Σειρά Προβλημάτων 3 Λύσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σειρά Προβλημάτων 3 Λύσεις"

Transcript

1 Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { a k b m c n k < m ή m > 2n, όπου k,m,n 0 } Μια γραμματική για τη γλώσσα έχει ως εξής: S S 1 C ΑS 2 S 1 as 1 b S 1 b b C cc ε S 2 bbs 2 c bs 2 b Α a ε H γραμματική θεωρεί τις δύο διαφορετικές περιπτώσεις ξεχωριστά: η λέξη S 1 C δημιουργεί όλες τις λέξεις a k b m c n όπου k < m και η λέξη S 1 C δημιουργεί όλες τις λέξεις a k b m c n όπου m > 2n. (β) Τη γλώσσα που περιέχει όλους τους πραγματικούς αριθμούς όπου είτε το ακέραιο σκέλος είτε το δεκαδικό σκέλος μπορεί να είναι κενό (αλλά όχι και τα δύο) και το ακέραιο σκέλος δεν μπορεί να ξεκινά με 0. Για παράδειγμα, οι λέξεις 12.3, 45., και.67 ανήκουν στη γλώσσα, αλλά οι λέξεις. ή δεν ανήκουν στη γλώσσα. Μια γραμματική για τη γλώσσα έχει ως εξής: S Α. Α.Δ.Δ NB N B ZB Z Δ Ζ ΖΔ Ν Ζ 0 Ν (γ) { w {a,b,c} * η w δεν έχει τη μορφή xcx rev για κάποιο x {a,b} * } Μια λέξη ανήκει στη γλώσσα αν ισχύει ένα από τα πιο κάτω: Δεν περιέχει κανένα c. Περιέχει δύο ή περισσότερα c. Περιέχει ακριβώς 1 c αλλά η λέξη που προηγείται του c δεν είναι η αντίστροφη της λέξης που ακολουθεί το c. Παράγουμε τις τρεις κατηγορίες λέξεων από την πιο κάτω γραμματική μέσω των μεταβλητών U, V, R αντίστοιχα. S U V R U au bu ε Λύσεις Σειράς Προβλημάτων 3 Εαρινό Εξάμηνο 2016 Σελίδα 1

2 V UcUcT T at bt ct ε R ara brb awb bwa Zc cz W UcU Z au bu a b Άσκηση 2 Να κτίσετε αυτόματα στοίβας για τις πιο κάτω γλώσσες: (α) { a k b m c n k < m ή m > 2n, όπου k,m,n 0 } Ακολουθεί το ζητούμενο αυτόματο. Παρατηρούμε ότι από την αρχική κατάσταση το αυτόματο γράφει το $ σπάζοντας σε δύο μονοπάτια ανάλογα με το αν k < m ή m > 2n. Στο πάνω μονοπάτι φυλάει ένα a στη στοίβα για κάθε a που διαβάζει ενώ αναμένει να διαβάσει τουλάχιστον ένα περισσότερο b πριν να αποδεχθεί λέξεις που δυνατόν να συνεχίζουν με επιπρόσθετα b και στη συνέχεια μια ακολουθία από c. Στο κάτω μονοπάτι αφού διαβάσει κάποια a συνεχίζει διαβάζοντας ένα αριθμό από b. Μετά από το πρώτο b αποθηκεύει ένα b στη στοίβα για κάθε δεύτερο b που διαβάζει στην είσοδο και στη συνέχεια αφαιρεί ένα b από τη στοίβα για κάθε c που διαβάζει στην είσοδο. Αποδέχεται αν τα c τελειώσουν πριν ή ταυτόχρονα με τα b στη στοίβα. a,ε a b,a ε b,ε ε c,ε ε ε,ε $ ε,ε ε b,$ ε c,ε ε 4 0 a,ε ε b,ε ε 7 b, ε b c, b ε ε, $ ε c, b ε ε,ε $ 5 b,ε ε 6 c, b ε ε, $ ε 8 ε,ε ε 4 (β) { xy x=x 1 x 2 x n {1,2} *, y=y 1 y 2 y k {5} * και x 1 +x 2 + +x n = y 1 +y 2 + +y k } (Οι λέξεις 2125 και ανήκουν στη γλώσσα ενώ οι λέξεις 2552 και 225 δεν ανήκουν στη γλώσσα) Ακολουθεί το ζητούμενο αυτόματο: Λύσεις Σειράς Προβλημάτων 3 Εαρινό Εξάμηνο 2016 Σελίδα 2

3 1,ε 1 2,ε 2 ε,$ ε ε,ε $ ε,ε ε 5,ε ε ε,ε 1 ε,ε ε Η βασική ιδέα του αυτόματου είναι ότι σε πρώτη φάση αποθηκεύει στη στοίβα τα 1 και 2 που συναντά, ενώ στη δεύτερη φάση, για κάθε 5 που διαβάζει πρέπει να αφαιρέσει την ίδια ποσότητα από 1 και 2. Σε περίπτωση που αναγκαστεί να ανασύρει από τη στοίβα ποσότητα 6, τότε επιστρέφει πίσω στη στοίβαένα 1 (γ) { w {a,b,c} * η w δεν έχει τη μορφή xcx rev για κάποιο x {a,b} * } Ακολουθεί το ζητούμενο αυτόματο: a,ε a b,ε b 1 ε,ε $ 2 a,a ε b,b ε c,ε ε 3 a,b ε a,$ ε b,a ε b,$ ε c, $ ε ε,a ε ε,b ε a,ε ε b,ε ε c,ε ε 5 Η βασική ιδέα του αυτόματου είναι ότι στην πρώτη φάση, αποθηκεύει στη στοίβα σύμβολα εφόσον είναι ένα από τα a, b. Μετά από κάθε τέτοιο σύμβολο μπορεί να αποδεχθεί τη λέξη. Όταν και αν φτάσει στην είσοδο ένα τότε πρέπει να επιβεβαιώσουμε Λύσεις Σειράς Προβλημάτων 3 Εαρινό Εξάμηνο 2016 Σελίδα 3

4 ότι η λέξη που θα ακολουθήσει δεν θα είναι η ανάστροφη της πρώτης. Επομένως, όσο τα σύμβολα που διαβάζονται είναι τα ίδια με τα σύμβολα κορυφής της στοίβας τότε δεν μπορούμε να αποδεχθούμε τη λέξη. Αν όμως (1) το σύμβολο της εισόδου διαφέρει από το σύμβολο κορυφής της στοίβας, ή (2) τα σύμβολα στην είσοδο είναι περισσότερα από τα σύμβολα στην στοίβα (η στοίβα αδειάσει), ή (3) τα σύμβολα στην είσοδο είναι λιγότερα από τα σύμβολα στη στοίβα, ή (4) διαβάσουμε ένα δεύτερο σύμβολο c, τότε μπορούμε να αποδεχθούμε τη λέξη. Άσκηση 3 (α) Θεωρήστε την πιο κάτω ασυμφραστική γραμματική σε Κανονική Μορφή Chomsky. S T B B b C a T B B b C a Να κατασκευάσετε παραγωγές και τα αντίστοιχα συντακτικά δέντρα για τις λέξεις (ι) aab και (ιι) abaa. (β) Να αποδείξετε ότι αν μια γραμματική G βρίσκεται σε κανονική μορφή Chomsky και η λέξη w ανήκει στη γλώσσα που παράγεται από τη G, τότε οποιαδήποτε παραγωγή της w απαιτεί ακριβώς 2n 1 βήματα όπου n είναι το μήκος της λέξης w. (ι) S B CB acb aab aab (ιι) S T B ab ab abc abac abaa S S B T C b B C a a a b a a (β) Να αποδείξετε ότι αν μια γραμματική G βρίσκεται σε κανονική μορφή Chomsky και η λέξη w ανήκει στη γλώσσα που παράγεται από τη G, τότε οποιαδήποτε παραγωγή της w απαιτεί ακριβώς 2n 1 βήματα όπου n είναι το μήκος της λέξης w. Η απόδειξη μπορεί να γίνει με επαγωγή στο μήκος της λέξης. Λύσεις Σειράς Προβλημάτων 3 Εαρινό Εξάμηνο 2016 Σελίδα 4

5 Βασική περίπτωση: Έστω ότι το μήκος της λέξης είναι 1. Τότε η λέξη είναι η a για κάποιο τερματικό σύμβολο a και η παραγωγή της πρέπει να είναι η: S α Προφανώς, παραγωγή της λέξης μπορεί να γίνει με ακριβώς ένα βήμα. Αφού 1 = 2x1 1 = 1, το ζητούμενο έπεται. Υπόθεση της Επαγωγής: Υποθέτουμε ότι για κάθε λέξη w μήκους < k, οποιαδήποτε παραγωγή της w απαιτεί ακριβώς 2m 1 βήματα όπου m είναι το μήκος της λέξης w. Βήμα της Επαγωγής: Έστω λέξη w μήκους k > 1 και S w 1 w 2 w μια παραγωγή της. Αφού η γραμματική με την οποία δουλεύουμε βρίσκεται σε κανονική μορφή Chomsky, πρέπει να ισχύει ότι S ΑΒ w 2 w όπου Α και Β μεταβλητές της γραμματικής. Προφανώς, η υπόλοιπη παραγωγή είναι τέτοια ώστε Α x 1 και Β x 2 όπου w = x 1 x 2. Μπορούμε να υποθέσουμε ότι καμιά από τις x 1 και x 2 δεν είναι η κενή λέξη (αποδείξτε το!), αφού δεν υπάρχει κανόνας τέτοιος ώστε V ε, εκτός από τον κανόνα S ε, όπου S η εναρκτήρια μεταβλητή, και αφού η μεταβλητή S δεν μπορεί να εμφανίζεται στο δεξί μέλος κάποιου κανόνα. Επομένως, από την υπόθεση της επαγωγής και αφού τα μήκη των x 1 και x 2 είναι μικρότερα από k, έχουμε ότι Α x 1 απαιτεί ακριβώς 2m 1 βήματα όπου m το μήκος της x 1, και Β x 2 απαιτεί ακριβώς 2p 1 βήματα όπου p το μήκος της x 2. Επομένως η παραγωγή S B x 1 x 2 απαιτεί ακριβώς 2m 1 + 2p = 2m+ 2p 1 = 2k 1 βήματα. Το ζητούμενο έπεται. Άσκηση 4 Να δείξετε ότι οι πιο κάτω γλώσσες δεν είναι ασυμφραστικές αιτιολογώντας με ακρίβεια τις απαντήσεις σας. (α) Λ 1 = {a i b 2i c 3i i 0} Υποθέτουμε για να φτάσουμε σε αντίφαση ότι η Λ 1 είναι ασυμφραστική. Τότε, σύμφωνα με το Λήμμα της Άντλησης, υπάρχει p, το μήκος άντλησης της γλώσσας, τέτοιο ώστε κάθε λέξη της γλώσσας με μήκος μεγαλύτερο από p να ικανοποιεί την ιδιότητα που περιγράφεται στο λήμμα. Ας επιλέξουμε τη λέξη w = a p b 2p c 3p. Λύσεις Σειράς Προβλημάτων 3 Εαρινό Εξάμηνο 2016 Σελίδα 5

6 Τότε, σύμφωνα με το λήμμα, w = uvxyz έτσι ώστε η υπολέξη vxy περιέχει το πολύ p σύμβολα ( vxy p), τουλάχιστον μία από τις v και y είναι μη κενή ( vy > 0) και οποιαδήποτε ταυτόχρονη επανάληψη των υπολέξεων v και y διατηρεί την προκύπτουσα λέξη εντός της γλώσσας (uv i xy i z Λ 1, i 0). Αφού vxy p, τότε η λέξη αυτή δεν μπορεί να εκτείνεται σε περισσότερα από δύο τμήματα της λέξης. Διακρίνουμε τις πιο κάτω περιπτώσεις. Αν η vxy εκτείνεται μόνο σε κάποιο από τα τμήματα a p, b 2p και c 3p τότε τα v και y θα αποτελούνται μόνο από ένα σύμβολο (μόνο a ή μόνο b ή μόνο c). Επομένως, αν αφαιρέσουμε τα τμήματα v και y, η λέξη που θα προκύψει δεν θα ανήκει στη γλώσσα μας. Για παράδειγμα αν το vxy εκτείνεται μόνο στο τμήμα από a, τότε w = uv 0 xy 0 z = a p λ μ b 2p c 3p όπου λ = v, μ = y και προφανώς w Λ 1. Αν η vxy εκτείνεται στα συνεχόμενα τμήματα a p και b 2p και τα v περιέχουν μόνο a και το y μόνο b, τότε w = uv 0 xy 0 z = a p λ b 2p μ c 3p όπου λ = v, μ = y και προφανώς w Λ 1. Αν η vxy εκτείνεται στα συνεχόμενα τμήματα b p και c 2p και τα v περιέχουν μόνο b και το y μόνο c, τότε w = uv 0 xy 0 z = a p b 2p μ c 3p όπου λ = v, μ = y και προφανώς w Λ 1. Αν η vxy εκτείνεται στα συνεχόμενα τμήματα a p και b 2p και ένα από τα v και y περιέχει και a και b, τότε w = uv 1 xy 1 z Λ 1. Αυτό ισχύει γιατί όχι μόνο θα επηρεαστεί το πλήθος των a και b χωρίς να αλλάξει το πλήθος των c αλλά επίσης θα χαλάσει και η σειρά στην οποία βρίσκονται τα σύμβολα στη λέξη. Αν η vxy εκτείνεται στα συνεχόμενα τμήματα b 2p και c 3p και ένα από τα v και y περιέχει και b και c, τότε w = uv 1 xy 1 z Λ 1. Αυτό ισχύει γιατί όχι μόνο θα επηρεαστεί το πλήθος των b και c χωρίς να αλλάξει το πλήθος των a αλλά επίσης θα χαλάσει και η σειρά στην οποία βρίσκονται τα σύμβολα στη λέξη. Αυτό μας οδηγεί σε αντίφαση και επομένως η υπόθεσή μας ότι η γλώσσα Λ 1 είναι ασυμφραστική ήταν εσφαλμένη. Συμπέρασμα: Η Λ 1 είναι μη ασυμφραστική. (β) Λ 2 = {w w {0,1} * και η w είναι καρκινική και περιέχει τον ίδιο αριθμό από 0 και 1} Υποθέτουμε για να φτάσουμε σε αντίφαση ότι η Λ 2 είναι ασυμφραστική. Τότε, σύμφωνα με το Λήμμα της Άντλησης, υπάρχει p, το μήκος άντλησης της γλώσσας, τέτοιο ώστε κάθε λέξη της γλώσσας με μήκος μεγαλύτερο από p να ικανοποιεί την ιδιότητα που περιγράφεται στο λήμμα. Ας επιλέξουμε τη λέξη s = 0 p 1 p 1 p 0 p = 0 p 1 2p 0 p. Τότε, σύμφωνα με το λήμμα, w = uvxyz έτσι ώστε η υπολέξη vxy περιέχει το πολύ p σύμβολα ( vxy p), τουλάχιστον μία από τις v και y είναι μη κενή ( vy > 0) και οποιαδήποτε ταυτόχρονη επανάληψη των υπολέξεων v και y διατηρεί την προκύπτουσα λέξη εντός της γλώσσας (uv i xy i z Λ 2, i 0). Αφού vxy p, τότε η λέξη αυτή δεν μπορεί να εκτείνεται σε περισσότερα από δύο τμήματα της λέξης. Διακρίνουμε τις πιο κάτω περιπτώσεις. Αν η vxy εκτείνεται μόνο σε κάποιο από τα τμήματα 0 p ή 1 p, τότε τα v και y θα αποτελούνται μόνο από 1 ή μόνο από 0. Επομένως, αν αφαιρέσουμε τα τμήματα v και y, η λέξη που θα προκύψει δεν θα έχει πια ίσο αριθμό από 0 και 1. Λύσεις Σειράς Προβλημάτων 3 Εαρινό Εξάμηνο 2016 Σελίδα 6

7 Τέλος, αν η vxy εκτείνεται σε δύο συνεχόμενα τμήματα 0 p και 1 p, τότε παρατηρούμε ότι, αν αφαιρέσουμε τα τμήματα v και y, η λέξη που θα προκύψει και πάλι δεν θα ανήκει στη γλώσσα μας γιατί η λέξη που θα προκύψει δεν θα είναι καρκινική λέξη. Αυτό μας οδηγεί σε αντίφαση και επομένως η υπόθεσή μας ότι η γλώσσα Λ 2 είναι ασυμφραστική ήταν εσφαλμένη. Συμπέρασμα: Η Λ 2 είναι μη ασυμφραστική. (γ) Λ 3 = { w#z w, z {a,b}* και η z είναι υπολέξη της w} Υποθέτουμε για να φτάσουμε σε αντίφαση ότι η Λ 3 είναι ασυμφραστική. Τότε, σύμφωνα με το Λήμμα της Άντλησης, υπάρχει p, το μήκος άντλησης της γλώσσας, τέτοιο ώστε κάθε λέξη της γλώσσας με μήκος μεγαλύτερο από p να ικανοποιεί την ιδιότητα που περιγράφεται στο λήμμα. Ας επιλέξουμε τη λέξη s = 0 p 1 p #0 p 1 p και ας ονομάσουμε τα τμήματα της λέξης ως Α, Β,Γ,Δ,Ε, όπου w = ΑΒΓΔΕ, και Α = 0 p, Β = 1 p, Γ = #, Δ = 0 p και Ε = 1 p. Τότε, σύμφωνα με το λήμμα, w = uvxyz έτσι ώστε η υπολέξη vxy περιέχει το πολύ p σύμβολα ( vxy p), τουλάχιστον μία από τις v και y να είναι μη κενή ( vy > 0) και οποιαδήποτε ταυτόχρονη επανάληψη των υπολέξεων v και y να διατηρεί την προκύπτουσα λέξη εντός της γλώσσας (uv i xy i z Λ 2, i 0). Διακρίνουμε τις πιο κάτω περιπτώσεις. Αν η vxy εκτείνεται μόνο στο τμήμα Α, τότε τα v και y θα αποτελούνται μόνο από 0. Επομένως, αν αφαιρέσουμε τα τμήματα v και y, η λέξη που θα προκύψει δεν θα ανήκει στη γλώσσα μας: uv 0 xy 0 z = 0 p μ λ 1 p #0 p 1 p Λ 3, για μ = v, λ = y. Αυτό ισχύει γιατί η λέξη που ακολουθεί το # δεν είναι υπολέξη της λέξης που προηγείται του #. Το ίδιο επιχείρημα μπορεί να εφαρμοστεί για να δείξουμε ότι, αν η vxy εκτείνεται στο τμήμα Β ή αν εκτείνεται και στα δύο τμήματα ή αν εκτείνεται στα τμήματα Α, Β και Γ, τότε και πάλι η λέξη δεν επιδέχεται άντλησης. Αν η vxy εκτείνεται μόνο στο τμήμα Δ, τότε τα v και y δυνατόν να αποτελούνται από 0. Επομένως, αν αντλήσουμε τα τμήματα v και y, η λέξη που θα προκύψει δεν θα ανήκει στη γλώσσα μας: uv 1 xy 1 z = 0 p 1 p #0 p+μ+ν 1 p Λ 3, για μ = v, λ = y. Αυτό ισχύει γιατί η λέξη που ακολουθεί το # δεν είναι υπολέξη της λέξης που προηγείται του #. Το ίδιο επιχείρημα μπορεί να εφαρμοστεί δείχνοντας ότι αν η vxy εκτείνεται στο τμήμα Ε ή στα συνεχόμενα τμήματα Δ και Ε ή στα Γ, Δ και Ε), τότε, και πάλι, η λέξη δεν θα επιδέχεται άντλησης. Αυτό μας οδηγεί σε αντίφαση και επομένως η υπόθεσή μας ότι η γλώσσα Λ 3 είναι ασυμφραστική ήταν εσφαλμένη. Συμπέρασμα: Η Λ 3 είναι μη ασυμφραστική. Άσκηση 5 Για δύο γλώσσες Α και Β έστω η γλώσσα Α Β = { xy x, y B, και x = y } Λύσεις Σειράς Προβλημάτων 3 Εαρινό Εξάμηνο 2016 Σελίδα 7

8 Να δείξετε ότι αν οι γλώσσες Α και Β είναι κανονικές, τότε η γλώσσα Α Β είναι ασυμφραστική. Για να δείξουμε το ζητούμενο υποθέτουμε ότι Μ 1 = (Q 1, Σ 1, δ 1, q 1, F 1 ) είναι ένα DF αυτόματο που αναγνωρίζει τη γλώσσα Α και Μ 2 = (Q 2, Σ 2, δ 2, q 2, F 2 ) είναι ένα DF αυτόματο που αναγνωρίζει τη γλώσσα Β. Θα δείξουμε ότι υπάρχει αυτόματο στοίβας που αναγνωρίζει τη γλώσσα Α Β. Το αυτόματο αυτό είναι το αυτόματο P = (Q 1 Q 2 {q 0, q f }, Σ 1 Σ 2, {x,$}, δ, q 0, {q f }), όπου,$,,,,,,,,,,,,,, $ Με λόγια, το αυτόματο αυτό ξεκινά γράφοντας το σύμβολο $ για να αναγνωρίζει τον πάτο της στοίβας. Στη συνέχεια διαβάζει την είσοδο και τη χειρίζεται σύμφωνα με το αυτόματο Μ 1 και τη συνάρτηση μεταβάσεων δ 1 με τη διαφορά ότι σε κάθε ανάγνωση συμβόλου τοποθετεί το σύμβολο x μέσα στη στοίβα για να γνωρίζει το μήκος της λέξης που έχει διαβαστεί. Όταν φτάσει σε τελική κατάσταση του αυτομάτου Μ 1, υπάρχει η δυνατότητα χωρίς να διαβάσει σύμβολο από την είσοδο και χωρίς να διαβάσει ή να γράψει στη στοίβα να προχωρήσει στην αρχική κατάσταση του αυτομάτου που αναγνωρίζει τη γλώσσα Β. Από τις καταστάσεις αυτές χειρίζεται την είσοδο σύμφωνα με το δεύτερο αυτόματο με τη διάφορα ότι με κάθε σύμβολο που διαβάζει αφαιρεί ένα στοιχείο από τη στοίβα. Αν καταλήξει σε τελική κατάσταση του αυτομάτου Β και η στοίβα αδειάσει τότε το αυτόματο οδηγείται στην κατάσταση q f οπόταν θα αποδεχθεί τη λέξη. Μπορούμε να αποδείξουμε ότι το αυτόματο στοίβας Ρ αποδέχεται μια λέξη w αν και μόνο αν w Α Β: Ας υποθέσουμε λοιπόν ότι w L(T). Τότε η w μπορεί να γραφτεί στη μορφή w = w 1 w 2 w m όπου κάθε w i Σ ε, και υπάρχει ακολουθία καταστάσεων r 0, r 1,, r m και ακολουθία λέξεων s 0, s 1,, s m Γ * που να ικανοποιούν τις συνθήκες: r 0 = και s 0 = ε Για κάθε i = 0,,m 1,,b δ,,, όπου s i = at και s i+1 =bt για κάποια a, b Γ ε και t Γ *, και r m = q f Τότε, από τον ορισμό του Ρ, r 1,, r k Q 1, r k+1,, r m 1 Q 2, r 1 η αρχική κατάσταση του αυτόματου Μ 1 και r k F 1, r k+1 η αρχική κατάσταση του αυτόματου Μ 2 και r m 1 F 2 ενώ το μήκος των δύο ακολουθιών πρέπει να είσαι ίσο αφού στην πρώτη ακολουθία προσθέτουμε στοιχεία στη στοίβα, ενώ στη δεύτερη ακολουθία αφαιρούμε ίσο αριθμό από στοιχεία. Συνεπώς, w = εαβε, όπου α Α και β Β, και τα μήκη των λέξεων α και β είναι ίσα. Συμπεραίνουμε ότι w Α Β. Η αντίθετη κατεύθυνση, σύμφωνα με την οποία αν w Α Β τότε w L(P) ακολουθεί όμοια επιχειρήματα. Λύσεις Σειράς Προβλημάτων 3 Εαρινό Εξάμηνο 2016 Σελίδα 8

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) {0 n 1 n n > 0} {0 n 1 2n n > 0} (β) {w {a,b} * η w ξεκινά και τελειώνει με το ίδιο σύμβολο

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { xyxy rev x {a, b}, y {a, b} * } (α) Μια γραμματική για τη γλώσσα έχει ως εξής: S as a

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { a m b n c p m,n,p 0 και είτε m + n = p είτε m = n + p } (β) { xx rev yy rev x, y {a,b}

Διαβάστε περισσότερα

Φροντιστήριο 7 Λύσεις

Φροντιστήριο 7 Λύσεις Άσκηση 1 Θεωρείστε το πιο κάτω αυτόματο στοίβας: Φροντιστήριο 7 Λύσεις (α) Να εξηγήσετε με λόγια ποια γλώσσα αναγνωρίζεται από το αυτόματο. (β) Να δώσετε τον τυπικό ορισμό του αυτομάτου. (γ) Να δείξετε

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { a i b j c k d m i, j, k, m 0 και i + j = k + m } (β) { uxvx rev u,v,x {0,1,2} + και όλα

Διαβάστε περισσότερα

Άσκησηη 1. (α) Το αυτόματο. (γ) Να δείξετε όλα aabbb. Λύση. λέξεις. αυτόματο. (β) Τυπικά. μεταβάσεων δ. ορίζεται. (γ) Θα δείξουμε τα.

Άσκησηη 1. (α) Το αυτόματο. (γ) Να δείξετε όλα aabbb. Λύση. λέξεις. αυτόματο. (β) Τυπικά. μεταβάσεων δ. ορίζεται. (γ) Θα δείξουμε τα. ΕΠΛ211: : Θεωρία Υπολογισμού και Πολυπλοκότητα Φροντιστήριο 7 Λύσεις Άσκησηη 1 Θεωρήστε το πιο κάτω αυτόματο στοίβας: (α) Να εξηγήσετε με λόγια ποια γλώσσαα αναγνωρίζεται από τοο αυτόματο. (β) Να δώσετε

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { w {(, )} * οι παρενθέσεις στην w είναι ισοζυγισμένες } (β) { a k b m c 2m a k k > 0,

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Μη Ασυμφραστικές Γλώσσες (2.3) Λήμμα Άντλησης για Ασυμφραστικές Γλώσσες Παραδείγματα

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 11: Μη Ασυμφραστικές Γλώσσες

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 11: Μη Ασυμφραστικές Γλώσσες ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 11: Μη Ασυμφραστικές Γλώσσες Τι θα κάνουμε σήμερα Εισαγωγικά (2.3) Το Λήμμα της Άντλησης για ασυμφραστικές γλώσσες (2.3.1) Παραδείγματα 1 Πότε μια

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { w#z w, z {a,b}* και η z είναι υπολέξη της w}. Συγκεκριμένα,

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αυτόματα Στοίβας (2.2) Τυπικός Ορισμός Παραδείγματα Ισοδυναμία με Ασυμφραστικές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητα Ενδιάμεση Εξέταση Ημερομηνία : Σάββατο, 15 Μαρτίου 2014 Διάρκεια : 9.30 11.30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο:

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { a 2n b n c 3n n 2 } : H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αυτόματα Στοίβας (2.2) Τυπικός Ορισμός Παραδείγματα Ισοδυναμία με Ασυμφραστικές

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Κανονικές Εκφράσεις (1.3) Τυπικός Ορισμός Ισοδυναμία με κανονικές γλώσσες Μη Κανονικές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητα Ενδιάμεση Εξέταση Ημερομηνία : Κυριακή, 15 Μαρτίου 2015 Διάρκεια : 15.00 17.00 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο:

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Επανάληψη Μαθήματος Το Μάθημα σε μια Διαφάνεια Υπολογιστικά μοντέλα Κανονικές Γλώσσες Ντετερμινιστικά Αυτόματα Μη Ντετερμινιστικά Αυτόματα Κανονικές Εκφράσεις

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { ww rev w {a, b} * και w αποτελεί καρκινική λέξη } (α) H ζητούμενη μηχανή

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { Μ η Μ είναι μια ΤΜ η οποία διαγιγνώσκει το πρόβλημα ΙΣΟΔΥΝΑΜΙΑ ΤΜ (διαφάνεια 9 25)} (α) Γνωρίζουμε ότι το

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { n 3 } (α) H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την επτάδα Q,

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων Λύσεις Άσκηση Έστω αλφάβητο Σ και γλώσσες Α, Β επί του αλφάβητου αυτού. Για κάθε μια από τις πιο κάτω περιπτώσεις να διερευνήσετε κατά πόσο Γ Δ, ή, Δ Γ, ή και τα δύο. Σε περίπτωση, που

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata Σύνοψη Προηγούµενου Γλώσσες χωρίς Συµφραζόµενα (2) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Αυτόµατα Στοίβας Pushdown utomata Ισοδυναµία µε τις Γλώσσες χωρίς Συµφραζόµενα:

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Να βρείτε το σφάλμα στην πιο κάτω απόδειξη. Ισχυρισμός: Όλα τα βιβλία που έχουν γραφτεί στη Θεωρία Υπολογισμού έχουν τον ίδιο

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { ww w {a,b}* }. (β) Να διατυπώσετε την τυπική περιγραφή

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Έστω αλφάβητο Σ και γλώσσες Λ, Λ 2, Λ επί του αλφάβητου αυτού. Να διερευνήσετε κατά πόσο ισχύει κάθε μια από τις πιο κάτω σχέσεις.

Διαβάστε περισσότερα

Φροντιστήριο 9 Λύσεις

Φροντιστήριο 9 Λύσεις Άσκηση 1 Φροντιστήριο 9 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {a,b} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 6: Μη Κανονικές Γλώσσες

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 6: Μη Κανονικές Γλώσσες ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 6: Μη Κανονικές Γλώσσες Τι θα κάνουμε σήμερα Εισαγωγικά Το Λήμμα της Άντλησης για κανονικές γλώσσες Παραδείγματα 1 Πότε μια γλώσσα δεν είναι κανονική;

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 7: Ασυμφραστικές Γλώσσες (Γλώσσες Ελεύθερες Συμφραζομένων)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 7: Ασυμφραστικές Γλώσσες (Γλώσσες Ελεύθερες Συμφραζομένων) ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 7: Ασυμφραστικές Γλώσσες (Γλώσσες Ελεύθερες Συμφραζομένων) Τι θα κάνουμε σήμερα Εισαγωγικά Ασυμφραστικές Γραμματικές (2.1) Τυπικός Ορισμός Της Ασυμφραστικής

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 9: Αυτόματα Στοίβας (Pushdown Automata - PDA)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 9: Αυτόματα Στοίβας (Pushdown Automata - PDA) ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 9: Αυτόματα Στοίβας (Pushdown Automata - PDA) Τι θα κάνουμε σήμερα Εισαγωγή στα Αυτόματα Στοίβας Τυπικός Ορισμός Αυτομάτου Στοίβας (2.2.1) Παραδείγματα

Διαβάστε περισσότερα

Φροντιστήριο 2 Λύσεις

Φροντιστήριο 2 Λύσεις ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Άσκηση Φροντιστήριο 2 Λύσεις Ποια από τα πιο κάτω αυτόματα αποτελούν DFA επί του αλφάβητου {,}. Αιτιολογήστε τις απαντήσεις σας. (i) (ii) (iii) (iv) (v), (vi),

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 18: Λήμμα Άντλησης για ΓΧΣ Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές http://www.corelab.ece.ntua.gr/courses/ Αυτόματα Τρόπος κωδικοποίησης αλγορίθμων. Τρόπος περιγραφής συστημάτων πεπερασμένων

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ασυμφραστικές Γραμματικές (2.1) Τυπικός Ορισμός Σχεδιασμός Ασυμφραστικών Γραμματικών

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { R η R είναι μια κανονική έκφραση η οποία παράγει μια μη πεπερασμένη γλώσσα} (β) { G η G είναι μια CFG η οποία

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις ΕΠΛ: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Θεωρείστε τις γλώσσες Α = { n n } και Β = {w η w είναι λέξη επί του αλφαβήτου {,} τ.ώ. w }. (α) Για κάθε μια από τις πιο κάτω γλώσσες

Διαβάστε περισσότερα

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6 Εισαγωγή στην Επιστήμη των Υπολογιστών 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές http://www.corelab.ece.ntua.gr/courses/ Αυτόματα Τρόπος κωδικοποίησης αλγορίθμων. Τρόπος περιγραφής συστημάτων πεπερασμένων

Διαβάστε περισσότερα

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών. Προδιαγραφές

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών. Προδιαγραφές Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνοσ.h.m.μ.y. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές Στάθης Ζάχος Συνεργασία: Κωστής Σαγώνας Επιμέλεια:

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G 1, G 2 οι G 1 και G 2 είναι δύο CFG που παράγουν μια κοινή λέξη μήκους 144 } (β) { D,k το D είναι ένα DFA

Διαβάστε περισσότερα

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης.

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης. Γενικές Παρατηρήσεις Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα () Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Υπάρχουν µη κανονικές γλώσσες, π.χ., B = { n n n }. Αυτό

Διαβάστε περισσότερα

Ποιές οι θεµελιώδεις δυνατότητες και ποιοί οι εγγενείς περιορισµοί των υπολογιστών ; Τί µπορούµε και τί δε µπορούµε να υπολογίσουµε (και γιατί);

Ποιές οι θεµελιώδεις δυνατότητες και ποιοί οι εγγενείς περιορισµοί των υπολογιστών ; Τί µπορούµε και τί δε µπορούµε να υπολογίσουµε (και γιατί); Μοντελοποίηση του Υπολογισµού Στοιχεία Θεωρίας Υπολογισµού (): Τυπικές Γλώσσες, Γραµµατικές Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ποιές οι θεµελιώδεις δυνατότητες

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές

Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 1 /

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΙΑΚΡΙΤΕΣ ΜΕΘΟ ΟΙ ΓΙΑ ΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ η Γραπτή Εργασία-Ενδεικτικές Λύσεις Επιµέλεια:. Σούλιου Θέµα (Κανονικές

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος 3. Αν A 5 4, B 4, C να υπολογίσετε τις ακόλουθες πράξεις 4 3 8 3 7 3 (αν έχουν νόημα): α) AB, b) BA, c) CB, d) C B,

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2): Αυτόµατα Στοίβας. Παραδείγµατα Σχεδιασµού CFG. Παράδειγµα 1.

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2): Αυτόµατα Στοίβας. Παραδείγµατα Σχεδιασµού CFG. Παράδειγµα 1. Σύνοψη Προηγούµενου Γλώσσες χωρίς Συµφραζόµενα 2): Αυτόµατα Στοίβας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Μη Κανονικές Γλώσσες Το Λήµµα της Αντλησης για τις

Διαβάστε περισσότερα

Φροντιστήριο 6 Λύσεις

Φροντιστήριο 6 Λύσεις Άσκηση 1 Φροντιστήριο 6 Λύσεις Θεωρήστε την πιο κάτω ασυμφραστική γραμματική: E E + (E) Να κατασκευάσετε μία παραγωγή και το αντίστοιχο συντακτικό δέντρο για τις πιο κάτω λέξεις: (α) (γ) + ( ) (β) ( +

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 10: Αυτόματα Στοίβας II

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 10: Αυτόματα Στοίβας II ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 10: Αυτόματα Στοίβας II Τι θα κάνουμε σήμερα Ισοδυναμία αυτομάτων στοίβας με ασυμφραστικές γραμματικές (2.2.3) 1 Ισοδυναμία PDA με CFG Θεώρημα: Μια

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G,k η G είναι μια ασυμφραστική γραμματική η οποία παράγει κάποια λέξη 1 n όπου n k } (β) { Μ,k η Μ είναι

Διαβάστε περισσότερα

Αλγόριθμοι για αυτόματα

Αλγόριθμοι για αυτόματα Κεφάλαιο 8 Αλγόριθμοι για αυτόματα Κύρια βιβλιογραφική αναφορά για αυτό το Κεφάλαιο είναι η Hopcroft, Motwani, and Ullman 2007. 8.1 Πότε ένα DFA αναγνωρίζει κενή ή άπειρη γλώσσα Δοθέντος ενός DFA M καλούμαστε

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA) ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA) Τι θα κάνουμε σήμερα Εισαγωγή στα Μη Ντετερμινιστικά Πεπερασμένα Αυτόματα Τυπικός

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 4. Μη Ντετερμινιστικά Πεπερασμένα Αυτόματα 9,19 Φεβρουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Μοντέλα Υπολογισμού Μη Ντετερμινιστικό Πεπερασμένα Αυτόματα: Διαφορά

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { D το D είναι ένα DFA το οποίο αποδέχεται όλες τις λέξεις στο Σ * } (α) Για να διαγνώσουμε το πρόβλημα μπορούμε

Διαβάστε περισσότερα

Σειρά Προβλημάτων 2 Λύσεις

Σειρά Προβλημάτων 2 Λύσεις ΕΠΛ211: Θωρία Υπολογισμού και Πολυπλοκότητα Άσκηση 1 Σιρά Προβλημάτων 2 Λύσις Να δώστ κανονικές κφράσις που να πριγράφουν τις πιο κάτω γλώσσς. (α) { w {,} * η w δν πριέχι δύο συνχόμνα όμοια γράμματα }

Διαβάστε περισσότερα

L mma thc 'Antlhshc. A. K. Kapìrhc

L mma thc 'Antlhshc. A. K. Kapìrhc L mma thc 'Antlhshc A. K. Kapìrhc 12 MartÐou 2009 2 Perieqìmena 1 Το Λήμμα της Άντλησης για μη κανονικές γλώσσες 5 1.1 Μη κανονικές γλώσσες..................................... 5 1.2 Λήμμα άντλησης για

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Διαγνώσιμες Γλώσσες (4.1) Επιλύσιμα Προβλήματα σχετικά με Κανονικές Γλώσσες Επιλύσιμα Προβλήματα

Διαβάστε περισσότερα

Φροντιστήριο 8 Λύσεις

Φροντιστήριο 8 Λύσεις Άσκηση 1 Θεωρήστε την πιο κάτω Μηχανή Turing. Φροντιστήριο 8 Λύσεις Σε κάθε σκέλος, να προσδιορίσετε την ακολουθία των φάσεων τις οποίες διατρέχει η μηχανή όταν δέχεται τη διδόμενη λέξη. (α) 11 (β) 1#1

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 14: Διαγνωσιμότητα (Επιλυσιμότητα)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 14: Διαγνωσιμότητα (Επιλυσιμότητα) ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 14: Διαγνωσιμότητα (Επιλυσιμότητα) Τι θα κάνουμε σήμερα Εισαγωγή Επιλύσιμα Προβλήματα σχετικά με τις Κανονικές Γλώσσες (4.1.1) Επιλύσιμα Προβλήματα

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος. Βρείτε το διάνυσμα με άκρα το Α(3,-,5) και Β(5,,-) ΑΒ=< 5 3, ( ), 5 >=

Διαβάστε περισσότερα

Σειρά Προβλημάτων 2 Λύσεις

Σειρά Προβλημάτων 2 Λύσεις ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Άσκηση Σιρά Προβλημάτων 2 Λύσις Να μτατρέψτ τo πιο κάτω NFA στην κανονική έκφραση που το πριγράφι χρησιμοποιώντας τη διαδικασία που πριγράφται στις διαφάνις 2

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 016 Λύσεις ασκήσεων προόδου Θέμα 1: [16 μονάδες] [8] Έστω ότι μας δίνουν τα παρακάτω δεδομένα: Εάν αυτό το πρόγραμμα ΗΥ είναι αποδοτικό, τότε εκτελείται γρήγορα.

Διαβάστε περισσότερα

Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κανονικές Γλώσσες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κανονικές Γλώσσες Κανονική γλώσσα αν

Διαβάστε περισσότερα

Φροντιστήριο 11 Λύσεις

Φροντιστήριο 11 Λύσεις Άσκηση 1 Φροντιστήριο 11 Λύσεις Να αποδείξετε ότι η κλάση Ρ είναι κλειστή ως προς τις πράξεις της ένωσης, της συναρμογής και του συμπληρώματος. Θα πρέπει να δείξουμε ότι: (α) Ένωση: Αν οι Λ 1 και Λ 2 είναι

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 2: Μαθηματικό Υπόβαθρο Τι θα κάνουμε σήμερα Συναρτήσεις & Σχέσεις (0.2.3) Γράφοι (Γραφήματα) (0.2.4) Λέξεις και Γλώσσες (0.2.5) Αποδείξεις (0.3) 1

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 17: Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 21η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 21η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 21η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: «Artificial Intelligence A Modern Approach» των. Russel

Διαβάστε περισσότερα

Θεωρία Υπολογισμού. Ασκήσεις. Δρ. Τζάλλας Αλέξανδρος, Καθηγητής Εφαρμογών. Τμ. Μηχανικών Πληροφορικής Τ.Ε.

Θεωρία Υπολογισμού. Ασκήσεις. Δρ. Τζάλλας Αλέξανδρος, Καθηγητής Εφαρμογών. Τμ. Μηχανικών Πληροφορικής Τ.Ε. , Καθηγητής Εφαρμογών Τμ. Μηχανικών Πληροφορικής Τ.Ε. Άρτα, Μάιος 25 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες () Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Πεπερασμένα Αυτόματα (Κεφάλαιο., Sipser) Ορισμός πεπερασμένων αυτομάτων και ορισμός του

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Τελικές εξετάσεις 3 Ιανουαρίου 27 Διάρκεια εξέτασης: 3 ώρες (2:-5:) ΘΕΜΑ ο

Διαβάστε περισσότερα

[(W V c ) (W c V c )] c \ W = [(W V c ) (W c V c )] c \ W = [(W V c ) c (W c V c ) c ] \ W = [(W c W ) V ] \ W

[(W V c ) (W c V c )] c \ W = [(W V c ) (W c V c )] c \ W = [(W V c ) c (W c V c ) c ] \ W = [(W c W ) V ] \ W ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ιανουάριος 2012 Τμήμα Μαθηματικών Διδάσκων: Χρήστος Κουρουνιώτης Μ1124 ΘΕΜΕΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Παρατηρήσεις 1. Διαβάστε προσεκτικά τα θέματα πριν αρχίσετε να απαντάτε. Οι απαντήσεις

Διαβάστε περισσότερα

Mεταγλωττιστές. 4 ο εργαστηριακό μάθημα Λεξική ανάλυση και flex. Θεωρία

Mεταγλωττιστές. 4 ο εργαστηριακό μάθημα Λεξική ανάλυση και flex. Θεωρία Mεταγλωττιστές 4 ο εργαστηριακό μάθημα Λεξική ανάλυση και flex Σκοπός: Το μάθημα αυτό αναφέρεται: στις κανονικές εκφράσεις στην δομή και το περιεχόμενο του αρχείου-εισόδου του flex Γενικά Θεωρία Κατά την

Διαβάστε περισσότερα

Σειρά Προβλημάτων 2 Λύσεις

Σειρά Προβλημάτων 2 Λύσεις ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Άσκηση Σιρά Προβλημάτων 2 Λύσις Να μτατρέψτ τα πιο κάτω DFA στις κανονικές κφράσις που τα πριγράφουν χρησιμοποιώντας τη διαδικασία που παρουσιάζται στις διαφάνις

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 7: Αυτόματα στοίβας Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Σειρά Προβλημάτων 2 Λύσεις

Σειρά Προβλημάτων 2 Λύσεις ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Άσκηση [5 μονάδς] Σιρά Προβλημάτων 2 Λύσις Να δώστ κανονικές κφράσις που να πριγράφουν τις πιο κάτω γλώσσς πί του αλφάβητου Α = {, }. (α) Όλς οι λέξις πί του αλφάβητου

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 4. Πεπερασμένα Αυτόματα 6 Φεβρουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Μοντέλα Υπολογισμού 1930 : Μηχανή Turing : αφαιρετική μηχανή (μοντελοποίηση ενός υπολογιστή)

Διαβάστε περισσότερα

με Τέλος πάντων, έστω ότι ξεκινάει ένα άλλο υποθετικό σενάριο που απλά δεν διευκρινίζεται. Για το i) θα έχουμε , 2

με Τέλος πάντων, έστω ότι ξεκινάει ένα άλλο υποθετικό σενάριο που απλά δεν διευκρινίζεται. Για το i) θα έχουμε , 2 Άσκηση 75 Σε έναν οργανισμό, αρχικά υπάρχουν 04800 βακτήρια. Μετά από 1 ώρα υπάρχουν 10400 βακτήρια, μετά από ώρες 5100 βακτήρια, και γενικά ο αριθμός των βακτηρίων υποδιπλασιάζεται κάθε μια ώρα. α) Πόσα

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνοσhmμy 6η ενότητα: Αυτόματα, τυπικές γλώσσες, γραμματικές Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής http://www.corelab.ece.ntua.gr/courses/introcs

Διαβάστε περισσότερα

CSC 314: Switching Theory

CSC 314: Switching Theory CSC 314: Switching Theory Course Summary 9 th January 2009 1 1 Θέματα Μαθήματος Ερωτήσεις Τι είναι αλγόριθμος? Τι μπορεί να υπολογιστεί? Απαντήσεις Μοντέλα Υπολογισμού Δυνατότητες και μη-δυνατότητες 2

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

Ασκήσεις μελέτης της ενότητας «Συντακτική Ανάλυση»

Ασκήσεις μελέτης της ενότητας «Συντακτική Ανάλυση» Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της ενότητας «Συντακτική Ανάλυση» Παραδώστε μια αναφορά (το πολύ 5 σελίδων) για την άσκηση 9 και επιδείξτε

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 7. Κατηγορηματικές Γραμματικές 27,2 Φεβρουαρίου, 9 Μαρτίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Κατηγορηματικές Γραμματικές Ή Γραμματικές Χωρίς Συμφραζόμενα Παράδειγμα.

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 5: Κανονικές Εκφράσεις

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 5: Κανονικές Εκφράσεις ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 5: Κανονικές Εκφράσεις Τι θα κάνουμε σήμερα Κλειστότητα Κανονικών Πράξεων (1.2.3) Εισαγωγή στις Κανονικές Εκφράσεις Τυπικός ορισμός της κανονικής

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 3: Ντετερμινιστικά Πεπερασμένα Αυτόματα (DFA)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 3: Ντετερμινιστικά Πεπερασμένα Αυτόματα (DFA) ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 3: Ντετερμινιστικά Πεπερασμένα Αυτόματα (DFA) Τι θα κάνουμε σήμερα Εισαγωγή στα Ντετερμινιστικά Πεπερασμένα Αυτόματα 14-Sep-11 Τυπικός Ορισμός Ντετερμινιστικών

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 7. Αυτόματα Στοίβας 9,13 Μαρτίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Γιατί τα πεπερασμένα αυτόματα δεν μπορούν να αναπαραστήσουν οποιαδήποτε κατηγορηματική γλώσσα?

Διαβάστε περισσότερα

a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6.

a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6. ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2016 4 η Σειρά Ασκήσεων - Λύσεις Άσκηση 4.1 [1 μονάδα] Βρείτε όλα τα διατεταγμένα ζεύγη στη σχέση R από το Α={0,1,2,3} στο Β={0,1,2,3,4} όπου (a,b) R αν και μόνο

Διαβάστε περισσότερα

f(t) = (1 t)a + tb. f(n) =

f(t) = (1 t)a + tb. f(n) = Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία

Διαβάστε περισσότερα

Γλώσσες Χωρίς Συμφραζόμενα

Γλώσσες Χωρίς Συμφραζόμενα Γλώσσες Χωρίς Συμφραζόμενα Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γλώσσα χωρίς

Διαβάστε περισσότερα

Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα

Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα Κανονικές Γλώσσες Κανονικές Γλώσσες Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Κανονική γλώσσα αν παράγεται από κανονική γραμματική. Παραγωγές P (V Σ) Σ * ((V Σ) ε) Παραγωγές μορφής:

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 3 : Γραφήματα & Αποδείξεις Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

m + s + q r + n + q p + s + n, P Q R P Q P R Q R F G

m + s + q r + n + q p + s + n, P Q R P Q P R Q R F G Λύσεις Θεμάτων Θεμελίων των Μαθηματικών 1. Εστω A, B, C τυχόντα σύνολα. Να δειχθεί ότι A (B C) (A B) (A C). Απόδειξη. Εστω x τυχαίο στοιχείο του A (B C). Εξ ορισμού, το x ανήκει σε ακριβώς ένα από τα A,

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις

Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού

Διαβάστε περισσότερα

Γλώσσες Χωρίς Συμφραζόμενα

Γλώσσες Χωρίς Συμφραζόμενα Γλώσσα χωρίς Συμφραζόμενα Γλώσσες Χωρίς Συμφραζόμενα Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

Συνδυαστικά Λογικά Κυκλώματα

Συνδυαστικά Λογικά Κυκλώματα Συνδυαστικά Λογικά Κυκλώματα Ένα συνδυαστικό λογικό κύκλωμα συντίθεται από λογικές πύλες, δέχεται εισόδους και παράγει μία ή περισσότερες εξόδους. Στα συνδυαστικά λογικά κυκλώματα οι έξοδοι σε κάθε χρονική

Διαβάστε περισσότερα

Σειρά Προβλημάτων 2 Λύσεις

Σειρά Προβλημάτων 2 Λύσεις ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Σιρά Προβλημάτων 2 Λύσις Άσκηση Να μτατρέψτ τα πιο κάτω DFA στις κανονικές κφράσις που τα πριγράφουν χρησιμοποιώντας τη διαδικασία που πριγράφται στις διαφάνις

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γλωσσών. (συνέχεια) (συνέχεια) Πέμπτη 27 Οκτωβρίου 2016 Θεόδωρος Τζουραμάνης Επίκουρος Καθηγητής

Στοιχεία Θεωρίας Γλωσσών. (συνέχεια) (συνέχεια) Πέμπτη 27 Οκτωβρίου 2016 Θεόδωρος Τζουραμάνης Επίκουρος Καθηγητής https://www.icsd.aegean.gr/t.tzouramanis/courses/dm1 ttzouram@aegean.gr Πέμπτη 7 Οκτωβρίου 016 Δ Κατά τον Καθηγητή Avram Noam Chomsky οι γραμματικές ταξινομούνται σύμφωνα με τα είδη παραγωγών που επιτρέπονται,

Διαβάστε περισσότερα

g(x) =α x +β x +γ με α= 1> 0 και

g(x) =α x +β x +γ με α= 1> 0 και ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.

Διαβάστε περισσότερα

(μονάδες 5) β) την εντολή Αρχή_επανάληψης Μέχρις_ότου (μονάδες 5) Μονάδες 10 ΘΕΜΑ Β Β1. Δίνεται το παρακάτω απόσπασμα αλγορίθμου:

(μονάδες 5) β) την εντολή Αρχή_επανάληψης Μέχρις_ότου (μονάδες 5) Μονάδες 10 ΘΕΜΑ Β Β1. Δίνεται το παρακάτω απόσπασμα αλγορίθμου: Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 2 0 1 7 Α Ν Α Π Τ Υ Ξ Η Ε Φ Α Ρ Μ Ο Γ Ω Ν Σ Ε Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Τ Ι Κ Ο Π Ε Ρ Ι Β Α Λ Λ Ο Ν Π Ρ Ο Σ Α Ν Α Τ Ο Λ Ι Σ Μ Ο

Διαβάστε περισσότερα

Ασκήσεις μελέτης της ενότητας «Συντακτική Ανάλυση»

Ασκήσεις μελέτης της ενότητας «Συντακτική Ανάλυση» Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Διδάσκων: Ι. Ανδρουτσόπουλος, 2016-17 Ασκήσεις μελέτης της ενότητας «Συντακτική Ανάλυση» Παραδώστε μια αναφορά (το πολύ 5 σελίδων) για την άσκηση 9 και

Διαβάστε περισσότερα

Μοντελοποίηση Υπολογισμού. Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις

Μοντελοποίηση Υπολογισμού. Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις Μοντελοποίηση Υπολογισμού Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις Προβλήματα - Υπολογιστές Δεδομένου ενός προβλήματος υπάρχουν 2 σημαντικά ερωτήματα: Μπορεί να επιλυθεί με χρήση υπολογιστή;

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα