Theory of the Lattice Boltzmann Method

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Theory of the Lattice Boltzmann Method"

Transcript

1 Theory of the Lattce Boltzmann Method Burkhard Dünweg Max Planck Insttute for Polymer Research Ackermannweg Manz B. D. and A. J. C. Ladd, arxv: v2, Advances n Polymer Scence 221, 89 (2009)

2 Lattce Boltzmann lnearzed Boltzmann equaton (knetc theory of gases) fully dscretzed stes r, lattce spacng a tme t, tme step h c small set of veloctes c h connects two stes n ( r, t): real number, mass densty on ste r correspondng to velocty c n ( r + c h, t + h) = n ( r, t) = n ( r, t) + ( r, t)

3 Conservaton laws, symmetres n ( r + c h, t + h) = n ( r, t) = n ( r, t) + {n ( r, t)} ρ = n j = ρ u = n c = c = 0 mass conservaton momentum conservaton localty rotatonal symmetry (lattce!) Galle nvarance (fnte number of veloctes)

4 Low Mach number physcs only u c only u c s Ma = u/c s 1 low Mach number compressblty does not matter equaton of state does not matter choose deal gas! m p partcle mass: p = ρ m p k B T c 2 s = p ρ = 1 m p k B T p = ρc 2 s k B T = m p c 2 s

5 Where we want to get n the contnuum lmt a 0, h 0: t ρ + α j α = 0 t j α + β ( ρc 2 s δ αβ + ρu α u β ) = β σ αβ η αβγδ = σ αβ = η αβγδ γ u δ (ζ 23 η ) δ αβ δ γδ + η (δ αγ δ βδ + δ αδ δ βγ ) η shear vscosty ζ bulk vscosty

6 Dfference equaton dfferental equaton Example: consder f (x + a) f (x) = g(x) small a: a d f (x) g(x) dx contnuum lmt a 0: d g(x) f (x) = lm dx a 0 a watch out: f the rhs does not exst, then the contnuum lmt does not exst! correctons to the leadng behavor?

7 set f (x + a) f (x) = g(x) g ndependent of a D = a d dx g(x) = a ( g 0 (x) + ag 1 (x) + a 2 g 2 (x) +... ) f (x 0 + a) = f (x 0 ) + a df dx + a2 d 2 f x=x0 2! dx x=x0 ( = exp a d ) f (x) dx = exp(d)f (x) x=x0 x=x0 [exp(d) 1]f (x) = g(x) f (x) = [exp(d) 1] 1 g(x) Df (x) = D [exp(d) 1] 1 g(x)

8 now, x exp(x) 1 = 1 x 2 + x2 12 x x = Bernoull numbers B k k=0 B k k! xk f (x + a) f (x) = g(x) ] D2 D2 Df (x) = [ g(x) ] d [1 dx f (x) = D2 D [ g0 (x) + ag 1 (x) + a 2 g 2 (x) +... ] systematc expanson n powers of a!

9 LB contnuum lmt: how?? a 0, h 0 to be replaced by ε 0: wave lke scalng: a/h = const. a = εa 0 h = εh 0 c = c 0 n ( r + ε c 0 h 0, t + εh 0 ) n ( r, t) = dffusve scalng: a 2 /h = const. a = εa 0 h = ε 2 h 0 c = ε 1 c 0 n ( r + ε c 0 h 0, t + ε 2 h 0 ) n ( r, t) =

10 Expandng the soluton lhs s O(ε) rhs must be O(ε)! ansatz: n = n (0) + εn (1) + O(ε 2 ) {n } = (0) + ε (1) + O(ε 2 ) { } = n (0) + ε n j j =: ε j L j n (1) j + O(ε 2 ) n =n (0) n (1) j + O(ε 2 ) and conservaton laws: { (k) n (0) = } = 0 (k) c = 0

11 Zeroth order 0 = (0) = {n (0) } {n (0) } collsonal nvarant, {n (0) } = n eq no spurous conservaton laws n (0) = n (0) (ρ, j)

12 No expanson for conserved quanttes! n = n (0) + εn (1) + O(ε 2 ) ρ = ρ (0) + ερ (1) + O(ε 2 ) j = j (0) + ε j (1) + O(ε 2 ) n (0) = n (0) = n (0) ( ) ρ, j ( ρ (0) + ερ (1) + O(ε 2 ), j (0) + ε j (1) + O(ε 2 ) ) no expanson for n (0) ρ (1) = ρ (2) =... = 0 j (1) = j (2) =... = 0

13 . e. ρ (0) = ρ j (0) = j n eq = ρ n eq c = j

14 Velocty moments mass densty ρ = n momentum densty stress j α = Π αβ = n c α n c α c β 3rd moment Φ αβγ = n c α c β c γ

15 LB contnuum lmt: wave lke scalng n ( r + ε c h 0, t + εh 0 ) n ( r, t) = set D = εh 0 t + εh 0 c α α D n = [ 1 D ] 2 + D ε 1 : ε 2 : (h 0 t + h 0 c α α ) n (0) = (1) (h 0 t + h 0 c α α )n (1) = (2) 1 2 (h 0 t + h 0 c α α ) (1)

16 take zeroth and frst velocty moment: ε 1 : or ε 2 : h 0 t ρ + h 0 α j α = 0 h 0 t j β + h 0 α Π (0) αβ = 0 t ρ + α j α = 0 t j β + α Π (0) αβ = 0 or 0 = 0 h 0 α Π (1) αβ = 1 ( ) 2 h 0 α Π (1) αβ Π(1) αβ 1 ( ) 2 α Π (1) αβ + Π(1) αβ = 0

17 consequences: Π (0) depends only on ρ, j (locally!!) Π (0) must be the Euler stress!. e. n eq c α c β = ρc 2 s δ αβ + ρu α u β stress relaxaton at order ε 2 gves rse to some sort of dsspaton, but no relaton to the prevous order. e. relaton to velocty gradents (vscous shear stresses) can not be establshed! we fnd: Euler equatons at order ε 1, but no useful results beyond! can we at least adjust n eq such that we get Euler n the leadng order? YES!

18 The equlbrum populatons ansatz (Euler stress s a 2nd order polynomal n u!): n eq (ρ, u) = w ρ ( 1 + A u c + B( u c ) 2 + Cu 2) w postve weghts, dentcal wthn a shell. cubc symmetry: w = 1 w c α = 0 w c α c β = σ 2 δ αβ w c α c β c γ = 0 w c α c β c γ c δ = κ 4 δ αβγδ +σ 4 (δ αβ δ γδ + δ αγ δ βδ + δ αδ δ βγ )

19 mass: ρ = n eq = ρ ( w 1 + A u c + B( u c ) 2 + Cu 2) 0 = Bu α u β w c α c β + Cu 2 = Bu α u β σ 2 δ αβ + Cu 2 = (Bσ 2 + C) u 2 C + Bσ 2 = 0

20 momentum: ρu α = n eq c α = ρ ( w c α 1 + A u c + B( u c ) 2 + Cu 2) = ρau β w c α c β = ρau β σ 2 δ αβ = ρaσ 2 u α Aσ 2 = 1

21 stress: c 2 s δ αβ + u α u β = 1 ρ = n eq c α c β w c α c β ( 1 + A u c + B( u c ) 2 + Cu 2) hence κ 4 = 0 and = ( 1 + Cu 2) σ 2 δ αβ + Bu γ u δ κ 4 δ αβγδ + Bu γ u δ σ 4 (δ αβ δ γδ + δ αγ δ βδ + δ αδ δ βγ ) c 2 s δ αβ + u α u β = ( σ 2 + Cσ 2 u 2 + Bσ 4 u 2) δ αβ + 2Bσ 4 u α u β. e. σ 2 = c 2 s, Cσ 2 + Bσ 4 = 0, 2Bσ 4 = 1

22 taken all together: κ 4 = 0 σ 2 = cs 2 2Bσ 4 = 1 Cσ 2 + Bσ 4 = 0 C + Bσ 2 = 0 Aσ 2 = 1 sx equatons, sx unknowns. multply Eq. 5 wth σ 2 and compare wth Eq. 4. hence the soluton s: κ 4 = 0 σ 2 σ 4 = c 2 s = c 4 s A = 1/c 2 s B = 1/(2c 4 s ) C = 1/(2c 2 s )

23 form of the equlbrum populatons s ( n eq (ρ, u) = w ρ 1 + u c c 2 s + ( u c ) 2 2c 4 s ) u2 2cs 2 what are the weghts? we need to satsfy the three condtons: w = 1 κ 4 = 0 σ 4 = σ 2 2 therefore, at least three shells are needed! each shell s assgned ts own σ 2, σ 4, κ 4 (assumng weght one).

24 D3Q19 one zero velocty: c = 0, weght w 0 sx nearest neghbors: c = (a/h)(±1, 0, 0), (a/h)(0, ±1, 0), (a/h)(0, 0, ±1), weght w I twelve next nearest neghbors: c = (a/h)(±1, ±1, 0), (a/h)(±1, 0, ±1), (a/h)(0, ±1, ±1), weght w II zeroth shell: velocty moments trval

25 frst shell: c 2 1 c 4 1 c 2 1c 2 2 = 2(a/h) 2 = σ 2 (I) = 2(a/h) 4 = κ 4 (I) + 3σ 4 (I) = 0 = σ 4 (I) σ 2 (I) = 2(a/h) 2 σ 4 (I) = 0 κ 4 (I) = 2(a/h) 4

26 second shell: c 2 1 c 4 1 c 2 1c 2 2 = 8(a/h) 2 = σ 2 (II) = 8(a/h) 4 = κ 4 (II) + 3σ 4 (II) = 4(a/h) 4 = σ 4 (II) σ 2 (II) = 8(a/h) 2 σ 4 (II) = 4(a/h) 4 κ 4 (II) = 4(a/h) 4

27 0 = κ 4 = w I κ 4 (I) + w II κ 4 (II) = 2w I 4w II w I σ 2 σ 4 = 2w II = w I σ 2 (I) + w II σ 2 (II) = w II (2σ 2 (I) + σ 2 (II)) = w II (a/h) 2 ( ) = 12w II (a/h) 2 = w I σ 4 (I) + w II σ 4 (II) = w II (2σ 4 (I) + σ 4 (II)) = 4w II (a/h) 4 = σ 2 2 = 144w 2 II (a/h)4

28 1 = 36w II w II = 1 36 w I = 2w II = = w 0 + 6w I + 12w II = w w 0 = 1 3 c 2 s = σ 2 = 12w II (a/h) 2 = 1 3 (a/h)2 all coeffcents of n eq known!

29 LB contnuum lmt: dffusve scalng n ( r + ε c 0 h 0, t + ε 2 h 0 ) n ( r, t) = watch out: c = ε 1 c 0! defne moments wrt c 0, not c! e. g. j = n c 0 etc.! set: D n = D = ε 2 h 0 t + εh 0 c 0α α [ 1 D ] 2 + D ε 1 : ε 2 : h 0 c 0α α n (0) = (1) h 0 t n (0) + h 0 c 0α α n (1) = (2) 1 2 h 0c 0α α (1)

30 1st order zeroth velocty moment: frst velocty moment: h 0 c 0α α n (0) = (1) α j α = 0 α Π (0) αβ = 0

31 2nd order h 0 t n (0) + h 0 c 0α α n (1) = (2) 1 2 h 0c 0α α (1) zeroth velocty moment: ncompressble flud! 1st velocty moment: t j β + α Π (1) αβ t j β + 1 ( ) 2 α Π (1) αβ + Π(1) αβ t ρ = 0 = 1 2 α = 0 ( ) Π (1) αβ Π(1) αβ

32 Addng the equatons t ρ + α j α = 0 t j β + α Π (0) αβ + 1 ( ) 2 α Π (1) αβ + Π(1) αβ = 0 looks lke Naver Stokes; Π (0) Euler stress, (1/2) ( Π (1) + Π (1)) vscous stress; BUT dynamcs wth constrants: α j α = 0 α Π (0) αβ = 0 t ρ = 0 ncompressble pressure as a Lagrange multpler dffcult to analyze! (Junk / Luo / Klar)

33 All these dffcultes go away when one combnes wave lke and dffusve scalng n a multple tme scale analyss! So, what s ths?

34 The dea of multple tme scale expanson example: damped oscllator T oscllaton perod τ frctonal relaxaton tme d 2 dt 2x + 1 d τ dt x + 1 T 2x = 0 consder T τ (weak dampng) try to treat ε := T 2τ as a small parameter for perturbaton theory unt system: set T = 1 d 2 dt 2x + 2ε d dt x + x = 0

35 d 2 dt 2x + 2ε d dt x + x = 0 x(t = 0) = 1, ẋ(t = 0) = ε exactly solvable ( ) x(t) = exp( εt)cos 1 ε 2 t ε dependence looks harmless, but...

36 Nave perturbaton theory yelds herarchy: d 2 dt 2x + 2ε d dt x + x = 0 x(t) = x 0 (t) + εx 1 (t) + ε 2 x 2 (t) +... ẍ k + x k = 2ẋ k 1 wth (def.) x 1 = 0, plus correspondng herarchy of ntal condtons ε 0 : ε 1 : x 0 = cos t x 1 = t cos t

37 . e., 1st order perturbaton theory yelds x(t) = (1 εt)cos t + O(ε 2 ) dentcal wth Taylor expanson of the exact soluton! For t 1/ε ths becomes completely useless!!! 1.5 damped harmonc oscllator, epslon = x t

38 Defcences of nave perturbaton theory: does not capture the presence of dfferent tme scales (here: fast oscllatons vs. slow dampng) typcally, ths occurs f one has qualtatvely dfferent behavor for ε = 0 and small ε > 0 (here: conservatve vs. dsspatve) sngular perturbaton theory needed

39 Multple tme scale analyss Idea: ( ) x(t) = exp( εt)cos 1 ε 2 t exp( εt)cos t = exp( t 1 )cos t = x (t, t 1 ) wth t 1 = εt consder x as a functon of two ndependent varables t, t 1 should be able to grasp the tme scale separaton! hence, study expanson x (t, t 1 ) = x 0 (t, t 1 ) + εx 1 (t, t 1 ) + ε 2 x 2 (t, t 1 ) +... wth d dt = t + t 1 = t t 1 t + ε t 1

40 agan the damped oscllator: (expand both x and p) d dt x = p d dt p = 2εp x ε 0 : t x 0 = p 0 t p 0 = x 0 x 0 = A(t 1 )cos t + B(t 1 )snt = A(t 1 )snt + B(t 1 )cos t p 0 A(t 1 ), B(t 1 ) not yet known

41 ε 1 : ansatz t x 1 t p 1 = p 1 t 1 x 0 = x 1 t 1 p 0 2p 0 x 1 p 1 = C(t, t 1 )cos t + D(t, t 1 )snt = C(t, t 1 )snt + D(t, t 1 )cos t yelds C t D t = A t 1 2Asn 2 t + 2B snt cos t = B t 1 2Bcos 2 t + 2Asnt cos t ntegrate wrt t, but the soluton should not explode!!!

42 sn 2 t = cos 2 t = 1 2 now, hence or A t 1 + A = 0 B t 1 + B = 0 A = Âexp( t 1 ) B = ˆB exp( t 1 ) nsert ths nto ε 0 soluton, ntal condtons: x 0 = exp( εt)cos t

43 x dfference exact vs. perturbaton theory, eps = t

44 Chapman Enskog expanson orgnal LBE: n ( r + c h, t + h) n ( r, t) = desred: contnuum lmt h 0, c fxed set h = εh 0 expanson parameter ε 1, ε 0 wrte t 1 = t, r 1 = r yelds: n ( r 1 + c εh 0, t 1 + εh 0 ) n ( r 1, t 1 ) = two tme scales: waves: tme length dffuson: tme (length) 2 second tme scale: t 2 = εt

45 study LBE: n ( r 1 + ε c h 0, t 1 + εh 0, t 2 + ε 2 h 0 ) n ( r 1, t 1, t 2 ) = r = r 1 set t = t 1 + ε t 2 D = εh 0 c α 1α + εh 0 t1 + ε 2 h 0 t2 D n = [ 1 D ] 2 + D

46 ε orders ε 1 : ε 2 : (h 0 c α 1α + h 0 t1 )n (0) = (1) h 0 t2 n (0) + (h 0 c α 1α + h 0 t1 ) n (1) = (2) 1 2 (h 0c α 1α + h 0 t1 ) (1) or h 0 t2 n (0) + 1 ( ) 2 (h 0c α 1α + h 0 t1 ) n (1) + n (1) = (2)

47 Zeroth velocty moment: Mass conservaton t1 ρ + 1α j α = 0 t2 ρ = 0 Hence, contnuty equaton OK!!!

48 Frst velocty moment: Momentum conservaton t2 j α β t1 j α + 1β Π (0) αβ = 0 ( ) Π (1) αβ + Π(1) αβ = 0 comparson wth Naver Stokes: Euler stress: Π (0) αβ = ρc2 s δ αβ + ρu α u β Newtonan vscous stress: ε 2 ( Π (1) αβ + Π(1) αβ ) = σ αβ

49 Second velocty moment: A useful relaton from explct form of n eq : ( ) t1 Π (0) αβ + 1γΦ (0) αβγ = h 1 0 Π (1) αβ Π(1) αβ use contnuty and Euler for (neglectng terms O(u 3 )): (detals see next three sldes) Φ (0) αβγ = ρc2 s (u α δ βγ + u β δ αγ + u γ δ αβ ) t1 Π (0) αβ = t 1 (ρc 2 s δ αβ + ρu α u β ) =... Π (1) αβ Π(1) αβ = h 0ρc 2 s ( α u β + β u α )

50 Calculaton of Φ n eq (ρ, u) = w ρ ( 1 + u c c 2 s + ( u c ) 2 2c 4 s ) u2 2cs 2 hence Φ αβγ = ρ cs 2 u δ w c α c β c γ c δ = ρ cs 2 u δ cs 4 (δ αβ δ γδ + δ αγ δ βδ + δ αδ δ βγ ) = ρc 2 s (δ αβ u γ + δ αγ u β + δ βγ u α )

51 Equaton of moton for the Euler stress pure Euler hydrodynamcs Euler equatons: D = Dt t + u γ γ D Dt ρ = ρ γu γ ρ D Dt u α D Dt Π αβ neglect O(u 3 ): = c 2 s α ρ Π αβ = ρc 2 s δ αβ + ρu α u β = ( c 2 s δ αβ + u α u β ) D Dt ρ + u αρ D Dt u β + u β ρ D Dt u α = ρ ( c 2 s δ αβ + u α u β ) γ u γ c 2 s u α β ρ c 2 s u β α ρ t Π αβ + u γ c 2 s δ αβ γ ρ = c 2 s δ αβ ρ γ u γ c 2 s u α β ρ c 2 s u β α ρ

52 t Π αβ + c 2 s δ αβ γ (ρu γ ) + c 2 s u α β ρ + c 2 s u β α ρ = 0 t Π αβ + c 2 s δ αβ γ (ρu γ ) + c 2 s β (ρu α ) + c 2 s α (ρu β ) = c 2 s ρ β u α + c 2 s ρ α u β t Π αβ + γ { ρc 2 s (δ αβ u γ + δ βγ u α + δ αγ u β ) } = c 2 s ρ β u α + c 2 s ρ α u β t Π αβ + γ Φ αβγ = ρc 2 s ( α u β + β u α )

53 Lnear collson operator = (0) + ε (1) + O(ε 2 ) = ε (1) + O(ε 2 ) O(ε 2 ) does not contrbute to hydrodynamcs gnore (1) = n j n (1) j = L j n (1) j j {n 0 k } j. e. = j ( ) L j n j n eq j

54 The lnear collson process n neq := n n eq n = n + j L j n neq j n neq = n neq + j L j n neq j Γ j := δ j + L j n neq = j Γ j n neq j Γ =??? smplest choce: Lattce BGK: ( Γ j = 1 1 ) δ j τ study here the MRT (mult relaxaton tme) framework!

55 n neq = j 0 = j Γ j n neq j ( ) Γ j n neq j 0 = Γ j e 0 := 1 e 0j 0 = e 0 Γ j. e. e 0 s left egenvector, egenvalue zero.

56 c x n neq = j 0 = j Γ j n neq j ( ) c x Γ j n neq j 0 = c x Γ j e 1 := c x e 1j 0 = e 1 Γ j. e. e 1 s left egenvector, egenvalue zero. analogous: e 2 = c y, e 3 = c z

57 n neq = j Γ j n neq j c γc γ (bulk stress) (bulk stress relaxaton wth γ b ): Πγγ neq = ( ) c γ c γ Γ j n neq j j Π neq γγ = γ b Π neq γγ = γ b j n neq j c jγ c jγ = j (γ b c jγ c jγ ) n neq j γ b c jγ c jγ = c γ c γ Γ j e 4 := c γ c γ e 4j γ b = e 4 Γ j. e. e 4 s left egenvector, egenvalue γ b

58 ...and so on! e 5,..., e 9 : fve shear stresses, egenvalue γ s (same value for symmetry reasons) e 10,..., e 18 9 knetc modes, ghost modes (hgher order polynomals n the c ). e. we do not know Γ drectly, but ts egenvalues and egenvectors! generally (egenvalues γ ) e kj γ k = e k Γ j γ 1 for lnear stablty!

59 Modes set m k m neq k = j = = j e kj n j e k n neq = ( ) e k Γ j e k n neq j j = j Γ j n neq j e kj γ k n neq j = γ k m neq k I. e. the relaxaton process s smple n mode space! γ 0 = γ 1 = γ 2 = γ 3 = 0 (mass and momentum conservaton) γ 4 = γ b (bulk stress) γ 5 =... = γ 9 = γ s (shear stress) γ 10 =... = γ 18 = 0 (smplest choce, not necessary)

60 Orthogonalty scalar product: n n = w n n Clam: It s possble to pck the egenvectors n such a way that they satsfy e k e l = N k δ kl where the N k are just normalzaton constants. Proof: Ether you understand group theory pretty well, or you do an explct Gram Schmdt orthogonalzaton! Result s tabulated n the revew!

61 δ kl = = 1 w e k e l N k w e k N k w N l e l ê k := w N k e k δ kl = ê k ê l. e. ê k s a standard orthogonal matrx wth Eucldean scalar product!

62 m k = e k n = ˆm k := 1 m k Nk Nk w ê k n ˆn := 1 w n ˆm k = ê kˆn orthonormal transformaton, trval to nvert!

63 Lnear stress relaxaton and vscostes Π neq αβ Π αβ = Π αβ δ αβπ γγ Π neq αβ Π neq γγ = γ s Π neq αβ = γ b Π neq γγ Π neq αβ = Π neq αβ Π neq αβ δ αβ ( Π neq γγ Π neq ) γγ = (γ s 1) Π neq αβ δ αβ (γ b 1) Π neq γγ

64 on the other hand, we had derved Π neq αβ Π neq αβ = hρcs 2 ( α u β + β u α ) = hρcs ( 2 α u β + β u α 23 ) δ αβ γ u γ comparson: or (γ s 1) Π neq αβ (γ b 1) Π neq γγ hρc2 s δ αβ γ u γ = hρc 2 s = 2hρc 2 s γ u γ ( α u β + β u α 23 δ αβ γ u γ ) Π neq αβ = hρc2 s ( α u β + β u α 23 ) γ s 1 δ αβ γ u γ Π neq γγ = 2hρc2 s γ b 1 γu γ

65 Chapman Enskog told us: Newtonan vscous stress s σ αβ = 1 ( ) Π neq 2 αβ + Π neq αβ hence 1 ) ( Π neq 2 αβ + Π neq αβ = 1 2 (γ s + 1) Π neq αβ = hρc2 s γ s + 1 ( α u β + β u α 23 ) 2 γ s 1 δ αβ γ u γ = η ( α u β + β u α 23 ) δ αβ γ u γ and δ αβ ( Π neq γγ = hρc2 s 3 = ζδ αβ γ u γ + Π neq γγ γ b + 1 γ b 1 δ αβ γ u γ ) 1 1 = 2 3 δ αβ (γ b + 1) Π neq γγ

66 read off vscostes: η = hρc2 s γ s ζ = hρc2 s 1 γ s γ b 1 γ b 3 vscosty n natural unts gamma_s γ 1 postve vscostes! any vscosty values are accessble!

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

8.323 Relativistic Quantum Field Theory I

8.323 Relativistic Quantum Field Theory I MIT OpenCourseWare http://ocwmtedu 8323 Relatvstc Quantum Feld Theory I Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocwmtedu/terms 1 The Lagrangan: 8323 Lecture

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Solutions for Mathematical Physics 1 (Dated: April 19, 2015) Solutons for Mathematcal Physcs 1 Dated: Aprl 19, 215 3.2.3 Usng the vectors P ê x cos θ + ê y sn θ, Q ê x cos ϕ ê y sn ϕ, R ê x cos ϕ ê y sn ϕ, 1 prove the famlar trgonometrc denttes snθ + ϕ sn θ cos

Διαβάστε περισσότερα

2 Lagrangian and Green functions in d dimensions

2 Lagrangian and Green functions in d dimensions Renormalzaton of φ scalar feld theory December 6 Pdf fle generated on February 7, 8. TODO Examne ε n the two-pont functon cf Sterman. Lagrangan and Green functons n d dmensons In these notes, we ll use

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

LECTURE 4 : ARMA PROCESSES

LECTURE 4 : ARMA PROCESSES LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Solution Set #2

Solution Set #2 . For the followng two harmon waves: (a) Show on a phasor dagram: 05-55-007 Soluton Set # phasor s the omplex vetor evaluated at t 0: f [t] os[ω 0 t] h f [t] 7os ω 0 t π f [t] exp[ 0] + 0 h f [t] 7exp

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Aerodynamics & Aeroelasticity: Eigenvalue analysis

Aerodynamics & Aeroelasticity: Eigenvalue analysis Εθνικό Μετσόβιο Πολυτεχνείο Natonal Techncal Unversty of Athens Aerodynamcs & Aeroelastcty: Egenvalue analyss Σπύρος Βουτσινάς / Spyros Voutsnas Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Quantum ElectroDynamics II

Quantum ElectroDynamics II Quantum ElectroDynamcs II Dr.arda Tahr Physcs department CIIT, Islamabad Photon Coned by Glbert Lews n 1926. In Greek Language Phos meanng lght The Photons A What do you know about Photon? Photon Dscrete

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford

Διαβάστε περισσότερα

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

V. Finite Element Method. 5.1 Introduction to Finite Element Method

V. Finite Element Method. 5.1 Introduction to Finite Element Method V. Fnte Element Method 5. Introducton to Fnte Element Method 5. Introducton to FEM Rtz method to dfferental equaton Problem defnton k Boundary value problem Prob. Eact : d d, 0 0 0, 0 ( ) ( ) 4 C C * 4

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα, ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Phasor Diagram of an RC Circuit V R

Phasor Diagram of an RC Circuit V R ESE Lecture 3 Phasor Dagram of an rcut VtV m snt V t V o t urrent s a reference n seres crcut KVL: V m V + V V ϕ I m V V m ESE Lecture 3 Phasor Dagram of an L rcut VtV m snt V t V t L V o t KVL: V m V

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Classical Theory (3): Thermostatics of Continuous Systems with External Forces

Classical Theory (3): Thermostatics of Continuous Systems with External Forces Insttute of Flu- & Thermoynamcs Unersty of Segen Classcal Theory (3): Thermostatcs of Contnuous Systems wth External Forces 3/ Σ: Equlbrum State? Isolaton, Inhomogenety External Forces F ϕ Components:...

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Constant Elasticity of Substitution in Applied General Equilibrium

Constant Elasticity of Substitution in Applied General Equilibrium Constant Elastct of Substtuton n Appled General Equlbru The choce of nput levels that nze the cost of producton for an set of nput prces and a fed level of producton can be epressed as n sty.. f Ltng for

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014 LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV 18 February 2014 Slowly/quietly Clear/clearly Clean Quickly/quick/fast Hurry (in a hurry) Driver Attention/caution/notice/care Dance Σιγά Καθαρά Καθαρός/η/ο

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N. Dscrete Fourer Trasform Refereces:. umercal Aalyss of Spectral Methods: Theory ad Applcatos, Davd Gottleb ad S.A. Orszag, Soc. for Idust. App. Math. 977.. umercal smulato of compressble flows wth smple

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Magnetized plasma : About the Braginskii s 1 macroscopic model 2

Magnetized plasma : About the Braginskii s 1 macroscopic model 2 Magnetzed plasma : About the Bragnsk s 1 macroscopc model 2 B. Nkonga JAD Unv. Nce/INRIA Sopha-Antpols 1 S. I. Bragnsk, n Revews of Plasma Physcs, edted by M. A. Leontovch Consultants Bureau, New York,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

ωλi τ~γ ο (ανεξάρτητα από το πόσο μεγάλο είναι το γ ο ) [Μη ρεαλιστικό; ισχύει μόνο για μικρά γ ο ]

ωλi τ~γ ο (ανεξάρτητα από το πόσο μεγάλο είναι το γ ο ) [Μη ρεαλιστικό; ισχύει μόνο για μικρά γ ο ] ΓΡΑΜΜΙΚΗ ΙΞΩΔΟΕΛΑΣΤΙΚΟΤΗΤΑ 1. Κατανομή χρόνων χαλάρωσης Το φάσμα Rouse : To μοντέλο δίνει φάσμα χρόνων λ, και μέτρων G =G=vkT για όλα τα. Φάσμα χρόνων χαλάρωσης (ελέγξιμο πειραματικά). Πείραμα: Small amptude

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα