# Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

## Transcript

1 Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1

2 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal Exponentiation Ordinal Limit Continuity Stanford, 5/11/2001 2

3 Definition 0.1 (Limit Ordinal). An ordinal is said to be a limit ordinal if it has no immediate predecessor. Example is a limit ordinal. 2. ω is a limit ordinal. 3. n are not limit ordinals whence n > 0. Remark 0.1. is not deducible from A E. y(y 0 x(y = Sx)) Stanford, 5/11/2001 3

4 Theorem 0.1 (Cantor Normal Form). If an ordinal α 0 then there exists a natural number n and sequences α 1... α n such that α = n ω α i = ω α ω α n. i=1 where α 1... α n. Notation def = ω 0 2. n def = ω ω 0 }{{} n 3. ω def = ω 1 Stanford, 5/11/2001 4

5 Definition 0.2. If α = ω α ω α n. and β = ω β ω β m. are two ordinals, then α β iff for some k n, α 1 = β 1,..., α k 1 = β k 1 and either α k β k or m = k 1 < n. Notation α β def = β α 2. α β def = α β or α = β Stanford, 5/11/2001 5

6 Exercise 0.1. Which of the following is the canonical representation form? 1. ω ω 3. ω ω2 +ω + ω ω ω + 1 Exercise 0.2. Which of the following relations is true? 1. ω ωω ω ω10 +ω 10 +ω ω ω5 + ω ω4 + ω ω3 ω ω6 3. ω 100 ω Stanford, 5/11/2001 6

7 Definition 0.3 (Ordinal Addition). 1. α + 0 def = 0 + α def = α 2. (ω α ω α k + ω α k ω α n ) + (ω β ω β m ) def = (ω α ω α k + ω β ω β m ) where k is the maximal number such that k n and α k β 1. Exercise (ω 5 + ω 4 + ω 2 + ω 2 + ω + 5) + (ω 3 + ω 2 ) = ω 5 + ω 4 + ω 3 + ω 2 2. (ω 5 +ω 4 +ω 2 +ω 2 +ω+5)+(ω 2 +ω 2 ) = ω 5 +ω 4 +ω 2 +ω 2 +ω 2 +ω 2 3. (ω 2 +ω 2 )+(ω 5 +ω 4 +ω 2 +ω 2 +ω +5) = ω 5 +ω 4 +ω 2 +ω 2 +ω +5 Stanford, 5/11/2001 7

8 Definition 0.4 (Ordinal Multiplication). 1. α 0 def = 0 α def = 0 2. α ω x = ω α 1+x where x 1 and α is of canonical form n i=1 ωα i. 3. α n def = α α }{{} n 4. α (β + γ) def = α β + α γ Remark 0.2. We can also write n α = ω αi a i = ω α1 a ω αn a n where i=1 α 1... α n and a 1,..., a n ω Stanford, 5/11/2001 8

9 Exercise (ω 2 + ω + 1) (ω 3 + ω) = (ω 2 + ω + 1) ω 3 + (ω 2 + ω + 1) ω 1 = ω 5 + ω 3 2. (ω ω+1 + ω ω + 1) (ω ω+1 + ω ω + ω) = (ω ω+1 + ω ω + 1) ω ω+1 + (ω ω+1 + ω ω + 1) ω ω +(ω ω+1 + ω ω + 1) ω = ω (ω+1)+(ω+1) + ω (ω+1)+ω + ω (ω+1)+1 = ω ω+ω+1 + ω ω+ω + ω ω+2 = ω ω ω ω 2 + ω ω+2 Stanford, 5/11/2001 9

10 Definition 0.5 (Ordinal Exponentiation). 1. α 0 def = 1 def = ω 0 2. α 1 def = α 3. 0 α def = 0 for α 0 4. α β def = ω α 1 β where β is a limit ordinal and α is of canonical form n i=1 ωα i and α ω. β+γ def 5. α = α β α γ ω x def 6. n = ω x Stanford, 5/11/

11 Exercise 0.5. Prove that (ω 3 + ω) 5 = (ω 5 + ω 3 ) 3. Proof. (ω 5 + ω 3 ) 3 = (ω 5 + ω 3 ) (ω 5 + ω 3 ) (ω 5 + ω 3 ) = ((ω 5 + ω 3 ) ω 5 + (ω 5 + ω 3 ) ω 3 ) (ω 5 + ω 3 ) = (ω 10 + ω 8 ) (ω 5 + ω 3 ) = (ω 10 + ω 8 ) ω 5 + (ω 10 + ω 8 ) ω 3 = ω 15 + ω 13 Stanford, 5/11/

