Σειρά Προβλημάτων 5 Λύσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σειρά Προβλημάτων 5 Λύσεις"

Transcript

1 Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { R η R είναι μια κανονική έκφραση η οποία παράγει μια μη πεπερασμένη γλώσσα} (β) { G η G είναι μια CFG η οποία παράγει τουλάχιστον μια λέξη επί του αλφάβητου {a,b} της οποία το πρώτο και το πέμπτο σύμβολο είναι τα ίδια } (α) S = Για είσοδο R όπου R μια κανονική έκφραση: 1. Κατασκευάζουμε το ισοδύναμο μη ντετερμινιστικό αυτόματο Ν. 2. Μετατρέπουμε το Ν σε ισοδύναμο ντετερμινιστικό αυτόματο D. 3. Χρησιμοποιούμε έναν από τους γνωστούς αλγόριθμους διάσχισης γράφων για να αποφασίσουμε κατά πόσο το D περιέχει κάποιο κύκλο από κατάσταση του οποίου είναι εφικτή η μετάβαση σε κάποια τελική κατάσταση του αυτομάτου. 4. Αν ναι τότε αποδεχόμαστε διαφορετικά απορρίπτουμε. (β) S = Για είσοδο G όπου G μια ασυμφραστική γραμματική: 1. Δημιουργούμε ένα NFA που αναγνωρίζει τη γλώσσα a(a b) 3 a(a b) * b(a b) 3 b(a b) * έστω Α. 2. Μετατρέπουμε το Α σε ένα ισοδύναμο DFA, έστω Β, χρησιμοποιώντας τον γνωστό αλγόριθμο μετατροπής NFA σε DFA. 3. Δημιουργούμε ένα PDA, έστω Ρ το οποίο αποδέχεται τη γλώσσα L(G) L(B). Συγκεκριμένα, αν G = Q 1, Σ, Γ, δ 1, q 1, F 1 και B = Q 2, Σ, δ 2, q 2, F 2 κατασκευάζουμε το P = Q, Σ, Γ, δ, q 0, F ως εξής: i. Καταστάσεις του P, είναι οι καταστάσεις (x,y) όπου x Q 1 και y Q 2 ii. q0 = (q1, q2) iii. Τελικές καταστάσεις του P, είναι οι καταστάσεις (x,y) όπου η x είναι τελική κατάσταση του G και η y τελική κατάσταση του B. iv. Στο αυτόματο P η μετάβαση ((x,y ),b ) δ((x,y),a,b) είναι εφικτή εφόσον η μετάβαση (x,b ) δ 1 (x,a,b) είναι εφικτή στο P και η μετάβαση y = δ 2 (y,a) είναι εφικτή στο αυτόματο D. 4. Μετατρέπουμε το P σε μια ισοδύναμη ασυμφραστική γραμματική, έστω H. 5. Εφαρμόζουμε την ΤΜ R, διαφάνεια 8 18 (ΚΕΝΟΤΗΤΑCFG), με δεδομένη τη γραμματική Η. Αν η R αποδεχτεί απορρίπτουμε, διαφορετικά αποδεχόμαστε. Άσκηση 2 Έστω γλώσσες Λ 1, Λ 2,, Λ k επί του αλφάβητου Σ τέτοιες ώστε: 1. Για κάθε i j ισχύει ότι Λ i Λ j =. 2. Λ 1 Λ 2 Λ k = Σ * 3. Για κάθε i, η γλώσσα Λ i είναι αναγνωρίσιμη. Να αποδείξετε ότι για κάθε i, η γλώσσα Λ i είναι διαγνώσιμη. Έστω μηχανές R i, 1 i k, όπου για κάθε i η μηχανή R i αναγνωρίζει τη γλώσσα Λ i. Η πιο κάτω μη ντετερμινιστική μηχανή Turing είναι σε θέση να διαγνώσει τη γλώσσα Λ i : Λύσεις Σειράς Προβλημάτων 5 Εαρινό Εξάμηνο 2017 Σελίδα 1

2 S i = Για είσοδο x: 1. Επέλεξε μη ντετερμινιστικά μια μηχανή R j. 2. Τρέξε τη λέξη x στη μηχανή R j. 3. Αν για i = j η R j απαντήσει θετικά τότε αποδέξου. 4. Αν για κάποιο i j η R j απαντήσει θετικά τότε απόρριψε. Για την πιο πάνω μηχανή ισχύουν τα εξής: Αν x Λ i τότε το αντίγραφο της S i για i = j θα απαντήσει θετικά και η S i θα αποδεχθεί. Αν x Λ i τότε x Λ k για κάποιο k. Επομένως το αντίγραφο της S i για i = k θα απαντήσει θετικά και η S i θα απορρίψει. Με αυτό τον τρόπο η S i διαγιγνώσκει τη γλώσσα Λ i. Άσκηση 3 (α) Να δείξετε ότι η πιο κάτω γλώσσα δεν είναι διαγνώσιμη. { Μ η Μ είναι μια ΤΜ με δύο ταινίες έτσι ώστε κατά τη διάρκεια του υπολογισμού της σε κάποια λέξη θα επιχειρήσει να γράψει ένα χαρακτήρα εκτός από το σύμβολο του διαστήματος στη δεύτερη ταινία της } Θέλουμε να δείξουμε ότι η γλώσσα A = { Μ η Μ είναι μια ΤΜ με δύο ταινίες έτσι ώστε κατά τη διάρκεια του υπολογισμού της σε κάποια λέξη θα επιχειρήσει να γράψει ένα χαρακτήρα εκτός από το σύμβολο του διαστήματος στη δεύτερη ταινία της } είναι μη διαγνώσιμη. Για να το δείξουμε θα αναγάγουμε σε αυτή μια γνωστή μη διαγνώσιμη γλώσσα, την ΑTM. Συγκεκριμένα, ας υποθέσουμε ότι η γλώσσα A είναι διαγνώσιμη και η ΤΜ R είναι σε θέση να τη διαγνώσει. Με βάση τον διαγνώστη R θα κατασκευάσουμε ένα διαγνώστη S για το πρόβλημα ΑΤΜ. Αυτό μας οδηγεί σε αντίφαση και επομένως η A είναι μια μη διαγνώσιμη γλώσσα. S:= Με είσοδο Μ,w. 1. Φτιάξε μια παραλλαγή της Μ, έστω Μ η οποία με είσοδο x: (α) Αν x = w η M τρέχει το Μ με είσοδο w και εργάζεται μόνο στην πρώτη ταινία της, παραμένοντας στάσιμη στη δεύτερη ταινία. (β) Αν η Μ αποδεχτεί το w τότε η M γράφει στη δεύτερη ταινία της κάποιο σύμβολο διάφορο από το σύμβολο του διαστήματος και τερματίζει. (γ) Αν x w τότε η Μ τερματίζει. 2. Τρέξε την R με είσοδο M. 3. Αν η R αποδεχτεί ΑΠΟΔΕΞΟΥ. 4. Αν η R απορρίψει ΑΠΟΡΡΙΨΕ. Προφανώς, κάθε φορά που η μηχανή Μ γράφει στη δεύτερη ταινία της κάποιο σύμβολο διάφορο από το σύμβολο του διαστήματος, η μηχανή Μ έχει φτάσει στην κατάσταση αποδοχής. Επομένως, αν η μηχανή S αποδεχτεί την είσοδο Μ,w αυτό συνεπάγεται ότι η μηχανή Μ γράφει στη δεύτερη ταινία της κάποιο σύμβολο διάφορο από το σύμβολο του διαστήματος, κάτι που θα συμβεί η Μ αποδέχεται το w. Συνεπώς η S αποτελεί διαγνώστη για τη γλώσσα ΑΤΜ γεγονός που μας οδηγεί σε αντίφαση. Συμπεραίνουμε ότι η γλώσσα Α είναι μη διαγνώσιμη. Λύσεις Σειράς Προβλημάτων 5 Εαρινό Εξάμηνο 2017 Σελίδα 2

3 (β) Η εταιρεία 211 Computer Corp, για να αυξήσει τις πωλήσεις της, αποφάσισε να δημιουργήσει μια εξελιγμένη εκδοχή της μηχανής Turing, την ΠΤ ΤΜ, η οποία διαθέτει ήχους από πιάνο και τσέλο. Η μηχανή αυτή είναι όμοια με την αυθεντική Μηχανή Turing με τη διαφορά ότι οι καταστάσεις της χωρίζονται στις καταστάσεις πιάνο και στις καταστάσεις τσέλο. Κάθε φορά που η μηχανή αλλάζει κατάσταση τότε ακούγεται ήχος από πιάνο ή ήχος από τσέλο ανάλογα με την κατάσταση στην οποία βρίσκεται. Να αποδείξετε ότι δοσμένης μιας ΠΤ ΤΜ Μ και μιας λέξης w το πρόβλημα αν η Μ θα παίξει ήχους από τσέλο κατά την εκτέλεση της w είναι μη διαγνώσιμο. Θέλουμε να δείξουμε ότι η γλώσσα B = { Μ,w η Μ είναι μια ΠΤ ΤΜ η οποία τη διάρκεια του υπολογισμού της στη λέξη w θα παίξει ήχους από τσέλο } είναι μη διαγνώσιμη. Για να το δείξουμε θα αναγάγουμε σε αυτή μια γνωστή μη διαγνώσιμη γλώσσα, την ΑTM. Συγκεκριμένα, ας υποθέσουμε ότι η γλώσσα Β είναι διαγνώσιμη και η ΤΜ R είναι σε θέση να τη διαγνώσει. Με βάση τον διαγνώστη R θα κατασκευάσουμε ένα διαγνώστη S για το πρόβλημα ΑΤΜ. Αυτό μας οδηγεί σε αντίφαση και επομένως η Β είναι μια μη διαγνώσιμη γλώσσα. S:= Με είσοδο Μ,w. 1. Φτιάξε μια ΠΤ ΤΜ Μ η οποία αποτελεί παραλλαγή της Μ ως εξής: Η Μ για είσοδο x τρέχει τη μηχανή Μ με είσοδο τη λέξη w. Οι καταστάσεις της Μ παίζουν όλες ήχους πιάνου με εξαίρεση την κατάσταση αποδοχής η οποία παίζει ήχους τσέλο. 2. Τρέξε την R με είσοδο M. 3. Αν η R αποδεχτεί ΑΠΟΔΕΞΟΥ. 4. Αν η R απορρίψει ΑΠΟΡΡΙΨΕ. Προφανώς, κάθε φορά που η μηχανή Μ παίζει ήχους από τσέλο, η μηχανή Μ έχει φτάσει στην κατάσταση αποδοχής με είσοδο τη λέξη w. Επομένως, αν η μηχανή S αποδεχτεί την είσοδο Μ,w αυτό συνεπάγεται ότι η μηχανή Μ έχει παίξει ήχους από τσέλο, κάτι που θα συμβεί η Μ αποδέχεται το w. Συνεπώς η S αποτελεί διαγνώστη για τη γλώσσα ΑΤΜ γεγονός που μας οδηγεί σε αντίφαση. Συμπεραίνουμε ότι η γλώσσα Β είναι μη διαγνώσιμη. Αυτό ολοκληρώνει την απόδειξη. Άσκηση 4 Έστω φ ένας λογικός τύπος 3ΣΚΜ. Ένας συνδυασμός λογικών τιμών στις μεταβλητές του φ ονομάζεται αληθοποιός ανισοτιμοδοσία εάν ο συνδυασμός αυτός (1) κάνει τη φ αληθή και (2) κάθε φράση του φ περιέχει δύο λεξιγράμματα με αντίθετες τιμές. Με άλλα λόγια, μια αληθοποιός ανισοτιμοδοσία καθιστά τον τύπο φ αληθή χωρίς να αποδίδει σε καμιά φράση την τιμή TRUE και στα τρία λεξιγράμματά της. (α) Δείξτε ότι η αντίθετη τιμοδοσία οποιασδήποτε αληθοποιούς ανισοτιμοδοσίας για τον φ είναι επίσης αληθοποιός ανισοτιμοδοσία. Έστω μια αληθοποιός ανισοτιμοδοσία για τον τύπο φ, όπου ο φ έχει τη μορφή Λύσεις Σειράς Προβλημάτων 5 Εαρινό Εξάμηνο 2017 Σελίδα 3

4 φ = c 1 c n και για κάθε i, 1 i n, c i = x i y i z i. H ανισοτιμοδοσία αυτή, αναθέτει σε κάθε λεξίγραμμα κάθε φράσης c i μια λογική τιμή έτσι ώστε σε κάθε φράση να υπάρχει τουλάχιστον ένα λεξίγραμμα με την τιμή TRUE και ένα λεξίγραμμα με την τιμή FALSE. Είναι εύκολο να δούμε ότι, αν αντιστρέψουμε την δοσμένη τιμοδοσία, σε κάθε φράση c i θα υπάρχει τουλάχιστον ένα λεξίγραμμα με την τιμή TRUE (ένα από αυτά που στην αρχική τιμοδοσία είχαν τιμή FALSE). Αυτό είναι αρκετό για τη φράση c i να πάρει τιμή TRUE και, κατ επέκταση, για τον τύπο φ να γίνει αληθής. (β) Έστω ΑΝΙΣΟΑΛΗΘΕΥΣΙΜΟΤΗΤΑ το σύνολο όλων των τύπων 3ΣΚΜ που επιδέχονται αληθοποιό ανισοτιμοδοσία. Δείξτε ότι, για να πάρουμε μια πολυωνυμικού χρόνου αναγωγή του προβλήματος 3SAT στο πρόβλημα ΑΝΙΣΟΑΛΗΘΕΥΣΙΜΟΤΗΤΑ αρκεί να αντικαταστήσουμε κάθε φράση c i = (y 1 y 2 y 3 ) με τις δύο φράσεις (y 1 y 2 z i ) και (z i y 3 b) όπου z i μια νέα μεταβλητή για τη φράση και b μια επιπρόσθετη νέα μεταβλητή, κοινή για όλες τις φράσεις. Έστω ένας τύπος φ. Θα μετατρέψουμε τον φ σε ένα ισοδύναμο τύπο φ όπου ο φ θα έχει αληθοποιό ανισοτιμοδοσία ο φ είναι αληθεύσιμος. Συγκεκριμένα, και σύμφωνα με την εισήγηση της εκφώνησης αντικαθιστούμε κάθε φράση c i = y 1 y 2 y 3 με τις δύο φράσεις (y 1 y 2 z i ) και (z i y 3 b) Παρατηρούμε ότι αν η φράση y 1 y 2 y 3 είναι αληθεύσιμη τότε θα πρέπει τουλάχιστον ένα από τα λεξιγράμματα y 1, y 2 και y 3 να παίρνει την τιμή True. Θεωρούμε ότι το b παίρνει την τιμή False. Ξεχωρίζουμε τις πιο κάτω περιπτώσεις: Έστω ότι y 1 = Τrue ή y 2 = Τrue, τότε οι φράσεις y 1 y 2 z i και z i y 3 b έχουν αληθοποιό τιμοδοσία για z i = False. Επίσης, η φράση y 1 y 2 y 3 είναι αληθεύσιμη. Έστω ότι y 1 = False και y 2 = False. Τότε η φράση y 1 y 2 y 3 είναι αληθεύσιμη αν και μόνο αν y 3 = Τrue οι φράσεις y 1 y 2 z i και z i y 3 b έχουν αληθοποιό τιμοδοσία (για z i = True). Συνεπώς, δοσμένου ενός τύπου εφαρμόζουμε τις πιο πάνω μετατροπές. Τρέχουμε τον αλγόριθμο για την ΑΝΙΣΟΑΛΗΘΕΥΣΙΜΟΤΗΤΑ στον τύπο που προκύπτει. Με βάση τα πιο πάνω η απάντηση θα είναι θετική ο τύπος φ είναι αληθεύσιμος. Οι μετατροπές απαιτούν πολυωνυμικό χρόνο εκτέλεσης. Επομένως το πιο πάνω αποτελεί αναγωγή πολυωνυμικού χρόνο του προβλήματος 3SAT στο πρόβλημα ΑΝΙΣΟΑΛΗΘΕΥΣΙΜΟΤΗΤΑ. (γ) Συμπεράνετε ότι το πρόβλημα της ΑΝΙΣΟΑΛΗΘΕΥΣΙΜΟΤΗΤΑΣ είναι ΝΡ πλήρες. Με βάση τα πιο πάνω και το δεύτερο θεώρημα στη Διαφάνεια 10 47, δεδομένου ότι το πρόβλημα της ΑΝΙΣΟΑΛΗΘΕΥΣΙΜΟΤΗΤΑΣ ανήκει στην κλάση ΝΡ (δείξτε το!), το ζητούμενο έπεται. Λύσεις Σειράς Προβλημάτων 5 Εαρινό Εξάμηνο 2017 Σελίδα 4

5 Άσκηση 5 Θεωρήστε το πιο κάτω πρόβλημα χρονοπρογραμματισμού. Σας δίνεται ένα κατάλογος μαθημάτων C 1,, C k, και ένας κατάλογος φοιτητών S 1,, S l. O κάθε φοιτητής θα πρέπει να εξεταστεί σε κάποιο προκαθορισμένο και γνωστό υποσύνολο των μαθημάτων σε ωριαία διαγωνίσματα έτσι ώστε κανένας φοιτητής να μην είναι αναγκασμένος να συμμετάσχει σε δύο διαγωνίσματα που πραγματοποιούνται την ίδια ώρα. Το πρόβλημα έγκειται στο να προσδιοριστεί εάν υπάρχει πρόγραμμα εξετάσεων το οποίο να δεσμεύει μόνο h ώρες. (α) Να διατυπώσετε αυτό το πρόβλημα υπό τη μορφή γλώσσας και να δείξετε ότι ανήκει στην κλάση ΝΡ. (β) Να δείξετε ότι η γλώσσα που ορίσατε στο σκέλος (α) είναι ΝΡ πλήρης μέσω αναγωγής από κάποια γνωστή ΝΡ πλήρη γλώσσα. (α) Διατυπώνουμε το πρόβλημα υπό μορφή γλώσσας ως εξής: SCHED = { C 1,, C k, S 1,, S l, M 1,, M l, h τα C 1,, C k, μαθήματα, οι S 1,, S l, φοιτητές, M 1,, M l, το σύνολο των μαθημάτων που παρακολουθεί κάθε φοιτητής, h κάποιος ακέραιος, και υπάρχει μια ανάθεση των μαθημάτων σε ώρες που δεν δεσμεύει περισσότερες από h ώρες και σύμφωνα με την οποία κανένας φοιτητής δεν είναι αναγκασμένος να συμμετάσχει σε δύο διαγωνίσματα που πραγματοποιούνται την ίδια ώρα} Ακολουθεί αλγόριθμος V που αποτελεί επαληθευτή πολυωνυμικού χρόνου για το πρόβλημα. V := Για είσοδο C 1,, C k, S 1,, S l, M 1,, M l, h όπου τα C 1,, C k, μαθήματα, οι S 1,, S l, φοιτητές, M 1,, M l, το σύνολο των μαθημάτων που παρακολουθεί κάθε φοιτητής, h κάποιος ακέραιος, και επιπρόσθετα Prog(C i ) = t i πρόγραμμα που αναθέτει κάποια ώρα στο διαγώνισμα του μαθήματος C i για κάθε i: 1. Αν για κάθε φοιτητή S i το Prog αναθέτει διαφορετικές ώρες σε κάθε μάθημα που παρακολουθεί ο φοιτητής και επιπρόσθετα το Prog δεσμεύει μόνο h ώρες, τότε αποδεχόμαστε. 2. Διαφορετικά, απορρίπτουμε. Ο χρόνος εκτέλεσης του επαληθευτή V είναι της τάξης Ο(l k 2 ) όπου l το πλήθος των φοιτητών και k το πλήθος των μαθημάτων. Επομένως ο V αποτελεί επαληθευτή πολυωνυμικού χρόνου για το πρόβλημα. (β) Για να δείξουμε ότι το πρόβλημα είναι ΝΡ πλήρες αρκεί να δείξουμε ότι ένα γνωστό ΝΡ πλήρες πρόβλημα μπορεί να αναχθεί σε αυτό. Η αναγωγή θα γίνει από το πρόβλημα k ΧΡΩΜΑΤΙΣΙΜΟΣ. Συγκεκριμένα, θα δείξουμε ότι αν υπάρχει πολυωνυμική λύση για το πρόβλημα SCHED τότε υπάρχει πολυωνυμική λύση και για το πρόβλημα k ΧΡΩΜΑΤΙΣΙΜΟΣ. Δημιουργούμε ένα γράφο G = (V, E) ως εξής: V : μια κορυφή για κάθε μάθημα C 1,, C k Ε : ακμή ανάμεσα σε δύο κορυφές υπάρχει αν τα σχετικά μαθήματα παρακολουθούνται και τα δύο από κάποιο φοιτητή, δηλαδή, υπάρχει λίστα Α i στην οποία ανήκουν και τα δύο μαθήματα. Ας υποθέσουμε ότι υπάρχει αλγόριθμος για το πρόβλημα SCHED. Τότε τρέχουμε τον σχετικό αλγόριθμο στο αρχικό πρόβλημα. Αν ο αλγόριθμος αποδεχτεί τότε απαντούμε ότι Λύσεις Σειράς Προβλημάτων 5 Εαρινό Εξάμηνο 2017 Σελίδα 5

6 ο γράφος που δημιουργήσαμε είναι h χρωματίσιμος διαφορετικά, αν απορρίψει, τότε απαντούμε ότι ο γράφος δεν είναι h χρωματίσιμος. Διαισθητικά, δύο κορυφές/μαθήματα συνδέονται μεταξύ τους αν δεν μπορούν να πραγματοποιηθούν ταυτόχρονα (γιατί παρακολουθούνται και τα δύο από τουλάχιστον ένα φοιτητή). Κατά τον χρωματισμό του γράφου τα χρώματα αναπαριστούν διαφορετικούς χρόνους διεξαγωγής της εξέτασης. Το ερώτημα είναι αν μπορούμε να χρωματίσουμε τις κορυφές του γράφου με h διαφορετικά χρώματα, έτσι ώστε γειτονικές κορυφές να έχουν διαφορετικό χρώμα, δηλαδή, να προγραμματίσουμε τις εξετάσεις των μαθημάτων σε h διαφορετικούς χρόνους χωρίς να έχουμε συγκρούσεις. Ορθότητα: Παρατηρούμε τα εξής: Ο γράφος G είναι h χρωματίσιμος Μπορούμε να χρωματίσουμε τους κόμβους του με h διαφορετικά χρώματα με τέτοιο τρόπο ώστε κανένα ζεύγος από γειτονικές κορυφές να μην έχουν το ίδιο χρώμα Μπορούμε να χρωματίσουμε τους κόμβους του με h διαφορετικά χρώματα με τέτοιο τρόπο ώστε κανένα ζεύγος από μαθήματα που παρακολουθούνται από κάποιο φοιτητή να μην έχουν το ίδιο χρώμα Μπορούμε να αναθέσουμε στα μαθήματα που αντιστοιχούν στους κόμβους του γράφου h διαφορετικές ώρες με τέτοιο τρόπο ώστε κανένα ζεύγος από μαθήματα που παρακολουθούνται από κάποιο φοιτητή να μην έχουν την ίδια ώρα εξέτασης υπάρχει λύση για το πρόβλημα SCHED Συμπέρασμα: Αν το πρόβλημα SCHED επιλύεται σε πολυωνυμικό χρόνο τότε και το πρόβλημα h ΧΡΩΜΑΤΙΣΙΜΟΣ επιλύεται σε πολυωνυμικό χρόνο. Επομένως το πρόβλημα h ΧΡΩΜΑΤΙΣΙΜΟΣ είναι ΝΡ πλήρες. Λύσεις Σειράς Προβλημάτων 5 Εαρινό Εξάμηνο 2017 Σελίδα 6

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { Μ η Μ είναι μια ΤΜ η οποία διαγιγνώσκει το πρόβλημα ΙΣΟΔΥΝΑΜΙΑ ΤΜ (διαφάνεια 9 25)} (α) Γνωρίζουμε ότι το

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) ({ G η G είναι μια ασυμφραστική γραμματική που δεν παράγει καμιά λέξη με μήκος μικρότερο του 2 } (β) { Μ,w

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G 1, G 2 οι G 1 και G 2 είναι δύο CFG που παράγουν μια κοινή λέξη μήκους 144 } (β) { D,k το D είναι ένα DFA

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { D το D είναι ένα DFA το οποίο αποδέχεται όλες τις λέξεις στο Σ * } (α) Για να διαγνώσουμε το πρόβλημα μπορούμε

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης. Επανάληψη Εαρινό Εξάμηνο 2019 Σελίδα 1

Ασκήσεις Επανάληψης. Επανάληψη Εαρινό Εξάμηνο 2019 Σελίδα 1 Ασκήσεις Επανάληψης Άσκηση 1 (Τελική Εξέταση 5/015) Να δείξετε ότι η πιο κάτω γλώσσα δεν είναι διαγνώσιμη. { Μ L(M) {ΘΕΩΡΙΑ, ΥΠΟΛΟΓΙΣΜΟΥ} και L(M) 3} (Για την αναγωγή μπορείτε να χρησιμοποιήσετε τη γνωστή

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Πιο κάτω υπάρχει ένα σχεδιάγραμμα που τοποθετεί τις κλάσεις των κανονικών, ασυμφραστικών, διαγνώσιμων και αναγνωρίσιμων γλωσσών μέσα στο σύνολο όλων των γλωσσών. Ακολουθούν

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G,k η G είναι μια ασυμφραστική γραμματική η οποία παράγει κάποια λέξη 1 n όπου n k } (β) { Μ,k η Μ είναι

Διαβάστε περισσότερα

Φροντιστήριο 11 Λύσεις

Φροντιστήριο 11 Λύσεις Άσκηση 1 Φροντιστήριο 11 Λύσεις Να αποδείξετε ότι η κλάση Ρ είναι κλειστή ως προς τις πράξεις της ένωσης, της συναρμογής και του συμπληρώματος. Θα πρέπει να δείξουμε ότι: (α) Ένωση: Αν οι Λ 1 και Λ 2 είναι

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { ww w {a,b}* }. (β) Να διατυπώσετε την τυπική περιγραφή

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα {w 1w 2 w 1 {0,1} * και w 2 = 0 k 1 m όπου k και m

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { w w = (ab) 2m b m (ba) m, m 0 } (β) Να διατυπώσετε

Διαβάστε περισσότερα

Φροντιστήριο 9 Λύσεις

Φροντιστήριο 9 Λύσεις Άσκηση 1 Φροντιστήριο 9 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {a,b} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα {1010 2 10 3 10 n 1 10 n 1 n 1}. (β) Να διατυπώσετε

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { a 2n b n c 3n n 2 } : H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { w#z w, z {a,b}* και η z είναι υπολέξη της w}. Συγκεκριμένα,

Διαβάστε περισσότερα

Φροντιστήριο 10 Λύσεις

Φροντιστήριο 10 Λύσεις Άσκηση 1 Φροντιστήριο 10 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {0,1} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.

Διαβάστε περισσότερα

Ασκήσεις από παλιές εξετάσεις

Ασκήσεις από παλιές εξετάσεις Άσκηση 2 - Τελική εξέταση 2012 Ασκήσεις από παλιές εξετάσεις (α) [10 μονάδες] Να μετατρέψετε το πιο κάτω NFA σε ένα ισοδύναμο DFA χρησιμοποιώντας την κατασκευή που μελετήσαμε στο μάθημα. a a q 0 a, ε q

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { n 3 } (α) H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την επτάδα Q,

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει την ακόλουθη γλώσσα. { a n b n+2 c n 2 n 2 } Λύση: H ζητούμενη μηχανή Turing μπορεί να

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανεπίλυτα Προβλήματα από τη Θεωρία Γλωσσών (5.1) To Πρόβλημα της Περάτωσης Το Πρόβλημα της Κενότητα

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { ww rev w {a, b} * και w αποτελεί καρκινική λέξη } (α) H ζητούμενη μηχανή

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Επανάληψη Μαθήματος Το Μάθημα σε μια Διαφάνεια Υπολογιστικά μοντέλα Κανονικές Γλώσσες Ντετερμινιστικά Αυτόματα Μη Ντετερμινιστικά Αυτόματα Κανονικές Εκφράσεις

Διαβάστε περισσότερα

Λύσεις 4ης Σειράς Ασκήσεων

Λύσεις 4ης Σειράς Ασκήσεων Λύσεις 4ης Σειράς Ασκήσεων Άσκηση 1 Αναγάγουμε τν Κ 0 που γνωρίζουμε ότι είναι μη-αναδρομική (μη-επιλύσιμη) στην γλώσσα: L = {p() η μηχανή Turing Μ τερματίζει με είσοδο κενή ταινία;} Δοσμένης της περιγραφής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητα Ενδιάμεση Εξέταση Ημερομηνία : Παρασκευή, 17 Μαρτίου 2017 Διάρκεια : 9.00 10.30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο:

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Κανονικές Εκφράσεις (1.3) Τυπικός Ορισμός Ισοδυναμία με κανονικές γλώσσες Μη Κανονικές

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Να βρείτε το σφάλμα στην πιο κάτω απόδειξη. Ισχυρισμός: Όλα τα βιβλία που έχουν γραφτεί στη Θεωρία Υπολογισμού έχουν τον ίδιο

Διαβάστε περισσότερα

Φροντιστήριο 8 Λύσεις

Φροντιστήριο 8 Λύσεις Άσκηση 1 Θεωρήστε την πιο κάτω Μηχανή Turing. Φροντιστήριο 8 Λύσεις Σε κάθε σκέλος, να προσδιορίσετε την ακολουθία των φάσεων τις οποίες διατρέχει η μηχανή όταν δέχεται τη διδόμενη λέξη. (α) 11 (β) 1#1

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων Τι θα κάνουμε σήμερα Εισαγωγή Πολυταινιακές Μηχανές Turing (3.2.1) Μη Ντετερμινιστικές Μηχανές

Διαβάστε περισσότερα

Φροντιστήριο 8 Λύσεις

Φροντιστήριο 8 Λύσεις Άσκηση 1 Φροντιστήριο 8 Λύσεις Θεωρήστε την πιο κάτω Μηχανή Turing όπου όλες οι μεταβάσεις που απουσιάζουν οδηγούν στην κατάσταση απόρριψης (q απόρριψης). Σε κάθε σκέλος, να προσδιορίσετε την ακολουθία

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 14: Διαγνωσιμότητα (Επιλυσιμότητα)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 14: Διαγνωσιμότητα (Επιλυσιμότητα) ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 14: Διαγνωσιμότητα (Επιλυσιμότητα) Τι θα κάνουμε σήμερα Εισαγωγή Επιλύσιμα Προβλήματα σχετικά με τις Κανονικές Γλώσσες (4.1.1) Επιλύσιμα Προβλήματα

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Χρονική Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Χρονική Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Χρονική Πολυπλοκότητα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Μέτρηση της Πολυπλοκότητας (7.1) Η κλάση Ρ (7.2) Η κλάση ΝΡ (7.3) ΝΡ-πληρότητα (7.4)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητα Ενδιάμεση Εξέταση Ημερομηνία : Σάββατο, 15 Μαρτίου 2014 Διάρκεια : 9.30 11.30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο:

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Διαγνώσιμες Γλώσσες (4.1) Επιλύσιμα Προβλήματα σχετικά με Κανονικές Γλώσσες Επιλύσιμα Προβλήματα

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { x x η τιμή της αριθμητικής έκφρασης 10 2n + 10 n + 1, n 1} (β) { a i b j c k d m i, j,

Διαβάστε περισσότερα

CSC 314: Switching Theory

CSC 314: Switching Theory CSC 314: Switching Theory Course Summary 9 th January 2009 1 1 Θέματα Μαθήματος Ερωτήσεις Τι είναι αλγόριθμος? Τι μπορεί να υπολογιστεί? Απαντήσεις Μοντέλα Υπολογισμού Δυνατότητες και μη-δυνατότητες 2

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ Τι θα κάνουμε σήμερα Επιλύσιμα Προβλήματα σχετικά με Ασυμφραστικές Γλώσσες (4.1.2) Το Πρόβλημα του Τερματισμού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητα Ενδιάμεση Εξέταση Ημερομηνία : Κυριακή, 15 Μαρτίου 2015 Διάρκεια : 15.00 17.00 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο:

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) {0 n 1 n n > 0} {0 n 1 2n n > 0} (β) {w {a,b} * η w ξεκινά και τελειώνει με το ίδιο σύμβολο

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων Λύσεις Άσκηση Έστω αλφάβητο Σ και γλώσσες Λ, Λ επί του αλφάβητου αυτού. Να διερευνήσετε κατά πόσο ισχύει κάθε μια από τις πιο κάτω σχέσεις. Σε περίπτωση που μια σχέση ισχύει να το αποδείξετε,

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 5: Κανονικές Εκφράσεις

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 5: Κανονικές Εκφράσεις ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 5: Κανονικές Εκφράσεις Τι θα κάνουμε σήμερα Κλειστότητα Κανονικών Πράξεων (1.2.3) Εισαγωγή στις Κανονικές Εκφράσεις Τυπικός ορισμός της κανονικής

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα To Δόγμα Church-Turing

Θεωρία Υπολογισμού και Πολυπλοκότητα To Δόγμα Church-Turing Θεωρία Υπολογισμού και Πολυπλοκότητα To Δόγμα Church-Turing Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Μηχανές Turing (3.1) Τυπικό Ορισμός Παραδείγματα Παραλλαγές Μηχανών Turing (3.2) Πολυταινιακές

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αυτόματα Στοίβας (2.2) Τυπικός Ορισμός Παραδείγματα Ισοδυναμία με Ασυμφραστικές

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { a i b j c k d m i, j, k, m 0 και i + j = k + m } (β) { uxvx rev u,v,x {0,1,2} + και όλα

Διαβάστε περισσότερα

Φροντιστήριο 2 Λύσεις

Φροντιστήριο 2 Λύσεις Άσκηση Φροντιστήριο 2 Λύσεις Ποια από τα πιο κάτω αυτόματα αποτελούν DFA επί του αλφάβητου {,}. Αιτιολογήστε τις απαντήσεις σας. (i) (ii) (iii) (iv) (v), (vi), (i) Όχι, δεν υπάρχει αρχική κατάσταση. (ii)

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { w {(, )} * οι παρενθέσεις στην w είναι ισοζυγισμένες } (β) { a k b m c 2m a k k > 0,

Διαβάστε περισσότερα

Φροντιστήριο 2 Λύσεις

Φροντιστήριο 2 Λύσεις ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Άσκηση Φροντιστήριο 2 Λύσεις Ποια από τα πιο κάτω αυτόματα αποτελούν DFA επί του αλφάβητου {,}. Αιτιολογήστε τις απαντήσεις σας. (i) (ii) (iii) (iv) (v), (vi),

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνοσhmμy 6η ενότητα: Αυτόματα, τυπικές γλώσσες, γραμματικές Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής http://www.corelab.ece.ntua.gr/courses/introcs

Διαβάστε περισσότερα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα Αλγόριθμοι πολυωνυμικού χρόνου Ένας αλγόριθμος πολυωνυμικού χρόνου έχει χρόνο εκτέλεσης όπου είναι μία (θετική) σταθερά Κλάση πολυπλοκότητας : περιλαμβάνει τα προβλήματα που επιδέχονται λύση σε πολυωνυμικό

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων Λύσεις Άσκηση Ορίζουμε τη συναρμογή δύο γλωσσών Α και Β ως ΑΒ = { uv u A, v B }. (α) Έστω Α = {α,β,γ} και Β =. Να περιγράψετε τη γλώσσα ΑΒ. (β) Θεωρήστε τις γλώσσες L, M και N. Να δείξετε

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες () Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Πεπερασμένα Αυτόματα (Κεφάλαιο., Sipser) Ορισμός πεπερασμένων αυτομάτων και ορισμός του

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις ΕΠΛ: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Θεωρείστε τις γλώσσες Α = { n n } και Β = {w η w είναι λέξη επί του αλφαβήτου {,} τ.ώ. w }. (α) Για κάθε μια από τις πιο κάτω γλώσσες

Διαβάστε περισσότερα

Η NTM αποδέχεται αν µονοπάτι στο δέντρο που οδηγεί σε αποδοχή.

Η NTM αποδέχεται αν µονοπάτι στο δέντρο που οδηγεί σε αποδοχή. Μη ντετερµινιστικές Μηχανές Turing - NTMs (1/6) Μηχανές Turing: Μη ντετερµινισµός, Επιλύσιµα Προβλήµατα Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς 10 εκεµβρίου 2016

Διαβάστε περισσότερα

Αυτόματα και Υπολογιστικά Μοντέλα Automata and Models of Computation

Αυτόματα και Υπολογιστικά Μοντέλα Automata and Models of Computation Αυτόματα και Υπολογιστικά Μοντέλα Automata and Models of Computation Διδάσκων: Στάθης Ζάχος Επιμέλεια Διαφανειών: Μάκης Αρσένης CoReLab ΣΗΜΜΥ - Ε.Μ.Π. Φεβρουάριος 2017 Διδάσκων: Στάθης Ζάχος ( CoReLab

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { a k b m c n k < m ή m > 2n, όπου k,m,n 0 } Μια γραμματική για τη γλώσσα έχει ως εξής:

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αυτόματα Στοίβας (2.2) Τυπικός Ορισμός Παραδείγματα Ισοδυναμία με Ασυμφραστικές

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 16: Αναγωγές

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 16: Αναγωγές ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 16: Αναγωγές Τι θα κάνουμε σήμερα Το Πρόβλημα του Τερματισμού (4.2) Εισαγωγή στις Αναγωγές Ανεπίλυτα Προβλήματα από την Θεωρία των Γλωσσών (5.1) Απεικονιστικές

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Έστω αλφάβητο Σ και γλώσσες Λ 1, Λ 2 επί του αλφάβητου αυτού. Να διερευνήσετε κατά πόσο ισχύει κάθε μια από τις πιο κάτω σχέσεις. Σε περίπτωση που μια σχέση ισχύει να

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { xyxy rev x {a, b}, y {a, b} * } (α) Μια γραμματική για τη γλώσσα έχει ως εξής: S as a

Διαβάστε περισσότερα

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6 Εισαγωγή στην Επιστήμη των Υπολογιστών 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές http://www.corelab.ece.ntua.gr/courses/ Αυτόματα Τρόπος κωδικοποίησης αλγορίθμων. Τρόπος περιγραφής συστημάτων πεπερασμένων

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές http://www.corelab.ece.ntua.gr/courses/ Αυτόματα Τρόπος κωδικοποίησης αλγορίθμων. Τρόπος περιγραφής συστημάτων πεπερασμένων

Διαβάστε περισσότερα

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα αναζήτησης είναι ένα πρόβλημα στο

Διαβάστε περισσότερα

NP-πληρότητα. Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων

NP-πληρότητα. Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων NP-πληρότητα Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων Πολυωνυμικός μετασχηματισμός Ένας πολυωνυμικός μετασχηματισμός από την L 1 Σ 1 * στην L 2 Σ 2 * είναι μια συνάρτηση

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ασυμφραστικές Γραμματικές (2.1) Τυπικός Ορισμός Σχεδιασμός Ασυμφραστικών Γραμματικών

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { xyw 1w 2 x, y {a, b}, w 1 = a n, w 2 = b 2n, όπου, αν x=y=a, τότε n = 2k, διαφορετικά

Διαβάστε περισσότερα

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Παύλος Εφραιμίδης V1.1,

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Παύλος Εφραιμίδης V1.1, Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Παύλος Εφραιμίδης V1.1, 2015-01-19 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA) ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA) Τι θα κάνουμε σήμερα Εισαγωγή στα Μη Ντετερμινιστικά Πεπερασμένα Αυτόματα Τυπικός

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις Να αποφασίσετε κατά πόσο οι πιο κάτω προδιαγραφές είναι ορθές σύμφωνα με την έννοια της μερικής ορθότητας και την έννοια της ολικής ορθότητας. Να αιτιολογήσετε σύντομα

Διαβάστε περισσότερα

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών. Προδιαγραφές

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών. Προδιαγραφές Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνοσ.h.m.μ.y. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές Στάθης Ζάχος Συνεργασία: Κωστής Σαγώνας Επιμέλεια:

Διαβάστε περισσότερα

Αλγόριθμοι για αυτόματα

Αλγόριθμοι για αυτόματα Κεφάλαιο 8 Αλγόριθμοι για αυτόματα Κύρια βιβλιογραφική αναφορά για αυτό το Κεφάλαιο είναι η Hopcroft, Motwani, and Ullman 2007. 8.1 Πότε ένα DFA αναγνωρίζει κενή ή άπειρη γλώσσα Δοθέντος ενός DFA M καλούμαστε

Διαβάστε περισσότερα

Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π

Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π Περιορισμοί Αλγοριθμικής Ισχύος Κατηγοριοποίηση πολυπλοκοτήτων Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 12: Μηχανές Turing

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 12: Μηχανές Turing ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 12: Μηχανές Turing Τι θα κάνουμε σήμερα Εισαγωγή στις Μηχανές Turing (TM) Τυπικός Ορισμός Μηχανής Turing (3.1.1) 1 Τι είδαμε μέχρι στιγμής Πεπερασμένα

Διαβάστε περισσότερα

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιµότητα. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιµότητα. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιµότητα Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβληµα αναζήτησης (search problem) Ένα πρόβληµα αναζήτησης είναι ένα πρόβληµα στο

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 9 P vs NP 1 / 13 Δυσκολία επίλυσης υπολογιστικών προβλημάτων Κάποια προβλήματα είναι εύκολα να λυθούν με

Διαβάστε περισσότερα

Κλάσεις Πολυπλοκότητας

Κλάσεις Πολυπλοκότητας Κλάσεις Πολυπλοκότητας Παύλος Εφραιμίδης pefraimi ee.duth.gr Κλάσεις Πολυπλοκότητας 1 Οι κλάσεις πολυπλοκότητας P και NP P: Polynomial ΗκλάσηP περιλαμβάνει όλα τα υπολογιστικά προβλήματα που μπορούν

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { a m b n c p m,n,p 0 και είτε m + n = p είτε m = n + p } (β) { xx rev yy rev x, y {a,b}

Διαβάστε περισσότερα

Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 2 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 2 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Γιώργος Δημητρίου Μάθημα 2 ο Αλφάβητα και Γλώσσες Αλφάβητο: Ένα μη κενό και πεπερασμένο σύνολο συμβόλων Γλώσσα: Ένα οποιοδήποτε υποσύνολο των συμβολοσειρών ενός αλφαβήτου (οι προτάσεις της γλώσσας, πχ.

Διαβάστε περισσότερα

Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Στα μαθηματικά και στις άλλες επιστήμες κάνουμε συχνά υποθέσεις. Οταν δείξουμε ότι μια υπόθεση είναι αλη

Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Στα μαθηματικά και στις άλλες επιστήμες κάνουμε συχνά υποθέσεις. Οταν δείξουμε ότι μια υπόθεση είναι αλη Υποθέσεις - - Θεωρήματα Μαθηματικά Πληροφορικής 1ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Στα μαθηματικά και στις άλλες επιστήμες

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 1

Λύσεις Σειράς Ασκήσεων 1 Λύσεις Σειράς Ασκήσεων 1 Άσκηση 1 Έστω οι προτάσεις / προϋπόθεσεις: Π1. Σε όσους αρέσει η τέχνη αρέσουν και τα λουλούδια. Π2. Σε όσους αρέσει το τρέξιμο αρέσει και η μουσική. Π3. Σε όσους δεν αρέσει η

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 8: Ιδιότητες Γραμματικών χωρίς Συμφραζόμενα Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί Αριθμήσιμα σύνολα Μαθηματικά Πληροφορικής 5ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Ορισμός Πόσα στοιχεία έχει το σύνολο {a, b, r, q, x}; Οσα και το σύνολο {,,, 4, 5} που είναι

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 10. Μηχανές Turing 20,23 Μαρτίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Μηχανές Turing: Ένα Γενικό Μοντέλο Υπολογισμού Ποια μοντέλα υπολογισμού μπορούν να δεχθούν γλώσσες

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Να διατυπώσετε τον πιο κάτω συλλογισμό στον Προτασιακό Λογισμό και να τον αποδείξετε χρησιμοποιώντας τη Μέθοδο της Επίλυσης. Δηλαδή, να δείξετε ότι αν ισχύουν οι πέντε

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 11: Περιορισμοί της Αλγοριθμικής Ισχύος

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 11: Περιορισμοί της Αλγοριθμικής Ισχύος ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 11: Περιορισμοί της Αλγοριθμικής Ισχύος Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θεμελιώσεις Επιστήμης Η/Υ ΠΛΗ30 Τελική Εξέταση 26 Ιουνίου 2013 Ονοματεπώνυμο Φοιτητή Αριθμός Μητρώου Φοιτητή Τμήμα Υπογραφή Φοιτητή Υπογραφή Επιτηρητή Διάρκεια: 180 Ερώτημα Μονάδες Βαθμολογία 1 10+10 2

Διαβάστε περισσότερα

Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κανονικές Γλώσσες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κανονικές Γλώσσες Κανονική γλώσσα αν

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 10η Διάλεξη

Θεωρία Γραφημάτων 10η Διάλεξη Θεωρία Γραφημάτων 0η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 07 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 0η Διάλεξη

Διαβάστε περισσότερα

Φροντιστήριο 7 Λύσεις

Φροντιστήριο 7 Λύσεις Άσκηση 1 Θεωρείστε το πιο κάτω αυτόματο στοίβας: Φροντιστήριο 7 Λύσεις (α) Να εξηγήσετε με λόγια ποια γλώσσα αναγνωρίζεται από το αυτόματο. (β) Να δώσετε τον τυπικό ορισμό του αυτομάτου. (γ) Να δείξετε

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία

Διαβάστε περισσότερα

4η Γραπτή Ασκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 3/2/2019 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Ασκηση 3/2/ / 37

4η Γραπτή Ασκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 3/2/2019 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Ασκηση 3/2/ / 37 4η Γραπτή Άσκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 3/2/2019 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Άσκηση 3/2/2019 1 / 37 Άσκηση 1 Πρέπει να βρούμε όλες τις καλές προτάσεις φίλων για τον i ανάμεσα σε όλους

Διαβάστε περισσότερα

Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5

Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5 Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 10: Αυτόματα Στοίβας II

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 10: Αυτόματα Στοίβας II ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 10: Αυτόματα Στοίβας II Τι θα κάνουμε σήμερα Ισοδυναμία αυτομάτων στοίβας με ασυμφραστικές γραμματικές (2.2.3) 1 Ισοδυναμία PDA με CFG Θεώρημα: Μια

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων Λύσεις Άσκηση Έστω αλφάβητο Σ και γλώσσες Α, Β επί του αλφάβητου αυτού. Για κάθε μια από τις πιο κάτω περιπτώσεις να διερευνήσετε κατά πόσο Γ Δ, ή, Δ Γ, ή και τα δύο. Σε περίπτωση, που

Διαβάστε περισσότερα

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 28/3/2012, στις 01:37. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................

Διαβάστε περισσότερα

Άσκησηη 1. (α) Το αυτόματο. (γ) Να δείξετε όλα aabbb. Λύση. λέξεις. αυτόματο. (β) Τυπικά. μεταβάσεων δ. ορίζεται. (γ) Θα δείξουμε τα.

Άσκησηη 1. (α) Το αυτόματο. (γ) Να δείξετε όλα aabbb. Λύση. λέξεις. αυτόματο. (β) Τυπικά. μεταβάσεων δ. ορίζεται. (γ) Θα δείξουμε τα. ΕΠΛ211: : Θεωρία Υπολογισμού και Πολυπλοκότητα Φροντιστήριο 7 Λύσεις Άσκησηη 1 Θεωρήστε το πιο κάτω αυτόματο στοίβας: (α) Να εξηγήσετε με λόγια ποια γλώσσαα αναγνωρίζεται από τοο αυτόματο. (β) Να δώσετε

Διαβάστε περισσότερα

Chapter 9: NP-Complete Problems

Chapter 9: NP-Complete Problems Θεωρητική Πληροφορική Ι: Αλγόριθμοι και Πολυπλοκότητα Chapter 9: NP-Complete Problems 9.3 Graph-Theoretic Problems (Συνέχεια) 9.4 Sets and Numbers Γιώργος Αλεξανδρίδης gealexan@mail.ntua.gr Κεφάλαιο 9:

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Διατύπωση Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη από κλέφτες. Σε

Διαβάστε περισσότερα

4η Γραπτή Ασκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 7 Φεβρουαρίου 2017 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Ασκηση 7 Φεβρουαρίου / 38

4η Γραπτή Ασκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 7 Φεβρουαρίου 2017 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Ασκηση 7 Φεβρουαρίου / 38 4η Γραπτή Άσκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 7 Φεβρουαρίου 2017 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Άσκηση 7 Φεβρουαρίου 2017 1 / 38 Άσκηση 1 Πρέπει να βρούμε όλες τις καλές προτάσεις φίλων για τον

Διαβάστε περισσότερα

Αυτοματοποιημένη Επαλήθευση

Αυτοματοποιημένη Επαλήθευση Αυτοματοποιημένη Επαλήθευση Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Έλεγχος Μοντέλου Αλγόριθμοι γράφων Αλγόριθμοι αυτομάτων Αυτόματα ως προδιαγραφές ΕΠΛ 664 Ανάλυση και Επαλήθευση Συστημάτων 4-1

Διαβάστε περισσότερα