενικά χαρακτηριστικά των δεδομένων Μέθοδος ενσωμάτωσης (wrapper): προσκόλληση της διαδικασίας επιλογής στη διαδικασία εκπαίδευσης και αποτίμηση του υποσυνόλου με βάση την τελική απόδοση του αλγορίθμου εκμάθησης Δεν υπάρχει οικουμενικά αποδεκτό μέτρο της σχετικότητας ενός χαρακτηριστικού, γεγονός που καθιστά την επιλογή υποσυνόλου δύσκολη διαδικασία 10

11 Μέθοδος διήθησης Εύρεση υποσυνόλου χαρακτηριστικών επαρκούς για το διαχωρισμό όλων των υποδειγμάτων Επιλογή μικρότερου δυνατού συνόλου χαρακτηριστικών που ικανοποιεί την απαίτηση αυτή (μέσω εξαντλητικής (exhaustive) αναζήτησης) Χρήση διαφορετικού αλγορίθμου εκμάθησης (για παράδειγμα C4.5, 1R) για επιλογή χαρακτηριστικών Για παράδειγμα, μπορεί να εφαρμοστεί ένα αλγόριθμος δένδρου απόφασης στο σύνολο δεδομένων και στη συνέχεια να επιλεγούν τα χαρακτηριστικά εκείνα που ενυπάρχουν στο δένδρο και μόνο αυτά. Μάθηση βασισμένη στα υποδείγματα για απόδοση βαρύτητας στα χαρακτηριστικά (Instance based Learning) Επίσης εφαρμόσιμη, ωστόσο αδυνατεί να υποδείξει τα περιττά χαρακτηριστικά 11

12 Αναζήτηση στο χώρο των χαρακτηριστικών Αριθμός των υποσυνόλων χαρακτηριστικών εκθετικός ως προς τον αριθμό των χαρακτηριστικών εξαντλητική αναζήτηση: μη πρακτική & κοστοβόρα Συνήθεις προσεγγίσεις: άπληστη (greedy) αναζήτηση Επιλογή προς τα εμπρός (forward selection) Απαλοιφή προς τα πίσω (backward elimination) Περισσότερο εξελιγμένες στρατηγικές: Αναζήτηση διπλής κατεύθυνσης (bidirectional) Αναζήτηση καλύτερου πρώτου (best-first): δύναται να εντοπίσει τη βέλτιστη λύση Αναζήτηση δέσμης (beam): απλοποίηση της αναζήτησης καλύτερου πρώτου Γενετικοί αλγόριθμοι (genetic algorithms) 12

13 Παράδειγμα: Υποσύνολα χαρακτηριστικών (δεδομένα καιρού) 13

14 Μέθοδος ενσωμάτωσης Ενσωμάτωση της διαδικασίας επιλογής στην εκμάθηση Κριτήριο αποτίμησης: απόδοση διασταυρωμένης επικύρωσης (cross-validation) Δαπάνη χρόνου Άπληστη αναζήτηση, k χαρακτηριστικά k 2 χρόνος Πρότερη κατάταξη χαρακτηριστικών γραμμική στο k Εξαντλητική αναζήτηση 2 k time RaceSearch, Schemata RankSearch Τελικό κριτή συνιστά το ύψος του σφάλματος σε νέα δεδομένα 14

15 Διακριτοποίηση χαρακτηριστικών Μερικοί αλγόριθμοι ταξινόμησης και ομαδοποίησης χειρίζονται μόνο ονομαστικά χαρακτηριστικά και δεν μπορούν να χειριστούν όσα βρίσκονται σε αριθμητική μορφή Η χρήση των αριθμητικών χαρακτηριστικών προϋποθέτει την προηγούμενη διακριτοποίησή τους σε ξεχωριστά υποσύνολα τιμών Ακόμα και οι αλγόριθμοι μάθησης που μπορούν να χειριστούν αριθμητικά χαρακτηριστικά, συχνά λειτουργούν πολύ πιο γρήγορα όταν χρησιμοποιούνται μόνο με διακριτά χαρακτηριστικά Επομένως, ποιος ο βέλτιστος τρόπος διακριτοποίησης των αριθμητικών χαρακτηριστικών πριν τη διαδικασία εκμάθησης; Για παράδειγμα, εφαρμογή αλγορίθμου σε Διακριτοποιημένο σε k τιμές χαρακτηριστικό ή σε k 1 δυαδικά χαρακτηριστικά που κωδικοποιούν τα σημεία τομής 15

16 Διακριτοποίηση χωρίς επίβλεψη Διακρίβωση διαστημάτων χωρίς γνώση της τάξης στην οποία ανήκει το υπόδειγμα Μοναδική λύση κατά την ομαδοποίηση Δύο προσεγγίσεις: Διαστήματα σταθερού εύρους (equal-interval binning) Διαστήματα σταθερής συχνότητας (equal-frequency binning) (καλείται επίσης εξισορρόπηση ιστογράμματος (histogram equalization)) Υποδεέστερης αξιοπιστίας έναντι των τεχνικών με επίβλεψη σε εργασίες ταξινόμησης 16

17 Διακριτοποίηση με επίβλεψη Μέθοδος εντροπίας Θεωρείται ως η πλέον αποδοτική & αξιόπιστη Κατασκευή δένδρου απόφασης για τη διακριτοποίηση του χαρακτηριστικού Χρήση του μεγέθους της εντροπίας ως κριτήριο διαχωρισμού των τιμών του αρχικού συνόλου Αρχήελαχίστουμήκουςπεριγραφής(minimum description length (MDL)) ως κριτήριο διακοπής 17

18 Παράδειγμα: Διακριτοποίηση χαρακτηριστικού θερμοκρασίας Temperature Play Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No Temperature < 71,5 διαχωρισμός του εύρους σε 4 yes & 2 no / 5 yes & 3 no Μέτρο κέρδους πληροφορίας βασισμένο στην εντροπία n info = p()log i 2( p()) i i= 1 info([4,2]) = -(4/(4+2))*log 2 (4) (2/(4+2))* log 2 (2) info([4, 2],[5,3])=(6/14)*info([4, 2])+(8/14)* info([5, 3])= bits 18

19 Παράδειγμα: Διακριτοποίηση χαρακτηριστικού θερμοκρασίας 19

20 Σχέση αρχής ελαχίστου μήκους περιγραφής Για την εφαρμογή της αρχής MDL : Λαμβάνονται υπ όψιν Σημείο τομής (log 2 [N 1] bits) Κατανομή τάξεων σε κάθε υποσύνολο Σύγκριση απαιτούμενου μήκους περιγραφής πριν και μετά την προσθήκη σημείου τομής N υποδείγματα Αρχικό σύνολο: k τάξεις, εντροπία E Πρώτο υποσύνολο: k 1 τάξεις, εντροπία E 1 Δεύτερο υποσύνολο: k 2 τάξεις, εντροπία E 2 k log 2( N 1) log 2(3 2) ke+ k1e1+ k2e2 info > + N N Συνιστά τη μη διακριτοποίηση της θερμοκρασίας 20

21 Διακριτοποίηση με επίβλεψη: άλλες μέθοδοι Αντικατάσταση διαδικασίας από πάνω προς τα κάτω (top-down) με προσέγγιση από κάτω προς τα πάνω (bottom-up) Αντικατάσταση αρχής MDL με τεστ Χ 2 Χρήση δυναμικού προγραμματισμού για την εύρεση βέλτιστου διαχωρισμού σε k-διαστήματα με βάση δοσμένο κριτήριο Υπολογιστικό κόστος με κριτήριο εντροπίας Ν 2 χρόνος Υπολογιστικό κόστος με κριτήριο σφάλματος Ν χρόνος 21

22 Σφάλμα ή εντροπία; Ερώτηση: Είναι δυνατόν, υποθέτοντας βέλτιστη διακριτοποίηση, δύο γειτονικά διαστήματα να περιέχουν υποδείγματα που ανήκουν κατά πλειοψηφία στην ίδια τάξη? Προφανής απάντηση: Όχι. Γιατί, εάν ναι, Συγχώνευση των δύο Απελευθέρωση ενός διαστήματος Χρήση του αλλού (προσέγγιση διακριτοποίησης με βάση κριτήριο σφάλματος) Σωστή απάντηση: Ναι. (η διακριτοποίηση με κριτήριο εντροπίας μπορεί να το υλοποιήσει) 22

23 Σφάλμα ή εντροπία; Πρόβλημα δύο τάξεων, δύο χαρακτηριστικών Αληθές μοντέλο Βέλτιστη διακριτοποίηση των a1, a2 Η μέθοδος εντροπίας εντοπίζει μεταβολές στην κατανομή των τάξεων 23

24 Αντίστροφο πρόβλημα διακριτοποίησης Μετατροπή ονομαστικών τιμών σε αριθμητικές 1.Χαρακτηριστικό δείκτης (indicator) Δεν κάνει χρήση πληροφορίας περί κατάταξης 2.Κωδικοποίηση ονομαστικού χαρακτηριστικού μέσω κατάταξης σε δυαδικά χαρακτηριστικά Δύναται να χρησιμοποιηθεί από κάθε διατεταγμένο χαρακτηριστικό Προτιμητέα έναντι μετατροπής σε ακέραιο (ηοποία προυποθέτει βαθμονόμηση Γενικά: κωδικοποίηση υποσυνόλου των χαρακτηριστικών ως δυαδικά 24

25 Μετασχηματισμός δεδομένων Ένα πρόβλημα εξόρυξης γνώσης από δεδομένα σπάνια περιορίζεται στην απλή εφαρμογή ενός αλγορίθμου σε ένα σύνολο δεδομένων Μέθοδοι μετασχηματισμού των δεδομένων, όπως οι περί διακριτοποίησης, υπάρχουν διαθέσιμοι σε μεγάλο πλήθος και χρησιμοποιούνται σχεδόν σε κάθε περίπτωση Κάθε πρόβλημα είναι διαφορετικό Απαιτείται κατανόηση των δεδομένων Επίσης εξέτασή τους από διαφορετικές γωνίες θέασης με δημιουργικό τρόπο ώστε να φθάσει κανείς στην κατάλληλη οπτική Ο μετασχηματισμός σε διάφορες μορφές συμβάλλει προς αυτή την κατεύθυνση 25

26 Γενικά περί μετασχηματισμών Συχνά η φύση των δεδομένων υποδεικνύει μαθηματικούς μετασχηματισμούς Για παράδειγμα, αφαίρεση ημερομηνιών για εύρεση ηλικίας Μετασχηματισμοί πιθανά να υποδεικνύονται επίσης από γνωστές ιδιότητες του αλγορίθμου εκμάθησης Για παράδειγμα, κανονικοποίηση για βελτίωση απόδοσης Δεν είναι απαραίτητα μαθηματικοί, μπορούν για παράδειγμα να αποτυπώνουν την κοινή λογική ή τη γνώση πεδίου Για παράδειγμα, ημερομηνίες αργιών, ατομικοί αριθμοί χημικών στοιχείων 26

27 Είδη μετασχηματισμού Συγχώνευση ονομαστικών χαρακτηριστικών Προσθήκη νέων χαρακτηριστικών Προσθήκη θορύβου στα δεδομένα (για παράδειγμα για έλεγχο αξιοπιστίας) Μεταλλαγή συγκεκριμένου ποσοστού Σύγχυση δεδομένων (obfuscate) Τυχαιοποίηση σειράς, παραγωγή τυχαίου υποσυνόλου Απομάκρυνση υποδειγμάτων (με ειδικά χαρακτηριστικά ή όχι) Απομάκρυνση τιμών προς εξαίρεση (outliers) Μετατροπή αραιών (sparse) δεδομένων σε μη αραιά και αντιστρόφως Μετασχηματισμοί κειμένου & χρονοσειρών 27

28 Ανάλυση Κύριων Συνιστωσών (Principal Components Analysis) Σύνολο δεδομένων με k αριθμητικά χαρακτηριστικά Ένανέφοςσημείωνσεέναχώροk-διαστάσεων τα αστέρια στον ουρανό, ένα σμήνος μελισσών στο χώρο, ένα διάγραμμα διασποράς στο χαρτί. Τα χαρακτηριστικά αντιπροσωπεύουν τις συντεταγμένες. Ηεπιλογήαξόνων το σύστημα συντεταγμένων είναι αυθαίρετη Η απεικόνιση του σμήνους είναι εξίσου καλή για κάθε επιλογή αξόνων Στην εξόρυξη γνώσης από δεδομένα, συχνά υπάρχει προτιμώμενο σύστημα συντεταγμένων Καθορίζεται όχι από κάποια εξωτερική παραδοχή αλλά από τα ίδιαταδεδομένα 28

29 Ανάλυση Κύριων Συνιστωσών Για κάθε επιλογή συστήματος συντεταγμένων: το νέφος των σημείων χαρακτηρίζεται από συγκεκριμένη διακύμανση (variance) σε κάθε κατεύθυνση δηλώνει τη διασπορά γύρω από τη μέση τιμή σε αυτή την κατεύθυνση Υπό τη συνθήκη ότι το σύστημα συντεταγμένων είναι ορθογώνιο, η συνολική διακύμανση είναι σταθερή. PCA: επέλεξε το σύστημα συντεταγμένων ως εξής Τοποθέτησε τον πρώτο άξονα στην κατεύθυνση μέγιστης διακύμανσης Επέλεξε τον δεύτερο άξονα κάθετα στον πρώτο, μεγιστοποιώντας πάλι τη διακύμανση Με μαθηματική διατύπωση: βρες τα ιδιοδιανύσματα του διαγωνοποιημένου πίνακα συνδιακύμανσης επι των αρχικών συντεταγμένων. αυτά αποτελούν του άξονες του μετασχηματισμένου χώρου και οι ιδιοτιμές αποδίδουν τη διακύμανση κατά μήκος των αξόνων. 29

30 Ανάλυση Κύριων Συνιστωσών Παράδειγμα 30

31 Ανάλυση Κύριων Συνιστωσών Η διακύμανση ανά άξονα (συνιστώσα / component) εκφράζεται ως % επί του (σταθερού) συνόλου Για παράδειγμα, η πρώτη συνιστώσα ερμηνεύει το χ% της συνολικής διασποράς Μπορεί κανείς να επιλέξει προς χρήση τις πιο σημαντικές (κύριες / principal) συνιστώσες και μόνο αυτές- και να αποβάλλει τις υπόλοιπες Η μέθοδος χρησιμοποιείται συχνά πριν την εφαρμογή των αλγορίθμων εκπαίδευσης για τον καθαρισμό των δεδομένων και την αναπαραγωγή των χαρακτηριστικών Σημείωση: η κλίμακα των χαρακτηριστικών επηρεάζει το αποτέλεσμα της PCA Κοινή πρακτική αποτελεί η κανονικοποίηση όλων των χαρακτηριστικών (μέση τιμή: 0, τυπική απόκλιση: 1) πριν την εφαρμογή της μεθόδου 31

32 Τυχαίες προβολές Υπολογιστικό κόστος PCA (#διαστάσεων) 3 χρόνος Απλούστερη εναλλακτική: τυχαία προβολή των δεδομένων σε υποχώρο προκαθορισμένου αριθμού διαστάσεων Όπως είναι αναμενόμενο, οι τυχαίες προβολές έχουν χαμηλότερη απόδοση της PCA Ωστόσο, πειραματικά αποτελέσματα υποδεικνύουν πως η απόκλιση δεν είναι πολύ μεγάλη και τείνει να μειωθεί καθώς ο αριθμός των διαστάσεων αυξάνεται 32

33 Μετατροπή κειμένου σε χαρακτηριστικά Χαρακτηριστικά που περιέχουν συμβολοσειρές (strings) κειμένου Συχνά οι τιμές τους αποτελούν ολόκληρο κείμενο Πώς αντιμετωπίζονται; Αποσύνθεση του κειμένου σε χαρακτηριστικά συμβολοσειρών παραγράφους, προτάσεις, φράσεις ή συνήθως λέξεις Ημετατροπήσελέξεις(tokenization) είναι πολυσύνθετη Αριθμοί, σύνταξη, στίξη, διαχωριστής πεδίου (delimeter), γλωσσικές συμβάσεις, συχνέςήμηλέξεις, Οι συχνότητες fij της λέξης i στο έγγραφο j μπορούν να μετασχηματιστούν με διάφορους τρόπους log (1 + fij). TF x IDF term frequency times inverse document frequency. 33

34 Μετατροπή χρονοσειρών σε χαρακτηριστικά Σε δεδομένα χρονοσειρών κάθε υπόδειγμα αντιπροσωπεύει διαφορετική χρονική στιγμή τα χαρακτηριστικά δίδουν τιμές συσχετιζόμενες με αυτό το στιγμιότυπο για παράδειγμα πρόβλεψη καιρού, πρόβλεψη τιμών μετοχής Πολύ συνήθης είναι η αντικατάσταση των τιμών ενός χαρακτηριστικού με τη διαφορά (Δ) τους με αυτές ενός χρονικά προηγούμενου υποδείγματος Σε κάποιες περιπτώσεις, τα υποδείγματα δε λαμβάνονται περιοδικά, γι αυτό και συνοδεύονται από χαρακτηριστικό ένδειξης χρόνου (timestamp) Ηδιαφοράτωνtimestamps αποτελεί το χρονικό βήμα του υποδείγματος Σε άλλες περιπτώσεις, κάθε χαρακτηριστικό αφορά διαφορετικό στιγμιότυπο, οπότε η χρονοσειρά ουσιαστικά προσδιορίζεται από το ένα προς το άλλο χαρακτηριστικό και όχι υπόδειγμα 34

35 Αυτοματοποιημένος καθαρισμός δεδομένων Η χαμηλή ποιότητα των δεδομένων αποτελεί σοβαρό πρόβλημα για την εξόρυξη γνώσης από αυτά Τα λάθη σε μεγάλες βάσεις δεδομένων αποτελούν περισσότερο κανόνα παρά εξαίρεση Οι τιμές των χαρακτηριστικών, πολλές φορές ακόμα και των τάξεων, είναι συχνά ανακριβείς, αναξιόπιστες και ακάθαρτες Συμβατική μέθοδος αντιμετώπισης: προσεκτικός έλεγχος των δεδομένων Στην έκταση των προβλημάτων που πραγματεύονται, ίσως αδύνατος Αυτοματοποιημένες μέθοδοι: Εντοπισμός διαταραχών Συνδυασμός αλγορίθμων μάθησης 35

36 Βελτίωση δένδρων απόφασης Για τη βελτίωση ενός δένδρου απόφασης: Ιδεατή λύση: έλεγχος λανθασμένα ταξινομημένων υποδειγμάτων από εμπειρογνώμονα Προσέγγιση μηχανική μάθησης στο πρόβλημα: απομάκρυνση λανθασμένα ταξινομημένων υποδειγμάτων και επανεκπαίδευση Θόρυβος χαρακτηριστικών και θόρυβος τάξεων Ο θόρυβος στα χαρακτηριστικά πρέπει να παραμένει ανέπαφος στο σύνολο δεδομένων (προσοχή: όχι εκπαίδευση σε καθαρό σύνολο και έλεγχος σε μη καθαρό σύνολο) Συστημικός θόρυβος στην τάξη (για παράδειγμα αντικατάσταση μίας τάξης με μία άλλη): πρέπει επίσης να παραμείνει στα δεδομένα εκπαίδευσης Μη συστημικός θόρυβος τάξης: απομάκρυνσή του από το σύνολο εκπαίδευσης, αν αυτό είναι δυνατό 36

37 Ανθεκτική παλινδρόμηση Ανθεκτική (robust) στατιστική μέθοδος επιλαμβάνεται του προβλήματος των τιμών προς εξαίρεση (outliers) Για την ανθεκτικότητα της παλινδρόμησης (regression): Ελαχιστοποίηση του απολύτου σφάλματος, όχι του τετραγωνικού σφάλματος Απομάκρυνση outliers (για παράδειγμα 10% των σημείων που απέχουν περισσότερο από την επιφάνεια παλινδρόμησης) Ελαχιστοποίηση της μεσαίας τιμής (median) και όχι του μέσου (mean) των τετραγώνων (για outliers στον x και y άξονα) Λαμβάνει υπ όψιν το ήμισυ τα περισσότερο συναφή, σε όρους απόστασης, δεδομένα Υψηλό υπολογιστικό κόστος 37

38 Παράδειγμα ανθεκτικής παλινδρόμησης 38

39 Εφαρμογή στο weka 39

40 Αποτίμηση & επιλογή χαρακτηριστικών Αναζήτηση στο χώρο των υποσυνόλων χαρακτηριστικών και αποτίμηση του καθενός Το περιβάλλον εργασίας παρέχει 4 μεθόδους αποτίμησης υποσυνόλου χαρακτηριστικών 7 μεθόδους αναζήτησης σε υποσύνολα χαρακτηριστικών (άρα και 2401 συνδυασμούς τους!) Μία ταχύτερη αλλά λιγότερο ακριβής μέθοδος είναι η αποτίμηση κάθε χαρακτηριστικού χωριστά ταξινόμηση και απόρριψη όσων δεν ικανοποιούν ορισμένη τιμή του κριτηρίου Το περιβάλλον εργασίας παρέχει 8 μεθόδους αποτίμησης μοναδιαίου χαρακτηριστικού μέθοδο κατάταξης 40

41 Select attributes Select attributes sheet Choose & format Attribute Evaluator & Search Method Attribute Selection Mode (full training set / cross-validation) Select attribute Start / stop Attribute selection output Result list 41

42 Αποτίμηση υποσυνόλου χαρακτηριστικών Μέθοδοι διήθησης (filter methods) CfsSubsetEval Consider the predictive value of each subset evaluator attribute individually, along with the degree of redundancy among them ConsistencySubsetEval Project training set onto attribute set and measure consistency in class values Μέθοδοι ενσωμάτωσης (wrapper methods) ClassifierSubsetEval Use a classifier to evaluate attribute set WrapperSubsetEval Use a classifier plus cross-validation 42

43 Μέθοδοι αναζήτησης BestFirst Greedy hill-climbing with backtracking ExhaustiveSearch Search exhaustively GeneticSearch Search using a simple genetic algorithm GreedyStepwise Greedy hill-climbing without backtracking; optionally generate ranked list of attributes RaceSearch Use race search methodology RandomSearch Search randomly RankSearch Sort the attributes and rank promising subsets using an attribute subset evaluator Μέθοδος κατάταξης Ranker Rank individual attributes (not subsets) according to their evaluation 43

44 Αποτίμηση μοναδιαίου χαρακτηριστικού ChiSquaredAttributeEval Compute the chi-squared statistic of each attribute with respect to the class GainRatioAttributeEval Evaluate attribute based on gain ratio InfoGainAttributeEval Evaluate attribute based on information gain OneRAttributeEval Use OneR s methodology to evaluate attributes PrincipalComponents Perform principal components analysis and transformation ReliefFAttributeEval Instance-based attribute evaluator SVMAttributeEval Use a linear support vector machine to determine the value of attributes SymmetricalUncertAttributeEval Evaluate attribute based on symmetric uncertainty 44

45 Filter Preprocess sheet Filter Choose (supervised / unsupervised, attribute / instance) Apply 45

46 Φίλτρα χαρακτηριστικών χωρίς επίβλεψη (Unsupervised attribute filters) Προσθήκη & απομάκρυνση χαρακτηριστικών Add Add a new attribute, whose values are all marked as missing Copy Copy a range of attributes in the dataset Remove Remove attributes RemoveType Remove attributes of a given type (nominal, numeric, string, or date) RemoveUseless Remove constant attributes, along with nominal attributes that vary too much Define attribute, eg. first-3,5,9-last / except 46

47 Φίλτρα χαρακτηριστικών χωρίς επίβλεψη (Unsupervised attribute filters) AddCluster Add a new nominal attribute representing the cluster assigned to each instance by a given clustering algorithm AddExpression Create a new attribute by applying a specified mathematical function to existing attributes ClusterMembership Use a clusterer to generate cluster membership values, which then form the new attributes Normalize Scale all numeric values in the dataset to lie within the interval [0,1] Standardize Standardize all numeric attributes to have zero mean and unit variance NumericTransform Transform a numeric attribute using any Java function Operators +, -, *, /, ^ functions log/exp, abs/sqrt, floor/ceil/rint, sin/cos/tan Define attribute, eg. A7 Expression eg. a1^2*a5/log(a7*4.0) 47

48 Φίλτρα χαρακτηριστικών χωρίς επίβλεψη (Unsupervised attribute filters) Αλλαγή τιμών SwapValues Swap two values of an attribute MergeTwoValues Merge two values of a given attribute: Specify the index of the two values to be merged ReplaceMissingValues Replace all missing values for nominal and numeric attributes with the modes and means of the training data Τυχαιοποίηση AddNoise Change a percentage of a given nominal attribute s values Obfuscate Obfuscate the dataset by renaming the relation, all attribute names, and nominal and string attribute values RandomProjection Project the data onto a lower-dimensional subspace using a random matrix 48

49 Φίλτρα χαρακτηριστικών χωρίς επίβλεψη (Unsupervised attribute filters) Μετατροπές Discretize Convert numeric attributes to nominal: Specify which attributes, number of bins, whether to optimize the number of bins, and output binary attributes. Use equal-width (default) or equal-frequency binning PKIDiscretize Discretize numeric attributes using equal-frequency binning, where the number of bins is equal to the square root of the number of values (excluding missing values) MakeIndicator Replace a nominal attribute with a Boolean attribute. Assign value 1 to instances with a particular range of attribute values; otherwise, assign 0. By default, the Boolean attribute is coded as numeric NominalToBinary Change a nominal attribute to several binary ones, one for each value NumericToBinary Convert all numeric attributes into binary ones: Nonzero values become 1 FirstOrder Apply a first-order differencing operator to a range of numeric attributes 49

50 Φίλτρα χαρακτηριστικών χωρίς επίβλεψη (Unsupervised attribute filters) Μετατροπές συμβολοσειρών StringToNominal Convert a string attribute to nominal StringToWordVector Convert a string attribute to a vector that represents word occurrence frequencies; you can choose the delimiter(s) and there are many more options Χρονοσειρές TimeSeriesTranslate Replace attribute values in the current instance with the equivalent value in some previous (or future) instance TimeSeriesDelta Replace attribute values in the current instance with the difference between the current value and the value in some previous (or future) instance 50

51 Φίλτρα υποδειγμάτων χωρίς επίβλεψη (Unsupervised instance filters) Τυχαιοποίηση & δειγματοληψία υποσυνόλου Randomize Randomize the order of instances in a dataset Normalize Treat numeric attributes as a vector and normalize it to a given length Resample Produce a random subsample of a dataset, sampling with replacement RemoveFolds Output a specified cross-validation fold for the dataset RemovePercentage Remove a given percentage of a dataset RemoveRange Remove a given range of instances from a dataset RemoveWithValues Filter out instances with certain attribute values RemoveMisclassified Remove instances incorrectly classified according to a specified classifier useful for removing outliers Αραιά Υποδείγματα NonSparseToSparse Convert all incoming instances to sparse format SparseToNonSparse Convert all incoming sparse instances into nonsparse format 51

52 Φίλτρα με επίβλεψη (Supervised Filters) Χρήζουνιδιαίτερηςπροσοχής, καθώς στην πραγματικότητα δεν συνιστούν λειτουργίες προεπεξεργασίας Οι διαμερίσεις των δεδομένων ελέγχου απαιτείται να μη λαμβάνουν υπ όψιν τις τιμές των τάξεων των υποδειγμάτων ελέγχου, καθώς αυτές υποτίθεται πως είναι άγνωστες. Φίλτρα χαρακτηριστικών Discretize Convert numeric attributes to nominal NominalToBinary Convert nominal attributes to binary, using a supervised method if the class is numeric ClassOrder Randomize, or otherwise alter, the ordering of class values AttributeSelection Provides access to the same attribute selection methods as the Select attributes panel Φίλτρα υποδειγμάτων Resample Produce a random subsample of a dataset, sampling with replacement SpreadSubsample Produce a random subsample with a given spread between class frequencies, sampling with replacement StratifiedRemoveFolds Output a specified stratified cross-validation fold for the dataset 52

53 Τέλος Επόμενη διάλεξη: ΑπεικόνισηΓνώσης, Αξιοπιστία&Αποτίμηση 53

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

9. Ανάλυση κυρίων συνιστωσών *Principal Component Analysis)

9. Ανάλυση κυρίων συνιστωσών *Principal Component Analysis) 1 9. Ανάλυση κυρίων συνιστωσών *Principal Component Analysis) Προαπαιτούμενα: MULTISPEC και η πολυφασματική εικόνα του φακέλου \Multispec_tutorial_Files\Images and Files \ salamina_multispectral.tiff Σκοπός:

Διαβάστε περισσότερα

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Business English Ενότητα # 9: Financial Planning Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...

Διαβάστε περισσότερα

Εξόρυξη γνώμης πολιτών από ελεύθερο κείμενο

Εξόρυξη γνώμης πολιτών από ελεύθερο κείμενο Δίκαρος Νίκος Δ/νση Μηχανογράνωσης κ Η.Ε.Σ. Υπουργείο Εσωτερικών. Τελική εργασία Κ Εκπαιδευτικής Σειράς Ε.Σ.Δ.Δ. Επιβλέπων: Ηρακλής Βαρλάμης Εξόρυξη γνώμης πολιτών από ελεύθερο κείμενο Κεντρική ιδέα Προβληματισμοί

Διαβάστε περισσότερα

ΙΕΚ ΞΑΝΘΗΣ. Μάθημα : Στατιστική Ι. Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας

ΙΕΚ ΞΑΝΘΗΣ. Μάθημα : Στατιστική Ι. Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας ΙΕΚ ΞΑΝΘΗΣ Μάθημα : Στατιστική Ι Υποενότητα : Τρόποι και μέθοδοι δειγματοληψίας Επαμεινώνδας Διαμαντόπουλος Ιστοσελίδα : http://users.sch.gr/epdiaman/ Email : epdiamantopoulos@yahoo.gr 1 Στόχοι της υποενότητας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21

ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21 Πίνακας Περιεχομένων Πρόλογος... 17 ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21 (Basic Sampling Techniques and Questionnaire Analysis using

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 2. Περιγραφική Στατιστική Βασικά είδη στατιστικής ανάλυσης 1. Περιγραφική στατιστική: περιγραφή του συνόλου των δεδοµένων (δείγµατος) 2. Συµπερασµατολογία: Παραγωγή συµπερασµάτων για τα

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ31 (2004-5) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #3 Στόχος Στόχος αυτής της εργασίας είναι η απόκτηση δεξιοτήτων σε θέματα που αφορούν τα Τεχνητά Νευρωνικά Δίκτυα και ποιο συγκεκριμένα θέματα εκπαίδευσης και υλοποίησης.

Διαβάστε περισσότερα

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ Αστική Μη Κερδοσκοπική Εταιρεία- ISO 9001 Σαπφούς 3, 81100 Μυτιλήνη (1ος Όροφος) 2251054739 (09:00-14:30) academy@aigaion.org civilacademy.ucoz.org «ΠΡΟΓΡΑΜΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ ΕΡΕΥΝΑΣ

Διαβάστε περισσότερα

Τεκμηρίωση ποσοτικών ερευνών με τη χρήση του Nesstar. Δρ. Απόστολος Λιναρδής Ερευνητής ΕΚΚΕ

Τεκμηρίωση ποσοτικών ερευνών με τη χρήση του Nesstar. Δρ. Απόστολος Λιναρδής Ερευνητής ΕΚΚΕ Τεκμηρίωση ποσοτικών ερευνών με τη χρήση του Nesstar Δρ. Απόστολος Λιναρδής Ερευνητής ΕΚΚΕ Μέρος Α Τεκμηρίωση βάσει του προτύπου Data Documentation Initiative (DDI) 2.X Οι φάσεις διεξαγωγής μίας ποσοτικής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2010-11 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΜΙΚΡΟ ΥΠΟΛΟΓΙΣΤΕΣ

ΟΙΚΟΝΟΜΕΤΡΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΜΙΚΡΟ ΥΠΟΛΟΓΙΣΤΕΣ «ΣΠΟΥΔΑΙ», Τόμος 43, Τεύχος 3ο-4ο, Πανεπιστήμιο Πειραιώς / «SPOUDAI», Vol. 43, No 3-4, University of Piraeus ΟΙΚΟΝΟΜΕΤΡΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΜΙΚΡΟ ΥΠΟΛΟΓΙΣΤΕΣ Ενημερωτική Παρουσίαση* Abstract A review is presented

Διαβάστε περισσότερα

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη 05: Αλγόριθμοι εκμάθησης Μέρος Α Δένδρα&Κανόνες

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη 05: Αλγόριθμοι εκμάθησης Μέρος Α Δένδρα&Κανόνες ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη 05: Αλγόριθμοι εκμάθησης Μέρος Α Δένδρα&Κανόνες Αλγόριθμοι Δεδομένα input Αλγόριθμοι Εξόρυξης Πληροφορίας Εξαγόμενα output

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ ΕΡΓΑΣΤΗΡΙΟ PASW 18 Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011 2012 ΕΠΙΧ

Διαβάστε περισσότερα

Προεπεξεργασία Δεδομένων

Προεπεξεργασία Δεδομένων Προεπεξεργασία Δεδομένων Εξόρυξη Δεδομένων και Αλγόριθμοι Μάθησης 1 ο Φροντιστήριο Σκούρα Αγγελική skoura@ceid.upatras.gr 2 Η Διαδικασία Εξόρυξης Γνώσης Ορισμός προβλήματος Συλλογή δεδομένων Προεπεξεργασία

Διαβάστε περισσότερα

Μεθοδολογίες Αξιοποίησης Δεδομένων

Μεθοδολογίες Αξιοποίησης Δεδομένων Μεθοδολογίες Αξιοποίησης Δεδομένων Βλάχος Σ. Ιωάννης Λέκτορας 407/80, Ιατρικής Σχολής Πανεπιστημίου Αθηνών Εργαστήριο Πειραματικής Χειρουργικής και Χειρουργικής Ερεύνης «Ν.Σ. Σ Χρηστέας» Στάδια Αξιοποίησης

Διαβάστε περισσότερα

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑ 1 ο Τα δεδομένα της στήλης Grade (Αρχείο Excel, Φύλλο Ask1) αναφέρονται στη βαθμολογία 63 φοιτητών που έλαβαν μέρος σε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2006-07 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

Πληρουορική Γ Γσμμασίοσ

Πληρουορική Γ Γσμμασίοσ Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:

Διαβάστε περισσότερα

ΕΣΔ 200: ΔΗΜΙΟΥΡΓΙΑ ΠΕΡΙΕΧΟΜΕΝΟΥ ΙΙ. Ακαδημαϊκό Έτος 2011 2012, Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης

ΕΣΔ 200: ΔΗΜΙΟΥΡΓΙΑ ΠΕΡΙΕΧΟΜΕΝΟΥ ΙΙ. Ακαδημαϊκό Έτος 2011 2012, Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΕΠΙΚΟΙΝΩΝΙΑΣ & ΣΠΟΥΔΩΝ ΔΙΑΔΙΚΤΥΟΥ ΕΣΔ 200: ΔΗΜΙΟΥΡΓΙΑ ΠΕΡΙΕΧΟΜΕΝΟΥ ΙΙ Ακαδημαϊκό Έτος 2011 2012, Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

Διαβάστε περισσότερα

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Γεσθημανή Μηντζιώρη MD, MSc, PhD Μονάδα Ενδοκρινολογίας της Αναπαραγωγής, Α Μαιευτική και Γυναικολογική

Διαβάστε περισσότερα

ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ. Επίπεδα Αφαίρεσης Σ Β. Αποθήκευση Εγγραφών - Ευρετήρια. ρ. Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, Επίπεδο Όψεων.

ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ. Επίπεδα Αφαίρεσης Σ Β. Αποθήκευση Εγγραφών - Ευρετήρια. ρ. Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, Επίπεδο Όψεων. ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ Χειµερινό Εξάµηνο 2002 Αποθήκευση Εγγραφών - Ευρετήρια ρ Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Επίπεδα Αφαίρεσης Σ Β Επίπεδο Όψεων Όψη Όψη

Διαβάστε περισσότερα

Ανάλυση χρονοσειρών ΚΕΦΑΛΑΙΟ 8. Εισαγωγή

Ανάλυση χρονοσειρών ΚΕΦΑΛΑΙΟ 8. Εισαγωγή ΚΕΦΑΛΑΙΟ 8 Ανάλυση χρονοσειρών Εισαγωγή Η ανάλυση χρονοσειρών αποσκοπεί στην ανεύρεση των χαρακτηριστικών εκείνων που συµβάλουν στην κατανόηση της ιστορικής συµπεριφοράς µιας µεταβλητής και επιτρέπουν

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη 04: Απεικόνιση Γνώσης, Αξιοπιστία & Αποτίμηση

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη 04: Απεικόνιση Γνώσης, Αξιοπιστία & Αποτίμηση ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη 04: Απεικόνιση Γνώσης, Αξιοπιστία & Αποτίμηση Η μορφή των εξαγομένων και η σημασία της Δεδομένα input Αλγόριθμοι Εξόρυξης

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΕΠΕΝΔΥΣΕΩΝ

ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΕΠΕΝΔΥΣΕΩΝ ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΕΠΕΝΔΥΣΕΩΝ Υπό ΘΕΟΔΩΡΟΥ ΑΡΤΙΚΗ, ΑΝΑΣΤΑΣΙΟΥ ΣΟΥΓΙΑΝΝΗ ΚΑΙ ΓΕΩΡΓΙΟΥ ΑΡΤ1ΚΗ Ανωτάτη Βιομηχανική Σχολή Πειραιά 1. ΕΙΣΑΓΩΓΗ Τα συνήθη κριτήρια αξιολόγησης επενδύσεων βασίζονται

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί

Διαβάστε περισσότερα

Ανάλυση εικόνων DSLR με το πρόγραμμα IRIS

Ανάλυση εικόνων DSLR με το πρόγραμμα IRIS Δεκέμβριος 2014: Θεματικός Μήνας Μεταβλητών Άστρων Μαραβέλιας Γρηγόρης Ανάλυση εικόνων DSLR με το πρόγραμμα IRIS v1.0 Πηγές Το υλικό προέρχεται από τις ακόλουθες πηγές (τις οποίες μπορείτε να συμβουλευτείτε

Διαβάστε περισσότερα

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σπύρος Βερονίκης Τμήμα Αρχειονομίας - Βιβλιοθηκονομίας Θεματικές

Διαβάστε περισσότερα

2. Δημιουργία και Διαχείριση Πολυφασματικών εικόνων

2. Δημιουργία και Διαχείριση Πολυφασματικών εικόνων 1 2. Δημιουργία και Διαχείριση Πολυφασματικών εικόνων Προαπαιτούμενα: MULTISPEC και οι εικόνες του φακέλου «Multispec_tutorial_files\ Images and Files Σκοπός: Η προσαρμογή της χωρικής ανάλυσης διαφορετικών

Διαβάστε περισσότερα

Ανάπτυξη και Σχεδίαση Λογισμικού

Ανάπτυξη και Σχεδίαση Λογισμικού Ανάπτυξη και Σχεδίαση Λογισμικού Η γλώσσα προγραμματισμού C Γεώργιος Δημητρίου Βασικά Στοιχεία Το αλφάβητο της C Οι βασικοί τύποι της C Δηλώσεις μεταβλητών Είσοδος/Έξοδος Βασικές εντολές της C Αλφάβητο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΜΕ ΧΡΗΣΗ MATLAB ΑΘΑΝΑΣΙΑ ΚΟΛΟΒΟΥ (Ε.Τ.Ε.Π.) 2012 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ο σκοπός αυτού

Διαβάστε περισσότερα

SOAP API. https://bulksmsn.gr. Table of Contents

SOAP API. https://bulksmsn.gr. Table of Contents SOAP API https://bulksmsn.gr Table of Contents Send SMS...2 Query SMS...3 Multiple Query SMS...4 Credits...5 Save Contact...5 Delete Contact...7 Delete Message...8 Email: sales@bulksmsn.gr, Τηλ: 211 850

Διαβάστε περισσότερα

Μια εισαγωγή στο φίλτρο Kalman

Μια εισαγωγή στο φίλτρο Kalman 1 Μια εισαγωγή στο φίλτρο Kalman Το 1960, R.E. Kalman δημόσιευσε το διάσημο έγγραφό του περιγράφοντας μια επαναλαμβανόμενη λύση στο γραμμικό πρόβλημα φιλτραρίσματος διακριτών δεδομένων. Από εκείνη τη στιγμή,

Διαβάστε περισσότερα

Predicting the Choice of Contraceptive Method using Classification

Predicting the Choice of Contraceptive Method using Classification ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΣΣΑΛΟΝΙΚΗ Predicting the Choice of Contraceptive Method using Classification ΠΑΠΑΔΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Νικόλαος Σαμαράς ΕΞΕΤΑΣΤΗΣ:

Διαβάστε περισσότερα

Διόρθωση Περιεχομένου ΑΞΙΟΛΟΓΗΣΗ - ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ. Μιχαλέας Σωτήρης, Φαρμακοποιός MSc. PhD

Διόρθωση Περιεχομένου ΑΞΙΟΛΟΓΗΣΗ - ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ. Μιχαλέας Σωτήρης, Φαρμακοποιός MSc. PhD ΕΘΝΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΦΑΡΜΑΚΩΝ Η νέα κατευθυντήρια οδηγία που αφορά σε μελέτες βιοϊσοδυναμίας: Νομικό πλαίσιο Ευρωπαϊκή πραγματικότητα Εξελίξεις ΑΞΙΟΛΟΓΗΣΗ - ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Μιχαλέας Σωτήρης, Φαρμακοποιός

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA)

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA) ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA). Εισαγωγή Η ανάλυση της διακύμανσης (ANalysis Of VAriance ANOVA) είναι μια στατιστική μεθόδος με την οποία η μεταβλητότητα που υπάρχει σ ένα σύνολο δεδομένων διασπάται στις

Διαβάστε περισσότερα

Ρύθμιση e-mail σε whitelist

Ρύθμιση e-mail σε whitelist Ρύθμιση e-mail σε whitelist «Δουλεύω Ηλεκτρονικά, Δουλεύω Γρήγορα και με Ασφάλεια - by e-base.gr» Web : www.e-base.gr E-mail : support@e-base.gr Facebook : Like Twitter : @ebasegr Πολλές φορές αντιμετωπίζετε

Διαβάστε περισσότερα

ΗΥ-360 Αρχεία και Βάσεις Δεδομένων Διδάσκων: Δ. Πλεξουσάκης. Φροντιστήριο SQL Examples Ξένου Ρουμπίνη

ΗΥ-360 Αρχεία και Βάσεις Δεδομένων Διδάσκων: Δ. Πλεξουσάκης. Φροντιστήριο SQL Examples Ξένου Ρουμπίνη ΗΥ-360 Αρχεία και Βάσεις Δεδομένων Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο SQL Examples Ξένου Ρουμπίνη 1 SQL-DDL Data Definition/Description Language (DDL): προσδιορίζουν τη δομή ή το σχήμα των δεδομένων.

Διαβάστε περισσότερα

Terabyte Technology Ltd

Terabyte Technology Ltd Terabyte Technology Ltd is a Web and Graphic design company in Limassol with dedicated staff who will endeavour to deliver the highest quality of work in our field. We offer a range of services such as

Διαβάστε περισσότερα

ΑΙΤΗΣΗ ΓΙΑ ΑΔΕΙΟΔΟΤΗΣΗ ΣΕ ΛΙΜΕΝΙΚΗ ΠΕΡΙΟΧΗ PERMIT APPLICATION WITHIN PORT AREA 1. ΣΤΟΙΧΕΙΑ ΕΤΑΙΡΕΙΑΣ COMPANY DETAILS

ΑΙΤΗΣΗ ΓΙΑ ΑΔΕΙΟΔΟΤΗΣΗ ΣΕ ΛΙΜΕΝΙΚΗ ΠΕΡΙΟΧΗ PERMIT APPLICATION WITHIN PORT AREA 1. ΣΤΟΙΧΕΙΑ ΕΤΑΙΡΕΙΑΣ COMPANY DETAILS ΑΙΤΗΣΗ ΓΙΑ ΑΔΕΙΟΔΟΤΗΣΗ ΣΕ ΛΙΜΕΝΙΚΗ ΠΕΡΙΟΧΗ 1. ΣΤΟΙΧΕΙΑ ΕΤΑΙΡΕΙΑΣ COMPANY DETAILS Ονομα εταιρείας / Company name Περίοδος άδειας: Start End Τίτλος έργου / Project title Permit duration Αριθμός εγγραφής

Διαβάστε περισσότερα

Υπολογιστικές Μέθοδοι στις Κατασκευές

Υπολογιστικές Μέθοδοι στις Κατασκευές Γενικά Για Τη Βελτιστοποίηση Η βελτιστοποίηση µπορεί να χωριστεί σε δύο µεγάλες κατηγορίες: α) την Βελτιστοποίηση Τοπολογίας (Topological Optimization) και β) την Βελτιστοποίηση Σχεδίασης (Design Optimization).

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας Επικοινωνία: Πτέρυγα 4, Τοµέας Κοινωνικής Ιατρικής Εργαστήριο Βιοστατιστικής Τηλ. 4613 e-mail: biostats@med.uoc.gr thalegak@med.uoc.gr

Διαβάστε περισσότερα

3 Αλληλεπίδραση Αντικειμένων

3 Αλληλεπίδραση Αντικειμένων Αφαίρεση και Αρθρωσιμότητα 3 Αλληλεπίδραση Αντικειμένων Πώς συνεργάζονται τα αντικείμενα που δημιουργούμε Αφαίρεση (abstraction) είναι η δυνατότητα να αγνοούμε τις λεπτομέρειες και να εστιάζουμε την προσοχή

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

Εξεταστέα Ύλη (Syllabus) Έκδοση 5.0

Εξεταστέα Ύλη (Syllabus) Έκδοση 5.0 Εξεταστέα Ύλη (Syllabus) Έκδοση 5.0 Πνευματικά Δικαιώματα 2007 Ίδρυμα ECDL (ECDL Foundation www.ecdl.org) Όλα τα δικαιώματα είναι κατοχυρωμένα. Κανένα μέρος αυτού του εγγράφου δεν μπορεί να αναπαραχθεί

Διαβάστε περισσότερα

Εισαγωγή στο SPSS. ΚΕΔΙΜΑ 28/9/2013 Γεώργιος Σπανούδης (spanouod@ucy.ac.cy) Τμήμα Ψυχολογίας

Εισαγωγή στο SPSS. ΚΕΔΙΜΑ 28/9/2013 Γεώργιος Σπανούδης (spanouod@ucy.ac.cy) Τμήμα Ψυχολογίας Εισαγωγή στο SPSS ΚΕΔΙΜΑ 28/9/2013 Γεώργιος Σπανούδης (spanouod@ucy.ac.cy) Τμήμα Ψυχολογίας Στόχος του μαθήματος Τα τέσσερα παράθυρα του SPSS Η διαχείριση των αρχείων δεδομένων Βασικά στοιχεία ανάλυσης

Διαβάστε περισσότερα

Kalman Filter Γιατί ο όρος φίλτρο;

Kalman Filter Γιατί ο όρος φίλτρο; Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 15: O αλγόριθμος SIMPLE Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε τις θέσεις που

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ- TABLE ΤΡΟΠΟΙ ΠΑΡΟΥΣΙΑΣΗΣ ΔΕΔΟΜΕΝΩΝ ΠΙΝΑΚΑΣ 1. ΓΙΑ ΠΟΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Η ΣΤΟΙΧΕΙΑ ΕΙΝΑΙ ΚΑΛΗ ΕΠΙΛΟΓΗ ΕΝΑΣ ΠΙΝΑΚΑΣ; ΚΑΛΗ ΕΠΙΛΟΓΗ

ΠΙΝΑΚΑΣ- TABLE ΤΡΟΠΟΙ ΠΑΡΟΥΣΙΑΣΗΣ ΔΕΔΟΜΕΝΩΝ ΠΙΝΑΚΑΣ 1. ΓΙΑ ΠΟΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Η ΣΤΟΙΧΕΙΑ ΕΙΝΑΙ ΚΑΛΗ ΕΠΙΛΟΓΗ ΕΝΑΣ ΠΙΝΑΚΑΣ; ΚΑΛΗ ΕΠΙΛΟΓΗ ΤΡΟΠΟΙ ΠΑΡΟΥΣΙΑΣΗΣ ΔΕΔΟΜΕΝΩΝ ΧΡΙΣΤΙΝΑ ΚΑΡΑΤΖΑΦΕΡΗ, PhD ΛΕΚΤΟΡΑΣ ΣΤΗ ΦΥΣΙΟΛΟΓΙΑ ΤΗΣ ΑΣΚΗΣΗΣ Τ.Ε.Φ.Α.Α., Π.Θ. Π.Μ.Σ. ΑΣΚΗΣΗ ΚΑΙ ΥΓΕΙΑ ΦΕΒΡΟΥΑΡΙΟΣ 2007 ΒΑΣΙΚΑ ΚΡΙΤΗΡΙΑ ΕΠΙΛΟΓΗΣ ΑΠΛΟΤΗΤΑ ΝΟΗΜΑΤΙΚΗ ΚΑΘΑΡΟΤΗΤΑ

Διαβάστε περισσότερα

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade Για να ελέγξετε το λογισμικό που έχει τώρα η συσκευή κάντε κλικ Menu > Options > Device > About Device Versions. Στο πιο κάτω παράδειγμα η συσκευή έχει έκδοση λογισμικού 6.0.0.546 με πλατφόρμα 6.6.0.207.

Διαβάστε περισσότερα

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ 22559 ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ Αρ. Φύλλου 1561 17 Αυγούστου 2007 ΑΠΟΦΑΣΕΙΣ Αριθμ. 85038/Γ2 Αναλυτικό Πρόγραμμα Σπουδών του Τομέα Οικονομικών και Διοικητικών Υπηρεσιών

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07 Ακαδ έτος 2007-2008 ΠΛΗΡΟΦΟΡΙΚΗ Ι Φερεντίνος 22/11/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με ΑΜ σε 3, 7, 8 & 9 22/11/07 Παράδειγμα με if/else if και user input: import javautil*; public class Grades public

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

Risk Management & Business Continuity Τα εργαλεία στις νέες εκδόσεις

Risk Management & Business Continuity Τα εργαλεία στις νέες εκδόσεις Risk Management & Business Continuity Τα εργαλεία στις νέες εκδόσεις Α. Χατζοπούλου Υπεύθυνη Τμήματος Επιθεωρήσεων Πληροφορικής TÜV AUSTRIA HELLAS Οκτώβριος 2014 CLOSE YOUR EYES & THINK OF RISK Μήπως κάποια

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

Η ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΣΤΟ ΣΥΓΧΡΟΝΟ ΠΕΡΙΒΑΛΛΟΝ

Η ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΣΤΟ ΣΥΓΧΡΟΝΟ ΠΕΡΙΒΑΛΛΟΝ Η ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΣΤΟ ΣΥΓΧΡΟΝΟ ΠΕΡΙΒΑΛΛΟΝ Ιόνιο Πανεπιστήµιο Τµήµα Αρχειονοµίας-Βιβλιοθηκονοµίας Μεταπτυχιακό Πρόγραµµα Σπουδών2007-2008 ιδάσκουσα: Κατερίνα Τοράκη (Οι διαλέξεις περιλαµβάνουν

Διαβάστε περισσότερα

Εργαστήριο Σημασιολογικού Ιστού

Εργαστήριο Σημασιολογικού Ιστού Εργαστήριο Σημασιολογικού Ιστού Ενότητα 8: Εισαγωγή στη SPARQL Βασική Χρήση Μ.Στεφανιδάκης 3-5-2015. Η γλώσσα ερωτημάτων SPARQL Ερωτήσεις (και ενημερώσεις) σε σετ δεδομένων RDF Και σε δεδομένα άλλης μορφής

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΠΑΚΕΤΟΥ SPSS 15

ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΠΑΚΕΤΟΥ SPSS 15 ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΠΑΚΕΤΟΥ SPSS 15 STTISTICL PCKGE for the SOCIL SCIENCES ΤΣΑΓΡΗΣ ΜΙΧΑΗΛ BSc in Statistics Email: mtsagris@yahoo.gr ΑΘΗΝΑ 2008 2 Περιεχόμενα 1.1 Σύντομη εισαγωγή στη Στατιστική...4

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 2 : Βελτιστοποίηση εικόνας (Image enhancement) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

METALIB Σύστημα μετα-αναζήτησης για ηλεκτρονικές πηγές πληροφόρησης

METALIB Σύστημα μετα-αναζήτησης για ηλεκτρονικές πηγές πληροφόρησης METALIB Σύστημα μετα-αναζήτησης για ηλεκτρονικές πηγές πληροφόρησης Βιβλιοθήκη & Κέντρο Πληροφόρησης, Πανεπιστημίου Λευκωσίας E-mail: libithelp@unic.ac.cy Τηλ: 22444772 Έκδοση: Μάρτιος 2013 (ES, GC, KP)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

DETERMINATION OF THERMAL PERFORMANCE OF GLAZED LIQUID HEATING SOLAR COLLECTORS

DETERMINATION OF THERMAL PERFORMANCE OF GLAZED LIQUID HEATING SOLAR COLLECTORS ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΕΡΕΥΝΑΣ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΜΟΚΡΙΤΟΣ / DEMOKRITOS NATIONAL CENTER FOR SCIENTIFIC RESEARCH ΕΡΓΑΣΤΗΡΙΟ ΟΚΙΜΩΝ ΗΛΙΑΚΩΝ & ΑΛΛΩΝ ΕΝΕΡΓΕΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ LABORATORY OF TESTIN SOLAR & OTHER ENERY

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

Test Data Management in Practice

Test Data Management in Practice Problems, Concepts, and the Swisscom Test Data Organizer Do you have issues with your legal and compliance department because test environments contain sensitive data outsourcing partners must not see?

Διαβάστε περισσότερα

Γλώσσες Προγραμματισμού Μεταγλωττιστές

Γλώσσες Προγραμματισμού Μεταγλωττιστές Γλώσσες Προγραμματισμού Μεταγλωττιστές Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Ηλίας Σακελλαρίου Δομή Γλώσσες Προγραμματισμού Εισαγωγικά Γλώσσα Μηχανής Γλώσσες υψηλού επιπέδου Μεταγλωττιστές

Διαβάστε περισσότερα

1. ΑΝΟΙΞΤΕ ΤΟΝ ΠΙΝΑΚΑ CUSTOMER ΚΑΙ ΣΤΟ ΜΕΝΟΥ ΕΠΙΛΕΞΤΕ

1. ΑΝΟΙΞΤΕ ΤΟΝ ΠΙΝΑΚΑ CUSTOMER ΚΑΙ ΣΤΟ ΜΕΝΟΥ ΕΠΙΛΕΞΤΕ ΜΑΘΗΜΑ 6 ο ΤΑΞΙΝΟΜΗΣΗ / ΦΙΛΤΡΑΡΙΣΜΑ ΠΛΗΡΟΦΟΡΙΩΝ Α. ΤΑΞΙΝΟΜΗΣΗ ΠΛΗΡΟΦΟΡΙΩΝ 1. ΑΝΟΙΞΤΕ ΤΗ ΒΑΣΗ Ε ΟΜΕΝΩΝ ΠΟΥ ΕΧΕΤΕ ΦΤΙΑΞΕΙ ΣΤΟ ΠΡΟΗΓΟΥΜΕΝΟ ΜΑΘΗΜΑ (ΑΠΟ ΕΧΘΕΙΤΕ ΑΝ ΧΡΕΙΑΖΕΤΑΙ ΤΗΝ ΠΡΟΕΙ ΟΠΟΙΗΣΗ ΑΣΦΑΛΕΙΑΣ) 2.

Διαβάστε περισσότερα

Web Data Mining ΕΡΓΑΣΤΗΡΙΟ 2 & 3. Prepared by Costantinos Costa Edited by George Nikolaides. EPL 451 - Data Mining on the Web

Web Data Mining ΕΡΓΑΣΤΗΡΙΟ 2 & 3. Prepared by Costantinos Costa Edited by George Nikolaides. EPL 451 - Data Mining on the Web EPL 451 - Data Mining on the Web Web Data Mining ΕΡΓΑΣΤΗΡΙΟ 2 & 3 Prepared by Costantinos Costa Edited by George Nikolaides Semester Project Microsoft Malware Classification Challenge (BIG 2015) More info:

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #10: Αλγόριθμοι Διαίρει & Βασίλευε: Master Theorem, Αλγόριθμοι Ταξινόμησης, Πιθανοτικός

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία Η ΕΦΑΡΜΟΓΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ HACCP ΣΕ ΜΙΚΡΕΣ ΒΙΟΤΕΧΝΙΕΣ ΓΑΛΑΚΤΟΣ ΣΤΗΝ ΕΠΑΡΧΙΑ ΛΕΜΕΣΟΥ

Διαβάστε περισσότερα

Runtime Checking (1/3) Runtime Checking (2/3) Runtime Checking (3/3) ΗΥ 340 Γλώσσες και Μεταφραστές Φροντιστήριο

Runtime Checking (1/3) Runtime Checking (2/3) Runtime Checking (3/3) ΗΥ 340 Γλώσσες και Μεταφραστές Φροντιστήριο ΗΥ 340 Γλώσσες και Μεταφραστές Φροντιστήριο Runtime Checking (1/3) Η γλώσσα alpha είναι μια dynamic typing γλώσσα (ο τύπος μιας μεταβλητής αλλάζει ακολουθώντας τον τύπο της τιμής που κάθε φορά αποθηκεύεται

Διαβάστε περισσότερα

Εισαγωγή στις Ηλεκτρικές Μετρήσεις

Εισαγωγή στις Ηλεκτρικές Μετρήσεις Εισαγωγή στις Ηλεκτρικές Μετρήσεις Σφάλματα Μετρήσεων Συμβατικά όργανα μετρήσεων Χαρακτηριστικά μεγέθη οργάνων Παλμογράφος Λέκτορας Σοφία Τσεκερίδου 1 Σφάλματα μετρήσεων Επιτυχημένη μέτρηση Σωστή εκλογή

Διαβάστε περισσότερα

STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18

STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18 STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18 Name.. Class. Date. EXERCISE 1 Answer the question. Use: Yes, it is or No, it isn t. Απάντηςε ςτισ ερωτήςεισ. Βάλε: Yes, it is ή No, it isn

Διαβάστε περισσότερα

υπηρεσίες / services ΜΕΛΕΤΗ - ΣΧΕΔΙΑΣΜΟΣ PLANNING - DESIGN ΕΜΠΟΡΙΚΗ ΜΕΛΕΤΗ COMMERCIAL PLANNING ΕΠΙΠΛΩΣΗ - ΕΞΟΠΛΙΣΜΟΣ FURNISHING - EQUIPMENT

υπηρεσίες / services ΜΕΛΕΤΗ - ΣΧΕΔΙΑΣΜΟΣ PLANNING - DESIGN ΕΜΠΟΡΙΚΗ ΜΕΛΕΤΗ COMMERCIAL PLANNING ΕΠΙΠΛΩΣΗ - ΕΞΟΠΛΙΣΜΟΣ FURNISHING - EQUIPMENT Αρχιτεκτονικές και διακοσμητικές μελέτες, με λειτουργικό και σύγχρονο σχέδιασμό, βασισμένες στην μοναδικότητα του πελάτη. ΕΜΠΟΡΙΚΗ ΜΕΛΕΤΗ Ανάλυση των χαρακτηριστικών των προϊόντων και ένταξη του τρόπου

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. Ερώτηση 1 Κατά τη Φυσική Αποθήκευση (Physical storage) μιας ΒΔ αποθηκεύονται στον δίσκο τα:

ΘΕΜΑΤΑ. Ερώτηση 1 Κατά τη Φυσική Αποθήκευση (Physical storage) μιας ΒΔ αποθηκεύονται στον δίσκο τα: ΘΕΜΑΤΑ Θέμα 1 ο Σε μία βάση δεδομένων χρηματιστηριακών συναλλαγών υπάρχουν οι παρακάτω πίνακες που αποτελούνται από τα εξής πεδία : : ΚΣ, ΗΜΝΙΑ, ΩΡΑ, ΚΜ, ΤΙΜΗ ΜΕΤΟΧΗ : ΚΜ, ΟΝΟΜΑ, ΕΤΟΣ_ΙΔΡΥΣΗΣ, ΚΚ, ΚΑΤΗΓΟΡΙΑ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -

Διαβάστε περισσότερα

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης Αναγνώριση Προτύπων (Pattern Recognton Μπεϋζιανή Θεωρία Αποφάσεων (Bayesan Decson Theory Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Μπεϋζιανή Θεωρία Αποφάσεων (Bayes Decson theory Στατιστικά

Διαβάστε περισσότερα

Ανάκτηση Δεδομένων (Information Retrieval)

Ανάκτηση Δεδομένων (Information Retrieval) Ανάκτηση Δεδομένων (Information Retrieval) Παύλος Εφραιμίδης Βάσεις Δεδομένων Ανάκτηση Δεδομένων 1 Information Retrieval (1) Βάσεις Δεδομένων: Περιέχουν δομημένη πληροφορία: Πίνακες Ανάκτηση Πληροφορίας

Διαβάστε περισσότερα

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Δρ. Τακβόρ Σουκισιάν Κύριος Ερευνητής ΕΛΚΕΘΕ Forecasting is very dangerous, especially about the future --- Samuel Goldwyn 1 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

Βάσεις δεδομένων. (10 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr

Βάσεις δεδομένων. (10 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Βάσεις δεδομένων (10 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Περιεχόμενα Ευρετήρια Σκανδάλες PL/SQL Δείκτες/Δρομείς 2 Αποθήκευση δεδομένων Πρωτεύουσα αποθήκευση Κύρια μνήμη (main memory) ή κρυφή μνήμη

Διαβάστε περισσότερα

ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑ ΤΗΣ ΚΡΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΌ ΣΑΛΟΥΣΤΡΟΥ ΑΝΤΙΓΟΝΗ ΣΥΓΛΕΤΟΥ ΕΛΕΝΗ

ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑ ΤΗΣ ΚΡΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΌ ΣΑΛΟΥΣΤΡΟΥ ΑΝΤΙΓΟΝΗ ΣΥΓΛΕΤΟΥ ΕΛΕΝΗ ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑ ΤΗΣ ΚΡΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΌ ΣΑΛΟΥΣΤΡΟΥ ΑΝΤΙΓΟΝΗ ΣΥΓΛΕΤΟΥ ΕΛΕΝΗ ΑΝΑΓΚΗ ΔΗΜΙΟΥΡΓΙΑΣ ΤΗΣ ΕΡΕΥΝΑΣ Μελέτη ποιοτικών χαρακτηριστικών ξενοδοχείων Συμβουλευτικές υπηρεσίες από εσωτερικούς

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Τμημα Πληροφορικης και Τηλεματικης Τσάμη Παναγιώτα ΑΜ: 20833 ΚΑΤΑΝΕΜΗΜΕΝΑ ΣΥΣΤΗΜΑΤΑ Άσκηση 1 Αθήνα 13-12-2011 Αναφορά Ενότητα 1 A Δημιουργήστε στο φλοιό 3 εντολές (alias) που η

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB )

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια πρώτη ιδέα για το μάθημα χωρίς καθόλου εξισώσεις!!! Περίγραμμα του μαθήματος χωρίς καθόλου εξισώσεις!!! Παραδείγματα από πραγματικές εφαρμογές ==

Διαβάστε περισσότερα