12 (ω 3 + ω) 5 = (ω 3 + ω) (ω 3 + ω) (ω 3 + ω) 3 = ((ω 3 + ω) ω 3 + (ω 3 + ω) ω) (ω 3 + ω) 3 = (ω 6 + ω 4 ) (ω 3 + ω) 3 = (ω 6 + ω 4 ) (ω 3 + ω) (ω 3 + ω) 2 = ((ω 6 + ω 4 ) ω 3 + (ω 6 + ω 4 ) ω) (ω 3 + ω) 2 = (ω 9 + ω 7 ) (ω 3 + ω) 2 = (ω 9 + ω 7 ) (ω 3 + ω) (ω 3 + ω) = ((ω 9 + ω 7 ) ω 3 + (ω 9 + ω 7 ) ω) (ω 3 + ω) = (ω 12 + ω 10 ) (ω 3 + ω) = (ω 12 + ω 10 ) ω 3 + (ω 12 + ω 10 ) ω = ω 15 + ω 13 Stanford, 5/11/

13 Exercise ω = 2 ω 1 = ω 1 = ω 2. 2 ω2 = 2 ω ω = ω ω 3. 2 ωω = 2 ω1+ω = 2 ω1 ω ω = 2 ω ωω = ω ωω 4. (ω + 1) ω = (ω 1 + 1) ω = ω 1 ω = ω ω 5. (ω ω ) ω = ω ω ω = ω ω2 Stanford, 5/11/

14 Exercise 0.7. (ω + 1) n = (ω + 1) (ω + 1) (ω + 1) n 2 = (ω 2 + ω + 1) (ω + 1) n 2 = (ω 2 + ω + 1) (ω + 1) (ω + 1) n 3 = (ω 3 + ω 2 + ω + 1) (ω + 1) (ω + 1) n 3 =... = ω n + ω n ω + 1 Stanford, 5/11/

15 Theorem 0.2. The set W (α) consisting of all ordinals less than α is well ordered by relation. Moreover, the type of W (α) is α. Theorem 0.3. Every set of ordinals is well ordered by the relation. In other words, in any non-empty set Z of ordinals there exists a smallest ordinals. Theorem 0.4. For every set Z of ordinals there exists an ordinal greater than all ordinals belongin g to Z. Corollary 0.1. There exist no set of all ordinals. Corollary 0.2. There exists a smallest ordinal not belonging to a given set Z. Stanford, 5/11/

16 Definition 0.6 (Transfinite Sequence). A transfinite sequence (α sequence) is a function φ whose domain is W (α) and whose reange is also a set of ordinals. If β γ α implies φ(β) φ(γ), then we say that the α sequence is increasing. Definition 0.7 (Ordinal Limit). Given an α sequence φ, if α is a limit ordinal, there exist ordinals greater than all the ordinals φ(β) where β α. We call the smallest such ordinal the limit of the α sequence and denote it by lim β<α φ(β). Example lim n<ω n = ω 2. lim n<ω 2 n = ω 3. lim n<ω n n = ω Stanford, 5/11/

17 Lemma 0.1. If α β then there exists exactly one ordinal γ such that α = β + γ. Proof. Let A = α, let B be a initial segment of A of type β and let γ = A B. Clearly, α = β + γ. The uniqueness follows from trichotomy and Lemma 0.2. Definition 0.8 (Ordinal Subtraction). The difference of the ordinals α and β (α β) is defined to be the unique ordinal γ such that α = β + γ. The ordinal is denoted by α β. Stanford, 5/11/

18 Lemma 0.2 (Monotonic Laws of Addition). 1. (α β) = (γ + α γ + β). 2. (0 β) = (γ γ + β). 3. (α β) = (α + γ β + γ). 4. γ β + γ. Lemma 0.3 (Monotonic Laws of Subtraction). 1. α = β + (α β) if α β. 2. (α + β) α = β. 3. (α β) = (α γ β γ). 4. (γ β) = (α β α γ). Stanford, 5/11/

19 Lemma 0.4 (Monotonic Laws of Multiplication). 1. (0 α β) = (γ α γ β). 2. (α β) = (α γ β γ). 3. (α + β) γ α γ + β γ. Lemma 0.5 (Monotonic Laws of Exponentiation). 1. (0 α β) = γ α γ β if γ 1. Stanford, 5/11/

20 Theorem 0.5 (Continuity of Addition). Assume that λ is a limit ordinal and the φ is an increasing λ-sequence. Then we have lim (α + φ(ξ)) = α + lim φ(ξ). ξ λ ξ λ Proof. Note that α + φ(ξ) is an increasing λ-sequence by Lemma 0.2. Thus the lefthand side is well-defined. Let β = lim ξ λ φ(ξ). If ξ λ, then φ(ξ) β and therefore α + φ(ξ) α + β by Lemma 0.2 again. Let ζ α + β; we need to show that there exists ξ λ such that ζ α + φ(ξ). If ζ α, then ζ α + φ(0). On the other hand, if ζ α, then ζ = α + (ζ α) and ζ α (α + β) α = β by Lemma 0.3. It follows that for some ξ λ we have ζ α φ(ξ) (since β is the limit of φ(ξ) where ξ λ), thus ζ α + φ(ξ) by Lemma 0.2 and 0.3. Hence the ordinal α + β is the smallest ordinal greater than all ordinals α + φ(ξ) for ξ λ. Stanford, 5/11/

### ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

### Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

### ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

### Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

### 2 Composition. Invertible Mappings

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

### C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

### Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

### ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

### EE512: Error Control Coding

EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

### Chapter 2. Ordinals, well-founded relations.

Chapter 2. Ordinals, well-founded relations. 2.1. Well-founded Relations. We start with some definitions and rapidly reach the notion of a well-ordered set. Definition. For any X and any binary relation

Διαβάστε περισσότερα

### k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

### Reminders: linear functions

Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

### Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

### Example Sheet 3 Solutions

Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

### Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

### Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

### Cardinals. Y = n Y n. Define h: X Y by f(x) if x X n X n+1 and n is even h(x) = g

Cardinals 1. Introduction to Cardinals We work in the base theory ZF. The definitions and many (but not all) of the basic theorems do not require AC; we will indicate explicitly when we are using choice.

Διαβάστε περισσότερα

### 1. Introduction and Preliminaries.

Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

### A Note on Intuitionistic Fuzzy. Equivalence Relation

International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

### 5. Choice under Uncertainty

5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

### 2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

### Homework 3 Solutions

Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

### Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

### ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

### Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary

Διαβάστε περισσότερα

### Strukturalna poprawność argumentu.

Strukturalna poprawność argumentu. Marcin Selinger Uniwersytet Wrocławski Katedra Logiki i Metodologii Nauk marcisel@uni.wroc.pl Table of contents: 1. Definition of argument and further notions. 2. Operations

Διαβάστε περισσότερα

### Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

### Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

### Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

### SOME PROPERTIES OF FUZZY REAL NUMBERS

Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

### F A S C I C U L I M A T H E M A T I C I

F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )-PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept

Διαβάστε περισσότερα

### SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

### Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

### Finite Field Problems: Solutions

Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

### Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

### THE GENERAL INDUCTIVE ARGUMENT FOR MEASURE ANALYSES WITH ADDITIVE ORDINAL ALGEBRAS

THE GENERAL INDUCTIVE ARGUMENT FOR MEASURE ANALYSES WITH ADDITIVE ORDINAL ALGEBRAS STEFAN BOLD, BENEDIKT LÖWE In [BoLö ] we gave a survey of measure analyses under AD, discussed the general theory of order

Διαβάστε περισσότερα

### Generating Set of the Complete Semigroups of Binary Relations

Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

### MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

### Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

### Congruence Classes of Invertible Matrices of Order 3 over F 2

International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

### Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.

Διαβάστε περισσότερα

### Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical

Διαβάστε περισσότερα

### Thus X is nonempty by supposition. By (i), let x be a minimal element of X. Then let

4. Ordinals July 26, 2011 In this chapter we introduce the ordinals, prove a general recursion theorem, and develop some elementary ordinal arithmetic. A set A is transitive iff x A y x(y A); in other

Διαβάστε περισσότερα

### Second Order Partial Differential Equations

Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

### Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

### Section 8.3 Trigonometric Equations

99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

### Homomorphism in Intuitionistic Fuzzy Automata

International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

### Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

### CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

### Abstract Storage Devices

Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

### 6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

### UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition

UNIT - I LINEAR ALGEBRA Definition Vector Space : A non-empty set V is said to be vector space over the field F. If V is an abelian group under addition and if for every α, β F, ν, ν 2 V, such that αν

Διαβάστε περισσότερα

### Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

### Trigonometric Formula Sheet

Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

### 4.6 Autoregressive Moving Average Model ARMA(1,1)

84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

### Solution Series 9. i=1 x i and i=1 x i.

Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

### Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

### The challenges of non-stable predicates

The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

### Lecture 2. Soundness and completeness of propositional logic

Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

### Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

### Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

### Matrices and Determinants

Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

### 3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

### THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

### DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

### A General Note on δ-quasi Monotone and Increasing Sequence

International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

### The semiclassical Garding inequality

The semiclassical Garding inequality We give a proof of the semiclassical Garding inequality (Theorem 4.1 using as the only black box the Calderon-Vaillancourt Theorem. 1 Anti-Wick quantization For (q,

Διαβάστε περισσότερα

### Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

### 3.2 Simple Roots and Weyl Group

44 CHAPTER 3. ROOT SYSTEMS 3.2 Simple Roots and Weyl Group In this section, we fix a root system Φ of rank l in a euclidean space E, with Weyl group W. 3.2.1 Bases and Weyl chambers Def. A subset of Φ

Διαβάστε περισσότερα

### Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero

Διαβάστε περισσότερα

### Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

### ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

ENGR 69/69 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework : Bayesian Decision Theory (solutions) Due: Septemer 3 Prolem : ( pts) Let the conditional densities for a two-category one-dimensional

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

### CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

### Homework 8 Model Solution Section

MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

### Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

### Partial Differential Equations in Biology The boundary element method. March 26, 2013

The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

### Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

### Bifurcating Continued Fractions II

Bifurcating Continued Fractions II Ashok Kumar Mittal Department of Physics Allahabad University, Allahabad 211 002, India (Email address: mittal_a@vsnl.com) Ashok Kumar Gupta Department of Electronics

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

### On Chromatic Polynomial and Ordinomial

On Chromatic Polynomial and Ordinomial Amir Barghi Department of Mathematics and Statistics Rochester Institute of Technology Rochester, NY 14623 e-mail: axb8926@ritedu Master s Thesis under Supervision

Διαβάστε περισσότερα

### Chap. 6 Pushdown Automata

Chap. 6 Pushdown Automata 6.1 Definition of Pushdown Automata Example 6.1 L = {wcw R w (0+1) * } P c 0P0 1P1 1. Start at state q 0, push input symbol onto stack, and stay in q 0. 2. If input symbol is

Διαβάστε περισσότερα

### Limit theorems under sublinear expectations and probabilities

Limit theorems under sublinear expectations and probabilities Xinpeng LI Shandong University & Université Paris 1 Young Researchers Meeting on BSDEs, Numerics and Finance 4 July, Oxford 1 / 25 Outline

Διαβάστε περισσότερα

### Theorem 8 Let φ be the most powerful size α test of H

Testing composite hypotheses Θ = Θ 0 Θ c 0 H 0 : θ Θ 0 H 1 : θ Θ c 0 Definition 16 A test φ is a uniformly most powerful (UMP) level α test for H 0 vs. H 1 if φ has level α and for any other level α test

Διαβάστε περισσότερα

### Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

### Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

### Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

### The Simply Typed Lambda Calculus

Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

### Knaster-Reichbach Theorem for 2 κ

Knaster-Reichbach Theorem for 2 κ Micha l Korch February 9, 2018 In the recent years the theory of the generalized Cantor and Baire spaces was extensively developed (see, e.g. [1], [2], [6], [4] and many

Διαβάστε περισσότερα

### Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

### Math221: HW# 1 solutions

Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

### New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

### A Conception of Inductive Logic: Example

A Conception of Inductive Logic: Example Patrick Maher Department of Philosophy, University of Illinois at Urbana-Champaign This paper presents a simple example of inductive logic done according to the

Διαβάστε περισσότερα

### Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

### Homomorphism of Intuitionistic Fuzzy Groups

International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

### Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Chi-Kwong Li Department of Mathematics The College of William and Mary Williamsburg, Virginia 23187-8795

Διαβάστε περισσότερα

### Intuitionistic Fuzzy Ideals of Near Rings

International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

### From the finite to the transfinite: Λµ-terms and streams

From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u

Διαβάστε περισσότερα

### Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα