Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής"

Transcript

1 Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής Δεύτερη Σειρά Ασκήσεων 22 Νοεμβρίου 2016 (χειρόγραφη και ηλεκτρονική παράδοση 9 Δεκεμβρίου) Άσκηση 1: Θεωρήστε τη γραμματική με κανόνες: Α B a A a c B B b A b d όπου a, b, c και d είναι τερματικά σύμβολα. Α. Παρατηρήστε τη γραμματική και εξηγήστε γιατί δεν είναι LL(1). Β. Να μετασχηματίσετε τη γραμματική σε μια νέα, ισοδύναμή της, απαλείφοντας πλήρως τα προφανή χαρακτηριστικά που την κάνουν να μην είναι LL(1). Γ. Υπολογίστε και εξετάστε τα σύνολα FIRST και FOLLOW της νέας γραμματικής, ώστε να βρείτε αν αυτή είναι LL(1). Σε περίπτωση που η νέα γραμματική δεν είναι LL(1), να εξετάσετε αν αυτή μπορεί να είναι LL(k) για κάποιο k. Δ. Να κατασκευάσετε τον πίνακα ΣΑ LL(1) για τη νέα γραμματική, επιτρέποντας πολλαπλές κινήσεις σε κάθε θέση, ώστε να εντοπίσετε όλες τις συγκρούσεις που πιθανά εμφανίζονται. Για κάθε περίπτωση σύγκρουσης, εξηγήστε αν αυτή μπορεί να επιλυθεί με επιλογή μιας από τις κινήσεις, αν δηλαδή διαγράφοντας τις υπόλοιπες κινήσεις προκύπτει ντετερμινιστικός πίνακας ΣΑ ο οποίος όμως να μπορεί να αναγνωρίσει τη γλώσσα της γραμματικής. Ε. Με βάση τον πίνακα που κατασκευάσατε, να περιγράψετε τα βήματα για την αναγνώριση ή απόρριψη των συμβολοσειρών daabbbaaa και cbbabbaaa. Ειδικότερα, αν ο πίνακας είναι μη ντετερμινιστικός επειδή δεν καταφέρατε να επιλύσετε κάποια σύγκρουση, χρησιμοποιήστε οπισθοδρόμηση, ώστε να δοκιμάσετε όσες επιλογές απαιτούνται πριν αποφασίσετε. Άσκηση 2: Θεωρήστε τη γραμματική που σας δόθηκε στην προηγούμενη άσκηση, καθώς και τη νέα που βρήκατε μετά τους μετασχηματισμούς. Α. Να κατασκευάσετε πλήρως τις καταστάσεις ΣΑ LR(0), SLR(1), LALR(1) και LR(1) των δύο γραμματικών, και να εξετάσετε αν αυτές ανήκουν σε μία ή περισσότερες από τις τέσσερεις κατηγορίες ΣΑ τύπου LR. Εντοπίστε όλες τις συγκρούσεις που τυχόν εμφανίζονται στις καταστάσεις, χωρίς να κατασκευάσετε κανέναν πίνακα ΣΑ. Β. Για όποια από τις δύο γραμματικές δεν είναι LR(1), να εξηγήσετε αν μπορεί να είναι LR(k) για κάποιο k ή όχι και γιατί. Διαφορετικά, να κατασκευάσετε τον απλούστερο σύμφωνα με την πιο πάνω σειρά πίνακα ΣΑ από τους τέσσερεις τύπους LR που μπορεί να κατασκευαστεί ντετερμινιστικά για την κάθε γραμματική. Γ. Για όποια από τις δύο γραμματικές δεν είναι LR(1), να κατασκευάσετε τον πίνακα ΣΑ LR(1) με πολλαπλές κινήσεις στις θέσεις όπου υπάρχει σύγκρουση, και στη συνέχεια να εξετάσετε αν επιλέγοντας μία κίνηση ανά περίπτωση μπορείτε να επιλύσετε τη σύγκρουση, αν

2 2 δηλαδή διαγράφοντας τις υπόλοιπες κινήσεις προκύπτει ντετερμινιστικός πίνακας ΣΑ ο ο- ποίος να μπορεί να αναγνωρίσει τη γλώσσα της γραμματικής. Δ. Με βάση τους δύο πίνακες που κατασκευάσατε, να περιγράψετε τα βήματα για την αναγνώριση ή απόρριψη των συμβολοσειρών daabbbaaa και cbbabbaaa. Ειδικότερα, αν ο πίνακας είναι μη ντετερμινιστικός επειδή δεν καταφέρατε να επιλύσετε κάποια σύγκρουση, χρησιμοποιήστε οπισθοδρόμηση, ώστε να δοκιμάσετε όσες επιλογές απαιτούνται πριν αποφασίσετε. Άσκηση 3: Θεωρήστε τη γραμματική: D ( X E ; F ) X ( Χ F ; X Ε ) E Y a F Y b Y όπου (, ), a, b και ; τα τερματικά σύμβολα αυτής. Α. Εξετάστε με τη σειρά αν η παραπάνω γραμματική είναι LL(1), LR(0), SLR(1), LALR(1) και LR(1), μόνο με βάση τις συγκρούσεις FIRST/FIRST και FIRST/FOLLOW ή ολίσθησης/ελάττωσης και ελάττωσης/ελάττωσης, χωρίς να προσπαθήσετε να κατασκευάσετε κανέναν πίνακα ΣΑ. Β. Κατασκευάστε τον ντετερμινιστικό πίνακα ΣΑ για κάθε περίπτωση που αυτό είναι δυνατό, και δείξτε τις κινήσεις του αντίστοιχου ΣΑ για την αναγνώριση της συμβολοσειράς: (b;(b;;b;(;;b;b;(a) Γ. Δείξτε ότι κάθε γραμματική LL(1) είναι και LR(1). Άσκηση 4: Θεωρήστε τη γραμματική: Ε Ε + Τ T T Τ + T * F F F F * ( E ) a όπου a, (, ), * και + τα τερματικά σύμβολα αυτής. Α. Δείξτε με τη σειρά ότι η παραπάνω γραμματική δεν είναι LL(1), LR(0), SLR(1), LR(1) ούτε LALR(1), χωρίς να κατασκευάσετε πίνακες ΣΑ. Β. Για την περίπτωση LL(1): Μετασχηματίστε τη γραμματική, απαλείφοντας τα προφανή χαρακτηριστικά που την κάνουν να μην είναι LL(1), και δείξτε ότι και πάλι προκύπτει γραμματική που δεν είναι LL(1). Στη συνέχεια, κατασκευάστε τον πίνακα ΣΑ LL(1), υποδεικνύοντας τα κελιά στα οποία εμφανίζεται σύγκρουση. Για τα κελιά αυτά, προσπαθήστε να επιλέξετε κανόνα με βάση το αμέσως επόμενο προπορευόμενο σύμβολο, δημιουργώντας έτσι μικρότερα εσωτερικά κελιά για κάθε διαφορετικό επόμενο σύμβολο. Αν οι συγκρούσεις επιλυθούν με αυτό τον τρόπο, θα έχετε δείξει ότι η νέα γραμματική είναι LL(2)! Γ. Για τις περιπτώσεις SLR(1), LALR(1) και LR(1): Κατασκευάστε τους αντίστοιχους πίνακες ΣΑ, υποδεικνύοντας τα κελιά στα οποία εμφανίζεται σύγκρουση. Για τα κελιά αυτά, προσπαθήστε να επιλέξετε κίνηση με βάση το αμέσως επόμενο προπορευόμενο σύμβολο, δημιουργώντας όπως και πριν μικρότερα εσωτερικά κελιά για κάθε διαφορετικό επόμενο σύμβολο. Στον ΣΑ SLR μια τέτοια επιλογή ελάττωσης θα γίνεται για όλα τα ζεύγη διαδοχικών συμβόλων που μπορούν να ακολουθούν το μη τερματικό σύμβολο του αριστερού μέλους. Για τον

3 3 ΣΑ LR(1) - και κατ' επέκταση και τον LALR(1) - η επιλογή ελάττωσης θα γίνεται για τα α- κριβή ζεύγη διαδοχικών συμβόλων που μπορούν να ακολουθούν το μη τερματικό σύμβολο του αριστερού μέλους, όπως αυτά προκύπτουν από την εφαρμογή της συνάρτησης CLO- SURE. Αν οι συγκρούσεις επιλυθούν με αυτό τον τρόπο, θα έχετε δείξει ότι η γραμματική είναι SLR(2), LALR(2) ή LR(2), αντίστοιχα! Δ. Για κάθε περίπτωση ΣΑ στον οποίο επιλύσατε τις συγκρούσεις, δείξτε τις κινήσεις του για την αναγνώριση της συμβολοσειράς: (a++a*)+*a+a+*(a**+a+)* Υπόδειξη: Ακόμα και στις περιπτώσεις που χρησιμοποιούμε δύο προπορευόμενα, η είσοδος καταναλώνεται πάντα με ρυθμό ενός συμβόλου με κάθε απορρόφηση ή ολίσθηση. Άσκηση 5: Μια απλή γλώσσα συναρτησιακού προγραμματισμού υποστηρίζει τις εξής δομές εκφράσεων: λ ID 1 ID n : e συνάρτηση με όρισμα μια λίστα n μεταβλητών και σώμα την έκφραση e e 1 OP e 2 εφαρμογή τελεστή OP με ορίσματα τις εκφράσεις e 1 και e 2 e e 1 e n εφαρμογή της συνάρτησης e με όρισμα μια λίστα n εκφράσεων ( e ) παρενθέσεις για την ομαδοποίηση των εκφράσεων ID μεταβλητές CONST σταθερές Η άτυπη σύνταξη της γλώσσας καθορίζει ότι: Στη δομή λ... : e το σώμα της συνάρτησης εκτείνεται όσο το δυνατόν περισσότερο. Η εφαρμογή συνάρτησης έχει υψηλότερη προτεραιότητα από τους τελεστές OP. Οι τελεστές OP δίνονται αναλυτικά μαζί με την προτεραιότητα και την προσεταιριστικότητά τους στον παρακάτω πίνακα: Λεκτική Μονάδα Τελεστής Προτεραιότητα Προσεταιριστικότητα OR ελάχιστη αριστερή AND && αριστερή REL <, >, >=, <= καμία EQ ==,!= καμία ADD +, - αριστερή MUL *, / αριστερή POW ^ μέγιστη δεξιά Α. Να δώσετε μια διφορούμενη γραμματική για τις δομές εκφράσεων της παραπάνω γλώσσας που να αγνοεί τους άτυπους κανόνες. Εξηγήστε γιατί η γραμματική είναι διφορούμενη. Β. Να δώσετε μια μη διφορούμενη γραμματική, η οποία να περιλαμβάνει αναλυτικότερα τους τελεστές της γλώσσας, λαμβάνοντας πλήρως υπόψη την προτεραιότητα και την προσεταιριστικότητά τους, και να λαμβάνει ακόμα υπόψη και τους υπόλοιπους άτυπους κανόνες της γλώσσας. Γ. Να εξετάσετε αν η γραμματική του ερωτήματος B είναι LL(1). Αν ναι, τότε δώστε τον πίνακα συντακτικής ανάλυσης LL(1) γι αυτή τη γραμματική. Διαφορετικά, να εξετάσετε αν αυτή μπορεί να μετατραπεί σε LL(1), και αν ναι, δώστε τον πίνακα συντακτικής ανάλυσης LL(1) για τη μετασχηματισμένη γραμματική. Δ. Να εξετάσετε αν η γραμματική του ερωτήματος Β είναι SLR(1). Αν ναι, τότε δώστε τον πίνακα συντακτικής ανάλυσης SLR(1) γι αυτή τη γραμματική. Διαφορετικά, να εξετάσετε αν αυτή είναι LR(1), και αν ναι, δώστε τον πίνακα συντακτικής ανάλυσης LR(1) γι αυτή τη γραμματική.

4 4 Ε. Να εξηγήσετε γιατί η γραμματική του ερωτήματος Α δεν είναι SLR(1) ούτε LR(1). Μολαταύτα, να κατασκευάσετε τον πίνακα συντακτικής ανάλυσης SLR(1) για τη γραμματική αυτή, υποδεικνύοντας όλες τις συγκρούσεις που εμφανίζονται σε αυτόν. Εξηγήστε με ποια κριτήρια μπορείτε να υλοποιήσετε ντετερμινιστικό συντακτικό αναλυτή τύπου LR με βάση τον πίνακα αυτόν, χρησιμοποιώντας τους άτυπους κανόνες της γλώσσας, και δείξτε τη λειτουργία του για την αναγνώριση της συμβολοσειράς: (x<y&&3+z*(λ x y:x+y*y-(λ x:1/x-1)(x+y)) 2 5^(λ x:x+1/x) 3^2/2>w) Άσκηση 6: Θεωρήστε τη γραμματική ενός συνόλου αριθμητικών εκφράσεων που αποτελούν συναρτήσεις μίας μεταβλητής x: Ε E + E E * E Ε ^ iconst ( E ) x iconst όπου x, iconst, +, *, ^, ( και ) τερματικά σύμβολα. Το τερματικό σύμβολο iconst παριστάνει μη προσημασμένες ακέραιες σταθερές, η τιμή των οποίων λαμβάνεται από κάποιο λεκτικό αναλυτή μέσω ενός κατηγορήματος val. Εάν τα τερματικά σύμβολα +, * και ^ παριστάνουν τις πράξεις πρόσθεσης, πολλαπλασιασμού και ύψωσης σε δύναμη, αντίστοιχα, με τις συνήθεις προτεραιότητες και προσεταιριστικότητες της άλγεβρας, ορίστε κατηγορήματα για το μη τερματικό σύμβολο Ε και κανόνες αποτίμησης αυτών σε μορφή ψευδοκώδικα, ώστε η προκύπτουσα κατηγορική γραμματική να υπολογίζει την έκφραση της πρώτης παραγώγου της αριθμητικής έκφρασης που δίνεται ως είσοδος. Στη συνέχεια, βελτιώστε τους κανόνες αποτίμησης, ώστε η τελική μορφή της παραγώγου να είναι πολυώνυμο ως προς x με εκθέτες σε φθίνουσα σειρά, με τη μέγιστη δυνατή απλοποίηση στις τιμές των συντελεστών και των εκθετών. Για παράδειγμα, με είσοδο την έκφραση: (x^3+4)*x+x^2*3 η γραμματική με τους βελτιωμένους κανόνες πρέπει να εκτυπώνει: 4*x^3+6*x+4 ενώ η αρχική προσέγγιση που κάνετε θα μπορεί να εκτυπώνει: (3*x^2+0)*x+(x^3+4)*1+2*x^1*3 ή ο,τιδήποτε ισοδύναμο. Δείξτε σε μορφή δέντρου τη διαδικασία αποτίμησης των κατηγορημάτων για κάθε μία από τις δύο υλοποιήσεις κατηγορικής γραμματικής, με είσοδο την παραπάνω έκφραση. Υπόδειξη: Υπενθυμίζεται ότι: (f+g) = f +g, (f*g) = f *g+f*g, και ότι (f n ) = n*f n-1 *f. Χρησιμοποιήστε δύο σύνολα κατηγορημάτων για το Ε, το ένα να αναφέρεται στην παράγωγο, και το άλλο στην αρχική μορφή της έκφρασης, με το δεύτερο να απαιτείται για τον πολλαπλασιασμό και την ύψωση σε δύναμη. Κάθε σύνολο θα πρέπει να περιλαμβάνει τουλάχιστον ένα ακέραιο κατηγόρημα για την τιμή του σταθερού συντελεστή της έκφρασης, καθώς και ένα κατηγόρημα πίνακα χαρακτήρων για την έκφραση. Άσκηση 7 (προαιρετική συμπληρωματική του ΣΑ της εργασίας): Έστω οι αριθμητικές εκφράσεις μεταξύ μη προσημασμένων ακεραίων σταθερών κάποιας γλώσσας προγραμματισμού που παράγονται από τη γραμματική: E E + E E - E E * E E / E E ** E ( E ) ICONST όπου ICONST η λεκτική μονάδα των σταθερών, οι +, -, * και / είναι τελεστές με τη συνήθη σημασιολογική ερμηνεία πράξης, προτεραιότητας και προσεταιριστικότητας, ενώ

5 5 ** είναι ο τελεστής ύψωσης σε δύναμη, έχει δε τη μέγιστη προτεραιότητα και δεξιά προσεταιριστικότητα. Αν οι σταθερές περιγράφονται ως ένας ή περισσότεροι αριθμητικοί χαρακτήρες, κατασκευάστε με τα μετα-εργαλεία flex και bison ένα πρόγραμμα, το οποίο να μετατρέπει τις παραπάνω εκφράσεις σε επιθεματική μορφή, χωρίς παρενθέσεις. Για παράδειγμα, η έκφραση: * (2 + 50) ** θα πρέπει να μετατρέπεται στην: ** * Να παραδώσετε ηλεκτρονικά τα αρχεία εισόδου των εργαλείων flex και bison που κατασκευάσατε. Άσκηση 8 (προαιρετική συμπληρωματική του ΣΑ της εργασίας): Η παρούσα άσκηση μελετάει τους ΣΑ αναδρομικής κατάβασης, τόσο ντετερμινιστικούς όσο και μη ντετερμινιστικούς. Οι ΣΑ αναδρομικής κατάβασης υλοποιούν μια συνάρτηση ανάλυσης για κάθε μη τερματικό σύμβολο της γραμματικής, η οποία, για κάθε δεξί μέλος κανόνα, καλεί συναρτήσεις για άλλα μη τερματικά σύμβολα και προχωράει την είσοδο για τερματικά σύμβολα. Κάθε συνάρτηση μπορεί να προχωράει με έναν από τους ακόλουθους τρόπους: 1. Ντετερμινιστικά: Συνήθως, τα περισσότερα μη τερματικά σύμβολα της γραμματικής έ- χουν εναλλακτικά δεξιά μέλη κανόνων, οπότε ο ΣΑ έχει επιλογές κίνησης στην ανάλυση αυτών των συμβόλων. Όμως, είναι δυνατό να μπορούμε να επιλέξουμε κανόνα, με επισκόπηση ενός αριθμού προπορευόμενων συμβόλων. Τότε, η ανάλυση είναι πλήρως ντετερμινιστική, ακριβώς όπως σε έναν ΣΑ LL(k). Στην ακραία περίπτωση χωρίς εναλλακτικά δεξιά μέλη κανόνων έχουμε έναν εκφυλισμένο ΣΑ, όπου η ανάλυση είναι επίσης πλήρως ντετερμινιστική αφού δεν υπάρχουν επιλογές κίνησης. 2. Μη ντετερμινιστικά: Στη γενική περίπτωση μη τερματικών συμβόλων με πολλαπλά ε- ναλλακτικά δεξιά μέλη κανόνων, μπορούμε να δοκιμάζουμε όλα τα δεξιά μέλη με τη σειρά, και κάθε φορά που μια συνάρτηση αποτυγχάνει, αντί να τερματίζει την ανάλυση, να επιστρέφει κατάλληλη ένδειξη, ώστε να οπισθοδρομούμε και να προχωράμε στο επόμενο δεξί μέλος. Έτσι, καταλήγουμε σε μία τελείως μη ντετερμινιστική ανάλυση, όπου δεν κάνουμε καμία επιλογή κίνησης, και απλά εξαντλούμε όλες τις εναλλακτικές κινήσεις. 3. Μερικώς ντετερμινιστικά: Για τις περιπτώσεις που μπορούμε να επιλέξουμε δεξί μέλος με βάση κάποια προπορευόμενα σύμβολα, είναι προτιμότερο να προχωράμε ντετερμινιστικά χωρίς οπισθοδρόμηση. Μόνο όταν δε μπορούμε να κάνουμε επιλογή, προχωράμε όπως στο μη ντετερμινιστικό ΣΑ. Μ άλλα λόγια, αν χρησιμοποιούμε k προπορευόμενα σύμβολα, προχωράμε με τον πρώτο τρόπο, όπου τα k σύμβολα μας παρέχουν επιλογή, και με το δεύτερο στις υπόλοιπες περιπτώσεις. Στη συνέχεια σας ζητείται να υλοποιήσετε και τους τρεις τρόπους ανάλυσης σε αντίστοιχα προγράμματα C, κατ αρχήν για μια διφορούμενη γραμματική, και στη συνέχεια σε δύο ισοδύναμές τις γραμματικές. Α. Να σχεδιάσετε και να υλοποιήσετε έναν ΣΑ αναδρομικής κατάβασης, συμπεριλαμβανομένου ενός πολύ απλού ΛΑ, για τη γραμματική με κανόνες: E Ε = Ε Ε + Ε Ε - E + Ε - Ε ( E ) V V i ( E ) i όπου i, =, +, -, ( και ) τα τερματικά σύμβολα της γραμματικής. Η γραμματική αυτή είναι διφορούμενη, οπότε ο ΣΑ θα είναι μη ντετερμινιστικός και θα πρέπει να οπισθοδρομεί, δοκιμάζοντας δηλαδή όλες τις εναλλακτικές επιλογές πριν συμπεράνει αποτυχία. Να ακολουθήσετε τον δεύτερο από τους πιο πάνω τρόπους ανάλυσης, χωρίς δηλαδή χρήση προπορευόμενων συμβόλων για επιλογή κίνησης. Στη συνέχεια, να εφαρμόσετε τον κώδικά σας στη συμβολοσειρά:

6 6 i=-i(i((i+-i(-i)))-i)=-(i(+i(i=(i=-i+(+i))-i))+i) και να δώσετε το δέντρο συντακτικής ανάλυσης που προκύπτει από τη σειρά με την οποία καλούνται οι συναρτήσεις του ΣΑ. Πόσες φορές καλούνται οι συναρτήσεις του ΣΑ; Β. Να εφαρμόσετε στην παραπάνω γραμματική απαλοιφή αριστερής αναδρομής και αριστερή παραγοντοποίηση. Δείξτε ότι ούτε η νέα γραμματική μπορεί να έχει ντετερμινιστικό ΣΑ αναδρομικής κατάβασης. Υλοποιήστε έτσι ένα δεύτερο μη ντετερμινιστικό ΣΑ αναδρομικής κατάβασης για τη νέα γραμματική, ο οποίος όμως να ακολουθεί τον τρίτο από τους πιο πάνω τρόπους ανάλυσης, προχωρώντας ντετερμινιστικά με χρήση ενός προπορευόμενου συμβόλου όπου δεν υπάρχει σύγκρουση στην ανάλυση, και μη ντετερμινιστικά στις υπόλοιπες περιπτώσεις, ώστε να οπισθοδρομεί όσο λιγότερες φορές γίνεται. Εφαρμόστε τον κώδικά σας στην παραπάνω συμβολοσειρά, και δώστε το νέο δέντρο συντακτικής ανάλυσης που προκύπτει. Πόσες φορές καλούνται οι συναρτήσεις του δεύτερου αυτού ΣΑ; Γ. Θεωρήστε τώρα την παρακάτω ισοδύναμη μη διφορούμενη γραμματική με κανόνες: E + Ε - E ( E ) E V E E = E + Ε - E V i V V ( E ) Όπως και στα προηγούμενα ερωτήματα, να υλοποιήσετε ένα ΣΑ αναδρομικής κατάβασης για τη νέα γραμματική, με τη διαφορά ότι ο τρίτος αυτός ΣΑ θα πρέπει να μην οπισθοδρομεί, επιλέγοντας κίνηση με βάση ένα προπορευόμενο σύμβολο. Εξηγήστε γιατί είναι δυνατή μια τέτοια υλοποίηση. Εφαρμόστε τον κώδικά σας στην πιο πάνω συμβολοσειρά, και δώστε το νέο δέντρο συντακτικής ανάλυσης που προκύπτει. Πόσες φορές καλούνται τώρα οι συναρτήσεις του ΣΑ; Οι τρεις αναλυτές που υλοποιήσατε θα πρέπει να παραδοθούν ηλεκτρονικά. ΠΡΟΣΟΧΗ: Όλες οι ασκήσεις εκτός του κώδικα των Ασκήσεων 7 και 8 να παραδοθούν χειρόγραφες. Κάθε άσκηση να παραδοθεί σε ξεχωριστές κόλλες από τις υπόλοιπες.

Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 4 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Πληροφορικής

Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 4 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Πληροφορικής Γιώργος Δημητρίου Μάθημα 4 ο Συντακτική Ανάλυση Επαλήθευση της σύνταξης του προγράμματος Κατασκευή συντακτικού δέντρου Η κεντρική φάση της Μετάφρασης Οδηγούμενης από τη Σύνταξη Από εδώ ξεκινά η παραγωγή

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Πανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρώτη Σειρά Ασκήσεων 27 Οκτωβρίου 2016 Μέρος Α. (χειρόγραφη και ηλεκτρονική παράδοση 11 Νοεμβρίου) Άσκηση 1: Θεωρήστε το ακόλουθο

Διαβάστε περισσότερα

Μεταγλωττιστές. Δημήτρης Μιχαήλ. Ακ. Έτος 2011-2012. Ανοδικές Μέθοδοι Συντακτικής Ανάλυσης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Μεταγλωττιστές. Δημήτρης Μιχαήλ. Ακ. Έτος 2011-2012. Ανοδικές Μέθοδοι Συντακτικής Ανάλυσης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μεταγλωττιστές Ανοδικές Μέθοδοι Συντακτικής Ανάλυσης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2011-2012 Ανοδική Κατασκευή Συντακτικού Δέντρου κατασκευή δέντρου

Διαβάστε περισσότερα

Απάντηση: (func endfunc)-([a-za-z])+

Απάντηση: (func endfunc)-([a-za-z])+ Γλώσσες Προγραμματισμού Μεταγλωττιστές Ασκήσεις Επανάληψης ) Περιγράψτε τις κανονικές εκφράσεις που υποστηρίζουν (i) συμβολοσειρές που ξεκινούν με το πρόθεμα "func" ή "endfunc" ακολουθούμενο το σύμβολο

Διαβάστε περισσότερα

Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών: Εργαστηριακή Άσκηση 2012-2013

Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών: Εργαστηριακή Άσκηση 2012-2013 Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών: Εργαστηριακή Άσκηση 2012-2013 27 Μαρτίου 2013 Περίληψη Σκοπός της παρούσας εργασίας είναι η εξοικείωσή σας με τις θεμελιώδεις θεωρητικές και πρακτικές πτυχές

Διαβάστε περισσότερα

Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 2 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 2 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Γιώργος Δημητρίου Μάθημα 2 ο Αλφάβητα και Γλώσσες Αλφάβητο: Ένα μη κενό και πεπερασμένο σύνολο συμβόλων Γλώσσα: Ένα οποιοδήποτε υποσύνολο των συμβολοσειρών ενός αλφαβήτου (οι προτάσεις της γλώσσας, πχ.

Διαβάστε περισσότερα

Πίνακας Περιεχοµένων Πρόλογος Κεφάλαιο Βασικές εισαγωγικές έννοιες

Πίνακας Περιεχοµένων Πρόλογος Κεφάλαιο Βασικές εισαγωγικές έννοιες Πίνακας Περιεχοµένων Πρόλογος...vii Κεφάλαιο 1:Βασικές εισαγωγικές έννοιες...1 1.1 Η δοµή του µεταγλωττιστή...2 1.2 Η διαδικασία µεταγλώττισης...3 1.2.1 Η Λεξική Ανάλυση...6 1.2.2 Η Συντακτική Ανάλυση...6

Διαβάστε περισσότερα

Γλώσσες Προγραμματισμού Μεταγλωττιστές. Συντακτική Ανάλυση II

Γλώσσες Προγραμματισμού Μεταγλωττιστές. Συντακτική Ανάλυση II Γλώσσες Προγραμματισμού Μεταγλωττιστές Συντακτική Ανάλυση II Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Ηλίας Σακελλαρίου Δομή Εισαγωγή στην ανάλυση από κάτω προς τα πάνω. Οι έννοιες της ελάττωσης

Διαβάστε περισσότερα

Γλώσσες Προγραμματισμού Μεταγλωττιστές. Συντακτική Ανάλυση με το Εργαλείο BISON

Γλώσσες Προγραμματισμού Μεταγλωττιστές. Συντακτική Ανάλυση με το Εργαλείο BISON Γλώσσες Προγραμματισμού Μεταγλωττιστές Συντακτική Ανάλυση με το Εργαλείο BISON Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Ηλίας Σακελλαρίου Δομή Γεννήτριες Συντακτικών Αναλυτών Bison/yacc

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Πανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Παραδείγματα Ενοτήτων 1-2 Ενότητα 1: Εισαγωγή Άσκηση 1-1: Θεωρήστε μια υποθετική γλώσσα προγραμματισμού και την παρακάτω γραμματική

Διαβάστε περισσότερα

Μεταγλωττιστές. Ενότητα 7: Συντακτική ανάλυση (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Μεταγλωττιστές. Ενότητα 7: Συντακτική ανάλυση (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Μεταγλωττιστές Ενότητα 7: Συντακτική ανάλυση (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μεταγλωττιστές. Ενότητα 8: Συντακτική ανάλυση (Μέρος 2 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Μεταγλωττιστές. Ενότητα 8: Συντακτική ανάλυση (Μέρος 2 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Μεταγλωττιστές Ενότητα 8: Συντακτική ανάλυση (Μέρος 2 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Παρουσίαση του εργαλείου BISON

Παρουσίαση του εργαλείου BISON Παρουσίαση του εργαλείου BISON Γεννήτρια Συντακτικών Αναλυτών Β Φάση Συντακτική Ανάλυση Χαρακτηριστικά του bison Γεννήτρια συντακτικών αναλυτών σε C/C++. Συµβατό µε το εργαλείο του Unixyacc. Σχετικά εύκολο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΛΩΣΣΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΛΩΣΣΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΛΩΣΣΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ Τελικές Εξετάσεις Απαντήστε όλα τα θέματα του Μέρους Α και ένα θέμα από

Διαβάστε περισσότερα

Τμήμα Πληροφορικής & Επικοινωνιών Δρ. Θεόδωρος Γ. Λάντζος

Τμήμα Πληροφορικής & Επικοινωνιών Δρ. Θεόδωρος Γ. Λάντζος Τμήμα Πληροφορικής & Επικοινωνιών Δρ. Θεόδωρος Γ. Λάντζος http://www.teiser.gr/icd/staff/lantzos lantzos@teiser.gr 1 Πώς δημιουργούμε πρόγραμμα Η/Υ; 1. Ανάλυση του προβλήματος 2. Επινόηση & Σχεδιασμός

Διαβάστε περισσότερα

Ανάπτυξη και Σχεδίαση Λογισμικού

Ανάπτυξη και Σχεδίαση Λογισμικού Ανάπτυξη και Σχεδίαση Λογισμικού Η γλώσσα προγραμματισμού C Γεώργιος Δημητρίου Εκφράσεις και Λίγες Εντολές Οι εκφράσεις της C Τελεστές Απλές και σύνθετες εντολές Εντολές ελέγχου (επιλογής) Εισαγωγή σε

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Αριθμητική Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Δεύτερο Πρόγραμμα 1 / * Second Simple Program : add 2 numbers * / 2

Διαβάστε περισσότερα

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jordan

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jordan Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jodan Παράδειγμα x y Να επιλυθεί το ακόλουθο σύστημα: x y 6 Σε μορφή πινάκων το σύστημα γράφεται ως: x y 6 με απαλοιφή Gauss. Ο επαυξημένος πίνακας του συστήματος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 2 ο ΣΕΤ ΑΣΚΗΣΕΩΝ Οι ασκήσεις αυτού του φυλλαδίου καλύπτουν τα παρακάτω θέματα: Συναρτήσεις (κεφάλαιο Functions)

Διαβάστε περισσότερα

Μεταγλωττιστής. Μεταφραστές. Γλώσσες. Είδη Μεταγλωττιστών. Μεταγλωττιστής Τελικό πρόγραµµα (object program) Εισαγωγή Αρχικό πρόγραµµα (source program)

Μεταγλωττιστής. Μεταφραστές. Γλώσσες. Είδη Μεταγλωττιστών. Μεταγλωττιστής Τελικό πρόγραµµα (object program) Εισαγωγή Αρχικό πρόγραµµα (source program) Μεταφραστές Εισαγωγή (source program) Τελικό πρόγραµµα (object program) Γιώργος Μανής Γλώσσες Είδη Μεταγλωττιστών Αρχική γλώσσα Γλώσσα υλοποίησης Τελική γλώσσα Απλοί µεταγλωττιστές Αντίστροφοι µεταγλωττιστές

Διαβάστε περισσότερα

Μεταγλωττιστές. Εργαστήριο 5. Εισαγωγή στο BISON. Γεννήτρια Συντακτικών Αναλυτών. 2 η Φάση Μεταγλώττισης Συντακτική Ανάλυση

Μεταγλωττιστές. Εργαστήριο 5. Εισαγωγή στο BISON. Γεννήτρια Συντακτικών Αναλυτών. 2 η Φάση Μεταγλώττισης Συντακτική Ανάλυση Μεταγλωττιστές Εργαστήριο 5 Εισαγωγή στο BISON Γεννήτρια Συντακτικών Αναλυτών 2 η Φάση Μεταγλώττισης Συντακτική Ανάλυση Διδάσκοντες: Δρ. Γεώργιος Δημητρίου Δρ. Άχμεντ Μάχντι 2015-1016 Φάσεις Μεταγλώττισης

Διαβάστε περισσότερα

Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ

Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Ενότητα 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα α. Θέση και προσανατολισμός της μορφής Η θέση της κάθε μορφής στο σκηνικό προσδιορίζεται

Διαβάστε περισσότερα

Παρουσίαση του εργαλείου BISON

Παρουσίαση του εργαλείου BISON Παρουσίαση του εργαλείου BISON Γεννήτρια Συντακτικών Αναλυτών Β Φάση Συντακτική Ανάλυση Χαρακτηριστικά του bison Γεννήτρια συντακτικών αναλυτών σε C/C++. Συµβατό µε το εργαλείο του Unix yacc. Σχετικά εύκολο

Διαβάστε περισσότερα

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ Πεπερασμένα Αυτόματα (ΠΑ) Τα πεπερασμένα αυτόματα είναι οι απλούστερες «υπολογιστικές μηχανές». Δεν έχουν μνήμη, μόνο μία εσωτερική μονάδα με πεπερασμένο αριθμό καταστάσεων. Διαβάζουν τη συμβολοσειρά εισόδου

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ )

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ ) Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ. 25 48) Τι είναι αλγόριθμος; Γ ΛΥΚΕΙΟΥ Αλγόριθμος είναι μία πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρονικό διάστημα,

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Επανάληψη Μαθήματος Το Μάθημα σε μια Διαφάνεια Υπολογιστικά μοντέλα Κανονικές Γλώσσες Ντετερμινιστικά Αυτόματα Μη Ντετερμινιστικά Αυτόματα Κανονικές Εκφράσεις

Διαβάστε περισσότερα

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client ΕΣΔ 516 Τεχνολογίες Διαδικτύου Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client Περιεχόμενα Περιεχόμενα Javascript και HTML Βασική σύνταξη Μεταβλητές Τελεστές Συναρτήσεις

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΠΡΑΞΕΙΣ ΜΕΤΑΒΛΗΤΕΣ. Ακέραιοι αριθμοί (int) Πράξεις μεταξύ ακεραίων αριθμών

ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΠΡΑΞΕΙΣ ΜΕΤΑΒΛΗΤΕΣ. Ακέραιοι αριθμοί (int) Πράξεις μεταξύ ακεραίων αριθμών ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΠΡΑΞΕΙΣ ΜΕΤΑΒΛΗΤΕΣ 1 Τύποι δεδομένων Η γλώσσα προγραμματισμού C++ υποστηρίζει τους παρακάτω τύπους δεδομένων: 1) Ακέραιοι αριθμοί (int). 2) Πραγματικοί αριθμοί διπλής ακρίβειας

Διαβάστε περισσότερα

Εισαγωγή στην PHP. ΕΣΔ 516 Τεχνολογίες Διαδικτύου. Περιεχόμενα. Περιεχόμενα. ΕΣ 516: Τεχνολογίες ιαδικτύου. ΕΣ 516: Τεχνολογίες ιαδικτύου

Εισαγωγή στην PHP. ΕΣΔ 516 Τεχνολογίες Διαδικτύου. Περιεχόμενα. Περιεχόμενα. ΕΣ 516: Τεχνολογίες ιαδικτύου. ΕΣ 516: Τεχνολογίες ιαδικτύου ΕΣΔ 516 Τεχνολογίες Διαδικτύου Εισαγωγή στην PHP Περιεχόμενα Περιεχόμενα PHP και HTML Βασική σύνταξη Μεταβλητές Τελεστές Συναρτήσεις Παράδειγματα 1 Βιβλιογραφία Ενότητας Βιβλιογραφία [Lane 2004]: Chapter

Διαβάστε περισσότερα

Μεταγλωττιστές. Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Μεταγλωττιστές. Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Μεταγλωττιστές Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Φροντιστήριο 9 Λύσεις

Φροντιστήριο 9 Λύσεις Άσκηση 1 Φροντιστήριο 9 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {a,b} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.

Διαβάστε περισσότερα

53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η

53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η 53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η ΠΑΓΚΡΑΤΙ: Φιλολάου & Εκφαντίδου 26 : 210/76.01.470 210/76.00.179 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες () Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Πεπερασμένα Αυτόματα (Κεφάλαιο., Sipser) Ορισμός πεπερασμένων αυτομάτων και ορισμός του

Διαβάστε περισσότερα

Κεφάλαιο 6 Υλοποίηση Γλωσσών Προγραμματισμού

Κεφάλαιο 6 Υλοποίηση Γλωσσών Προγραμματισμού Κεφάλαιο 6 Υλοποίηση Γλωσσών Προγραμματισμού Προπτυχιακό μάθημα Αρχές Γλωσσών Προγραμματισμού Π. Ροντογιάννης 1 Μεταγλωττιστής Πρόγραμμα Διαβάζει προγράμματα δεδομένης γλώσσας (πηγαία γλώσσα) και τα μετατρέπει

Διαβάστε περισσότερα

Ινστιτούτο Επαγγελµατική Κατάρτιση Κορυδαλλού "ΤΕΧΝΙΚΟΣ ΣΥΣΤΗΜΑΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ" (Ερωτήσεις Πιστοποίησης στην γλώσσα προγραµµατισµού C)

Ινστιτούτο Επαγγελµατική Κατάρτιση Κορυδαλλού ΤΕΧΝΙΚΟΣ ΣΥΣΤΗΜΑΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ (Ερωτήσεις Πιστοποίησης στην γλώσσα προγραµµατισµού C) Ινστιτούτο Επαγγελµατική Κατάρτιση Κορυδαλλού "ΤΕΧΝΙΚΟΣ ΣΥΣΤΗΜΑΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ" (Ερωτήσεις Πιστοποίησης στην γλώσσα προγραµµατισµού C) ΚΑΤΑΛΟΓΟΣ ΕΡΩΤΗΣΕΩΝ ΕΡΩΤΗΣΕΙΣ ΕΙ ΙΚΩΝ ΓΝΩΣΕΩΝ (γλώσσα προγραµµατισµού

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { a 2n b n c 3n n 2 } : H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { Μ η Μ είναι μια ΤΜ η οποία διαγιγνώσκει το πρόβλημα ΙΣΟΔΥΝΑΜΙΑ ΤΜ (διαφάνεια 9 25)} (α) Γνωρίζουμε ότι το

Διαβάστε περισσότερα

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών:

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 23 Διάρκεια εξέτασης : 6 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Θέμα (,5 μονάδες) Στις εισόδους του ακόλουθου κυκλώματος c b a εφαρμόζονται οι κάτωθι κυματομορφές.

Διαβάστε περισσότερα

Η γλώσσα προγραμματισμού Strange

Η γλώσσα προγραμματισμού Strange Προγραμματιστική άσκηση: Η γλώσσα προγραμματισμού Strange Η Strange είναι μια μικρή γλώσσα προγραμματισμού. Παρόλο που οι προγραμματιστικές της ικανότητες είναι μικρές, η εκπαιδευτική αυτή γλώσσα περιέχει

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2008 ΔΙΔΑΣΚΩΝ: ΑΝΤΩΝΙΟΣ ΣΑΒΒΙΔΗΣ ΒΑΣΙΚΗ ΕΡΓΑΣΙΑ ΦΑΣΗ 2η από 5 Παράδοση: Πέμπτη 10 Απριλίου 2008, 24:00 (μεσάνυχτα)

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ 1 η Σειρά Ασκήσεων Πλαίσια, γεωμετρικοί μετασχηματισμοί και προβολές 1. Y B (-1,2,0) A (-1,1,0) A (1,1,0)

Διαβάστε περισσότερα

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,...

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,... 3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν-1 +...+α

Διαβάστε περισσότερα

a = 10; a = k; int a,b,c; a = b = c = 10;

a = 10; a = k; int a,b,c; a = b = c = 10; C: Από τη Θεωρία στην Εφαρµογή Κεφάλαιο 4 ο Τελεστές Γ. Σ. Τσελίκης Ν. Δ. Τσελίκας Ο τελεστής εκχώρησης = Ο τελεστής = χρησιµοποιείται για την απόδοση τιµής (ή αλλιώς ανάθεση τιµής) σε µία µεταβλητή Π.χ.

Διαβάστε περισσότερα

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Άσκηση 1 Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Υπάρχουν τρία μαύρα τετραγωνάκια (b), τρία άσπρα (w) και ένα κενό (e). Η σπαζοκεφαλιά έχει τις ακόλουθες

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 27 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ ÊÁËÁÌÁÔÁ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 27 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ ÊÁËÁÌÁÔÁ ΘΕΜΑ Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 27 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και, δίπλα,

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.

Διαβάστε περισσότερα

Προγραμματισμός Ι (ΗΥ120)

Προγραμματισμός Ι (ΗΥ120) Προγραμματισμός Ι (ΗΥ120) Διάλεξη 4: Τελεστές Τελεστές: Τελεστής Ανάθεσης 2 Το σύμβολο της ανάθεσης είναι το = Προσοχή: το σύμβολο ελέγχου ισότητας είναι το ==. Η μορφή των προτάσεων ανάθεσης είναι:

Διαβάστε περισσότερα

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί.

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί. O μετασχηματισμός Laplace αποτελεί περίπτωση ολοκληρωτικού μετασχηματισμού, κατά τον οποίο κατάλληλη συνάρτηση (χρονικό σήμα) μετατρέπεται σε συνάρτηση της «συχνότητας» μέσω της σχέσης. (1) Γενικότερα

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

ΙΑΓΩΝΙΣΜΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Επαναληπτικό: 1 2 κεφάλαιο ΗΜ/ΝΙΑ :.. ΟΝΟΜΑΤΕΠΩΝΥΜΟ :.. ΘΕΜΑ 1 ο Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-10 και δίπλα τη λέξη

Διαβάστε περισσότερα

Ε Μέχρι 31 Μαρτίου 2015.

Ε Μέχρι 31 Μαρτίου 2015. Ε Μέχρι 31 Μαρτίου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole

K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Ορισμός της δίτιμης άλγεβρας Boole Περιεχόμενα 1 Ορισμός της

Διαβάστε περισσότερα

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5.1 Εισαγωγή στους αλγορίθμους 5.1.1 Εισαγωγή και ορισμοί Αλγόριθμος (algorithm) είναι ένα πεπερασμένο σύνολο εντολών οι οποίες εκτελούν κάποιο ιδιαίτερο έργο. Κάθε αλγόριθμος

Διαβάστε περισσότερα

2.1. Εντολές. 2.2. Σχόλια. 2.3. Τύποι Δεδομένων

2.1. Εντολές. 2.2. Σχόλια. 2.3. Τύποι Δεδομένων 2 Βασικές Εντολές 2.1. Εντολές Οι στην Java ακολουθούν το πρότυπο της γλώσσας C. Έτσι, κάθε εντολή που γράφουμε στη Java θα πρέπει να τελειώνει με το ερωτηματικό (;). Όπως και η C έτσι και η Java επιτρέπει

Διαβάστε περισσότερα

Μεταγλωττιστές. Δημήτρης Μιχαήλ. Ακ. Έτος Συντακτική Ανάλυση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Μεταγλωττιστές. Δημήτρης Μιχαήλ. Ακ. Έτος Συντακτική Ανάλυση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μεταγλωττιστές Συντακτική Ανάλυση Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2011-2012 Συντακτική Ανάλυση Το συντακτικό μιας γλώσσας καθορίζει ποιες συμβολοσειρές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 4 ο ΣΕΤ ΑΣΚΗΣΕΩΝ Οι ασκήσεις αυτού του φυλλαδίου καλύπτουν τα παρακάτω θέματα: Δείκτες Δομές Το τέταρτο σύνολο

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Τύποι δεδομένων, μεταβλητές, πράξεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Τύποι δεδομένων, μεταβλητές, πράξεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Τύποι δεδομένων, μεταβλητές, πράξεις Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Αφαίρεση στον FP. Πολυμορφισμός Συναρτήσεις υψηλότερης τάξης Οκνηρός και Άπληστος Υπολογισμός

Αφαίρεση στον FP. Πολυμορφισμός Συναρτήσεις υψηλότερης τάξης Οκνηρός και Άπληστος Υπολογισμός Αφαίρεση στον FP Πολυμορφισμός Συναρτήσεις υψηλότερης τάξης Οκνηρός και Άπληστος Υπολογισμός Πολυμορφισμός Θα χρησιμοποιήσουμε σαν παράδειγμα τη συνάρτηση ταυτότητας Ι, που ορίζεται ως: fun I x = x Ο ορισμός

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Εφαρμοσμένα Μαθηματικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 6: Διπλά Ολοκληρώματα Δρ. Περικλής Παπαδόπουλος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για

Διαβάστε περισσότερα

Γλώσσες Προγραμματισμού Μεταγλωττιστές. Σημασιολογική Ανάλυση

Γλώσσες Προγραμματισμού Μεταγλωττιστές. Σημασιολογική Ανάλυση Γλώσσες Προγραμματισμού Μεταγλωττιστές Σημασιολογική Ανάλυση Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Ηλίας Σακελλαρίου Δομή Σημασιολογικής Ανάλυσης Στατική και Δυναμική Σημασιολογία Σημασιολογικοί

Διαβάστε περισσότερα

Σύνταξη & Συντακτική Ανάλυση

Σύνταξη & Συντακτική Ανάλυση Σύνταξη & Συντακτική Ανάλυση Μια γραμματική για τα Αγγλικά Μια πρόταση αποτελείται από μια ουσιαστική φράση, ένα ρήμα, και μια ουσιαστική φράση ::= Μια ουσιαστική φράση αποτελείται από

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. Εκφράσεις, τελεστές, σχόλια. 3.1 Εισαγωγή

ΚΕΦΑΛΑΙΟ 3. Εκφράσεις, τελεστές, σχόλια. 3.1 Εισαγωγή ΚΕΦΑΛΑΙΟ 3 Εκφράσεις, τελεστές, σχόλια Σύνοψη Στο κεφάλαιο αυτό εισάγουμε τον τρόπο τέλεσης πράξεων μεταξύ μεταβλητών και σταθερών, εκφράσεις μεταξύ αυτών καθώς και το σχολιασμό της λογικής ενός προγράμματος.

Διαβάστε περισσότερα

Κεφάλαιο 3: Εισαγωγή στους αλγορίθμους - διαγράμματα ροής

Κεφάλαιο 3: Εισαγωγή στους αλγορίθμους - διαγράμματα ροής Κεφάλαιο 3: Εισαγωγή στους αλγορίθμους - διαγράμματα ροής Αλγόριθμος (algorithm) λέγεται μία πεπερασμένη διαδικασία καλά ορισμένων βημάτων που ακολουθείται για τη λύση ενός προβλήματος. Το διάγραμμα ροής

Διαβάστε περισσότερα

Εισαγωγή στην γλώσσα προγραμματισμού C

Εισαγωγή στην γλώσσα προγραμματισμού C Εισαγωγή στην γλώσσα προγραμματισμού C Χαρακτηριστικά της C Ιδιαίτερα δημοφιλής Έχει χρησιμοποιηθεί για τον προγραμματισμό ευρέος φάσματος συστημάτων και εφαρμογών Γλώσσα μετρίου επιπέδου Φιλοσοφία: Ο

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Εντολές επιλογής Εντολές επανάληψης

ΠΕΡΙΕΧΟΜΕΝΑ. Εντολές επιλογής Εντολές επανάληψης ΠΕΡΙΕΧΟΜΕΝΑ Εντολές επιλογής Εντολές επανάληψης Εισαγωγή Στο προηγούμενο κεφάλαιο αναπτύξαμε προγράμματα, τα οποία ήταν πολύ απλά και οι εντολές των οποίων εκτελούνται η μία μετά την άλλη. Αυτή η σειριακή

Διαβάστε περισσότερα

Γ τάξη Τεχνολογικής Κατεύθυνσης Ενιαίου Λυκείου ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. ΔΟΜΗ ΕΠΙΛΟΓΗΣ Διδάσκων: ΔΟΥΡΒΑΣ ΙΩΑΝΝΗΣ

Γ τάξη Τεχνολογικής Κατεύθυνσης Ενιαίου Λυκείου ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. ΔΟΜΗ ΕΠΙΛΟΓΗΣ Διδάσκων: ΔΟΥΡΒΑΣ ΙΩΑΝΝΗΣ Γ τάξη Τεχνολογικής Κατεύθυνσης Ενιαίου Λυκείου ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΟΜΗ ΕΠΙΛΟΓΗΣ Διδάσκων: ΔΟΥΡΒΑΣ ΙΩΑΝΝΗΣ Κεφάλαιο 2 : Δομή Επιλογής Εντολές επιλογής Εντολή ΑΝ. Εντολές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2010 Ι ΑΣΚΩΝ: ΑΝΤΩΝΙΟΣ ΣΑΒΒΙ ΗΣ ΒΑΣΙΚΗ ΕΡΓΑΣΙΑ ΦΑΣΗ 2η από 5 Ανάθεση: Πέµπτη 15 Απριλίου 2010, 11:00 (πρωί)

Διαβάστε περισσότερα

CSC 314: Switching Theory

CSC 314: Switching Theory CSC 314: Switching Theory Course Summary 9 th January 2009 1 1 Θέματα Μαθήματος Ερωτήσεις Τι είναι αλγόριθμος? Τι μπορεί να υπολογιστεί? Απαντήσεις Μοντέλα Υπολογισμού Δυνατότητες και μη-δυνατότητες 2

Διαβάστε περισσότερα

Pascal, απλοί τύποι, τελεστές και εκφράσεις

Pascal, απλοί τύποι, τελεστές και εκφράσεις Pascal, απλοί τύποι, τελεστές και εκφράσεις 15 Νοεμβρίου 2011 1 Γενικά Στην standard Pascal ορίζονται τέσσερις βασικοί τύποι μεταβλητών: integer: Παριστάνει ακέραιους αριθμούς από το -32768 μέχρι και το

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Τελικές εξετάσεις 3 Ιανουαρίου 27 Διάρκεια εξέτασης: 3 ώρες (2:-5:) ΘΕΜΑ ο

Διαβάστε περισσότερα

Εισαγωγή στην PHP. ΕΣΔ 232 Διαχείριση Δεδομένων στη Κοινωνία της Πληροφορίας. Περιεχόμενα. Περιεχόμενα

Εισαγωγή στην PHP. ΕΣΔ 232 Διαχείριση Δεδομένων στη Κοινωνία της Πληροφορίας. Περιεχόμενα. Περιεχόμενα ΕΣΔ 232 Διαχείριση Δεδομένων στη Κοινωνία της Πληροφορίας Εισαγωγή στην PHP Περιεχόμενα Περιεχόμενα PHP και HTML Βασική σύνταξη Μεταβλητές Τελεστές Συναρτήσεις Παράδειγματα 1 Βιβλιογραφία Ενότητας Βιβλιογραφία

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε κλειστό διάστημα

Συνέχεια συνάρτησης σε κλειστό διάστημα 8 Συνέχεια συνάρτησης σε κλειστό διάστημα Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 1 Μια συνάρτηση f θα λέμε ότι είναι: i Συνεχής σε ένα ανοιχτό διάστημα (α,β) όταν είναι συνεχής σε κάθε σημείο του διαστήματος (α,β)

Διαβάστε περισσότερα

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε.

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. 3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε. Στην εισαγωγή δείξαμε ότι η διαφορική εξίσωση του γραμμικού, χρονικά αναλλοίωτου συστήματος μιας εισόδου μιας εξόδου με διαφορική εξίσωση

Διαβάστε περισσότερα

Βασικά στοιχεία της Java

Βασικά στοιχεία της Java Βασικά στοιχεία της Java προτάσεις, εκφράσεις, µεταβλητές, σταθερές, τελεστές Ορισµοί Πρόταση (statement) είναι µία απλή εντολή σε µία γλώσσα προγραµµατισµού. Γιαπαράδειγµα: int x=12; Έκφραση (expression)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μεταφραστές Λεκτικός αναλυτής Διδάσκων: Επικ. Καθ. Γεώργιος Μανής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Top Down Bottom Up. Συντακτική Ανάλυση. Συντακτική Ανάλυση για Γραµµατικές χωρίς Συµφραζόµενα (top-down - Earley)

Top Down Bottom Up. Συντακτική Ανάλυση. Συντακτική Ανάλυση για Γραµµατικές χωρίς Συµφραζόµενα (top-down - Earley) Top Down Bottom Up Συντακτική Ανάλυση Γιώργος Μανής δεοµένης της παραγωγής X αβ, ο συµβολισµός X α β αναπαριστά µία κατάσταση στη οποία το α έχει ήδη αναγνωριστεί και το β προσδοκάται να αναγνωριστεί.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΛΟΓΙΣΜΙΚΟΥ Η γλώσσα προγραμματισμού C ΕΡΓΑΣΤΗΡΙΟ 2: Εκφράσεις, πίνακες και βρόχοι 14 Απριλίου 2016 Το σημερινό εργαστήριο

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

Επίλυση Γραµµικών Συστηµάτων

Επίλυση Γραµµικών Συστηµάτων Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n

Διαβάστε περισσότερα

Κατηγορικές Γραµµατικές

Κατηγορικές Γραµµατικές Κατηγορικές Γραµµατικές Γραµµατικές Χωρίς περιορισµούς Με συµφραζόµενα Χωρίς συµφραζόµενα Κανονικές Πεπερασµένων επιλογών Κατηγορικές Ενεργοποίησης Γραµµατικές G = { T, N, P, S } Τ: αλφάβητο τερµατικών

Διαβάστε περισσότερα

Β.1. i. Να εξηγήσετε τι εννοούμε με τον όρο μεταφερσιμότητα των προγραμμάτων. Μονάδες 3

Β.1. i. Να εξηγήσετε τι εννοούμε με τον όρο μεταφερσιμότητα των προγραμμάτων. Μονάδες 3 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1 ο ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 31 MAΪΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

Αλγεβρικές παραστάσεις - Αναγωγή οµοίων όρων

Αλγεβρικές παραστάσεις - Αναγωγή οµοίων όρων Αλγεβρικές παραστάσεις - Αναγωγή οµοίων όρων 1. Μια παράσταση που περιέχει πράξεις µόνο µε αριθµούς, λέγεται αριθµητική παράσταση. Παράδειγµα: + + 1 =. είναι µια αριθµητική παράσταση, το αποτέλεσµα των

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

2ο video (επίλυση ανίσωσης 1 ου βαθμού)

2ο video (επίλυση ανίσωσης 1 ου βαθμού) 2ο video (επίλυση ανίσωσης 1 ου βαθμού) 1 Γεια σας και πάλι! Συγχαρητήρια για την επιτυχία σας στην πρώτη ενότητα! 2 Σε αυτό το video θα θυμηθούμε τη διαδικασία επίλυσης πρωτοβάθμιας ανίσωσης, δηλαδή όλα

Διαβάστε περισσότερα

Γλώσσες Προγραμματισμού Μεταγλωττιστές

Γλώσσες Προγραμματισμού Μεταγλωττιστές Γλώσσες Προγραμματισμού Μεταγλωττιστές Παραγωγή Ενδιάμεσου Κώδικα Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Ηλίας Σακελλαρίου Δομή Παραγωγή ενδιάμεσου κώδικα. Ενδιάμεσες γλώσσες. Αφηρημένα

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

Γλώσσες Χωρίς Συμφραζόμενα

Γλώσσες Χωρίς Συμφραζόμενα Γλώσσα χωρίς Συμφραζόμενα Γλώσσες Χωρίς Συμφραζόμενα Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι Α λ γ ό ρ ι θ μ ο ι Αριθμητικοί τελεστές Οι αριθμητικοί τελεστές είναι: πρόσθεση, αφαίρεση, πολλαπλασιασμός και διαίρεση +,-,*,/ ύψωση σε δύναμη ^ πηλίκο ακέραιης διαίρεσης δύο ακεραίων αριθμών div υπόλοιπο

Διαβάστε περισσότερα

Πληροφορική. Εργαστηριακή Ενότητα 5 η : Μαθηματικοί Τύποι. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Εργαστηριακή Ενότητα 5 η : Μαθηματικοί Τύποι. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Εργαστηριακή Ενότητα 5 η : Μαθηματικοί Τύποι Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

Κεφάλαιο 3 : Σύνταξη Γλωσσών Προγραμματισμού

Κεφάλαιο 3 : Σύνταξη Γλωσσών Προγραμματισμού Κεφάλαιο 3 : Σύνταξη Γλωσσών Προγραμματισμού Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών ΤΜΗΥΠ Πανεπιστήμιο Πατρών Εισαγωγή Οι διαφορές των ΓΠ στις συντακτικές δομές τους, είναι πολύ μεγαλύτερες από

Διαβάστε περισσότερα