Kinematics ( ) Deformation Mapping. Eulerian/Lagrangian descriptions of motion. Deformation Gradient. x const. i ik k. u(x) e 2. e 1. e 3.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Kinematics ( ) Deformation Mapping. Eulerian/Lagrangian descriptions of motion. Deformation Gradient. x const. i ik k. u(x) e 2. e 1. e 3."

Transcript

1 Knematcs Deformaton Mappng y = x + u ( x, x, x,) t 3 Euleran/Lagrangan descrptons of moton = + = = t x = const t e y u y x u ( x, t) v ( x, t) y y = + = = t x = const t x = const x Orgnal Confguraton y x u ( y, t) v ( y, t) a ( y, t) y u(x) Confguraton δ u yk u y v (,) v (,) k = = a y t = + vk y t yk t t x const y= const t t x const y= const y = = k Deformaton Gradent y ( ( )) y= x+ ux = F ( ) u or = x + u = δ + = F x x x dy = F dx dy = F dx k k e dx x Orgnal Confguraton u(x+dx) u(x) dy Confguraton

2 Knematcs Sequence of deformatons e dx x u () (x) y dy u () (y) z dz Orgnal Confguraton After frst deformaton After second deformaton () () () () dz = F dx wth F= F F or dz = Fdx F = Fk Fk Lagrange Stran T E= ( F F I) or E = ( Fk Fk δ ) ( δl) 0 δ l l 0 0 l0 l l l mem = E mm = = + e l 0 m Orgnal Confguraton l Confguraton

3 Knematcs Volume Changes dv det ( ) dv = F = J 0 e dy dv 0 dx dz dv dr dv dw Undeformed Area Elements T k k 0 dan= JF da n dan = JF n da e da 0 n 0 dp (n) 0 u(x) n dp (n) da x Orgnal Confguraton t Confguraton e Infntesmal Stran Approxmates L-stran T ( ( ) ) or u u ε= u + u ε = + x x y B u u O uk u k u u E = ε x x x x x x l 0 C l 0 A x y l 0 (+ε ) yy O l 0 B π/ γ xy (+ε ) xx A x C elated to Engneerng Strans ε = ε xx = εyy ε ε = ε = γxy / = γyx /

4 Prncpal values/drectons of Infntesmal Stran or ε () () en () () klnl = en l ε n = Knematcs e n () n () n () Orgnal Confguraton Ι+ε n () Infntesmal rotaton T ( ( ) ) or u u w = u u w = x x Decomposton of nfntesmal moton n () Ι+ε n () I+w u x = ε + w e n () Orgnal Confguraton n () Confguraton

5 Knematcs Left and ght stretch tensors, rotaton tensor F= U F= V U,V symmetrc, so U= λu u + λ u u + λu u () () () () (3) (3) 3 V = λv v + λ v v + λ v v () () () () (3) (3) 3 λ prncpal stretches U u () v () u () u () u () e u () Orgnal Confguraton u (3) u (3) λ u () v () λ λ 3 u () Confguraton u () Left and ght Cauchy-Green Tensors T C= F F= U T B= F F = V

6 Generalzed stran measures Knematcs Lagrangan Nomnal stran: ( λ ) u 3 = 3 Lagrangan Logarthmc stran: log( λ ) u = () () u () () u Euleran Nomnal stran: ( λ ) v 3 = 3 Euleran Logarthmc stran: log( λ ) v = () () v () () v Euleran stran * T * E = ( I F F ) or E = ( δ Fk Fk )

7 Knematcs u(x) Velocty Gradent L v = yv L = y e x Orgnal Confguraton y Confguraton v dv = v ( y+ dy) v ( y) = dy y dv = F d d d dv = dy ( Fdx ) Fdx Fk dy dt = dt = L= F F k dt Stretch rate and spn tensors dl l dt = ndn =nd n T T D= ( L+ L ) W= ( L L ) e l 0 l n Orgnal Confguraton Confguraton

8 Knematcs v ω= v = ω= dual( W) ω = k W k y Vortcty vector curl( ) ω k k Spn-acceleraton-vortcty relatons v v a= = + ( vv) + W v t t y k k k k x = const y = const k k v v a= = + ( vv) + ω v t t y k k k k x = const y = const k a ω v = + k k k Dω y t x= const yk k ω

9 Knetcs S 0 S b t = lm da 0 Surface tracton dp da da dp e ρb = 0 Orgnal Confguraton lm dv 0 dp dv t Confguraton Body Force dv dp Internal Tracton dp n T(n) t Tn ( ) = lm da 0 ( n) dp da da t e T(-n) -n esultant force on a volume P = Tn ( ) da + ρ b dv A V S 0 e 0 Orgnal Confguraton t S V b n Confguraton T(n)

10 Knetcs estrctons on nternal tracton vector T(n) Newton II T( n) = Tn ( ) n T(-n) -n Newton II&III da e da (n) n T(n) da (n) Tn ( ) = n σ or T ( n) = n σ - T(- ) da Cauchy Stress Tensor σ e σ 3 σ 33 σ 3 σ 3 σ 3 σ σ σ

11 Other Stress Measures S 0 S b F I u u = + F = δ + J = det( F) x e 0 Orgnal Confguraton t Confguraton n 0 dp (n) 0 n dp (n) e da 0 u(x) da Krchhoff τ σ τ = J = Jσ x Orgnal Confguraton t Confguraton Nomnal/ st Pola-Krchhoff Materal/ nd Pola-Krchhoff S JFk σ k ( n) 0 = da0 n S S= JF σ = dp T σ Σ k σ kl l Σ= JF F = JF F ( 0) ( ) n = dp n ( n dp 0) = da0 n 0 Σ F dp

12 eynolds Transport elaton e x 0 S 0 C 0 y Orgnal Confguraton u(x) S n C Confguraton d φ v φ φv dv dv dv dt t y t y φ = + φ = + V V = const V = const x y

13 Conservaton Laws for Contnua V Mass Conservaton ρ v ρ v dv 0 + ρ = + ρ = 0 t x= const y t x= const y ρ ρv ρ + = 0 + y ( ρv) = 0 t y t y= const y= const e S 0 x 0 V 0 y Orgnal Confguraton S u(x) V n Confguraton Lnear Momentum Conservaton σ y σ + ρ b = ρ a or + ρb = ρa y e S 0 x 0 y Orgnal Confguraton S u(x) t V b n Confguraton T(n) Angular Momentum Conservaton σ = σ

14 Work-Energy elatons ate of mechancal work done on a materal volume ( ) d n r = T vda + ρbv dv = σddv + ρvv dv dt A V V V e S 0 x 0 y Orgnal Confguraton S u(x) t V b n Confguraton T(n) Conservaton laws n terms of other stresses S S+ ρ b= ρ a + ρ = ρ a 0 0 0b 0 x ( k Fk ) Σ T Σ F + ρ b= ρ a + ρ b = ρ a x Mechancal work n terms of other stresses ( n) d r = T vda + ρbv dv = SF dv0 + ρ0vv dv0 dt A V V V 0 0 ( n) d r = T vda + ρbv dv = Σ E dv0 + ρ0vv dv0 dt A V V V 0 0

15 Prncple of Vrtual Work (alternatve statement of BLM) δl δv δv δ v = δd = + y y y e S 0 x 0 y Orgnal Confguraton S u(x) b S t V Confguraton dv If σδ D dv + ρ δv dv ρbδv dv tδ v da = 0 dt for all δ v V V V S Then σ y + ρb = dv ρ dt nσ = t on S

16 Thermodynamcs S 0 S b Temperature θ Specfc Internal Energy ε Specfc Helmholtz free energy Heat flux vector q External heat flux q Specfc entropy s ψ = ε θs e 0 Orgnal Confguraton t Confguraton d Frst Law of Thermodynamcs ( Ε+ KE) = Q + W dt ε ρ t x= const ds dη Second Law of Thermodynamcs 0 dt dt q = σ D + q y s ( q / θ ) q ρ + 0 t y θ Dsspaton Inequalty D q θ ψ σ ρ s θ + 0 θ y t t

17 Transformatons under observer changes Transformaton of space under a change of observer y = y () t + Q()( t y y ) * * 0 0 d Ω= Q Q dt All physcally measurable vectors can be regarded as connectng two ponts n the nertal frame These must therefore transform lke vectors connectng two ponts under a change of observer * * * * b = Qb n = Qn v = Qv a = Qa * Inertal frame e e * e * Observer frame Note that tme dervatves n the observer s reference frame have to account for rotaton of the reference frame * * * dy d T * * dy dy0 * * = = = 0 t = 0 T y* y n Confguraton b Confguraton v Qv Q Q Q ( y y ( )) Ωy ( y ( t)) dt dt dt dt * * * * * d y d T * * d y d y0 dω * * dy dy0() t a = Qa = Q = Q Q ( y y 0( t)) = + ( Ω y y0( t)) Ω( ) dt dt dt dt dt dt dt b * n *

18 Some Transformatons under observer changes Obectve (frame ndfferent) tensors: map a vector from the observed (nertal) frame back onto the nertal frame t = n σ Inertal frame n * T * σ = QσQ D = QDQ T e y b Invarant tensors: map a vector from the reference confguraton back onto the reference confguraton T 0 = m Σ * = Σ Σ * * e * e y* Confguraton b * n * Mxed tensors: map a vector from the reference confguraton onto the nertal frame dy = Fdx * = F QF Observer frame Confguraton

19 Some Transformatons under observer changes * * 0 0 The deformaton mappng transforms as y( X,) t = y () t + Q() t ( yx (,) t y ) * y y The deformaton gradent transforms as F = = Q = QF X X The rght Cauchy Green stran Lagrange stran, the rght stretch tensor are nvarant * * * T * T T * * C = F F = F Q QF = C E = E U = U The left Cauchy Green stran, Euleran stran, left stretch tensor are frame ndfferent * * * T T T T * T B = F F = QFF Q = QCQ V = QVQ The velocty gradent and spn tensor transform as * * * T T L = F F = QF + QF F Q = QLQ + Ω * * * T ( ) W = ( L L )/= QWQ + Ω The velocty and acceleraton vectors transform as * * * dy d T * * dy dy0 * * = = = 0 t = 0 v Qv Q Q Q ( y y ( )) Ωy ( y ( t)) dt dt dt dt * * * * * d y d T * * d y y0 dω * * dy y = = = 0 0 t = + 0 t d d () t a Qa Q Q Q ( y y ( )) Ω ( y y ( )) Ω( ) dt dt dt dt dt dt dt (the addtonal terms n the acceleraton can be nterpreted as the centrpetal and corols acceleratons) * T The Cauchy stress s frame ndfferent σ = QσQ (you can see ths from the formal defnton, or use the fact that the vrtual power must be nvarant under a frame change) The materal stress s frame nvarant T Σ * = Σ * T T T σ σ (note that ths The nomnal stress transforms as S = J( QF) Q Q = JF Q = SQ transformaton rule wll dffer f the nomnal stress s defned as the transpose of the measure used here )

20 Consttutve Laws Equatons relatng nternal force measures to deformaton measures are known as Consttutve elatons General Assumptons:. Local homogenety of deformaton (a deformaton gradent can always be calculated). Prncple of local acton (stress at a pont depends on deformaton n a vanshngly small materal element surroundng the pont) e Orgnal Confguraton Confguraton estrctons on consttutve relatons:. Materal Frame Indfference stress-stran relatons must transform consstently under a change of observer. Consttutve law must always satsfy the second law of thermodynamcs for any possble deformaton/temperature hstory. D q θ ψ σ ρ s θ + 0 θ y t t

21 Fluds Propertes of fluds No natural reference confguraton Support no shear stress when at rest Knematcs Only need varables that don t depend on ref. confg e y t S b Confguraton L v = + = + = v ω = k = y = L D W D ( L L )/ W ( L L )/ y W k k v v yk v v v a = = + = Lkvk + = ( Dk + Wk ) vk + t x = const yk t t y = const t y = const t y = const k v ( ) = vv k k + Wkvk = + ( vv k k ) + k ω vk y t y = const y Conservaton Laws k ρ ρ ρv + ρd 0 or kk = + = 0 t t y x= const y= const σ v v y y t + ρb = ρ vk + σ = σ k y = const ε q ρ = σ D + q t x= const y D q θ ψ σ ρ s θ + 0 θ y t t

22 General Consttutve Models for Fluds Obectvty and dsspaton nequalty show that consttutve relatons must have form Internal Energy ε= ˆ( ε ρθ, ) Entropy s= sˆ( ρθ, ) Free Energy ˆ (, ) Stress response functon Heat flux response functon ψ= ψ ρθ = ε θs ˆ (,, ) ˆ (, ) ˆ vs σ = σ θ ρd = πeq ρθδ + σ ( ρθ,, D ) θ q = qˆ θ, ρ,, D y In addton, the consttutve relatons must satsfy ψˆ ψ ˆ πeq = ρ sˆ= ρ θ ˆ πeq ˆ sˆ πeq ˆ ε = ρ ˆ πeq = θ + ρ θ ρ θ ρ c v ψˆ c ˆ v θ πeq = θ = θ ρ ρ θ vs θ θ σ ( ρθ,, D ) D 0 q ρθ,, 0 y y where ˆ ε c v ( θ, ρ) = θ

23 Consttutve Models for Fluds ψ= ψˆ ( ρθ, ) = ε θs vs eq σ = ˆ σ ( θ, ρ, D ) = ˆ π ( ρθδ, ) + ˆ σ ( ρθ,, D ) Elastc Flud ψ= ψˆ ( ρ) σ = π ( ρδ ) eq Ideal Gas p ε = c θ = ψ = c θ θ ( c logθ log ρ s ) σ = pδ = ρθδ ( γ ) ρ v v v 0 Newtonan Vscous ψ= ψˆ ( ρθ, ) σ = ( π ( ρθ, ) κ( ρθ, ) D ) δ + η( ρθ, )( D D δ /3) eq kk kk Non-Newtonan ψ= ψˆ ( ρθ, ) σ = π ( ρθδ, ) + η( I, I, I, ρθδ, ) + η ( I, I, I, ρθ, ) D + η ( I, I, I, ρθ, ) D D eq k k

24 Unknowns: Derved Feld Equatons for Newtonan Fluds pv, Must always satsfy mass conservaton ρ ρ ρv + ρd 0 or kk = + = 0 t t y x= const y= const Combne BLM σ v v v + ρb= ρa a= v + = + ( vv) + ω v y y t t y Wth consttutve law. Also recall k k k k k k y = const yk= const v v D = + y y p Compressble Naver-Stokes ( ) Wth densty ndep vscosty + η( ρθ, ) D D δ /3 + ρb = ρa p= π ( ρθ, ) κ( ρθ, ) D y y kk eq kk πeq η v κ η v b= a ρ y ρ y y ρ 3ρ y y For an ncompressble Newtonan vscous flud For an elastc flud (Euler eq) πeq v + ρb= ρ + ρ ( vv) + ρ ω v y t y p η v + + b = a ρ y ρ y y Incompressblty reduces mass balance to k k k k y = const k v y = 0

25 Derved Feld Equatons for Fluds ecall vortcty vector ω v k = k = k W y a ω v = + k k k Dω y t x= const yk ω Vortcty transport equaton (constant temperature, densty ndependent vscosty) η ρ η = ρ y y ρ y y y y y y y t x= ω v k v l v ( ) k ω k η κ k bk Dω ω l l 3 l k k const For an elastc flud v ( ) k ω k bk + Dω ω = x y t x k = const For an ncompressble flud η ω ω + + ( ) k bk + Dω = y y x t x ρ = const If flow of an deal flud s rrotatonal at t=0 and body forces are curl free, then flow remans rrotatonal for all tme (Potental flow)

26 Derved feld equatons for fluds For an elastc flud Bernoull πeq H= ψ + + vv +Φ= constant along streamlne ρ For rrotatonal flow H πeq = ψ + + vv +Φ= constant everywhere ρ For ncompressble flud p ρ + vv +Φ= constant

27 Solvng fluds problems: control volume approach Governng equatons for a control volume (revew) B

28 Example Steady D flow, deal flud Calculate the force actng on the wall Take surroundng pressure to be zero A 0 v 0 ρ 0 A 4 α v A 3 A A 5 d n σda + ρbdv = ρvdv + ( ρvvn ) da dt B B A v A 0 0ρ0 0 α 0 A ( p n da) A v sn + ( p p ) da= 0 3 F = A 0 ρ 0 v 0 sn α

29 Exact solutons: potental flow If flow rrotatonal at t=0, remans rrotatonal; Bernoull holds everywhere Irrotatonal: curl(v)=0 so v Ω = y Mass cons v y Ω = 0 = 0 y y Bernoull p Ω + vv constant ρ +Φ+ = t Example: flow surroundng a movng sphere e a V avα( yα Vt) Ω= α r = ( y V t)( y V t) α α α α r

30 Exact solutons: Stokes Flow Steady lamnar vscous flow between plates Assume constant pressure gradent n horzontal drecton η v v b η y const p p f = 0 ρ y ρ y v t = L y k y h V y Solve subect to boundary condtons y p v= V y ( h y ) h L e ηv p h σ = + y h L

31 Exact Solutons: Acoustcs Assumptons: Small ampltude pressure and densty fluctuatons Irrotatonal flow Neglgble heat flow Neglect body forces Irrotatonal: v Ω = y Approxmate N-S as: p y v ρ t y = const k p y y v ρ y t y k = const p y t v ρ t y k = const For small perturbatons: Mass conservaton: p δρ = cs t t δρ t x= const c s v + ρ = 0 y p = ρ s = const Combne: c s t Ω Ω = 0 y y δ p = ρ Ω 0 t (Wave equaton)

32 Wave speed n an deal gas Assume heat flow can be neglected Entropy equaton: s θ t x= const q = + q s = const y v v v ( log log ) ε = c θ ψ = c θ θ c θ ρ + s p= ρθ ( ) c / v 0 0 s= c logθ log ρ + s θ = ρ exp[( s s ) / c ) v / c = γ so p= kρ γ v 0 v Hence: p γ p cs = = kγρ = γ = γ θ ρ ρ s= const

33 Applcaton of contnuum mechancs to elastcty S 0 e x 0 y u Orgnal Confguraton t S b Confguraton Modulus G' (N/m ) Glassy Glass Transton temperature T g Vscoelastc ubbery Melt (frequency) - Materal characterzed by

34 S 0 e x 0 General structure of consttutve relatons y u Orgnal Confguraton t S b Confguraton F C B u = δ + = F F x k k = F F k k = k k Q JF q S JFk σ k S= JF σ = T σ Σ k σ kl l Σ= JF F = JF F S x v + ρ 0b = ρ0 t x = const θ ψ θ Σ C Q ρ0 + s 0 θ x t t * = F QF * * * T B = F F = QBQ * * T * C = F F = C T * = Σ Σ Frame ndfference, dsspaton nequalty ˆ ψˆ ψˆ Σ = ρ0 sˆ = C θ Σˆ sˆ = ρ0 θ C Q k θ 0 x k

35 Forms of consttutve relaton used n lterature I 3 = trace( B) = B ( B B) ( k k ) I = I = I B B I = det B = J Stran energy potental 0 kk W = ρψ I Bkk I = = /3 /3 J J I B B Bk Bk I = = I 4/3 I 4/3 = 4/3 J J J J = det B B= λ b b + λ b b + λ b b () () () () (3) (3) 3 W( F) = Wˆ ( C) = U( I, I, I ) = U( I, I, J) = U ( λ, λ, λ ) 3 3 σ = J F k W F k σ σ U I U B U = + B B + I U δ k k 3 I3 I I I I3 U U U U δ U U = /3 + I B I + I B 4/3 k Bk + δ J J I I I I 3 J I J σ λ U λ U λ U () () () () 3 (3) (3) = b b + b b + b b λλ λ3 λ λλ λ3 λ λλ λ3 λ3

36 Specfc forms for free energy functon Neo-Hookean materal µ K U = ( I 3) + ( J ) µ σ δ ( ) δ J 3 = 5/3 B Bkk + K J Mooney-vln µ µ K U = ( I 3) + ( I 3) + ( J ) µ µ σ δ δ δ ( ) δ J 3 J 3 3 = [ ] 5/3 B Bkk + 7/3 Bkk B Bkk Bk Bk + Bkn Bnk + K J N N Generalzed polynomal functon K ( 3) ( 3) ( ) + = = U = C I I + J Ogden U N µ α α α K = ( λ + λ + λ 3 3) + ( J ) α = Arruda-Boyce 3 K U = µ ( I 3) + ( I 9) + ( I 4 7) J 0β 050β ( )

37 Solvng problems for elastc materals (sphercal/axal symmetry) Assume ncompressbllty Knematcs σ rr 0 0 Frr 0 0 Brr 0 0 σ 0 σθθ 0 F 0 Fθθ 0 B 0 Bθθ σ φφ 0 0 F φφ 0 0 B φφ dr r dr r Frr = Fφφ = Fθθ = Brr = Bφφ = Bθθ = d d φ θ r e e e θ e φ Consttutve law dr r = d σ σ r a = A U U I U I U U = + I B B + p rr rr rr I I 3 I 3 I I U U I U I U U = = + I B B + p θθ σφφ θθ θθ I I 3 I 3 I I Equlbrum (or use PVW) dσ dr rr ( σrr σθθ σφφ ) ρ0 + + br = 0 r (gves ODE for p(r) Boundary condtons u ( a) = g u ( b) = g σ r a r b ( a) = t σ ( b) = t rr a rr b

38 Lnearzed feld equatons for elastc materals Approxmatons: Lnearzed knematcs All stress measures equal Lnearze stress-stran relaton S 0 e 0 Orgnal Confguraton t S b Confguraton u u σ u = + = Ckl ( kl kl ) + b = x x x t ε σ ε α θ ρ ρ * * = ( ) on σ = ( ) on u u t n t t Elastc constants related to stran energy/unt vol C kl ˆ σ ˆ U = = = = ε ε ε θ ε θ U σ β kl kl ε = Sσ + α T σ= Cε ( α T ) Isotropc materals: + ν ν ε = σ σkkδ + α Tδ E E E ν Eα T σ = ε + εkkδ δ + ν ν ν

39 Solvng lnear elastcty problems sphercal/axal symmetry Knematcs Consttutve law σ 0 0 ε 0 0 σ 0 σθθ 0 ε 0 εθθ σ φφ 0 0 ε φφ du u ε = εφφ = εθθ = d du σ E ν ν d Eα T σ = θθ ( + ν)( ν ) ν u ν θ e e e θ φ e e φ Equlbrum dσ d ( σ σθθ σφφ ) ρ0 + + b = 0 ( u) ( ) ( ν) ( )( ) ( ν) d u du u d d + d T + + = d d = d d d E α ν ν ν ρ 0b ( ) Boundary condtons u ( a) = g u ( b) = g σ r a r b ( a) = t σ ( b) = t rr a rr b

40 Some smple statc lnear elastcty solutons Naver equaton: uk u b ρ0 u + + ρ 0 = k k k ν x x x x µ µ t Potental epresentaton (statcs): ( + ν ) u = Ψ + Ψ E 4( ν ) x ( φ x ) k k φ = ρ0b = ρ0bx k k Ψ x x x x P Pont force n an nfnte sold: Ψ = φ = 0 4π ( + ν ) Px k kx u = + (3 4 ν ) P 8 ( ) πe ν ( + ν ) 3 Px k kxx Px k kδ Px + Px ε = ( ) + ν 3 8 πe( ν) 3 Px k kxx Px + Px δpx k k σ = ( ν) π( ν) Pont force normal to a surface: P ( νδ ) 3 ( ν)( ν) φ log( 3 ) Ψ = = + x π π u ( + ν) P xx 3 δ 3 ( ) (3 4 ) ν x = + ν δ π E + x 3 ν ( xx x3 x3( 3x 3x) ) ( 3 3 ) P xx x3 ( ν )( + x3) ( ) σ = δ δ + δ + δ δ δ π ( + x3) ( + x3)

41 Dynamc elastcty solutons Plane wave soluton u = a f ( ct x p ) k k Naver equaton uk u b ρ0 u + + ρ 0 = k k k ν x x x x µ µ t ( µ ρ ) µ + = ν 0c ak pap k 0 Solutons: 0 ap = 0 c = c = ρ / µ L a = η p c = c = µ ( ν) / ρ ( ν) 0

Classical Theory (3): Thermostatics of Continuous Systems with External Forces

Classical Theory (3): Thermostatics of Continuous Systems with External Forces Insttute of Flu- & Thermoynamcs Unersty of Segen Classcal Theory (3): Thermostatcs of Contnuous Systems wth External Forces 3/ Σ: Equlbrum State? Isolaton, Inhomogenety External Forces F ϕ Components:...

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Solutions for Mathematical Physics 1 (Dated: April 19, 2015) Solutons for Mathematcal Physcs 1 Dated: Aprl 19, 215 3.2.3 Usng the vectors P ê x cos θ + ê y sn θ, Q ê x cos ϕ ê y sn ϕ, R ê x cos ϕ ê y sn ϕ, 1 prove the famlar trgonometrc denttes snθ + ϕ sn θ cos

Διαβάστε περισσότερα

V. Finite Element Method. 5.1 Introduction to Finite Element Method

V. Finite Element Method. 5.1 Introduction to Finite Element Method V. Fnte Element Method 5. Introducton to Fnte Element Method 5. Introducton to FEM Rtz method to dfferental equaton Problem defnton k Boundary value problem Prob. Eact : d d, 0 0 0, 0 ( ) ( ) 4 C C * 4

Διαβάστε περισσότερα

8.323 Relativistic Quantum Field Theory I

8.323 Relativistic Quantum Field Theory I MIT OpenCourseWare http://ocwmtedu 8323 Relatvstc Quantum Feld Theory I Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocwmtedu/terms 1 The Lagrangan: 8323 Lecture

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

Quantum ElectroDynamics II

Quantum ElectroDynamics II Quantum ElectroDynamcs II Dr.arda Tahr Physcs department CIIT, Islamabad Photon Coned by Glbert Lews n 1926. In Greek Language Phos meanng lght The Photons A What do you know about Photon? Photon Dscrete

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

Phasor Diagram of an RC Circuit V R

Phasor Diagram of an RC Circuit V R ESE Lecture 3 Phasor Dagram of an rcut VtV m snt V t V o t urrent s a reference n seres crcut KVL: V m V + V V ϕ I m V V m ESE Lecture 3 Phasor Dagram of an L rcut VtV m snt V t V t L V o t KVL: V m V

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2 Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent

Διαβάστε περισσότερα

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford

Διαβάστε περισσότερα

Theory of the Lattice Boltzmann Method

Theory of the Lattice Boltzmann Method Theory of the Lattce Boltzmann Method Burkhard Dünweg Max Planck Insttute for Polymer Research Ackermannweg 10 55128 Manz B. D. and A. J. C. Ladd, arxv:0803.2826v2, Advances n Polymer Scence 221, 89 (2009)

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

( ) Sine wave travelling to the right side

( ) Sine wave travelling to the right side SOUND WAVES (1) Sound wave: Varia2on of density of air Change in density at posi2on x and 2me t: Δρ(x,t) = Δρ m sin kx ωt (2) Sound wave: Varia2on of pressure Bulk modulus B is defined as: B = V dp dv

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Eulerian Simulation of Large Deformations

Eulerian Simulation of Large Deformations Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence Major Concepts Multiphase Equilibrium Stability Applications to Phase Equilibrium Phase Rule Clausius-Clapeyron Equation Special case of Gibbs-Duhem wo-phase Coexistence Criticality Metastability Spinodal

Διαβάστε περισσότερα

ADVANCED STRUCTURAL MECHANICS

ADVANCED STRUCTURAL MECHANICS VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα, ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)] d Suva refrigerants Technical Information T-9100SI Thermodynamic Properties of Suva 9100 Refrigerant [R-410A (50/50)] Thermodynamic Properties of Suva 9100 Refrigerant SI Units New tables of the thermodynamic

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

4.4 Superposition of Linear Plane Progressive Waves

4.4 Superposition of Linear Plane Progressive Waves .0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive

Διαβάστε περισσότερα

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές 8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ ICA: συναρτήσεις κόστους & εφαρμογές ΚΎΡΤΩΣΗ (KUROSIS) Αθροιστικό (cumulant) 4 ης τάξεως μίας τ.μ. x με μέσο όρο 0: kurt 4 [ x] = E[ x ] 3( E[ y ]) Υποθέτουμε διασπορά=: kurt[ x]

Διαβάστε περισσότερα

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane. upplement on Radiation tress and Wave etup/et down Radiation tress oncerned wit te force (or momentum flu) eerted on te rit and side of a plane water on te left and side of te plane. plane z "Radiation

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

2. Chemical Thermodynamics and Energetics - I

2. Chemical Thermodynamics and Energetics - I . Chemical Thermodynamics and Energetics - I 1. Given : Initial Volume ( = 5L dm 3 Final Volume (V = 10L dm 3 ext = 304 cm of Hg Work done W = ext V ext = 304 cm of Hg = 304 atm [... 76cm of Hg = 1 atm]

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Empirical best prediction under area-level Poisson mixed models

Empirical best prediction under area-level Poisson mixed models Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

ΜΕΡΟΣ ΙΙΙ ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

ΜΕΡΟΣ ΙΙΙ ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ ΜΕΡΟΣ ΙΙΙ ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΕΠΙΔΡΑΣΗ Μ.Β ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΠΟΛΥΜΕΡΩΝ ΜΑΘΗΜΑΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΜΟΡΙΑΚΟΥ ΒΑΡΟΥΣ ΣΥΝΑΡΤΗΣΗ ΠΙΘΑΝΟΤΗΤΟΣ (ΔΙΑΦΟΡΙΚΗ) Probablty Densty Functon

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΕΠΙ ΡΑΣΗ Μ.Β ΣΤΙΣ Ι ΙΟΤΗΤΕΣ ΠΟΛΥΜΕΡΩΝ ΜΑΘΗΜΑΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΜΟΡΙΑΚΟΥ ΒΑΡΟΥΣ ΣΥΝΑΡΤΗΣΗ ΠΙΘΑΝΟΤΗΤΟΣ ( ΙΑΦΟΡΙΚΗ) Probablty Densty Functon

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

1 Lorentz transformation of the Maxwell equations

1 Lorentz transformation of the Maxwell equations 1 Lorentz transformation of the Maxwell equations 1.1 The transformations of the fields Now that we have written the Maxwell equations in covariant form, we know exactly how they transform under Lorentz

Διαβάστε περισσότερα

EE 570: Location and Navigation

EE 570: Location and Navigation EE 570: Location and Navigation INS Initialization Aly El-Osery Kevin Wedeward Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA In Collaboration with Stephen Bruder Electrical

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα