ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ ΡΕΟΛΟΓΙΑ. (συνέχεια) Περιστροφικά ιξωδόμετρα μεγάλου διάκενου.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ ΡΕΟΛΟΓΙΑ. (συνέχεια) Περιστροφικά ιξωδόμετρα μεγάλου διάκενου."

Transcript

1 ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ ΡΕΟΛΟΓΙΑ (συνέχεια) Περιστροφικά ιξωδόμετρα μεγάλου διάκενου. Στα ιξωδόμετρα αυτά ένας μικρός σε διάμετρο κύλινδρος περιστρέφεται μέσα σε μια μεγάλη μάζα του ρευστού. Για διαφορετικές θερμοκρασίες και διαφορετικές ταχύτητες περιστροφής (RPM) μετράται η αντίσταση που προβάλει το ρευστό στην περιστροφή του κυλίνδρου. Οι μετρήσεις που λαμβάνονται πινακοποιούνται και με την βοήθεια τους εκτιμούνται οι ρεολογικές σταθερές. 1

2 Παράδειγμα Τα πειραματικά αποτελέσματα από μετρήσεις ιξώδους σε πουρέ μπανάνας (50 ο C) με την χρήση κυλινδρικού ομοαξονικού ιξωδομέτρου δίνονται στον πίνακα. Να προσδιορισθούν οι ρεολογικές σταθερές του προϊόντος (b, n). (γ) Ρυθμός παραμόρφωσης (1/s) (τ) Πίεση παραμόρφωσης (dyn/cm 2 ) 0,001 0, ,0015 0, ,002 0, ,003 0, ,004 0,0018 0,005 0, ,006 0,0021 0,007 0,00221 Αρχικά οι τιμές μας τοποθετούνται σε σύστημα καρτεσιανών συντεταγμένων και εκτιμάται η τιμή του (τ ο ) για (γ) = 0. Το αποτέλεσμα αυτό εξάγεται επίσης εάν υπολογίσουμε την ευθεία ελαχίστων τετραγώνων στο γραμμικό μοντέλο παλινδρόμησης (y=ax+b). Στην περίπτωση αυτή το (τ ο ) είναι η τιμή b. Στην συνέχεια λογαριθμίζονται οι τιμές και επαναλαμβάνεται η ίδια διαδικασία όπου αυτήν την φορά εκτιμούμε την κλίση της ευθείας (το a). Η τιμή του a είναι η τιμή του (n). Εφαρμόζοντας τις δύο πρώτες τιμές των λογαρίθμων των δεδομένων μας στην εξίσωση Logτ=logb+nLogγ βρίσκουμε και την τιμή του b. 2

3 Εναλλακτικά Τα ιξωδόμετρα Brookfield μας δίνουν τιμές φαινομενικού ιξώδους (μ φ ) για κάθε αριθμό στροφών (RP) που εφαρμόζουμε. Οι ρεολογικές σταθερές εκτιμούνται από τον τύπο: μ φ =(1/n) n (4πΝ ) n-1 b, όπου: n ο δείκτης συμπεριφοράς στην ροή Ν οι στροφές /δευτερόλεπτο και b ο συντελεστής συνεκτικότητας. Η εξίσωση αυτή μπορεί να λογαριθμιστεί ώστε να μετατραπεί σε γραμμική: Log μ φ = nlog(1/n) + (n-1)log(4πn ) + Logb Ροή ρευστών Το προφίλ ταχύτητας ενός ρευστού που κινείται σε έναν σωλήνα είναι παραβολικό. Αυτό σημαίνει ότι τα μόρια του ρευστού που βρίσκονται στο κέντρο του σωλήνα τρέχουν με μεγαλύτερη ταχύτητα εξαιτίας του ότι στο σημείο αυτό δεν υπάρχουν τριβές με τα τοιχώματα (ποτάμια ή γραμμική ροή). Στην περίπτωση αυτή το κάθε μόριο του ρευστού κινείται σε μια πορεία παράλληλη προς το διπλανό του μόριο. Στην αντίθετη περίπτωση, ως αποτέλεσμα των συνεχών κινήσεων των μορίων και την «ανάδευση» μέσα στον αγωγό η κίνηση μετατρέπεται σε στροβιλώδη (ή τυρβώδης ροή). 3

4 Ποτάμια ροή Στροβιλώδης ροή Ταχύτητα ροής ρευστού Στην ποτάμια ροή Η ταχύτητα του ρευστού δεν είναι ίδια σε όλη την μάζα του. Επίσης διαφοροποιείται έντονα κατά την κίνηση του υγρού μέσα στον αγωγό. Έτσι ο λόγος της μέσης προς την μέγιστη ταχύτητα είναι σχετικά μικρός : (v/v max 0,5) Στην στροβιλώδη ροή Η ταχύτητα του ρευστού είναι περισσότερο ομοιογενής σε όλη την μάζα του και αυτή η ομοιογένεια αυξάνει κατά την μετακίνηση του υγρού στον αγωγό: (v/v max 0,8) 4

5 Είδη στροβιλώδους ροής Στην φύση και σε μηχανικές κατασκευές η κίνηση ρευστών (υγρά & αέρια) είναι στροβιλώδης Ροή του αίματος, υγρά εντός σωλήνων, η λάβα των υφαιστείων, η κίνηση των αερίων μαζών στην ατμόσφαιρα, τα θαλάσσια ρεύματα κ.α. Αριθμός Reynolds Ο αριθμός Reynolds (Re) είναι μια αδιάστατη ποσότητα που χρησιμοποιείται ως δείκτης του τύπου ροής (ποτάμια ή στροβιλώδης). Είναι συνάρτηση της διαμέτρου (D) του σωλήνα, της μέσης ταχύτητας του ρευστού (v), της πυκνότητας (ρ) και του ιξώδους (μ). Re = ρ v D/μ = Δυνάμεις ροής/δυνάμεις ιξώδους. Για Re < 2100 η ροή θεωρείται ποτάμια Για Re > 4000 η ροή θεωρείται στροβιλώδης Για 2100 < Re < 4000 η θεωρείται ως μικτή ή μεταβατική. Στα εκθετικά ρευστά η στροβιλώδης ροή εμφανίζεται σε πολύ υψηλότερους αριθμούς Re (> ) 5

6 Κυλινδρικοί αγωγοί και σωλήνες Σωλήνες (pipes): λέγονται οι λεπτότοιχοι δίαυλοι των οποίων το ονομαστικό μέγεθος βασίζεται στην εξωτερική τους διάμετρο. Αγωγοί (tubes): είναι οι παχείς στο τοίχωμα δίαυλοι των οποίων το ονομαστικό μέγεθος βασίζεται στην εσωτερική διάμετρο. Οι σωλήνες υγιεινής κλάσης είναι δίαυλοι ανοξείδωτου ατσαλιού που η ονομασία τους βασίζεται στην εξωτερική διάμετρο. Τις μετατροπές από ονομαστική σε εσωτερική διάμετρο τις λαμβάνουμε από την χρήση πινάκων. Διαστάσεις αγωγών και σωλήνων 6

7 Πτώση πίεσης λόγω τριβών Είναι προφανές ότι η ροή μέσω ενός σωληνοειδούς αγωγού συνοδεύεται από κάποια πτώση πίεσης λόγω των τριβών που αναπτύσσονται. Η πτώση της πίεσης ισοδυναμεί με την δύναμη που πρέπει να εφαρμοσθεί στο ρευστό για να υπερνικήσει τις τριβές (αντίσταση τριβής στην ροή). Έτσι, θα ήταν χρήσιμη μια έκφραση της πτώσης της πίεσης σαν συνάρτηση των χαρακτηριστικών του ρευστού αλλά και αυτών του αγωγού. Τριβές ροής Νευτώνειων ρευστών Γενικά, το μέτρο των δυνάμεων των τριβών δίνεται από τον τύπο: F=f A (K Ε ) ρ όπου (A) η επιφάνεια που αναπτύσσονται οι τριβές, (Κ Ε ) η κινητική ενέργεια, (f) ο συντελεστής τριβών και (ρ) η πυκνότητα του ρευστού. 7

8 Πτώση πίεσης ανά μονάδα μήκους αγωγού: Από την εξίσωση του Poiseuille (για νευτώνεια ρευστά και ποτάμια ροή): ΔΡ/L = 32 v μ/d 2 (ή με χρήση του Re): ΔΡ/L = 2 (16/Re) v 2 ρ/d (ή με τον συντελεστή τριβής): ΔΡ/L = 2 f ρ v 2 /D (γενικός τύπος όπου για ποτάμια ροή f=16/re) O συντελεστής τριβής (f), για ποτάμια ή στροβιλώδη ροή, μπορεί να προσδιορισθεί από τα διαγράμματα Moody με βάση τον αριθμό Re και τον συντελεστή αδρότητας, ενώ για λείους αγωγούς όπως αυτούς των βιομηχανιών τροφίμων δίνεται από τις σχέσεις : < Re < : f = 0,048 Re -0, < Re < : f = 0,193 Re -0,35 Προσδιορισμός τριβής με την χρήση διαγράμματος Moody Για τον προσδιορισμό της τριβής αρχικά εκτιμάμε την τιμή του αριθμού Re. Στην συνέχεια από την τιμή της ισοδύναμης αδρότητας (ε) που δίνεται από τους πίνακες εκτιμάμε την σχετική αδρότητα (ε/d). Με βάση τις δύο αυτές τιμές βρίσκουμε τον συντελεστή τριβής f από το σχετικό διάγραμμα Moody. 8

9 Διάγραμμα Moody Παράδειγμα Τι πίεση πρέπει να αναπτυχθεί στην έξοδο μιας αντλίας που δίνει 100 l/min ρευστού με ειδικό βάρος 1,02 και ιξώδες 0,1 Kg/m s. Το ρευστό πρέπει να κινείται μέσα σε ανοξείδωτο σωλήνα (υγιεινής κλάσης) 1,5 in (ονομαστικό μέγεθος), μήκους 50 m. Ο σωλήνας είναι ευθύς και οριζόντιος και το άνοιγμα κένωσής του βρίσκεται σε ατμοσφαιρική πίεση. 9

10 Τριβές κατά τη ροή Μη Νευτώνειων ρευστών Για ποτάμια ροή και μη Νευτώνεια ρευστά η πτώση πίεσης μπορεί να υπολογισθεί από την γενική εξίσωση με την διαφορά ότι ο αριθμός Reynolds υπολογίζεται διαφορετικά και καλείται γενικευμένος (GRe): R: η ακτίνα του αγωγού Τριβές στενώσεων ή διεύρυνσης αγωγών Στην περίπτωση στένωσης, η σχέση που χρησιμοποιείται για προσδιορισμό των τριβών είναι: ΔΡ/ρ = k f v 22 /a, όπου: k f =0,94[1,25-(D2/D1) 2 ] όταν (D2/D1) 2 <0,7 k f =0,75[1-(D2/D1) 2 ] όταν (D2/D1) 2 >0,7 για στροβιλώδη ροή το α=2 και για ποτάμια το α= (4n+2)(5n+3)/3(3n+1). Στην περίπτωση διεύρυνσης των αγωγών, οι απώλειες λόγω τριβών δίνονται από τη σχέση: ΔΡ/ρ = (P 1 -P 2 )/ρ = k f v 12 /a Όπου P 1 και V 1 η πίεση και η ταχύτητα στο στενό τμήμα του αγωγού. 10

11 Περίπτωση δεξαμενής με σωλήνα μεταφοράς. Ειδική περίπτωση στένωσης είναι αυτή δεξαμενής με σωλήνα μεταφοράς του ρευστού. Στην περίπτωση αυτή η πτώση πίεσης δίδεται από σχετικό τύπο (Skelland, 1967). L: η απόσταση που απαιτείται για τέλεια ανάπτυξη της ροής R: η ακτίνα του αγωγού Ca: σταθερά Τριβές συνδεσμιακού υλικού Για τον προσδιορισμό της αντίστασης στην ροή που οφείλεται σε εξαρτήματα διασύνδεσης πολλαπλασιάζουμε το κλάσμα (L /D - ειδική αντίσταση) του κάθε εξαρτήματος επί την διάμετρο και βρίσκουμε το ισοδύναμο μήκος (L ) ευθύγραμμου σωλήνα που παρουσιάζει την ίδια αντίσταση με το εξάρτημα. Η ειδική αντίσταση εξαρτημάτων δίνεται από σχετικούς πίνακες. 11

12 Ειδική αντίσταση εξαρτημάτων Η πτώση πίεσης για 5 γωνίες 90 ο (1in) θα είναι ίση με την πτώση πίεσης που προκαλεί ισοδύναμο μήκος σωλήνα : 5 x (L /D) x D = 5 x 35 x 0,02291 m = 4 m Ισοζύγιο μηχανικής ενέργειας Για να υπερνικηθούν οι τριβές και να προκληθεί ροή σε ένα ρευστό θα πρέπει να προσφερθεί ενέργεια είτε με μηχανικό τρόπο (αντλία) ή απλά εξαιτίας αλλαγής της δυναμικής ενέργειας του ρευστού. Άρα, η μηχανική ή η δυναμική ενέργεια που απαιτείται για την προώθηση του ρευστού θα πρέπει να ισοσταθμίζει τις τριβές. Η σχέση αυτή είναι μια σχέση ισοζυγίου μηχανικής ενέργειας και λαμβάνει υπόψη όλες τις εμπλεκόμενες μορφές της ενέργειας. 12

13 Εξίσωση Bernoulli Μια τέτοιου τύπου σχέση μηχανικής ενέργειας εκφράζεται με την εξίσωση Bernoulli και χρησιμοποιείται εκτεταμένα στην ανάλυση συστημάτων ροής, κύρια για το προσδιορισμό της ενέργειας (Ws) που πρέπει να προσφέρει η χρησιμοποιούμενη αντλία. Το γινόμενο της ενέργειας αυτής επί την μαζική παροχή μας δίνει την ισχύ της απαιτούμενης αντλίας. Άσκηση Να προσδιοριστεί η πτώση της πίεσης ενός ρευστού πυκνότητας 950 Kg/m 3, ιξώδους 7, Pas, το οποίο ρέει με παροχή 0,0008 m 3 /s σε οριζόντιο ευθύγραμμο σωλήνα από σφυρήλατο χάλυβα με μήκος 100 m και εσωτερική διάμετρο 0,03 m. 13

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής 501 Ορμή και Δυνάμεις Θεώρημα Ώθησης Ορμής «Η μεταβολή της ορμής ενός σώματος είναι ίση με την ώθηση της δύναμης που ασκήθηκε στο σώμα» = ή Το θεώρημα αυτό εφαρμόζεται διανυσματικά. 502 Θεώρημα Ώθησης

Διαβάστε περισσότερα

Να υπολογίσετε τη μάζα 50 L βενζίνης. Δίνεται η σχετική πυκνότητά της, ως προς το νερό ρ σχ = 0,745.

Να υπολογίσετε τη μάζα 50 L βενζίνης. Δίνεται η σχετική πυκνότητά της, ως προς το νερό ρ σχ = 0,745. 1 Παράδειγμα 101 Να υπολογίσετε τη μάζα 10 m 3 πετρελαίου, στους : α) 20 ο C και β) 40 ο C. Δίνονται η πυκνότητά του στους 20 ο C ρ 20 = 845 kg/m 3 και ο συντελεστής κυβικής διαστολής του β = 9 * 10-4

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ - ΡΕΟΛΟΓΙΑ

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ - ΡΕΟΛΟΓΙΑ ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ - ΡΕΟΛΟΓΙΑ Ρεολογία Επιστήµη που εξετάζει την ροή και την παραµόρφωση των υλικών κάτω από την άσκηση πίεσης. Η µεταφορά των υγρών στην βιοµηχανία τροφίµων συνδέεται άµεσα

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ 27 Φεβρουαρίου 2006 Διάρκεια εξέτασης : 2.5 ώρες Ονοματεπώνυμο: ΑΕΜ Εξάμηνο: (α) Επιτρέπονται: Τα βιβλία

Διαβάστε περισσότερα

5 Μετρητές παροχής. 5.1Εισαγωγή

5 Μετρητές παροχής. 5.1Εισαγωγή 5 Μετρητές παροχής 5.Εισαγωγή Τρεις βασικές συσκευές, με τις οποίες μπορεί να γίνει η μέτρηση της ογκομετρικής παροχής των ρευστών, είναι ο μετρητής Venturi (ή βεντουρίμετρο), ο μετρητής διαφράγματος (ή

Διαβάστε περισσότερα

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Απαραίτητες σε κάθε μελέτη Είδη ροών Στρωτή ή γραμμική

Διαβάστε περισσότερα

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Απαραίτητες σε κάθε μελέτη Είδη ροών Τυρβώδης ροή αριθμός

Διαβάστε περισσότερα

4 Τριβές σε Σωλήνες και Εξαρτήματα

4 Τριβές σε Σωλήνες και Εξαρτήματα 4 Τριβές σε Σωλήνες και Εξαρτήματα 4.1 Εισαγωγή 4.1.1 ΜΟΡΙΑΚΗ ΘΕΩΡΗΣΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Ένα ρευστό δεν είναι παρά ένα σύνολο μορίων, τα οποία αφενός κινούνται (έχουν κινητική ενέργεια) και αφετέρου

Διαβάστε περισσότερα

PP οι στατικές πιέσεις στα σημεία Α και Β. Re (2.3) 1. ΑΝΤΙΚΕΙΜΕΝΟ ΚΑΙ ΣΚΟΠΟΣ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ

PP οι στατικές πιέσεις στα σημεία Α και Β. Re (2.3) 1. ΑΝΤΙΚΕΙΜΕΝΟ ΚΑΙ ΣΚΟΠΟΣ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2: ΡΟΗ ΣΕ ΑΓΩΓΟΥΣ 1. ΑΝΤΙΚΕΙΜΕΝΟ ΚΑΙ ΣΚΟΠΟΣ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ Η πειραματική εργασία περιλαμβάνει 4 διαφορετικά πειράματα που σκοπό έχουν: 1. Μέτρηση απωλειών πίεσης σε αγωγό κυκλικής διατομής.

Διαβάστε περισσότερα

6 Εξαναγκασμένη ροή αέρα

6 Εξαναγκασμένη ροή αέρα 6 Εξαναγκασμένη ροή αέρα 6.1 Εισαγωγή Όταν θέτουμε σε κίνηση κάποια μόρια ενός ρευστού μέσω μιας αντλίας ή ενός φυσητήρα, η κίνηση μεταδίδεται και στα υπόλοιπα μόρια του ρευστού μέσω των αλληλεπιδράσεων

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ II

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ II ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΝΕΡΓΕΙΑΣ, ΑΕΡΟΝΑΥΤΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ II Ροή σε Αγωγούς

Διαβάστε περισσότερα

h 1 M 1 h 2 M 2 P = h (2) 10m = 1at = 1kg/cm 2 = 10t/m 2

h 1 M 1 h 2 M 2 P = h (2) 10m = 1at = 1kg/cm 2 = 10t/m 2 ΕΡΓΑΣΤΗΡΙΟ 4 Ο Ενότητα: Βασικές υδραυλικές έννοιες Πίεση απώλειες πιέσεως Ι. Υδροστατική πίεση Η υδροστατική πίεση, είναι η πίεση που ασκεί το νερό, σε κατάσταση ηρεμίας, στα τοιχώματα του δοχείου που

Διαβάστε περισσότερα

2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά

2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά 2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά 2.1 Εισαγωγή Η θερμοκρασιακή διαφορά μεταξύ δυο σημείων μέσα σ' ένα σύστημα προκαλεί τη ροή θερμότητας και, όταν στο σύστημα αυτό περιλαμβάνεται ένα ή περισσότερα

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΝΤΛΗΤΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΝΤΛΗΤΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΝΤΛΗΤΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ Εισαγωγικά Στην περίπτωση που επιθυμείται να διακινηθεί υγρό από μία στάθμη σε μία υψηλότερη στάθμη, απαιτείται η χρήση αντλίας/ αντλιών. Γενικώς, ονομάζεται δεξαμενή

Διαβάστε περισσότερα

Παραδείγµατα ροής ρευστών (Moody κλπ.)

Παραδείγµατα ροής ρευστών (Moody κλπ.) Παραδείγµατα ροής ρευστών (Mooy κλπ.) 005-006 Παράδειγµα 1. Να υπολογισθεί η πτώση πίεσης σε ένα σωλήνα από χάλυβα του εµπορίου µήκους 30.8 m, µε εσωτερική διάµετρο 0.056 m και τραχύτητα του σωλήνα ε 0.00005

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση Βλιώρα Ευαγγελία ΘΕΣΣΑΛΟΝΙΚΗ 2014 Σκοπός της εργαστηριακής άσκησης Σκοπός της εργαστηριακής άσκησης είναι ο υπολογισμός της

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Εργαστήριο Μηχανικής Ρευστών Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Ονοματεπώνυμο:Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημερομηνία εκτέλεσης Πειράματος : 12/4/2000 Ημερομηνία

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ. Ισοζύγιο μηχανικής ενέργειας

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ. Ισοζύγιο μηχανικής ενέργειας ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ Συστήματα μεταφοράς ρευστών Ισοζύγιο μηχανικής ενέργειας Η αντίσταση στην ροή και η κίνηση ρευστών μέσα σε σωληνώσεις επιτυγχάνεται με την παροχή ενέργειας ή απλά με την αλλαγή της δυναμικής

Διαβάστε περισσότερα

Σημειώσεις Εγγειοβελτιωτικά Έργα

Σημειώσεις Εγγειοβελτιωτικά Έργα 4. ΚΛΕΙΣΤΟΙ ΑΓΩΓΟΙ 4.1. Γενικά Για τη μελέτη ενός δικτύου κλειστών αγωγών πρέπει να υπολογιστούν οι απώλειες ενέργειας λόγω τριβών τόσο μεταξύ του νερού και των τοιχωμάτων του αγωγού όσο και μεταξύ των

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ. Ισοζύγιο µηχανικής ενέργειας

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ. Ισοζύγιο µηχανικής ενέργειας ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ Συστήµατα µεταφοράς ρευστών Ισοζύγιο µηχανικής ενέργειας Η αντίσταση στην ροή και η κίνηση ρευστών µέσα σε σωληνώσεις επιτυγχάνεται µε την παροχή ενέργειας ή απλά µε την αλλαγή της δυναµικής

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΣΕ ΣΩΛΗΝΩΣΕΙΣ ΚΑΙ ΣΕ ΕΞΑΡΤΗΜΑΤΑ ΡΟΗΣ

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΣΕ ΣΩΛΗΝΩΣΕΙΣ ΚΑΙ ΣΕ ΕΞΑΡΤΗΜΑΤΑ ΡΟΗΣ Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ 9 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΣΕ ΣΩΛΗΝΩΣΕΙΣ ΚΑΙ ΣΕ ΕΞΑΡΤΗΜΑΤΑ ΡΟΗΣ Σκοπός της άσκησης Αντικείμενο της

Διαβάστε περισσότερα

Μιχαήλ Π. Μιχαήλ Φυσικός

Μιχαήλ Π. Μιχαήλ Φυσικός 3. ΜΗΧΑΝΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ - Ρευστά σε κίνηση Είδη ροής - Ρευµατικές γραµµές και εξίσωση συνέχειας - Διατήρηση ενέργειας, εξίσωση Bernoulli - Πραγµατικά ρευστά Εσωτερική τριβή ιξώδες, Νόµος Poiseuille 3.

Διαβάστε περισσότερα

Διατήρηση της Ύλης - Εξίσωση Συνέχειας

Διατήρηση της Ύλης - Εξίσωση Συνέχειας Διατήρηση της Ύλης - Εξίσωση Συνέχειας Α. Ερωτήσεις Πολλαπλής Επιλογής 1. Ένα ρευστό χαρακτηρίζεται ως πραγματικό όταν α. κατά τη ροή του δεν παρουσιάζει εσωτερικές τριβές. β. κατά τη ροή του δεν παρουσιάζονται

Διαβάστε περισσότερα

6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΕΣΩΤΕΡΙΚΗ ΡΟΗ ΣΕ ΑΓΩΓΟ Σκοπός της άσκησης Σκοπός της πειραματικής

Διαβάστε περισσότερα

Μεθοδολογία επίλυσης προβληµάτων καταβύθισης

Μεθοδολογία επίλυσης προβληµάτων καταβύθισης Μεθοδολογία επίλυσης προβληµάτων καταβύθισης Τα προβλήµατα που υπάρχουν πάντα στις περιπτώσεις βαρυτοµετρικών διαχωρισµών είναι η γνώση της συµπεριφοράς των στερεών, όσον αφορά στην καταβύθισή τους µέσα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ

ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 166 Α. ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΚΤΟΥ ΤΥΠΟΥ: ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 1. Να αναφέρεται παραδείγματα φαινομένων που μπορούν να ερμηνευτούν με την μελέτη των ρευστών σε ισορροπία. 2. Ποια σώματα ονομάζονται ρευστά;

Διαβάστε περισσότερα

μία ποικιλία διατομών, σε αντίθεση με τους κλειστούς που έχουμε συνήθως κυκλικές διατομές).

μία ποικιλία διατομών, σε αντίθεση με τους κλειστούς που έχουμε συνήθως κυκλικές διατομές). Μερικές ερωτήσεις στους κλειστούς αγωγούς: D Παροχή: Q (στους ανοικτούς αγωγός συνήθως χρησιμοποιούμε 4 μία ποικιλία διατομών, σε αντίθεση με τους κλειστούς που έχουμε συνήθως κυκλικές διατομές). Έστω

Διαβάστε περισσότερα

Εισαγωγή στη μόνιμη ομοιόμορφη ροή Ροή σε αγωγούς υπό πίεση

Εισαγωγή στη μόνιμη ομοιόμορφη ροή Ροή σε αγωγούς υπό πίεση Υδραυλική &Υδραυλικά Έργα Εισαγωγή στη μόνιμη ομοιόμορφη ροή Ροή σε αγωγούς υπό πίεση Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικές απώλειες Ύψος πίεσης Γραμμικές απώλειες

Διαβάστε περισσότερα

Κεφάλαιο 5: Αρχές υδραυλικής στα αστικά υδραυλικά έργα

Κεφάλαιο 5: Αρχές υδραυλικής στα αστικά υδραυλικά έργα Κεφάλαιο 5: Αρχές υδραυλικής στα αστικά υδραυλικά έργα Γραμμικές απώλειες Ύψος πίεσης Γραμμικές απώλειες Αρχές μόνιμης ομοιόμορφης ροής Ροή σε κλειστό αγωγό Αρχή διατήρησης μάζας (= εξίσωση συνέχειας)

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Ρευστά. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. https://physicscourses.wordpress.com

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Ρευστά. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. https://physicscourses.wordpress.com ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Ρευστά Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscourses.wordpress.com Βασικές έννοιες Πρώτη φορά συναντήσαμε τη φυσική των ρευστών στη Β Γυμνασίου. Εκεί

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό.

Εργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό. Εργαστήριο Μηχανικής Ρευστών Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό. Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημ/νία παράδοσης Εργασίας: Τετάρτη 24 Μαΐου 2 1 Θεωρητική Εισαγωγή:

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 4- ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ( ) ΚΕΦΑΛΑΙΟ 3 ΡΕΥΣΤΑ ΕΚΦΩΝΗΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ 4- ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ( ) ΚΕΦΑΛΑΙΟ 3 ΡΕΥΣΤΑ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ A ΔΙΑΓΩΝΙΣΜΑ 4- ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (2016-17) ΚΕΦΑΛΑΙΟ 3 ΡΕΥΣΤΑ ΕΚΦΩΝΗΣΕΙΣ Στις προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΧΤΩΝ ΚΑΙ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΧΤΩΝ ΚΑΙ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΧΤΩΝ ΚΑΙ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ Π. Σιδηρόπουλος Δρ. Πολιτικός Μηχανικός Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Π.Θ. E-mail: psidirop@teilar.gr ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΑ

Διαβάστε περισσότερα

Κινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του

Κινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του 301 Κινηματική ρευστών Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του Είδη ροής α) Σταθερή ή μόνιμη = όταν σε κάθε σημείο του χώρου οι συνθήκες ροής, ταχύτητα, θερμοκρασία, πίεση και πυκνότητα,

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Σκοπός του πειράματος είναι να μελετηθεί

Διαβάστε περισσότερα

2. Κατά την ανελαστική κρούση δύο σωμάτων διατηρείται:

2. Κατά την ανελαστική κρούση δύο σωμάτων διατηρείται: Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα πραγματικό ρευστό ρέει σε οριζόντιο σωλήνα σταθερής διατομής με σταθερή ταχύτητα. Η πίεση κατά μήκος του σωλήνα στην κατεύθυνση της ροής μπορεί

Διαβάστε περισσότερα

ΡΟΗ ΑΕΡΑ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ

ΡΟΗ ΑΕΡΑ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ ΡΟΗ ΑΕΡΑ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ Η μελέτη της ροής μη συνεκτικού ρευστού γύρω από κύλινδρο γίνεται με την μέθοδο της επαλληλίας (στην προκειμένη περίπτωση: παράλληλη ροή + ροή διπόλου). Εδώ περιοριζόμαστε να

Διαβάστε περισσότερα

(1) ταχύτητα, v δεδομένη την πιο πάνω κατανομή θερμοκρασίας; 6. Γιατί είναι σωστή η προσέγγιση του ερωτήματος [2]; Ποια είναι η

(1) ταχύτητα, v δεδομένη την πιο πάνω κατανομή θερμοκρασίας; 6. Γιατί είναι σωστή η προσέγγιση του ερωτήματος [2]; Ποια είναι η ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Σειρά Ασκήσεων σε Συναγωγή Θερμότητας Οι λύσεις θα παρουσιαστούν στις παραδόσεις του μαθήματος μετά την επόμενη εβδομάδα. Για να σας φανούν χρήσιμες στην κατανόηση της ύλης του μαθήματος,

Διαβάστε περισσότερα

3. Τριβή στα ρευστά. Ερωτήσεις Θεωρίας

3. Τριβή στα ρευστά. Ερωτήσεις Θεωρίας 3. Τριβή στα ρευστά Ερωτήσεις Θεωρίας Θ3.1 Να συμπληρωθούν τα κενά στις προτάσεις που ακολουθούν: α. Η εσωτερική τριβή σε ένα ρευστό ονομάζεται. β. Η λίπανση των τμημάτων μιας μηχανής οφείλεται στις δυνάμεις

Διαβάστε περισσότερα

Το μισό του μήκους του σωλήνα, αρκετά μεγάλη απώλεια ύψους.

Το μισό του μήκους του σωλήνα, αρκετά μεγάλη απώλεια ύψους. Πρόβλημα Λάδι πυκνότητας 900 kg / και κινηματικού ιξώδους 0.000 / s ρέει διαμέσου ενός κεκλιμένου σωλήνα στην κατεύθυνση αυξανομένου υψομέτρου, όπως φαίνεται στο παρακάτω Σχήμα. Η πίεση και το υψόμετρο

Διαβάστε περισσότερα

Τα τρία βασικά προβλήματα της Υδραυλικής

Τα τρία βασικά προβλήματα της Υδραυλικής Τα τρία βασικά προβλήματα της Υδραυλικής Α βασικό πρόβλημα,, παροχή γνωστή απλός υπολογισμός απωλειών όχι δοκιμές (1): L1 = 300, d1 = 0.6 m, (): L = 300, d = 0.4 m Q = 0.5m 3 /s, H=?, k=0.6 mm Διατήρηση

Διαβάστε περισσότερα

ΥδροδυναµικέςΜηχανές

ΥδροδυναµικέςΜηχανές ΥδροδυναµικέςΜηχανές Χαρακτηριστικές καµπύλες υδροστροβίλων Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης Θεωρητικήχαρακτηριστική υδροστροβίλου Θεωρητική χαρακτηριστική υδροστροβίλου

Διαβάστε περισσότερα

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ Αθήνα, Απρίλιος 13 1. Η Έννοια του Οριακού Στρώματος Το οριακό στρώμα επινοήθηκε για

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών

Εργαστήριο Μηχανικής Ρευστών Εργαστήριο Μηχανικής Ρευστών Αργυρόπουλος Αθανάσιος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Β Ημ/νία εκτέλεσης Πειράματος: 26-11-1999 Ημ/νία παράδοσης Εργασίας: 16-12-1999 1 Θεωρητική Εισαγωγή: 1. Εισαγωγικές έννοιες

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε τον συντελεστή εσωτερικής τριβής ή ιξώδες ρευστού προσδιορίζοντας την οριακή ταχύτητα πτώσης μικρών σφαιρών σε αυτό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 5 ο : Το οριακό

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου 5/3/2017

Διαγώνισμα Φυσικής Γ Λυκείου 5/3/2017 Διαγώνισμα Φυσικής Γ Λυκείου 5/3/2017 ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ Θέμα Α 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,2,3,4 δείχνουν

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Στις παρακάτω ερωτήσεις Α-Α4 να σημειώσετε την σωστή απάντηση Α. Νερό διαρρέει έναν κυλινδρικό σωλήνα, ο οποίος στενεύει σε κάποιο σημείο του χωρίς να διακλαδίζεται. Ποια

Διαβάστε περισσότερα

Μακροσκοπική ανάλυση ροής

Μακροσκοπική ανάλυση ροής Μακροσκοπική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Μακροσκοπική ανάλυση Όγκος ελέγχου και νόμοι της ρευστομηχανικής Θεώρημα μεταφοράς Εξίσωση συνέχειας Εξίσωση ορμής

Διαβάστε περισσότερα

μεταβάλλουμε την απόσταση h της μιας τρύπας από την επιφάνεια του υγρού (π.χ. προσθέτουμε ή αφαιρούμε υγρό) έτσι ώστε h 2 =2 Α 2

μεταβάλλουμε την απόσταση h της μιας τρύπας από την επιφάνεια του υγρού (π.χ. προσθέτουμε ή αφαιρούμε υγρό) έτσι ώστε h 2 =2 Α 2 ΑΣΚΗΣΕΙΣ ΣΤΑ ΡΕΥΣΤΑ 1 Μια κυλινδρική δεξαμενή ακτίνας 6m και ύψους h=5m είναι γεμάτη με νερό, βρίσκεται στην κορυφή ενός πύργου ύψους 45m και χρησιμοποιείται για το πότισμα ενός χωραφιού α Ποια η παροχή

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~

Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διάρκεια: 3 ώρες Θέμα Α 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,2,3,4 δείχνουν

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ I. Εργαστηριακή Άσκηση

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ I. Εργαστηριακή Άσκηση ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ I Εργαστηριακή Άσκηση Μέτρηση Ιξώδους Επιμέλεια: Λάμπρος Καϊκτσής Μάρτιος

Διαβάστε περισσότερα

Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Μαρούσι Καθηγητής Σιδερής Ε.

Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Μαρούσι Καθηγητής Σιδερής Ε. Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 Μαρούσι 04-02-2014 Καθηγητής Σιδερής Ε. ΘΕΜΑ 1 ο (βαθμοί 4) (α) Θέλετε να κρεμάσετε μια ατσάλινη δοκό που έχει

Διαβάστε περισσότερα

Περιβαλλοντική Χημεία

Περιβαλλοντική Χημεία ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Περιβαλλοντική Χημεία Εργαστηριακό Μέρος Ενότητα 3: Ισοζύγιο Ενέργειας Ευάγγελος Φουντουκίδης Τμήμα Πολιτικών Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

Α Σ Κ Η Σ Η 2 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩΔΟΥΣ ΥΓΡΟΥ ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ

Α Σ Κ Η Σ Η 2 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩΔΟΥΣ ΥΓΡΟΥ ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ Α Σ Κ Η Σ Η 2 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩΔΟΥΣ ΥΓΡΟΥ ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΥΝΤΕΛΕΣΤΗΣ ΙΞΩΔΟΥΣ Κατά την κίνηση των υγρών, εκτός από την υδροστατική πίεση που ενεργεί κάθετα σε όλη την επιφάνεια, έχουμε και

Διαβάστε περισσότερα

Εγγειοβελτιωτικά Έργα και Επιπτώσεις στο Περιβάλλον

Εγγειοβελτιωτικά Έργα και Επιπτώσεις στο Περιβάλλον ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εγγειοβελτιωτικά Έργα και Επιπτώσεις στο Περιβάλλον Ενότητα 3 : Βασικές Υδραυλικές και Μαθηματικές Έννοιες Ευαγγελίδης Χρήστος Τμήμα Αγρονόμων

Διαβάστε περισσότερα

Εξισώσεις Κίνησης (Equations of Motion)

Εξισώσεις Κίνησης (Equations of Motion) Εξισώσεις Κίνησης (Equations of Motion) Αναλύουμε την απόκριση ενός ρευστού υπό την επίδραση εσωτερικών και εξωτερικών δυνάμεων. Η εφαρμογή της ρευστομηχανικής στην ωκεανογραφία βασίζεται στη Νευτώνεια

Διαβάστε περισσότερα

Απλοποίηση υπολογισμών σε σωλήνες υπό πίεση

Απλοποίηση υπολογισμών σε σωλήνες υπό πίεση Υδραυλική & Υδραυλικά Έργα Απλοποίηση υπολογισμών σε σωλήνες υπό πίεση Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Καθιερωμένοι τύποι της υδραυλικής για μόνιμη ομοιόμορφη ροή

Διαβάστε περισσότερα

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Environmental Fluid Mechanics Laboratory University of Cyprus Department Of Civil & Environmental Engineering ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ HM 134 ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Εγχειρίδιο

Διαβάστε περισσότερα

θα πρέπει να ανοιχθεί μια δεύτερη οπή ώστε το υγρό να εξέρχεται από αυτήν με ταχύτητα διπλάσιου μέτρου.

θα πρέπει να ανοιχθεί μια δεύτερη οπή ώστε το υγρό να εξέρχεται από αυτήν με ταχύτητα διπλάσιου μέτρου. Δίνονται g=10m/s 2, ρ ν =1000 kg/m 3 [u 2 =3u 1, 10 3 Pa, 0,5m/s] ΚΕΦΑΛΑΙΟ 3 ο : ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ ΕΝΟΤΗΤΑ 3: Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ Η ΕΞΙΣΩΣΗ BERNOULLI 16 Το ανοικτό δοχείο του σχήματος περιέχει

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΑΤΜΗΜΑΤΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ»

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΑΤΜΗΜΑΤΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΑΤΜΗΜΑΤΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ» ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΜΗΧΑΝΟΛΟΓΙΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΔΙΔΑΣΚΩΝ: Επικ. Καθ. Δ. ΜΑΘΙΟΥΛΑΚΗΣ ΘΕΜΑΤΑ ΤΕΤΡΑΜΗΝΟΥ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ -ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΓΕΩΡΓΙΑ

ΦΥΣΙΚΗ -ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΓΕΩΡΓΙΑ Γιάννης Λ. Τσιρογιάννης Γεωργικός Μηχανικός M.Sc., PhD Επίκουρος Καθηγητής ΤΕΙ Ηπείρου Τμ. Τεχνολόγων Γεωπόνων Κατ. Ανθοκομίας Αρχιτεκτονικής Τοπίου ΦΥΣΙΚΗ -ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΓΕΩΡΓΙΑ Υδραυλική Έκδοση

Διαβάστε περισσότερα

Υ ΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Υ ΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ Υ ΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Αγγελίδης Π., Αναπλ. καθηγητής ΚΕΦΑΛΑΙΟ 4 ΚΑΤΑΚΟΡΥΦΗ ΑΝΩΣΤΙΚΗ ΦΛΕΒΑ ΜΕΣΑ ΣΕ ΣΤΡΩΜΑΤΙΣΜΕΝΟ ΠΕΡΙΒΑΛΛΟΝ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 Ιξώδες Ταχύτητα διάτμησης Αριθμός Reynolds Διδάσκων Δρ. Παντελής Σ. Αποστολόπουλος (Επίκουρος

Διαβάστε περισσότερα

κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών

κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών Ύλη που διδάχτηκε κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους 2005-2006 στα πλαίσια του µαθήµατος ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑ ΥΛΙΚΩΝ Ι ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών Επιστηµών

Διαβάστε περισσότερα

ΑΝΤΛΙΕΣ. 1.-Εισαγωγή-Γενικά. 2.-Χαρακτηριστικές καμπύλες. 3.-Επιλογή Αντλίας. 4.-Αντλίες σε σειρά και σε παράλληλη διάταξη. 5.

ΑΝΤΛΙΕΣ. 1.-Εισαγωγή-Γενικά. 2.-Χαρακτηριστικές καμπύλες. 3.-Επιλογή Αντλίας. 4.-Αντλίες σε σειρά και σε παράλληλη διάταξη. 5. ΑΝΤΛΙΕΣ 1.-Εισαγωγή-Γενικά 2.-Χαρακτηριστικές καμπύλες 3.-Επιλογή Αντλίας 4.-Αντλίες σε σειρά και σε παράλληλη διάταξη 5.-Ειδική Ταχύτητα 1.-Εισαγωγή-Γενικά - Μετατροπή μηχανικής ενέργειας σε υδραυλική

Διαβάστε περισσότερα

Παραδείγµατα ροής ρευστών (Bernoulli)

Παραδείγµατα ροής ρευστών (Bernoulli) Παραδείγµατα ροής ρευστών (Bernolli) 005-006 Παράδειγµα. Γάλα ρέει µέσα από σωλήνα διαµέτρου.5 c, µε παροχή 0 L.in - σε θερµοκρασία C. Η ροή είναι νµατώδς, τυρβώδς ή µεταβατική? µ.0 Pa s, ρ 09 kg -3..

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΘΕΜΕΛΙΩΔΕΙΣ ΝΟΜΟΙ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ

ΤΥΠΟΛΟΓΙΟ ΘΕΜΕΛΙΩΔΕΙΣ ΝΟΜΟΙ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ ΤΥΠΟΛΟΓΙΟ ΘΕΜΕΛΙΩΔΕΙΣ ΝΟΜΟΙ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ Θεώρημα της Μεταφοράς Rols Taspo To Μετατρέπει τη διατύπωση ενός θεμελιώδη νόμου ενός κλειστού συστήματος σ αυτήν για έναν όγκο ελέγχου Ο ρυθμός της εκτατικής

Διαβάστε περισσότερα

ΡΕΥΣΤΑ. Φυσική Θετικού Προσανατολισμου Γ' Λυκείου

ΡΕΥΣΤΑ. Φυσική Θετικού Προσανατολισμου Γ' Λυκείου ΡΕΥΣΤΑ ΕΙΣΑΓΩΓΗ Ρευστά Με τον όρο ρευστά εννοούμε τα ΥΓΡΑ και τα ΑΕΡΙΑ τα οποία, αντίθετα από τα στερεά, δεν έχουν καθορισμένο όγκο ούτε σχήμα. Τα υγρά είναι ασυμπίεστα και τα αέρια συμπιεστά. Τα υγρά

Διαβάστε περισσότερα

3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία

3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία 3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία 3.1 Εισαγωγή Η μετάδοση θερμότητας, στην πράξη, γίνεται όχι αποκλειστικά με έναν από τους τρεις δυνατούς μηχανισμούς (αγωγή, μεταφορά, ακτινοβολία),

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΙI ΕΔΡΑΝΑ ΟΛΙΣΘΗΣΗΣ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΙI ΕΔΡΑΝΑ ΟΛΙΣΘΗΣΗΣ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΙI ΕΔΡΑΝΑ ΟΛΙΣΘΗΣΗΣ Πάτρα 005 Έδρανα ολίσθησης Σελίδα - - 1.1 ΑΣΚΗΣΕΙΣ ΕΔΡΑΝΩΝ ΟΛΙΣΘΗΣΗΣ 1.1.1 ΑΣΚΗΣΗ Ένα πλήρες έδρανο ολίσθησης έχει διάμετρο 0 /d 1. Το φορτίο του

Διαβάστε περισσότερα

ΘΕΜΑ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ Ι

ΘΕΜΑ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ Ι 1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ TOMEAΣ ΡΕΥΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ ΘΕΜΑ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ Ι ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Η εκπόνηση του θέματος και η εκπόνηση της εργαστηριακής

Διαβάστε περισσότερα

4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΠΑΡΑΛΛΗΛΗ ΡΟΗ ΕΠΑΝΩ ΑΠΟ ΕΠΙΠΕΔΗ ΠΛΑΚΑ Σκοπός της άσκησης Η κατανόηση

Διαβάστε περισσότερα

ΠΘ/ΤΜΜΒ/ΕΘΘΜ - ΜΜ802 Γραπτή Δοκιμασία ώρα 12:00-14:30

ΠΘ/ΤΜΜΒ/ΕΘΘΜ - ΜΜ802 Γραπτή Δοκιμασία ώρα 12:00-14:30 ΠΘ/ΤΜΜΒ/ΕΘΘΜ - ΜΜ80 Γραπτή Δοκιμασία.06.07 ώρα 1:00-14:30 Επισυνάπτεται διάγραμμα με ισουψείς ειδικής κατανάλωσης καυσίμου [g/psh] στο πεδίο λειτουργίας του κινητήρα Diesel με προθάλαμο καύσης, OM61 της

Διαβάστε περισσότερα

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi.

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi. Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΓΩΓΟΣ VENTURI ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σκοπός της άσκησης είναι η κατανόηση της χρήσης της συσκευής

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ στο µάθηµα των Υδροδυναµικών Μηχανών Ι

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ στο µάθηµα των Υδροδυναµικών Μηχανών Ι ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ TOMEAΣ ΡΕΥΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ Υ ΡΟ ΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ στο µάθηµα των Υδροδυναµικών Μηχανών Ι ΣΚΟΠΟΣ ΤΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ Σκοπός της Εργαστηριακής

Διαβάστε περισσότερα

Διατήρηση της Ενέργειας - Εξίσωση Bernoulli. Α. Ερωτήσεις Πολλαπλής Επιλογής

Διατήρηση της Ενέργειας - Εξίσωση Bernoulli. Α. Ερωτήσεις Πολλαπλής Επιλογής Διατήρηση της Ενέργειας - Εξίσωση Bernoulli Α. Ερωτήσεις Πολλαπλής Επιλογής 1. Ένα ιδανικό ρευστό ρέει σε σωλήνα μεταβλητής διατομής. α. H παροχή του ρευστού μειώνεται όταν η διατομή του σωλήνα αυξάνεται.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 7/4/06 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις - 7 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθμό το γράµμα που αντιστοιχεί στη σωστή απάντηση:

Διαβάστε περισσότερα

ΔΙΑΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ. Οι εφαρμογές της διαστατικής ανάλυσης είναι:

ΔΙΑΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ. Οι εφαρμογές της διαστατικής ανάλυσης είναι: ΔΙΑΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ Χρήσεις της διαστατικής ανάλυσης Η διαστατική ανάλυση είναι μία τεχνική που κάνει χρήση της μελέτης των διαστάσεων για τη λύση των προβλημάτων της Ρευστομηχανικής. Οι εφαρμογές της διαστατικής

Διαβάστε περισσότερα

ρ. Μ. Βαλαβανίδης, Επικ. Καθηγητής ΤΕΙ Αθήνας 10/6/2010 1

ρ. Μ. Βαλαβανίδης, Επικ. Καθηγητής ΤΕΙ Αθήνας 10/6/2010 1 Εργαλεία επίλυσης προβληµάτων µονοδιάστατης ασυµπίεστης ροής σε αγωγούς (ανοικτούς ή κλειστούς) Ι. Ισοζύγιο Μάζας (εξίσωση συνέχειας) ΙΙ. Ισοζύγιο Ενέργειας (εξίσωση Bernoull) ΙΙΙ. Ισοζύγιο Γραµµικής Ορµής

Διαβάστε περισσότερα

11 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

11 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ 11 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Σκοπός της άσκησης Σκοπός της άσκησης είναι να μελετηθεί η φυσική εκροή του νερού από στόμιο

Διαβάστε περισσότερα

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός 1 Συναγωγή Γενικές αρχές Κεφάλαιο 6 2 Ορισµός Μηχανισµός µετάδοσης θερµότητας ανάµεσα σε ένα στερεό και σε ένα ρευστό, το οποίο βρίσκεται σε κίνηση Εξαναγκασµένη

Διαβάστε περισσότερα

I.2. ΜΕΤΡΗΣΕΙΣ ΣΤΗΝ ΑΕΡΟΣΗΡΑΓΚΑ. I.2.a Εισαγωγή

I.2. ΜΕΤΡΗΣΕΙΣ ΣΤΗΝ ΑΕΡΟΣΗΡΑΓΚΑ. I.2.a Εισαγωγή I.2. ΜΕΤΡΗΣΕΙΣ ΣΤΗΝ ΑΕΡΟΣΗΡΑΓΚΑ I.2.a Εισαγωγή Οι αεροσήραγγες (wind tunnels) εμφανίστηκαν στα τέλη του 19 ου αιώνα και έγιναν ιδιαίτερα δημοφιλείς το 1903 από τους αδελφούς Wright. Η χρήση τους εξαπλώθηκε

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού Οριακού

Διαβάστε περισσότερα

Καβάλα, Οκτώβριος 2013

Καβάλα, Οκτώβριος 2013 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΑΝ.ΜΑΚΕ ΟΝΙΑΣ - ΘΡΑΚΗΣ Επιχειρησιακό Πρόγραµµα "Ψηφιακή Σύγκλιση" Πράξη: "Εικονικά Μηχανολογικά Εργαστήρια", Κωδικός ΟΠΣ: 304282 «Η Πράξη συγχρηµατοδοτείται από το Ευρωπαϊκό

Διαβάστε περισσότερα

[ ] = = Συναγωγή Θερμότητας. QW Ahθ θ Ah θ θ. Βασική Προϋπόθεση ύπαρξης της Συναγωγής: Εξίσωση Συναγωγής (Εξίσωση Newton):

[ ] = = Συναγωγή Θερμότητας. QW Ahθ θ Ah θ θ. Βασική Προϋπόθεση ύπαρξης της Συναγωγής: Εξίσωση Συναγωγής (Εξίσωση Newton): Συναγωγή Θερμότητας: Συναγωγή Θερμότητας Μέσω Συναγωγής μεταδίδεται η θερμότητα μεταξύ της επιφάνειας ενός στερεού σώματος και ενός ρευστού το οποίο βρίσκεται σε κίνηση σχετικά με την επιφάνεια και ταυτόχρονα

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού

Διαβάστε περισσότερα

1. Κατανάλωση ενέργειας

1. Κατανάλωση ενέργειας ΑΠΘ ΕΓΑΧΤ 1. Κατανάλωση ενέργειας 1α. Σ ένα αναδευόμενο δοχείο (Τ m, D 0.67 m, C 0.67 m, H m, N 90 RPM, με τέσσερις ανακλαστήρες), εφοδιασμένο με αναδευτήρα τύπου στροβίλου Rushton, αναδεύεται διάλυμα

Διαβάστε περισσότερα

β. F = 2ρΑυ 2 γ. F = 1 2 ραυ 2 δ. F = 1 3 ραυ 2

β. F = 2ρΑυ 2 γ. F = 1 2 ραυ 2 δ. F = 1 3 ραυ 2 Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα σύστημα ελατηρίου - μάζας εκτελεί απλή αρμονική ταλάντωση πλάτους Α. Αν τετραπλασιάσουμε την ολική ενέργεια της ταλάντωσης αυτού του συστήματος

Διαβάστε περισσότερα

Συνοπτική Παρουσίαση Σχέσεων για τον Προσδιορισμό του Επιφανειακού Συντελεστή Μεταφοράς της Θερμότητας.

Συνοπτική Παρουσίαση Σχέσεων για τον Προσδιορισμό του Επιφανειακού Συντελεστή Μεταφοράς της Θερμότητας. 5 η ΔΙΑΛΕΞΗ Στόχος της διάλεξης αυτής είναι η κατανόηση των διαδικασιών αλλά και των σχέσεων που χρησιμοποιούνται για τον προσδιορισμό του ρυθμού μεταφοράς θερμότητας, Q &, αλλά και του επιφανειακού συντελεστή

Διαβάστε περισσότερα

Σύντομο Βιογραφικό... - v - Πρόλογος...- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί... - xii - ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ

Σύντομο Βιογραφικό... - v - Πρόλογος...- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί... - xii - ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ ΠΕΡΙΕΧΟΜΕΝΑ Σύντομο Βιογραφικό.... - v - Πρόλογος.....- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί..... - xii - ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 1.1 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΜΕΤΑΔΟΣΗ

Διαβάστε περισσότερα

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi.

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi. Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΓΩΓΟΣ VENTURI ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σκοπός της άσκησης είναι η κατανόηση της χρήσης της συσκευής

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 4-5

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 4-5 ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 4-5 Πιέσεις ρευστών - η εξίσωση Bernoulli Διδάσκων Δρ. Παντελής Σ. Αποστολόπουλος (Επίκουρος

Διαβάστε περισσότερα

Λύσεις 1ης σειράς ασκήσεων

Λύσεις 1ης σειράς ασκήσεων Λύσεις 1ης σειράς ασκήσεων 1-13 Άσκηση 1 η : Μετατρέπουμε τα δεδομένα από το αγγλοσαξονικό σύστημα στο SI: Διάμετρος άξονα: Dax 3 ice 3i.5 c i 7.6 c.76 Πλάτος περιβλήματος: Wi 6 ice 6i.5 c i 15. c.15 Διάκενο

Διαβάστε περισσότερα

Λίγη Φυσική. για τη σοκολάτα Ζωή Ευθυμιάδου 1, Βικτωρία Κελαναστάση 2, Αγγελική Κοσμά 3 1 ο Πρότυπο Πειραματικό Λύκειο Θες/νίκης «Μανόλης Ανδρόνικος»

Λίγη Φυσική. για τη σοκολάτα Ζωή Ευθυμιάδου 1, Βικτωρία Κελαναστάση 2, Αγγελική Κοσμά 3 1 ο Πρότυπο Πειραματικό Λύκειο Θες/νίκης «Μανόλης Ανδρόνικος» Λίγη Φυσική. για τη σοκολάτα Ζωή Ευθυμιάδου 1, Βικτωρία Κελαναστάση 2, Αγγελική Κοσμά 3 1 ο Πρότυπο Πειραματικό Λύκειο Θες/νίκης «Μανόλης Ανδρόνικος» 1 zoeefth@hotmail.com, 2 viktwria444@hotmail.com, 3

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς Παράδειγμα 1 Στατική ρευστών Να υπολογιστεί το βάθος της θάλασσας στο οποίο η απόλυτη πίεση είναι 10 atm. ΔP = ρ g Δz Δz = ΔP ρ g = 10 1 101325

Διαβάστε περισσότερα