Σειρά Προβλημάτων 2 Λύσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σειρά Προβλημάτων 2 Λύσεις"

Transcript

1 ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Άσκηση [5 μονάδς] Σιρά Προβλημάτων 2 Λύσις Να δώστ κανονικές κφράσις που να πριγράφουν τις πιο κάτω γλώσσς πί του αλφάβητου Α = {, }. (α) Όλς οι λέξις πί του αλφάβητου Α που έχουν τουλάχιστον δύο και το πολύ ένα. (β) Όλς οι λέξις πί του αλφάβητου Α που δν πριέχουν τρία. (γ) Όλς οι λέξις πί του αλφάβητου Α κτός από τις και. (δ) Όλς οι λέξις πί του αλφάβητου Α όπου το τρίτο σύμβολο ίναι το ίδιο μ το προτλυταίο σύμβολο. () Όλς οι λέξις πί του αλφάβητου Α όπου τα σύμβολα στις άρτις θέσις συμπίπτουν. (α) (β) * * * * * * * * * * {,} * (γ) {,} {,} {,}{,} {,} {,}{,}{,}{,} + (δ) {,}{,}{,} * {,} {,}{,}{,} * {,} () ({,}) * () ({,}) * () Άσκηση 2 Έστω η κανονική έκφραση * * () * +. Να κατασκυάστ: (i) ένα NFA που να την αναγνωρίζι, χρησιμοποιώντας την κατασκυή από τις διαφάνις 3 9 και 3, και (ii) ένα DFA που να την αναγνωρίζι μτατρέποντας το αυτόματο από το μέρος (α) σ DFA, χρησιμοποιώντας τη διαδικασία μτατροπής NFA σ DFA (διαφάνις 2 37 και 2 38). (i) Θωρούμ την κανονική έκφραση τμήμα προς τμήμα, ξκινώντας μ τα απλούστρα κομμάτια και προχωρώντας αναδρομικά στα μγαλύτρα. Βήμα : Η κανονική έκφραση Βήμα 2: Η κανονική έκφραση * Λύσις Σιράς Προβλημάτων 2 Εαρινό Εξάμηνο 26 Σλίδα

2 ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Βήμα 3: Η κανονική έκφραση * Βήμα 4: Η κανονική έκφραση * * Βήμα 5: Η κανονική έκφραση Βήμα 6: Η κανονική έκφραση () * Βήμα 7: Η κανονική έκφραση + = ( * ) Βήμα 8: Η κανονική έκφραση () * + Λύσις Σιράς Προβλημάτων 2 Εαρινό Εξάμηνο 26 Σλίδα 2

3 ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Βήμα 9: Η κανονική έκφραση * * () * (ii) Το αυτόματο που προκύπτι φαρμόζοντας τη μέθοδο μτατροπής NFA σ DFA που μλτήσαμ ίναι το πιο κάτω. {2,3,4,5} {5,6} {,,2,4, 5,7,8,2} {5,6,9,, 3,4,5} {8,,2} {5,6, 5,6}, {9,,3, 4,5} {5,6} Άσκηση 3 Να μτατρέψτ τo πιο κάτω DFA στην κανονική έκφραση που το πριγράφι χρησιμοποιώντας τη διαδικασία που παρουσιάζται στις διαφάνις 3 2 μέχρι 3 2. Η αφαίρση των ακμών να γίνι μ τη σιρά, 2, 3, 4, 5,. Να δίξτ όλα τα στάδια της ργασίας σας. Λύσις Σιράς Προβλημάτων 2 Εαρινό Εξάμηνο 26 Σλίδα 3

4 ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα 2 3, 4 5 Βήμα : t Βήμα 2(α): Αφαίρση κορυφής 2 * * t Λύσις Σιράς Προβλημάτων 2 Εαρινό Εξάμηνο 26 Σλίδα 4

5 ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Βήμα 2(β): Αφαίρση κορυφής 3 * [ * ] * t 4 5 Βήμα 2(γ): Αφαίρση κορυφής 4 * [ * ] * t * 5 Βήμα 2(δ): Αφαίρση κορυφής 5 * [ * ] * * () * t Βήμα 2(): Αφαίρση κορυφής * [ * ] * * () * t Άσκηση 3 Να αποφασίστ κατά πόσο οι πιο κάτω γλώσσς ίναι κανονικές αιτιολογώντας μ ακρίβια τις απαντήσις σας. (α) L = { xx rev x + } Η γλώσσα ίναι κανονική και πριγράφται από την έκφραση () +. Λύσις Σιράς Προβλημάτων 2 Εαρινό Εξάμηνο 26 Σλίδα 5

6 ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα (β) L 2 = { xx rev x {,} + } Υποθέτουμ για να φτάσουμ σ αντίφαση ότι η L 2 ίναι κανονική. Τότ, σύμφωνα μ το Λήμμα της Άντλησης, υπάρχι p, το μήκος άντλησης της γλώσσας, τέτοιο ώστ κάθ λέξη της γλώσσας μ μήκος μγαλύτρο από p να ικανοποιί την ιδιότητα που πριγράφται στο Λήμμα. Ας πιλέξουμ τη λέξη = p p p p. Τότ, σύμφωνα μ το λήμμα, = xyz έτσι ώστ η υπολέξη xy να βρίσκται μέσα στις p πρώτς θέσις της w ( xy p) η y να ίναι μη κνή ( y ) και οποιαδήποτ πανάληψη της υπολέξης y να διατηρί την προκύπτουσα λέξη ντός της γλώσσας (xy i z L 2 ). Αφού xy p, τότ πρέπι να ισχύι ότι τόσο το x όσο και το y αποτλούνται μόνο από. Επομένως, x = λ, y = μ, w = ν p p p όπου λ+μ+ν = p+. Επίσης, από το λήμμα, πρέπι να ισχύι ότι xy 2 z L 2. Αλλά, xy 2 z = λ μ μ ν p p p = p+μ p p p και, από τον ορισμό της γλώσσας, xy 2 z L 2. Αυτό μας οδηγί σ αντίφαση και πομένως η υπόθσή μας ότι η γλώσσα L 2 ίναι κανονική ήταν σφαλμένη. (γ) L 3 = { i i c j i, j, j 2 i } Υποθέτουμ για να φτάσουμ σ αντίφαση ότι η L 3 ίναι κανονική. Τότ, σύμφωνα μ το Λήμμα της Άντλησης, υπάρχι p, το μήκος άντλησης της γλώσσας, τέτοιο ώστ κάθ λέξη της γλώσσας μ μήκος μγαλύτρο από p να ικανοποιί την ιδιότητα που πριγράφται στο Λήμμα. Ας πιλέξουμ τη λέξη w = p p c p. Τότ, σύμφωνα μ το λήμμα, w = xyz έτσι ώστ η υπολέξη xy να βρίσκται μέσα στις p πρώτς θέσις της w ( xy p) η y να ίναι μη κνή ( y ) και οποιαδήποτ πανάληψη της υπολέξης y να διατηρί την προκύπτουσα λέξη ντός της γλώσσας (xy i z L 3 ). Αφού xy p, τότ πρέπι να ισχύι ότι τόσο το x όσο και το y αποτλούνται μόνο από. Επομένως, x = λ, y = μ, w = ν p c p όπου λ+μ+ν = p. Επίσης, από το λήμμα, πρέπι να ισχύι ότι xy 2 z L 3. Αλλά, xy 2 z = λ 2μ ν p c p = λ+2μ+ν p c p = p+μ p c p και, από τον ορισμό της γλώσσας, xy 2 z L 3. Αυτό μας οδηγί σ αντίφαση και πομένως η υπόθσή μας ότι η γλώσσα L 3 ίναι κανονική ήταν σφαλμένη. (δ) L 4 ={ x {,}* η x τλιώνι σ και πριέχι το πολύ ένα ζύγος από διαδοχικά } Η γλώσσα ίναι κανονική και πριγράφται από την έκφραση ( + ) * ( + ) * ( + ) *. Λύσις Σιράς Προβλημάτων 2 Εαρινό Εξάμηνο 26 Σλίδα 6

7 ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα () L 5 = { x {,}* η x δν ίναι καρκινική λέξη } Υποθέτουμ για να φτάσουμ σ αντίφαση ότι η L 5 ίναι κανονική. Τότ, και η γλώσσα Λ = { x {,}* η x ίναι καρκινική λέξη } πρέπι να ίναι κανονική. Αυτό οφίλται στο γγονός ότι οι κανονικές γλώσσς ίναι κλιστές ως προς την πράξη του συμπληρώματος (ακολουθί η σχτική απόδιξη Βοηθητικό Λήμμα). Εντούτοις, θα δίξουμ ότι η γλώσσα Λ δν ίναι κανονική. Υποθέτουμ για να φτάσουμ σ αντίφαση ότι η Λ ίναι κανονική. Τότ, σύμφωνα μ το Λήμμα της Άντλησης, υπάρχι p, το μήκος άντλησης της γλώσσας, τέτοιο ώστ κάθ λέξη της γλώσσας μ μήκος μγαλύτρο από p να ικανοποιί την ιδιότητα που πριγράφται στο Λήμμα. Ας πιλέξουμ τη λέξη = p p p p. Τότ, σύμφωνα μ το λήμμα, = xyz έτσι ώστ η υπολέξη xy να βρίσκται μέσα στις p πρώτς θέσις της w ( xy p) η y να ίναι μη κνή ( y ) και οποιαδήποτ πανάληψη της υπολέξης y να διατηρί την προκύπτουσα λέξη ντός της γλώσσας (xy i z Λ). Αφού xy p, τότ πρέπι να ισχύι ότι τόσο το x όσο και το y αποτλούνται μόνο από. Επομένως, x = λ, y = μ, w = ν p p p όπου λ+μ+ν = p. Επίσης, από το λήμμα, πρέπι να ισχύι ότι xy 2 z Λ. Αλλά, xy 2 z = λ μ μ ν p p p = p+μ p p p και, από τον ορισμό της γλώσσας, xy 2 z Λ. Αυτό μας οδηγί σ αντίφαση και πομένως η υπόθσή μας ότι η γλώσσα Λ ίναι κανονική ήταν σφαλμένη. Συμπέρασμα: Η L 5 ίναι μη κανονική. Βοηθητικό Λήμμα: Αν μια γλώσσα ίναι κανονική, τότ και το συμπλήρωμά της αποτλί κανονική γλώσσα. Απόδιξη: Έστω Α μια κανονική γλώσσα. Τότ υπάρχι DFA που την αναγνωρίζι. Θα δίξουμ ότι υπάρχι αυτόματο που αναγνωρίζι τη γλώσσα. Για να δίξουμ το ζητούμνο ας υποθέσουμ ότι Μ = (Q, Σ, δ, q, F) ίναι ένα DFA αυτόματο που αναγνωρίζι τη γλώσσα Α. Κατασκυάζουμ το αυτόματο Ν ως Ν = (Q, Σ, δ, q, F ), F = Q F. Το αυτόματο Ν ίναι όμοιο μ το αρχικό αυτόματο Μ μ τη διαφορά ότι τλικές καταστάσις του Ν ίναι ακριβώς οι μη τλικές καταστάσις του Μ. Θα αποδίξουμ ότι w L(Ν) αν και μόνο αν w. (*) Ας υποθέσουμ λοιπόν ότι w = w w 2 w n L(N). Τότ, υπάρχι ακολουθία καταστάσων r, r,, r n του που ικανοποιί τις συνθήκς:. r = q 2. δ, για i =,,n, και 3. r n Q F Επομένως, w. Αυτό αποδικνύι την κατύθυνση της ζητούμνης πρόταση (*). Για την αντίθτη κατύθυνση, ας υποθέσουμ ότι w. Αφού το Μ ίναι ένα Το πιο πάνω γγονός συνπάγται ότι η κλάση των γλωσσών που αναγνωρίζονται από DFA ίναι κλιστή ως προς το συμπλήρωμα. Λύσις Σιράς Προβλημάτων 2 Εαρινό Εξάμηνο 26 Σλίδα 7

8 ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα νττρμινιστικό αυτόματο, υπάρχι ακολουθία καταστάσων r,r,,r n του που ικανοποιί τις συνθήκς:. r = q 2. δ, για i =,,n, αλλά, αφού w, r n F. Παρατηρούμ ότι το ίδιο μονοπάτι μφανίζται και στο αυτόματο N. Σ αυτή την πρίπτωση, αφού r n F έχουμ r n Q F, και, πομένως η λέξη w L(N). Αυτό ολοκληρώνι την απόδιξη. Άσκηση 5 [2 μονάδς] Έστω το αλφάβητο Σ = {,,2,,9} και η συνάρτηση f : Σ {,} * η οποία ορίζται ως ακολούθως. φορές Επιπρόσθτα, πκτίνουμ τη συνάρτηση f σ λέξις, f: Σ * {,} * όπως φαίνται πιο κάτω.,, Για παράδιγμα, έχουμ f(3) = και f(963) = Μ βάση αυτή τη συνάρτηση, δοθίσας μιας γλώσσας Λ ορίζουμ F(Λ) = { f(w) w Λ } Να αποδίξτ μ ακρίβια ότι η κλάση των κανονικών γλωσσών ίναι κλιστή ως προς την πράξη F. Για να δίξουμ ότι η κλάση των κανονικών γλωσσών ίναι κλιστή ως προς την πράξη F, θα δίξουμ ότι για οποιαδήποτ κανονική γλώσσα L υπάρχι κανονική έκφραση που αναγνωρίζι τη γλώσσα F(L). Ορίζουμ τη συνάρτηση g: R R ως ξής g( R ),,,,,..., g( ) g( B), g( A) g( B), * g( A), if R if R if R if R 2 if R 3 if R if R AB if R A B if R A * Λύσις Σιράς Προβλημάτων 2 Εαρινό Εξάμηνο 26 Σλίδα 8

9 ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Έστω κανονική γλώσσα Λ και κανονική έκφραση R που την πριγράφι. Θα αποδίξουμ ότι η κανονική έκφραση g(r) πριγράφι την γλώσσα F(Λ). Αυτό θα μας οδηγήσι στο συμπέρασμα ότι η γλώσσα F(Λ) ίναι κανονική. Η απόδιξη θα γίνι παγωγικά στη δομή της κανονικής έκφρασης R. Υπάρχουν οι πιο κάτω πριπτώσις. Αν η γλώσσα Λ πριγράφται από την κανονική έκφραση R =, {,,,9} τότ Λ = {} και F(Λ) = { }. Επομένως, η κανονική έκφραση g(r) πριγράφι ορθά τη γλώσσα F(Λ) και το συμπέρασμα έπται. Αν η γλώσσα Λ πριγράφται από την κανονική έκφραση R =, τότ Λ = {} και F(Λ) = {}. Επίσης, σύμφωνα μ τον πιο πάνω ορισμό, g(r) =. Επομένως, η κανονική έκφραση g(r) και πάλι πριγράφι ορθά τη γλώσσα F(Λ) και το συμπέρασμα έπται. Αν η γλώσσα Λ πριγράφται από την κανονική έκφραση R =, τότ Λ = και F(Λ) =. Επίσης, ισχύι ότι g(r) =. Επομένως, η κανονική έκφραση g(r) και πάλι πριγράφι ορθά τη γλώσσα F(Λ) και το συμπέρασμα έπται Αν η γλώσσα Λ πριγράφται από την κανονική έκφραση R = ΑΒ, τότ F(Λ) = { f(x)f(y) x L(Α) και y L(B)} = F(L(A))F(L(B)) Αφού η κανονική έκφραση g(r), σύμφωνα μ τον ορισμό της ίναι ίση μ g(r) = g(α)g(b) από την υπόθση της παγωγής, και πάλι πριγράφι ορθά τη γλώσσα F(Λ) και το συμπέρασμα έπται Αν η γλώσσα Λ πριγράφται από την κανονική έκφραση R = ΑΒ, τότ F(Λ) = F(L(Α)) F(L(Β)) Αφού η κανονική έκφραση g(r), σύμφωνα μ τον ορισμό της, ίναι ίση μ g(ab) = g(a) g(b), από την υπόθση της παγωγής, και πάλι πριγράφι ορθά τη γλώσσα F(Λ) και το συμπέρασμα έπται Αν η γλώσσα Λ πριγράφται από την κανονική έκφραση R = Α *, τότ F(Λ) = F(L(A * )) = F(L(A)) * Αφού η κανονική έκφραση g(r), σύμφωνα μ τον ορισμό της ίναι ίση μ g(α * ) = g(α) *, από την υπόθση της παγωγής, και πάλι πριγράφι ορθά τη γλώσσα F(Λ) και το συμπέρασμα έπται. Αυτό ολοκληρώνι την απόδιξη. Άσκηση 6 (onu) [2 μονάδς] Για κάθ μια από τις πιο κάτω προτάσις να αποφασίστ κατά πόσο η πρόταση ίναι αληθής ή ψυδής. Αν η πρόταση ίναι αληθής να αποδίξτ την ορθότητά της νώ αν ίναι ψυδής να δώστ κατάλληλο αντιπαράδιγμα. (α) Αν η γλώσσα Λ Λ 2 ίναι κανονική και η γλώσσα Λ ίναι ππρασμένη, τότ η γλώσσα Λ 2 ίναι κανονική. Λύσις Σιράς Προβλημάτων 2 Εαρινό Εξάμηνο 26 Σλίδα 9

10 ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Η πρόταση ίναι ψυδής. Έστω Λ = {} και Λ 2 η γλώσσα που πριέχι όλς τις καρκινικές λέξις. Τότ έχουμ ότι η Λ ίναι κανονική γλώσσα, η Λ Λ 2 = Λ ίναι κανονική γλώσσα, αλλά η Λ 2 δν ίναι κανονική γλώσσα. (β) Αν η γλώσσα Λ Λ 2 ίναι κανονική και η γλώσσα Λ ίναι κανονική και μη ππρασμένη, τότ η γλώσσα Λ 2 ίναι πίσης κανονική. Η πρόταση ίναι ψυδής. Έστω Λ = { k k πριττός ακέραιος} και Λ 2 η γλώσσα που πριέχι όλς τις καρκινικές λέξις. Τότ έχουμ ότι η Λ ίναι κανονική και μη ππρασμένη γλώσσα, η Λ Λ 2 = Λ ίναι κανονική γλώσσα, αλλά η Λ 2 δν ίναι κανονική γλώσσα. Λύσις Σιράς Προβλημάτων 2 Εαρινό Εξάμηνο 26 Σλίδα

Σειρά Προβλημάτων 2 Λύσεις

Σειρά Προβλημάτων 2 Λύσεις ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Σιρά Προβλημάτων 2 Λύσις Άσκηση Να μτατρέψτ τα πιο κάτω DFA στις κανονικές κφράσις που τα πριγράφουν χρησιμοποιώντας τη διαδικασία που πριγράφται στις διαφάνις

Διαβάστε περισσότερα

Σειρά Προβλημάτων 2 Λύσεις

Σειρά Προβλημάτων 2 Λύσεις ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Άσκηση Σιρά Προβλημάτων 2 Λύσις Να μτατρέψτ τα πιο κάτω DFA στις κανονικές κφράσις που τα πριγράφουν χρησιμοποιώντας τη διαδικασία που παρουσιάζται στις διαφάνις

Διαβάστε περισσότερα

Σειρά Προβλημάτων 2 Λύσεις

Σειρά Προβλημάτων 2 Λύσεις ΕΠΛ2: Θωρία Υπολογισμού και Πολυπλοκότητα Άσκηση Σιρά Προβλημάτων 2 Λύσις Να μτατρέψτ τo πιο κάτω NFA στην κανονική έκφραση που το πριγράφι χρησιμοποιώντας τη διαδικασία που πριγράφται στις διαφάνις 2

Διαβάστε περισσότερα

Σειρά Προβλημάτων 2 Λύσεις

Σειρά Προβλημάτων 2 Λύσεις ΕΠΛ211: Θωρία Υπολογισμού και Πολυπλοκότητα Άσκηση 1 Σιρά Προβλημάτων 2 Λύσις Να δώστ κανονικές κφράσις που να πριγράφουν τις πιο κάτω γλώσσς. (α) { w {,} * η w δν πριέχι δύο συνχόμνα όμοια γράμματα }

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Άσκηση Σιρά Προβλημάτων Λύσις Να δώστ κανονικές κφράσις που να πριγράφουν τις πιο κάτω γλώσσς. (α) { m n m, n, m+n πριττός ακέραιος} (β) {w {,} * τα πρώτα δύο σύμβολα της w, αν υπάρχουν, δν ίναι τα ίδια

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θωρία Υπολογισμού Ενδιάμση Εξέταση Ημρομηνία : Πέμπτη, 14 Μαρτίου 2019 Διάρκια : 09.00 10.30 Διδάσκουσα : Άννα Φιλίππου ΠΡΟΧΕΙΡΕΣ ΛΥΣΕΙΣ Πρόβλημα 1 [35 μονάδς]

Διαβάστε περισσότερα

Πεπερασμένα Αυτόματα. Πεπερασμένα Αυτόματα. Ορισμός. Παράδειγμα

Πεπερασμένα Αυτόματα. Πεπερασμένα Αυτόματα. Ορισμός. Παράδειγμα Ππρασμένα Αυτόματα Διδάσκοντς: Φ. Αφράτη, Δ. Φωτάκης Επιμέλια διαφανιών: Δ. Φωτάκης Σχολή Ηλκτρολόγων Μηχανικών Μηχανικών Υπολογιστών Εθνικό Μτσόβιο Πολυτχνίο Ππρασμένα Αυτόματα ίναι απλούστρς υπολογιστικές

Διαβάστε περισσότερα

Ανοικτά και κλειστά σύνολα

Ανοικτά και κλειστά σύνολα 5 Ανοικτά και κλιστά σύνολα Στην παράγραφο αυτή αναπτύσσται ο µηχανισµός που θα µας πιτρέψι να µλτήσουµ τις αναλυτικές ιδιότητς των συναρτήσων πολλών µταβλητών. Θα χριαστούµ τις έννοις της ανοικτής σφαίρας

Διαβάστε περισσότερα

Φροντιστήριο 2 Λύσεις

Φροντιστήριο 2 Λύσεις ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Άσκηση Φροντιστήριο 2 Λύσεις Ποια από τα πιο κάτω αυτόματα αποτελούν DFA επί του αλφάβητου {,}. Αιτιολογήστε τις απαντήσεις σας. (i) (ii) (iii) (iv) (v), (vi),

Διαβάστε περισσότερα

3.3 Το συναρτησοειδές του Minkowski και μετρικοποιησιμότητα σε τοπικά κυρτούς χώρους. x y E (υποπροσθετικότητα ) ) και p( x) p( x)

3.3 Το συναρτησοειδές του Minkowski και μετρικοποιησιμότητα σε τοπικά κυρτούς χώρους. x y E (υποπροσθετικότητα ) ) και p( x) p( x) 4 3.3 Το συναρτησοιδές του Mikowski και μτρικοποιησιμότητα σ τοπικά κυρτούς χώρους. Υπνθυμίζουμ ότι αν E διανυσματικός χώρος, μια συνάρτηση : E R λέγται υπογραμμικό συναρτησοιδές αν (ι) ( λ) λ ( ) =, λ

Διαβάστε περισσότερα

Συµπάγεια και οµοιόµορφη συνέχεια

Συµπάγεια και οµοιόµορφη συνέχεια 35 Συµπάγια και οµοιόµορφη συνέχια Μια πολύ σηµαντική έννοια στην Ανάλυση ίναι αυτή της συµπάγιας. Όπως θα δούµ τα συµπαγή υποσύνολα του Ευκλίδιου χώρου R συµπριφέρονται λίγο πολύ ως ππρασµένα σύνολα.

Διαβάστε περισσότερα

Γλώσσες Προγραμματισμού Μεταγλωττιστές. Λεκτική Ανάλυση II

Γλώσσες Προγραμματισμού Μεταγλωττιστές. Λεκτική Ανάλυση II Γλώσσς Προγραμματισμού Μταγλωττιστές Λκτική Ανάλυση II Πανπιστήμιο Μακδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Ηλίας Σακλλαρίου Δομή Ππρασμένα Αυτόματα Νττρμινιστικά Ππρασμένα Αυτόματα Μη-Νττρμινιστικά Ππρασμένα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητα Ενδιάμεση Εξέταση Ημερομηνία : Παρασκευή, 17 Μαρτίου 2017 Διάρκεια : 9.00 10.30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο:

Διαβάστε περισσότερα

Φροντιστήριο 9 Λύσεις

Φροντιστήριο 9 Λύσεις Άσκηση 1 Φροντιστήριο 9 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {a,b} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων Λύσεις Άσκηση Ορίζουμε τη συναρμογή δύο γλωσσών Α και Β ως ΑΒ = { uv u A, v B }. (α) Έστω Α = {α,β,γ} και Β =. Να περιγράψετε τη γλώσσα ΑΒ. (β) Θεωρήστε τις γλώσσες L, M και N. Να δείξετε

Διαβάστε περισσότερα

και ( n) 1 R. Αν ε > 0, επιλέγουµε για κάθε k 1 ένα καλύπτουµε τότε την ευθεία Α µε την ακολουθία των ορθογωνίων .

και ( n) 1 R. Αν ε > 0, επιλέγουµε για κάθε k 1 ένα καλύπτουµε τότε την ευθεία Α µε την ακολουθία των ορθογωνίων . 80 Σύνολα µέτρου µηδέν στον και ο χαρακτηρισµός του Lebesgue των iema ολοκληρωσίµων συναρτήσων 7. Ορισµός. Έστω για κάθ 0 Α, λέµ ότι το Α έχι διάστατο µέτρο µηδέν αν, > υπάρχι ακολουθία ανοικτών διάστατων

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { a i b j c k d m i, j, k, m 0 και i + j = k + m } (β) { uxvx rev u,v,x {0,1,2} + και όλα

Διαβάστε περισσότερα

Φροντιστήριο 2 Λύσεις

Φροντιστήριο 2 Λύσεις Άσκηση Φροντιστήριο 2 Λύσεις Ποια από τα πιο κάτω αυτόματα αποτελούν DFA επί του αλφάβητου {,}. Αιτιολογήστε τις απαντήσεις σας. (i) (ii) (iii) (iv) (v), (vi), (i) Όχι, δεν υπάρχει αρχική κατάσταση. (ii)

Διαβάστε περισσότερα

3.2 Τοπικά κυρτοί χώροι-βασικές ιδιότητες.

3.2 Τοπικά κυρτοί χώροι-βασικές ιδιότητες. 32 3.2 Τοπικά κυρτοί χώροι-βασικές ιδιότητς. Στην παράγραφο αυτή πρόκιται να ισαγάγουμ μια σημαντική, ίσως την σημαντικότρη, κλάση τοπολογικών γραμμικών χώρων. Αυτή ίναι η κλάση των τοπικά κυρτών χώρων

Διαβάστε περισσότερα

3.3 Το συναρτησοειδές του Minkowski και μετρικοποιησιμότητα σε τοπικά κυρτούς χώρους. x y E (υποπροσθετικότητα ) ) και p( x) p( x)

3.3 Το συναρτησοειδές του Minkowski και μετρικοποιησιμότητα σε τοπικά κυρτούς χώρους. x y E (υποπροσθετικότητα ) ) και p( x) p( x) 4 3.3 Το συναρτησοιδές του Mikowski και μτρικοποιησιμότητα σ τοπικά κυρτούς χώρους. Υπνθυμίζουμ ότι αν E διανυσματικός χώρος, μια συνάρτηση : E R λέγται υπογραμμικό συναρτησοιδές αν (ι) ( λ) λ ( ) =, λ

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Κανονικές Εκφράσεις (1.3) Τυπικός Ορισμός Ισοδυναμία με κανονικές γλώσσες Μη Κανονικές

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { xyxy rev x {a, b}, y {a, b} * } (α) Μια γραμματική για τη γλώσσα έχει ως εξής: S as a

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 5: Κανονικές Εκφράσεις

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 5: Κανονικές Εκφράσεις ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 5: Κανονικές Εκφράσεις Τι θα κάνουμε σήμερα Κλειστότητα Κανονικών Πράξεων (1.2.3) Εισαγωγή στις Κανονικές Εκφράσεις Τυπικός ορισμός της κανονικής

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { a k b m c n k < m ή m > 2n, όπου k,m,n 0 } Μια γραμματική για τη γλώσσα έχει ως εξής:

Διαβάστε περισσότερα

Άσκησηη 1. (α) Το αυτόματο. (γ) Να δείξετε όλα aabbb. Λύση. λέξεις. αυτόματο. (β) Τυπικά. μεταβάσεων δ. ορίζεται. (γ) Θα δείξουμε τα.

Άσκησηη 1. (α) Το αυτόματο. (γ) Να δείξετε όλα aabbb. Λύση. λέξεις. αυτόματο. (β) Τυπικά. μεταβάσεων δ. ορίζεται. (γ) Θα δείξουμε τα. ΕΠΛ211: : Θεωρία Υπολογισμού και Πολυπλοκότητα Φροντιστήριο 7 Λύσεις Άσκησηη 1 Θεωρήστε το πιο κάτω αυτόματο στοίβας: (α) Να εξηγήσετε με λόγια ποια γλώσσαα αναγνωρίζεται από τοο αυτόματο. (β) Να δώσετε

Διαβάστε περισσότερα

Μπορείτε να δείξετε ότι αυξανομένης της θερμοκρασίας το κλάσμα των μορίων του συστήματος που βρίσκεται στην βασική ενεργειακή κατάσταση θα μειώνεται;

Μπορείτε να δείξετε ότι αυξανομένης της θερμοκρασίας το κλάσμα των μορίων του συστήματος που βρίσκεται στην βασική ενεργειακή κατάσταση θα μειώνεται; Έστω μακροσκοπικό σύστημα αποτούμνο από μόρια τα οποία μπορούν να βρθούν σ ένα σύνοο μη κφυισμένων καταστάσων μ νέργια, όπου,, 2, 3, 4,. Σ προηγούμνο παράδιγμα δίξαμ ότι η κυρίαρχη διαμόρφωση νός τέτοιου

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Να βρείτε το σφάλμα στην πιο κάτω απόδειξη. Ισχυρισμός: Όλα τα βιβλία που έχουν γραφτεί στη Θεωρία Υπολογισμού έχουν τον ίδιο

Διαβάστε περισσότερα

Φροντιστήριο 10 Λύσεις

Φροντιστήριο 10 Λύσεις Άσκηση 1 Φροντιστήριο 10 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {0,1} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.

Διαβάστε περισσότερα

Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα

Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα ΕΥΘΕΙΑ Γωνία που σχηματίζι η μ τον άξονα. Έστω O ένα σύστημα συντταγμένων στο πίπδο και μια υθία που τέμνι τον άξονα στο σημίο Α. Α ω Α ω Τη γωνία ω που διαγράφι ο άξονας όταν στραφί γύρω από το Α κατά

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Επανάληψη Μαθήματος Το Μάθημα σε μια Διαφάνεια Υπολογιστικά μοντέλα Κανονικές Γλώσσες Ντετερμινιστικά Αυτόματα Μη Ντετερμινιστικά Αυτόματα Κανονικές Εκφράσεις

Διαβάστε περισσότερα

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ Έστω A ένα υποσύνολο του Ονομάζουμ πραγματική συνάρτηση μ πδίο ορισμού το A, μια διαδικασία f, μ την οποία, κάθ στοιχίο A αντιστοιχίζται σ ένα μόνο πραγματικό αριθμό Το

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Έστω αλφάβητο Σ και γλώσσες Λ, Λ 2, Λ επί του αλφάβητου αυτού. Να διερευνήσετε κατά πόσο ισχύει κάθε μια από τις πιο κάτω σχέσεις.

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις ΕΠΛ: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Θεωρείστε τις γλώσσες Α = { n n } και Β = {w η w είναι λέξη επί του αλφαβήτου {,} τ.ώ. w }. (α) Για κάθε μια από τις πιο κάτω γλώσσες

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { ww w {a,b}* }. (β) Να διατυπώσετε την τυπική περιγραφή

Διαβάστε περισσότερα

Φροντιστήριο 7 Λύσεις

Φροντιστήριο 7 Λύσεις Άσκηση 1 Θεωρείστε το πιο κάτω αυτόματο στοίβας: Φροντιστήριο 7 Λύσεις (α) Να εξηγήσετε με λόγια ποια γλώσσα αναγνωρίζεται από το αυτόματο. (β) Να δώσετε τον τυπικό ορισμό του αυτομάτου. (γ) Να δείξετε

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA) ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA) Τι θα κάνουμε σήμερα Εισαγωγή στα Μη Ντετερμινιστικά Πεπερασμένα Αυτόματα Τυπικός

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης νός συστήματος συντταγμένων για τον προσδιορισμό της θέσης νός σημίου πάνω σ μια πιφάνια προέρχται από την Γωγραφία και ήταν γνωστή στους αρχαίους

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητα Ενδιάμεση Εξέταση Ημερομηνία : Σάββατο, 15 Μαρτίου 2014 Διάρκεια : 9.30 11.30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο:

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { a m b n c p m,n,p 0 και είτε m + n = p είτε m = n + p } (β) { xx rev yy rev x, y {a,b}

Διαβάστε περισσότερα

4.1 ΕΥΘΕΙΕΣ ΚΑΙ ΕΠΙΠΕ Α ΣΤΟ ΧΩΡΟ

4.1 ΕΥΘΕΙΕΣ ΚΑΙ ΕΠΙΠΕ Α ΣΤΟ ΧΩΡΟ 1 4.1 ΥΙΣ ΚΙ Ι ΣΤΟ ΧΩΡΟ ΩΡΙ 1. Το πίπδο: ίναι έννοια πρωταρχική για τα µαθηµατικά δηλαδή έννοια που δν πιδέχται ορισµό. H ικόνα του πιπέδου ίναι γνωστή από την µπιρία µας. Την έχουµ ταυτίσι µ τη µορφή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητα Ενδιάμεση Εξέταση Ημερομηνία : Κυριακή, 15 Μαρτίου 2015 Διάρκεια : 15.00 17.00 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο:

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες () Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Πεπερασμένα Αυτόματα (Κεφάλαιο., Sipser) Ορισμός πεπερασμένων αυτομάτων και ορισμός του

Διαβάστε περισσότερα

Ασκήσεις από παλιές εξετάσεις

Ασκήσεις από παλιές εξετάσεις Άσκηση 2 - Τελική εξέταση 2012 Ασκήσεις από παλιές εξετάσεις (α) [10 μονάδες] Να μετατρέψετε το πιο κάτω NFA σε ένα ισοδύναμο DFA χρησιμοποιώντας την κατασκευή που μελετήσαμε στο μάθημα. a a q 0 a, ε q

Διαβάστε περισσότερα

Συμπλήρωμα 2 εδαφίου 3.3: Το γενικό μεταβολικό πρόβλημα για συναρτησιακό ολοκληρωτικού τύπου με ολοκληρωτέα συνάρτηση F κατά 2

Συμπλήρωμα 2 εδαφίου 3.3: Το γενικό μεταβολικό πρόβλημα για συναρτησιακό ολοκληρωτικού τύπου με ολοκληρωτέα συνάρτηση F κατά 2 ΚΕΦ. 3 Η Αρχή των Ήρωνος-Fermat 3.3-8 Συμπλήρωμα 2 δαφίου 3.3: Το νικό μταβολικό πρόβλημα ια συναρτησιακό ολοκληρωτικού τύπου μ ολοκληρωτέα συνάρτηση F κατά 2 τμήματα C, ορισμένο πί καμπυλών που τέμνουν

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων Λύσεις Άσκηση Έστω αλφάβητο Σ και γλώσσες Λ, Λ επί του αλφάβητου αυτού. Να διερευνήσετε κατά πόσο ισχύει κάθε μια από τις πιο κάτω σχέσεις. Σε περίπτωση που μια σχέση ισχύει να το αποδείξετε,

Διαβάστε περισσότερα

Λύσεις σετ ασκήσεων #6

Λύσεις σετ ασκήσεων #6 ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Γ. Κοντογιάννης Πέμπτη 8 Μαΐου 07 Φυλλάδιο #4 Λύσις στ ασκήσων #6. Θόρυβος od. Έστω ότι ένα κανάλι έχι αλφάβητο ισόδου και αλφάβητο ξόδου το {0}. Όπως στο προηγούμνο στ η έξοδος του

Διαβάστε περισσότερα

Παράρτηµα Γ Eνότητα Γ.1 Απόδειξη θεωρήµατος 1.5 Kεφαλαίου 1.

Παράρτηµα Γ Eνότητα Γ.1 Απόδειξη θεωρήµατος 1.5 Kεφαλαίου 1. Παράρτηµα Γ νότητα Γ. Απόδιξη θωρήµατος.5 Kφαλαίου. στω f ίναι συνχής και πραγµατική συνάρτηση στο κανονικοποιηµένη (αφαιρώντας µια σταθρά) ώστ f ( x) dx= u = Pr f αρµονική µ (,) v (,) =. Τότ η. στω u

Διαβάστε περισσότερα

Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κανονικές Γλώσσες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κανονικές Γλώσσες Κανονική γλώσσα αν

Διαβάστε περισσότερα

2018 Φάση 1 ιαγωνίσµατα Προετοιµασίας ΜΑΘΗΜΑΤΙΚΑ. Β' Γενικού Λυκείου. Θετικών Σπουδών. Παρασκευή 5 Ιανουαρίου 2018 ιάρκεια Εξέτασης: 2 ώρες ΘΕΜΑΤΑ

2018 Φάση 1 ιαγωνίσµατα Προετοιµασίας ΜΑΘΗΜΑΤΙΚΑ. Β' Γενικού Λυκείου. Θετικών Σπουδών. Παρασκευή 5 Ιανουαρίου 2018 ιάρκεια Εξέτασης: 2 ώρες ΘΕΜΑΤΑ ΘΕΜΑ Α 018 Φάση 1 ιαγωνίσµατα Προτοιµασίας ΜΑΘΗΜΑΤΙΚΑ Β' νικού Λυκίου Θτικών Σπουδών Παρασκυή 5 Ιανουαρίου 018 ιάρκια Εξέτασης: ώρς Α1. Δίνονται τα διανύσματα α, β, γ ΘΕΜΑΤΑ. Να δίξτ ότι ισχύι α β + γ

Διαβάστε περισσότερα

Περίληψη Προηγούμενου Μαθήματος Κανάλια επικοινωνίας με θόρυβο και η χωρητικότητά τους

Περίληψη Προηγούμενου Μαθήματος Κανάλια επικοινωνίας με θόρυβο και η χωρητικότητά τους ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Γ Κοντογιάννης Πέμπτη Μαΐου 7 Φυλλάδιο #3 Πρίληψη Προηγούμνου Μαθήματος Κανάλια πικοινωνίας μ θόρυβο και η χωρητικότητά τους Πώς πριγράφουμ ένα κανάλι πικοινωνίας; Τι θα πι «θόρυβος»;

Διαβάστε περισσότερα

Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα

Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα Κανονικές Γλώσσες Κανονικές Γλώσσες Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Κανονική γλώσσα αν παράγεται από κανονική γραμματική. Παραγωγές P (V Σ) Σ * ((V Σ) ε) Παραγωγές μορφής:

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 6: Μη Κανονικές Γλώσσες

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 6: Μη Κανονικές Γλώσσες ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 6: Μη Κανονικές Γλώσσες Τι θα κάνουμε σήμερα Εισαγωγικά Το Λήμμα της Άντλησης για κανονικές γλώσσες Παραδείγματα 1 Πότε μια γλώσσα δεν είναι κανονική;

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { x x η τιμή της αριθμητικής έκφρασης 10 2n + 10 n + 1, n 1} (β) { a i b j c k d m i, j,

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { w#z w, z {a,b}* και η z είναι υπολέξη της w}. Συγκεκριμένα,

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) {0 n 1 n n > 0} {0 n 1 2n n > 0} (β) {w {a,b} * η w ξεκινά και τελειώνει με το ίδιο σύμβολο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΜΕΡΣ ο ΕΩΜΕΤΡΙ ΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙ : ΥΕΡΙΝΣ ΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΣΚΗΣΕΙΣ ΜΕΡΣ 1ο : ΕΩΜΕΤΡΙ ΚΕΦΛΙ 1ο ΣΙΚΕΣ ΕΩΜΕΤΡΙΚΕΣ ΕΝΝΙΕΣ νακφαλαίωση σημίο άπιρς υθίς από υθύγραμμο τμήμα Δ παράλληλα

Διαβάστε περισσότερα

( ) y ) άγνωστη συνάρτηση, f (, )

( ) y ) άγνωστη συνάρτηση, f (, ) 6. Ι ΙΑΣΑΑ ΠΡΟΒΛΗΜΑΑ ΣΥΝΟΡΙΑΚΝ ΙΜΝ 6. Πρόβληµατα πδίου σ διαστάσις Η νότητα αυτή αναφέρται σ προβλήµατα πδίου, όπου άγνωστη συνάρτηση ίναι µία βαθµωτή συνάρτηση. α προβλήµατα αυτά έχουν σηµαντικές φαρµογές

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { w w = (ab) 2m b m (ba) m, m 0 } (β) Να διατυπώσετε

Διαβάστε περισσότερα

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης.

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης. Γενικές Παρατηρήσεις Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα () Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Υπάρχουν µη κανονικές γλώσσες, π.χ., B = { n n n }. Αυτό

Διαβάστε περισσότερα

# Κάθε σημείο που οι συντεταγμένες του. Μεθοδολογία στην ευθεία γραμμή ΜΕΘΟΔΟΛΟΓΙΑ ΓΡΑΜΜΗ

# Κάθε σημείο που οι συντεταγμένες του. Μεθοδολογία στην ευθεία γραμμή ΜΕΘΟΔΟΛΟΓΙΑ ΓΡΑΜΜΗ Μθοδολογία στην υθία γραμμή Κοινά σημία δύο γραμμών. Για να βρούμ τις συντταγμένς του σημίου δύο γραμμών, λύνουμ το σύστημα των ξισώσών τους. ΓΡΑΜΜΗ Μια ξίσωση της μορφής φ(χ,ψ)= λέγται ξίσωση μιας πίπδης

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { w {(, )} * οι παρενθέσεις στην w είναι ισοζυγισμένες } (β) { a k b m c 2m a k k > 0,

Διαβάστε περισσότερα

r p A n,m = {x X : f n (x) f m (x) f n f m }, sup f n (x) f m (x) f n f m

r p A n,m = {x X : f n (x) f m (x) f n f m }, sup f n (x) f m (x) f n f m Αρμονική Ανάλυση 4-5. Εστω X, A, µ χώρος μέτρου μ µx

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει την ακόλουθη γλώσσα. { a n b n+2 c n 2 n 2 } Λύση: H ζητούμενη μηχανή Turing μπορεί να

Διαβάστε περισσότερα

Κεφάλαιο 4: Πυροηλεκτρισμός, Πιεζο- ηλεκτρισμός, Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών

Κεφάλαιο 4: Πυροηλεκτρισμός, Πιεζο- ηλεκτρισμός, Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μτσόβιο Πολυτχνίο Διηλκτρικές, Οπτικές, Μαγνητικές Ιδιότητς Υλικών Κφάλαιο 4: Πυροηλκτρισμός, Πιζο- ηλκτρισμός, Σιδηροηλκτρισμός Λιαροκάπης Ευθύμιος

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { R η R είναι μια κανονική έκφραση η οποία παράγει μια μη πεπερασμένη γλώσσα} (β) { G η G είναι μια CFG η οποία

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 2: Μαθηματικό Υπόβαθρο Τι θα κάνουμε σήμερα Συναρτήσεις & Σχέσεις (0.2.3) Γράφοι (Γραφήματα) (0.2.4) Λέξεις και Γλώσσες (0.2.5) Αποδείξεις (0.3) 1

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G 1, G 2 οι G 1 και G 2 είναι δύο CFG που παράγουν μια κοινή λέξη μήκους 144 } (β) { D,k το D είναι ένα DFA

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ Πριοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ A. ΓΡΑΜΜΙΚΗ ΕΞΙΣΩΣΗ ΜΕ ΔΥΟ ΑΓΝΩΣΤΟΥΣ Γραμμική ξίσωση μ δύο αγνώστους ονομάζται κάθ ξίσωση της μορφής: α + βψ = γ (), μ α,β,γ π.χ. ψ =, =, ψ =, κλπ.

Διαβάστε περισσότερα

Αριθµητική Ανάλυση & Προγραµµατισµός Ε ιστηµονικών Εφαρµογών

Αριθµητική Ανάλυση & Προγραµµατισµός Ε ιστηµονικών Εφαρµογών Τ.Ε.Ι. Θσσαλονίκης Τµήµα Πληροφορικής Αριθµητική Ανάλυση & Προγραµµατισµός Ε ιστηµονικών Εφαρµογών Θωρία Παραδίγµατα και Άλυτς Ασκήσις Γουλιάνας Κώστας Ε ίκουρος Καθηγητής eml : gul@t.tethe.gr Ιστοσλίδα

Διαβάστε περισσότερα

φ = ω Β=Γ Α= Β=Ε Γ=Ζ φ Ο

φ = ω Β=Γ Α= Β=Ε Γ=Ζ φ Ο 1 Η Π ΕΙΞΗ ΣΤΗΝ ΕΥΚΛΕΙ ΕΙ ΕΩΜΕΤΡΙ. ΩΝΙΕΣ ΙΣΕΣ ια να αποδίξουμ ότι δύο γωνίς ίναι ίσς πρέπι να αποδίξουμ: 1. Ότι ίναι άθροισμα ή διαφορά γωνιών αντίστοια ίσων. α = β α+ γ = β + δ ν τότ γ = δ α γ = β δ.

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Έστω αλφάβητο Σ και γλώσσες Λ 1, Λ 2 επί του αλφάβητου αυτού. Να διερευνήσετε κατά πόσο ισχύει κάθε μια από τις πιο κάτω σχέσεις. Σε περίπτωση που μια σχέση ισχύει να

Διαβάστε περισσότερα

όπου n είναι ο συνολικός αριθμός γραμμομορίων του συστήματος (που συμπεριλαμβάνει και τα τυχόν αδρανή συστατικά), Ή ακόμα και τη σύσταση κατά βάρος

όπου n είναι ο συνολικός αριθμός γραμμομορίων του συστήματος (που συμπεριλαμβάνει και τα τυχόν αδρανή συστατικά), Ή ακόμα και τη σύσταση κατά βάρος Κφάλαιο Στοιχιομτρία αντιδράσων. Σύσταση μιγμάτων αντιδρώντων Ας υποθέσουμ πως μια χημική αντίδραση συμβαίνι μέσα σ μια φάση. Η κατάσταση της κάθ φάσης καθορίζται από την πίση, τη θρμοκρασία Τ, και τη

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { n 3 } (α) H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την επτάδα Q,

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { a 2n b n c 3n n 2 } : H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { D το D είναι ένα DFA το οποίο αποδέχεται όλες τις λέξεις στο Σ * } (α) Για να διαγνώσουμε το πρόβλημα μπορούμε

Διαβάστε περισσότερα

[Ολοκληρωτική μορφή του νόμου του Gauss στο κενό ή τον αέρα]

[Ολοκληρωτική μορφή του νόμου του Gauss στο κενό ή τον αέρα] Παν/μιο Πατρών Τμήμα Φυσικής. Μάθημα : Ηλκτρομαγνητισμός Ι (Υποχρωτικό 3 ου Εξαμήνου) ΠΝΕΠΙΣΤΗΜΙΟ ΠΤΡΩΝ - ΤΜΗΜ ΦΥΣΙΚΗΣ ΜΘΗΜ : HΛΕΚΤΡΟΜΓΝΗΤΙΣΜΟΣ Ι (Υποχρωτικό 3 ου Εξαμήνου) Διδάσκων :Δ.Σκαρλάτος, Επίκουρος

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων Λύσεις Άσκηση Έστω αλφάβητο Σ και γλώσσες Α, Β επί του αλφάβητου αυτού. Για κάθε μια από τις πιο κάτω περιπτώσεις να διερευνήσετε κατά πόσο Γ Δ, ή, Δ Γ, ή και τα δύο. Σε περίπτωση, που

Διαβάστε περισσότερα

Στοιχεία από τη Γεωμετρία του χώρου (αναλυτικά στο βιβλίο: Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου)

Στοιχεία από τη Γεωμετρία του χώρου (αναλυτικά στο βιβλίο: Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου) Στοιχία από τη Γωμτρία του χώρου (αναλυτικά στο βιβλίο: Ευκλίδια Γωμτρία Α και Β Ενιαίου Λυκίου) Σχήματα των οποίων τα σημία δν βρίσκονται όλα στο ίδιο πίπδο ονομάζονται γωμτρικά στρά (π.χ. σφαίρα, κύλινδρος,

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 10: Παιχνίδια με ελλιπή πληροφόρηση. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 10: Παιχνίδια με ελλιπή πληροφόρηση. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 0: Παιχνίδια μ λλιπή πληροφόρηση Ρφανίδης Ιωάννης Άδις Χρήσης Το παρόν κπαιδυτικό υλικό υπόκιται σ άδις χρήσης Creative Commons. ια κπαιδυτικό υλικό, όπως ικόνς, που υπόκιται σ άλλου τύπου άδιας

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα {1010 2 10 3 10 n 1 10 n 1 n 1}. (β) Να διατυπώσετε

Διαβάστε περισσότερα

6.3 Η ΣΥΝΑΡΤΗΣΗ f(x) = αx + β

6.3 Η ΣΥΝΑΡΤΗΣΗ f(x) = αx + β 1 6.3 Η ΣΥΝΡΤΗΣΗ f() = α + β ΘΕΩΡΙ 1. Η πρίφηµη γωνία ω Έστω υθία που τέµνι τον άξονα σ σηµίο. Στρέφουµ την ηµιυθία κατά θτική φορά µέχρι να πέσι πάνω στην. Η γωνία ω που διαγράφται λέγται γωνία που σχηµατίζι

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Πιο κάτω υπάρχει ένα σχεδιάγραμμα που τοποθετεί τις κλάσεις των κανονικών, ασυμφραστικών, διαγνώσιμων και αναγνωρίσιμων γλωσσών μέσα στο σύνολο όλων των γλωσσών. Ακολουθούν

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ( 2.1)

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ( 2.1) ΚΕΦ 2 ο : H υθία στο πίπδο ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ( 2.1) Εξίσση γραµµής C του πιπέδου: Είναι µια ξίσση µ δύο αγνώστους x, που έχι τις ιδιότητς i) Oι συντταγµένς κάθ σηµίου της γραµµής C παληθύουν την ξίσση και

Διαβάστε περισσότερα

(4) γενικής λύσης το x με το -x. και θα έχουμε : y ομ (x)=c 1 (-x) -1 +c 2 (-x) 3

(4) γενικής λύσης το x με το -x. και θα έχουμε : y ομ (x)=c 1 (-x) -1 +c 2 (-x) 3 0 ΕΞΙΣΩΣΕΙΣ ΤΟΥ EULER Ορισμός : Οι γραμμικές διαφορικές ξισώσις, των οποίων οι συντλστές ίναι δυνάμις του βαθμού ίσου μ την τάξη της αντίστοιχης παραγώγου, ονομάζονται ξισώσις του Eule Πχ η ομογνής ξίσωση

Διαβάστε περισσότερα

Η θεωρία στην ευθεία σε ερωτήσεις - απαντήσεις

Η θεωρία στην ευθεία σε ερωτήσεις - απαντήσεις Η θρία στην υθία σ ρτήσις - απαντήσις Τι ονομάζουμ ξίσση γραμμής Μια ξίσση μ δύο αγνώστους λέγται ξίσση μιας γραμμής C, όταν οι συντταγμένς τν σημίν της C, και μόνο αυτές, την παληθύουν Ποιό ίναι το βασικό

Διαβάστε περισσότερα

ΣΕΤ ΑΣΚΗΣΕΩΝ

ΣΕΤ ΑΣΚΗΣΕΩΝ ΣΕΤ ΑΣΚΗΣΕΩΝ 4.4.07. α) Ποια ίναι η σχέση μταξύ των οικονομιών κλίμακας και αποδόσων κλίμακας; β) Πως μτράμ την έκταση των οικονομιών κλίμακας; ΛΥΣΗ α) Οι οικονομίς κλίμακας και οι αποδόσις κλίμακας ίναι

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αυτόματα Στοίβας (2.2) Τυπικός Ορισμός Παραδείγματα Ισοδυναμία με Ασυμφραστικές

Διαβάστε περισσότερα

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25)

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος των BellmanFord Ο αλγόριθµος του Dijkstra ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 61

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης. Επανάληψη Εαρινό Εξάμηνο 2019 Σελίδα 1

Ασκήσεις Επανάληψης. Επανάληψη Εαρινό Εξάμηνο 2019 Σελίδα 1 Ασκήσεις Επανάληψης Άσκηση 1 (Τελική Εξέταση 5/015) Να δείξετε ότι η πιο κάτω γλώσσα δεν είναι διαγνώσιμη. { Μ L(M) {ΘΕΩΡΙΑ, ΥΠΟΛΟΓΙΣΜΟΥ} και L(M) 3} (Για την αναγωγή μπορείτε να χρησιμοποιήσετε τη γνωστή

Διαβάστε περισσότερα

Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27)

Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27) Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: ίκτυα ροής και το πρόβληµα της µέγιστης ροής Η µεθοδολογία Ford-Fulkerson Ο αλγόριθµος Edmonds-Karps ΕΠΛ 232

Διαβάστε περισσότερα

Σχεδίαση Γλωσσών Προγραμματισμού Λεξική Ανάλυση ΙΙ. Εαρινό Εξάμηνο Lec 07 & & 05/03/2019 Διδάσκων: Γεώργιος Χρ.

Σχεδίαση Γλωσσών Προγραμματισμού Λεξική Ανάλυση ΙΙ. Εαρινό Εξάμηνο Lec 07 & & 05/03/2019 Διδάσκων: Γεώργιος Χρ. Σχδίαση Γλωσσών Προγραμματισμού Λξική Ανάλυση ΙΙ Εαρινό Εξάμηνο 2018-2019 Lec 07 & 08 04 & 05/03/2019 Διδάσκων: Γώργιος Χρ. Μακρής Γννήτρις λξικής ανάλυσης (scanner generators) Λιτουργία Λξικού Αναλυτή

Διαβάστε περισσότερα

Κεφάλαιο 2: Μετάδοση θερμότητας με ΑΚΤΙΝΟΒΟΛΙΑ

Κεφάλαιο 2: Μετάδοση θερμότητας με ΑΚΤΙΝΟΒΟΛΙΑ Κφάλαιο : Μτάδοση θρμότητας μ ΑΚΤΙΝΟΒΟΛΙΑ Συντλστής όψως Στο προηγούμνο κφάλαιο μλτήσαμ κυρίως τις ιδιότητς ακτινοβολίας που κπέμπται, απορροφάται και αντανακλάται από μία πιφάνια Τώρα ξτάζουμ την ανταλλαγή

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { xyw 1w 2 x, y {a, b}, w 1 = a n, w 2 = b 2n, όπου, αν x=y=a, τότε n = 2k, διαφορετικά

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Μη Ασυμφραστικές Γλώσσες (2.3) Λήμμα Άντλησης για Ασυμφραστικές Γλώσσες Παραδείγματα

Διαβάστε περισσότερα

Σχεδίαση µε τη χρήση Η/Υ

Σχεδίαση µε τη χρήση Η/Υ Σχδίαση µ τη χρήση Η/Υ Ε Φ Α Λ Α Ι Ο 1 0 Ο Σ Τ Ο Ι Χ Ε Ι Α Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ Τ Ο Υ Χ Ω Ρ Ο Υ Ρ Λ Ε Ω Ν Ι Α Σ Α Ν Θ Ο Π Ο Υ Λ Ο Σ, Ε Π Ι Ο Υ Ρ Ο Σ Α Θ Η Γ Η Τ Η Σ Τ Μ Η Μ Α Ι Ο Ι Η Σ Η Σ Α Ι Ι Α Χ Ε Ι

Διαβάστε περισσότερα

T.E.I. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ

T.E.I. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ T.E.I. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓΑΣΤΗΡΙΟ «ΗΛΕΚΤΡΟΝΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΦΑΣΜΑΤΟΣΚΟΠΙΑΣ» ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6: ΜΕΤΡΗΣΕΙΣ ΥΛΙΚΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΔΙΑΤΑΞΗΣ ΔΙΗΛΕΚΤΡΙΚΗΣ ΦΑΣΜΑΤΟΣΚΟΠΙΑΣ ΥΨΗΛΩΝ

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Σημιώσις για το μάθημα ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ε. Ε. Νισταζάκης Τμήμα Στατιστικής και Αναλογιστικής Επιστήμης Πανπιστήμιο Αιγαίου ΠΕΡΙΕΧΟΜΕΝΑ Κφάλαιο ο : ΕΙΣΑΓΩΓΗ 5.. Μ τι ασχολίται η αριθμητική

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Διπλωματική Εργασία Χώροι ημισωτρικού γινομένου και Birkhoff-James -ορθογωνιότητα ΧΑΣΑΠΗ Π. ΣΤΑΜΑΤΙΝΑ

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα {w 1w 2 w 1 {0,1} * και w 2 = 0 k 1 m όπου k και m

Διαβάστε περισσότερα