Διαχείριση Εφοδιαστικής Αλυσίδας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διαχείριση Εφοδιαστικής Αλυσίδας"

Transcript

1 Διαχείριση Εφοδιαστικής Αλυσίδας 7 η Διάλεξη: Δρομολόγηση & Προγραμματισμός (Routing & Scheduling) 015 Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών

2 Ατζέντα Εισαγωγή στις έννοιες Βασικές οντότητες Μοντελοποίηση δικτύων Προβλήματα δρομολόγησης & προγραμματισμού Αλγόριθμοι Επίλυσης Προβλημάτων Δρομολόγησης

3 Ατζέντα Εισαγωγή στις έννοιες Βασικές οντότητες Μοντελοποίηση δικτύων Προβλήματα δρομολόγησης & προγραμματισμού Αλγόριθμοι Επίλυσης Προβλημάτων Δρομολόγησης 3

4 Ορισμοί Δρομολόγησης & Προγραμματισμού Οι εταιρίες που αναλαμβάνουν τη μεταφορά & διανομή προϊόντων σε διάφορα σημεία εξυπηρέτησης (πελάτες) καθώς και οι δημόσιοι οργανισμοί μαζικής μεταφοράς βασίζονται στη χρήση ενός στόλου οχημάτων και του αντίστοιχου πληρώματος που τα επανδρώνει Η βέλτιστη διαχείριση αυτών των οχημάτων καθώς και των πληρωμάτων τους, δημιουργεί μια σειρά από προβλήματα διαχείρισης & ανάθεσης τα οποία εμπεριέχονται κάτω από τη γενική κατηγορία προβλημάτων «δρομολόγησης και προγραμματισμού» Πηγή: Bodin et al., 1983

5 Ατζέντα Εισαγωγή στις έννοιες Βασικές οντότητες Μοντελοποίηση δικτύων Προβλήματα δρομολόγησης & προγραμματισμού Αλγόριθμοι Επίλυσης Προβλημάτων Δρομολόγησης 5

6 Βασικές οντότητες σε ένα σύστημα δρομολόγησης & προγραμματισμού Στόλος Μέγεθος Αριθμός οχημάτων (σταθερός ή κυμαινόμενος) Πλήρωμα Τύπος Ομογενής, ετερογενής, ειδικά οχήματα (ψυγεία, με πολλαπλά διαμερίσματα), οχήματα ΔΧ Χώροι στάθμευσης (depot) Πελάτες Χωρητικότητα Διαθέσιμος χώρος για μεταφορά προϊόντων, περιορισμοί στο μεταφερόμενο όγκο και στο βάρος, συμβατότητα με προϊόντα (π.χ. ευπαθή, επικίνδυνα προϊόντα) Δίκτυο Πηγή: Bodin et al.,

7 Βασικές οντότητες σε ένα σύστημα δρομολόγησης & προγραμματισμού Στόλος Πλήρωμα Χρόνος βάρδιας Μέγιστος επιτρεπόμενος χρόνος οδήγησης Χώροι στάθμευσης (depot) Άλλοι οδηγικοί περιορισμοί Διάλειμμα οδηγού (συνήθως στη μέση της βάρδιας), μέγιστος συνεχόμενος χρόνος οδήγησης, κτλ Πελάτες Δίκτυο Πηγή: Bodin et al.,

8 Βασικές οντότητες σε ένα σύστημα δρομολόγησης & προγραμματισμού Στόλος Πλήρωμα Χωρητικότητα Αριθμός οχημάτων που μπορούν να σταθμεύσουν Ένας / Πολλαπλοί Αριθμός διαθέσιμων χώρων στάθμευσης Χώροι στάθμευσης (depot) Πελάτες Περιοχή εξυπηρέτησης Η γεωγραφική περιοχή που εξυπηρετείται από κάθε depot (χώρος στάθμευσης) Δίκτυο Πηγή: Bodin et al.,

9 Βασικές οντότητες σε ένα σύστημα δρομολόγησης & προγραμματισμού Στόλος Σημείο εξυπηρέτησης Διεύθυνση, Γεωγραφική θέση πελατών Πλήρωμα Είδος ζήτησης Ντετερμινιστικό, Στοχαστικό, Δυνατότητα μερικής ικανοποίησης απαιτήσεων Χώροι στάθμευσης (depot) Τύπος ζήτησης Παραλαβή, Διανομή, Μικτή Πελάτες Ειδικές απαιτήσεις Παράθυρα διανομής, Χρόνοι φορτώματος/ξεφορτώματος (service time) Δίκτυο Πηγή: Bodin et al.,

10 Βασικές οντότητες σε ένα σύστημα δρομολόγησης & προγραμματισμού Στόλος Πλήρωμα Χώροι στάθμευσης (depot) Είδος δικτύου Χρόνος κίνησης Περιορισμοί οχημάτων Ευκλείδεια απόσταση, απόσταση Manhattan, γεωγραφικό δίκτυο Στατικός, δυναμικός (βασιζόμενος σε κυκλοφοριακά δεδομένα) Περιοχές που δεν μπορούν να εξυπηρετήσουν κάποια οχήματα (π.χ. λόγω μεγέθους οχήματος) Πελάτες Δίκτυο Πηγή: Bodin et al.,

11 Ατζέντα Εισαγωγή στις έννοιες Βασικές οντότητες Μοντελοποίηση δικτύων Προβλήματα δρομολόγησης & προγραμματισμού Αλγόριθμοι Επίλυσης Προβλημάτων Δρομολόγησης 11

12 Ορισμός δικτύου & βελτιστοποίησης Δίκτυα Ένας γράφος είναι ένας συνδυασμός κόμβων και ακμών Κάθε ακμή συνδέει δυο κόμβους Ένα δίκτυο είναι ένας γράφος με ροή μέσω των ακμών. Για παράδειγμα ένα οδικό δίκτυο περιλαμβάνει τη ροή οχημάτων, ένας αγωγός τη ροή ενός υγρού, κτλ Πηγή: Hiller και Lieberman, 1990 Βελτιστοποίηση Η βελτιστοποίηση μπορεί να ορισθεί ως η επιλογή της πιο αποδοτικής λύσης από το σύνολο όλων των λύσεων ενός προβλήματος Αυτή η λύση μπορεί να βρεθεί με τη χρήση μαθηματικής μοντελοποίησης και εξειδικευμένου λογισμικού 1

13 Κόμβοι (Nodes) Οι κόμβοι συνήθως αναπαριστούν φυσικά σημεία: Ένα σημείο εξυπηρέτησης (πελάτης) Ένα κέντρο διανομής Intermediate Node Οι κόμβοι χρησιμοποιούνται επίσης για να: αναπαραστήσουν τη σύνδεση δρόμων -lane segment 3-lane segment Κόμβοι για αλλαγή οδικού άξονα Πηγή: neo.lcc.uma, 00 υποδείξουμε την αλλαγή χαρακτηριστικών ενός οδικού άξονα (π.χ. ένας αυτοκινητόδρομος 3 λωρίδων μετασχηματίζεται σε λωρίδων Μοντελοποιήσουμε εξειδικευμένα χαρακτηριστικά ενός πελάτη, ένας κόμβος μπορεί να πρέπει να διασπαστεί σε ή περισσότερους (π.χ. αποθήκη με χώρους αποθήκευσης για διαφορετικά προϊόντα) Πηγή: Geodepot, 008 Κόμβοι σε ένα παγκόσμιο δίκτυο εφοδιαστικής αλυσίδα Πηγή: DeOPSys, 01 13

14 Γραφική απεικόνιση κόμβων σε αεροπορικά δίκτυα Κόμβοι του αεροπορικού δικτύου της airberlin Κόμβοι του αεροπορικού δικτύου της Turkish Airlines 1

15 Τόξα/ Ακμές (Arcs) Οι ακμές ενώνουν κόμβους Οι ακμές, συνήθως αναπαριστούν: Depot Οδικές αρτηρίες, Αυτοκινητόδρομους, Η ακμή ενώνει κόμβους Σιδηροδρομικές γραμμές, Αγωγούς, κτλ. Πηγή: neo.lcc.uma, 00 Οι ακμές μπορεί να έχουν συγκεκριμένη ροή/χωρητικότητα (π.χ. οχήματα/ώρα, αριθμός επιβατών/ώρα, κτλ) Η ροή μπορεί να είναι μονής (π.χ. μονόδρομοι, αγωγοί λυμάτων) ή διπλής κατεύθυνσης Τις περισσότερες φορές κάθε τόξο χαρακτηρίζεται από κάποιο κόστος (π.χ. χρόνος κίνησης, απόσταση, κατανάλωση ενέργειας, κτλ) Ακμές σε ένα παγκόσμιο δίκτυο εφοδιαστικής αλυσίδα Πηγή: DeOPSys, 01 15

16 Γραφική απεικόνιση ακμών σε αεροπορικά δίκτυα Ακμές του αεροπορικού δικτύου της airberlin Ακμές του αεροπορικού δικτύου της Turkish Airlines 16

17 Μαθηματική δομή ενός δικτύου Κόμβος (node): {A,B,C,D,E} Τόξο/Ακμή (arc): (A,B), (B,C), (B,E), 1 8 D (E,A), (E,C), (C,E), (D,C), (E,D), (A,D) Τα τόξα μπορεί να είναι προσανατολισμένα (π.χ. τόξο 1) A 3 E αναπαριστώντας μονόδρομους ή διπλή διέλευσης (π.χ. τόξα 6-7) B 5 C Παράδειγμα Το σύνολο των κόμβων του δικτύου είναι V={1,,3,,5} Το σύνολο των συνδέσμων του δικτύου ορίζεται από το σύνολο των διατεταγμένων ζευγών: 3 6 Α={(1,),(,3),(,5),(5,1),(5,3),(3,5),(,3),(5,),(1,)} Σημείωση: Οι αριθμοί δηλώνουν τον αύξοντα αριθμό του συνδέσμου

18 Ατζέντα Εισαγωγή στις έννοιες Βασικές οντότητες Μοντελοποίηση δικτύων Προβλήματα δρομολόγησης & προγραμματισμού Αλγόριθμοι Επίλυσης Προβλημάτων Δρομολόγησης 18

19 Γνωστές κατηγορίες προβλημάτων δρομολόγησης και προγραμματισμού Το πρόβλημα της συντομότερης διαδρομής (Shortest Path Problem) Το πρόβλημα του περιοδεύοντος πωλητή (Traveling Salesman Problem Πρόβλημα δρομολόγησης στόλου οχημάτων (Vehicle Routing Problem) 19

20 Πρόβλημα συντομότερης διαδρομής (SPP) Περιγραφή - Στόχος προβλήματος Παράδειγμα προβλήματος Εύρεση της συντομότερης διαδρομής με στόχο να ταξιδέψουμε από το σημείο Α στο σημείο Β περνώντας από ενδιάμεσους σταθμούς (π.χ. πόλεις) Δεν πρέπει να επισκεφθούμε όλα τα σημεία (π.χ. πόλεις) Το κόστος υπολογίζεται είτε ως διανυόμενη απόσταση (σε χλμ) ή ο χρόνος για να διανύσουμε αυτή την απόσταση Η συντομότερη διαδρομή από τον Κόμβο 1 στον κόμβο 5 είναι [1,3,,,5] με κόστος 0 0

21 Αναλυτικά βήματα επίλυσης παραδείγματος SPP Βήμα Λυμένοι κόμβοι άμεσα συνδεδεμένοι με μη λυμένους κόμβους Πλησιέστεροι μη λυμένοι κόμβοι Συνολική απόσταση Πλησιέστερο ς κόμβος Ελάχιστη απόσταση Συντομότερη διαδρομή 1 O A Α (O,A) O C C (O,C) A B += B (A,B) 3 A D +7=9 B E +3=7 E 7 7 (B,E) C E +=8 A D +7=9 B D +=8 D 8 8 (B,D) E D 7+1=8 D 8 8 (E,D) 5 D E T Τ 8+5=13 7+7=1 T (D,T) Α Ο 7 5 Β 1 D 1 T Η συντομότερη διαδρομή είναι: η [O, A, B, D, T] και η [O, A, B, Ε, D, T] με κόστος 13 C E Πηγή: Kasilingam,

22 Συνάρτηση επίλυσης SPP σε προγραμματιστικό περιβάλλον Μatlab Το Matlab περιλαμβάνει συναρτήσεις για την επίλυση προβλημάτων βελτιστοποίησης μεταξύ των οποίων και τη συνάρτηση graphshortestpath που χρησιμοποιείται για την εύρεση της συντομότερης διαρδρομής Έξοδος Συνάρτηση Είσοδος Σημείωση: Για την αναλυτική περιγραφή της συνάρτησης χρήση της εντολής : help graphshortestpath Matlab R01b

23 Εφαρμογή της συνάρτησης graphshortestpath στο προηγούμενο παράδειγμα Matlab R01b 3

24 Αποτελέσματα της συνάρτησης graphshortestpath στο προηγούμενο παράδειγμα Έξοδος συνάρτησης: Κόστος και μονοπάτι Γραφική απεικόνιση δικτύου και συντομότερης διαδρομής Matlab R01b

25 Το πρόβλημα του περιοδεύοντος πωλητή (TSP) Περιγραφή - Στόχος προβλήματος Παράδειγμα πραγματικού προβλήματος Ένας πωλητής πρέπει να επισκεφθεί κάποια σημεία (πόλεις) και να γυρίσει στο αρχικό σημείο (από εκεί που ξεκίνησε) Κάθε πελάτη πρέπει να τον επισκεφθεί μόνο μια φορά Ένα βέλτιστο πλάνο TSP στις 15 μεγαλύτερες πόλεις στη Γερμανία. Είναι η μικρότερη διαδρομή από πιθανές διαδρομές που υπάρχουν, δεδομένου ότι επισκεπτόμαστε κάθε πόλη μόνο μια φορά Ο πωλητής θα πρέπει να χρησιμοποιήσει τον πιο γρήγορο δρόμο (με το μικρότερο κόστος) Το κόστος υπολογίζεται είτε ως διανυόμενη απόσταση (σε χλμ) ή ο χρόνος για να διανύσουμε αυτή την απόσταση 5

26 Το πρόβλημα του περιοδεύοντος πωλητή (TSP) Οι George Dantzig, Ray Fulkerson, και Selmer Johnson (195) ήταν οι πρώτοι που έλυσαν ένα πρόβλημα με 9 πόλεις Οι Applegate, Bixby, Chvátal, Cook, και Helsgaun (001) έλυσαν ένα πρόβλημα με πόλεις στη Γερμανία Και το 00 βρήκαν τη βέλτιστη διαδρομή επίσκεψης για,978 πόλεις στη Σουηδία (περίπου χλμ) Χρονοδιάγραμμα επίλυσης του TSP Έτος Πόλεις n=9 n=33 n=10 n=53 n=666 n=39 n=7397 n=13509 n=1511 n=978 Πηγή: tsp.gatech.edu, 008 6

27 Μαθηματικό μοντέλο του TSP i j G(V, A) Μεταβλητές και Σύμβολα Έστω G(V, A) γράφος ο οποίος περιέχει: V = {0, 1,,, v}: το σύνολο των κόμβων 0 v Α: το σύνολο όλων των ακμών που ενώνουν τους κόμβους του συνόλου V μεταξύ τους x ij : Λαμβάνει την τιμή 1 αν η ακμή i, j A συμμετέχει στην τελική λύση, αλλιώς λαμβάνει την τιμή 0 (μεταβλητή απόφασης) d ij : το κόστος μετάβασης από τον κόμβο i στον κόμβο j u i : η θέση του κόμβου i στο δρομολόγιο δηλαδή μία θετική ακεραία μεταβλητή για κάθε κόμβο i η οποία δείχνει τη σειρά επίσκεψης στον κόμβο i 7

28 Μαθηματικό μοντέλο του TSP j G(V, A) Αντικειμενική συνάρτηση i min d ij x ij i,j A 0 v Περιορισμοί x ij = 1, j V\0 i V x ij j V = 1, i V\v Εξασφαλίζουν ότι υπάρχει ακριβώς μία μετάβαση από και προς κάθε σημείο του δικτύου u i u j + v x ij (v 1) i, j V Εξασφαλίζουν ότι στη λύση δε θα υπάρχουν κύκλοι (sub tours) x ij 0,1, i, j V 1 u i n 1 i V\0, u 0 = 1 8

29 Εφαρμογή του TSP σε παράδειγμα G(V, A) Αντικειμενική συνάρτηση 1 3 min d ij x ij i,j A 0 i V x ij = 1, j V\0 π.χ. για j = 1 x 1 + x 31 + x 1 + x 11 + x 01 = 1 d ij : κόστος μετάβασης j V x ij = 1, i V\v π.χ. για i = 1 x 10 + x 11 + x 1 + x 13 + x 1 = u i u j + v x ij (v 1) i, j V x ij 0,1, i, j V 1 u i n 1 i V\0, u 0 = 1 π.χ. για i = 1 και j = u 1 u + x 1 3 π.χ. για i = 0, u 0 = 1 για i = 1, 1 u 1 3 για i =, 1 u 3 9

30 Το πρόβλημα της δρομολόγηση οχημάτων (VRP) Προτάθηκε από τους Dantzig and Ramser το 1959 Αποτελεί ένα από τα πιο δύσκολα προς επίλυση προβλήματα. Η δυσκολία του αυξάνει εκθετικά όσο μεγαλώνει ο αριθμός των πελατών (Reimann et al., 003) Υπάρχουν διάφορες παραλλαγές του βασικού προβλήματος: Capacitated VRP (CVRP) Multiple Depot VRP (MDVRP) Split Delivery VRP (SDVRP) VRP with Backhauls (VRPB) (με επιστροφές στην αποθήκη) VRP with Pickups and Deliveries (VRPPD) VRP with time windows (VRPTW) Dynamic VRP (DVRP) Πηγή: Dantzig και Ramser,

31 Το πρόβλημα της δρομολόγηση οχημάτων (VRP) Περιγραφή - Στόχος προβλήματος Ένας αριθμός οχημάτων πρέπει να επισκεφθεί ένα δεδομένο αριθμό πελατών (πόλεων/ σημείων). Όλα τα οχήματα πρέπει να επιστρέψουν στο αρχικό σημείο εκκίνησης Κάθε πελάτης πρέπει να επισκεφθεί μια φορά μόνο Παράδειγμα προβλήματος Depot Το συσωρευτικό κόστος όλων των οχημάτων πρέπει να ελαχιστοποιηθεί Το κόστος υπολογίζεται είτε ως διανυόμενη απόσταση (σε χλμ) ή ο χρόνος για να διανύσουμε αυτή την απόσταση Επιχειρησιακές αποφάσεις: Πώς ο διαθέσιμος στόλος οχημάτων (πόροι) μπορεί να χρησιμοποιηθεί βέλτιστα έτσι ώστε να ικανοποιήσει μια δεδομένη ζήτηση (demand) με βάση συγκεκριμένες επιχειρησιακές απαιτήσεις Σκοπός της Δρομολόγησης Οχημάτων: Προσδιορισμός των δρομολογίων και πιθανών του προγράμματος των διαθέσιμων οχημάτων Depot Πηγή: neo.lcc.uma, 00 31

32 Το πρόβλημα της δρομολόγηση οχημάτων (VRP) Ελαχιστοποίησε: Περιγραφή - Στόχος προβλήματος το κόστος μεταφοράς (χρόνος κίνησης ή απόσταση) τον αριθμό των οχημάτων ή/και του πληρώματος Με τους εξής περιορισμούς: όλοι οι πελάτες επισκέπτονται από το όχημα μόνο μια φορά όλα τα οχήματα ξεκινούν και καταλήγουν στο ίδιο σημείο (depot) χρόνος κίνησης οχήματος <= βάρδια οδηγού όγκος προϊόντων προς διανομή ανά όχημα <= χωρητικότητα οχήματος Επιπρόσθετοι περιορισμοί: κάθε πελάτης πρέπει να εξυπηρετηθεί σε συγκεκριμένα χρονικά παράθυρα η παραλαβή συγκεκριμένων προϊόντων πρέπει να γίνει πριν την παράδοση πελάτες με συγκεκριμένα εμπορεύματα μπορούν να εξυπηρετηθούν μόνο από συγκεκριμένα είδη οχημάτων 3

33 Μαθηματικό μοντέλο του προβλήματος της δρομολόγηση οχημάτων (VRP) Μεταβλητές και Σύμβολα Κ: αριθμός διαθέσιμων οχημάτων S: Σύνολο που αποτελείτε από κόμβους Αντικειμενική συνάρτηση min d ij x ij (i,j) A V\S: Σύνολο όλων των κόμβων εκτός αυτών που ανήκουν στο S r(s): O ελάχιστος αριθμός των οχημάτων Περιορισμοί x ij = 1, j V\0 i V (ακμών) που χρειάζονται για να εξυπηρετηθούν οι κόμβοι του S π.χ. λόγω της χωρητικότητας των οχημάτων ορίζεται ως: r(s) = p S C Όπου, p(s) είναι το συνολικός όγκος προϊόντων x ij j V x 0j j V x i0 i V = 1, i V\0 = Κ, = Κ, προς διανομή στους πελάτες που ανήκουν στο S και C η χωρητικότητα του κάθε οχήματος i V\S j S x ij r S, S V\0, S x ij 0,1, i, j V 33

34 10 k: αριθμός οχημάτων, k = 0 Εφαρμογή μαθηματικού μοντέλου του προβλήματος της δρομολόγηση οχημάτων (VRP) Δεδομένα C: χωρητικότητα οχήματος, C = 10 d ij : κόστος μετάβασης από τον i στον j, d ij = 5 Υπόμνημα 0 depot Όγκος προς διανομή σε κάθε θέση πελάτη πελάτη Δεδομένα π. χ. για S: 3, και άρα V/S: {0,1,} p S : συνολικός όγκος προϊόντων προς διανομή στους πελάτες που ανήκουν στο S, p(s) = 5 για S: 3, r(s) = p S C 1 Εφαρμογή μοντέλου = 5 10 = min d ij x ij (i,j) A i V\S j S i V j V j V i V Αντικειμενική συνάρτηση x ij = 1, j V\0 x ij x 0j x i0 = 1, i V\0 = Κ, = Κ, x ij r S, x ij Μεταβλητή απόφασης Παράμετρος S V\0, S 0,1, i, j V d 00 x 00 + d 01 x 01 + d 0 x 0 + d 03 x 03 + d 0 x 0 + d 10 x 10 + d 11 x 11 + d 1 x 1 + d 13 x 13 + d 1 x 1 + d 0 x 0 + d 1 x 1 + d x + d 3 x 3 + d x + d 30 x 30 + d 31 x 31 + d 3 x 3 + d 33 x 33 + d 3 x 3 + d 0 x 0 + d 1 x 1 + d x + d 3 x 3 + d x Περιορισμοί π.χ. για j = 1 x 01 + x 11 + x 1 + x 31 + x 1 = 1 π.χ. για i = 1 x 10 + x 11 + x 1 + x 13 + x 1 = 1 π.χ. x 00 + x 01 + x 0 + x 03 + x 0 = π.χ. x 00 + x 10 + x 0 + x 30 + x 0 = π.χ. για S: 3, x 03 + x 13 + x 3 + x 0 + x 1 +x 1 Η μεταβλητή απόφασης x ij, για κάθε i, j V μπορεί να λάβει την τιμή 0 ή 1 3

35 Ατζέντα Εισαγωγή στις έννοιες Βασικές οντότητες Μοντελοποίηση δικτύων Προβλήματα δρομολόγησης & προγραμματισμού Αλγόριθμοι Επίλυσης Προβλημάτων Δρομολόγησης 35

36 Αλγόριθμοι επίλυσης Μαθηματικός Προγραμματισμός Αφορά μαθηματικές μεθόδους οι οποίες καταλήγουν στην βέλτιστη λύση ενός προβλήματος, αποδεικνύοντας ταυτόχρονα ότι δεν υπάρχει άλλη καλύτερη. Σε προβλήματα μεγάλης κλίμακας ο υπολογιστικός χρόνος που απαιτούν συνήθως είναι μεγάλος Ευρετικοί Αλγόριθμοι Είναι απλές διαδικασίες που ακολουθούν λογικούς (εμπειρικούς) κανόνες για να αποδώσουν γρήγορα λύσεις. Οι λύσεις που παράγονται από αυτές τις διαδικασίες δεν είναι απαραίτητα και οι καλύτερες που υπάρχουν Αλγόριθμος Πλησιέστερου Γείτονα (Nearest Neighbor Algorithm) Clark & Wright Savings 36

37 Αλγόριθμος Πλησιέστερου Γείτονα (Nearest Neighbor Algorithm) Ο ευρετικός αλγόριθμός του Πλησιέστερου Γείτονα (ΠΓ) δημιουργεί δρομολόγια (ή μονοπάτια) επιλέγοντας κάθε φορά να μεταβεί στον κόμβο με το μικρότερο κόστος (ή απόσταση) μετάβασης από τον κόμβο που Ο ευρετικός αλγόριθμός ΠΓ είναι απλός, έχει όμως το μειονέκτημα ότι δεν εξετάζει το συνολικό πρόβλημα αλλά εστιάζει σε ένα μικρό κομμάτι του προβλήματος Τα βήματα του αλγορίθμου είναι τα εξής: 1. Όρισε τον αρχικό κόμβο (π.χ. την αποθήκη) ως τρέχων κόμβο. Εύρεση του κόμβου ο οποίος: α) έχει το μικρότερο κόστος μετάβασης από τον τρέχων κόμβο, β) δεν είναι ήδη στο μονοπάτι. Τοποθέτηση του κόμβου αυτού ως επόμενου στο μονοπάτι και ως τον νέο τρέχων κόμβο 3. Επανάληψη του βήματος έως ότου όλοι οι κόμβοι να είναι στο μονοπάτι. Ένωσε τον τρέχων κόμβο με τον αρχικό κόμβο 37

38 Παράδειγμα του αλγορίθμου του Πλησιέστερου Γείτονα Βήμα A Βήμα Β 5,km 5 8,km ,8km 3,1km 10,5km 6 6 Βήμα Γ Βήμα Δ 5km 6km 5 8,5km ,km 3,6km 7,8km 6 6 9,5km 38

39 Παράδειγμα του αλγορίθμου του Πλησιέστερου Γείτονα Βήμα Ε Βήμα ΣΤ 5km 5km 5 8,5km ,5km 1,8km 3 5km 3,6km 10,5km 6 6,8 + 3,6 + 8, ,5 = 35,km 39

40 Αλγόριθμος πλησιέστερου γείτονα VS βέλτιστη λύση ΠΓ Βέλτιστη Λύση 8,5km 5km 5 5,km 5km 5 1,8km 3 3,6km 5km 10,5km 1 3 7,8km,1km 3,6km 6 6 5km,8 + 3,6 + 8, ,5 = 35,km 5, ,8 + 3,6 +,1 = 30,9km 0

41 Αλγόριθμος Clark & Wright Savings Ο ευρετικός αλγόριθμος Clarke & Wright Savings (C&W) είναι από τις πιο διαδεδομένες τεχνικές επιλύσεις προβλημάτων δρομολόγησης Ο αλγόριθμος εκκινεί θεωρώντας ότι κάθε κόμβος επισκέπτεται από ένα διαφορετικό όχημα Υπολογίζει την εξοικονόμηση (saving) από την ένωση δύο δρομολογίων π.χ.: Αν η απόσταση από τον κόμβο στον 3 είναι 5km και η συνολική Depot 1 10km 10km 8km 8km 3 5km απόσταση που καλύπτεται από τα δύο οχήματα είναι 36km Τότε η εξοικονόμηση που θα προκύψει είναι: = 13km 1

42 Αλγόριθμος Clark & Wright Savings: Υπολογισμός εξοικονόμησης Στο σχήμα παρουσιάζονται τα αρχικά δρομολόγια (μπλε γραμμές) Με διακεκομμένες γραμμές παρουσιάζονται οι ακμές που δεν χρησιμοποιούνται στη λύση Depot 1 5km 5km 10km 10km 7km 3km Το πρώτο βήμα για την δημιουργία ενός ολοκληρωμένου δρομολόγιου είναι η ένωση των κόμβων με την μεγαλύτερη εξοικονόμηση 8km 8km 3 5km εφαρμόζοντας τον τύπο: S ij = c 1i + c 1j c ij Κόμβοι (i j) Savings S ij Ταξινόμηση i = j = = 13km S 3 = 13 1 i = j = = 1km S = 1 i = 3 j = = 6km S 3 = 6 3 Η ένωση -3 αποδίδει την μεγαλύτερη εξοικονόμηση 3

43 Αλγόριθμος Clark & Wright Savings: Ένωση κόμβων με την καλύτερη εξοικονόμηση Depot 1 5km 5km 10km 10km 7km 3km Depot 1 5km 5km 10km 8km 5km 8km 5km 8km = 6km = 33km Κόμβοι (i j) Savings S ij Ταξινόμηση i = j = = 13km S 3 = 13 1 i = j = = 1km S = 1 i = 3 j = = 6km S 3 = 6 3 Η ένωση -3 αποδίδει την μεγαλύτερη εξοικονόμηση

44 Αλγόριθμος Clark & Wright Savings: Ένωση κόμβων με την επόμενη καλύτερη εξοικονόμηση Depot 1 5km 5km 10km 10km 7km 3km Depot 1 5km 3km 8km 5km 8km 5km 8km = 6km = 1km Ένωση των κόμβων με την επόμενη καλύτερη εξοικονόμηση: οι κόμβοι και Κόμβοι (i j) Savings Sij Ταξινόμηση i = j = = 1km S = 1 Το ολοκληρωμένο δρομολόγιο είναι 1 3 1, με συνολική απόσταση 1km Η ένωση - αποδίδει την επόμενη μεγαλύτερη εξοικονόμηση Η συνολική εξοικονόμηση για την δημιουργία ενός δρομολογίου με όλους τους κόμβους είναι 5km 5

45 Παράδειγμα αλγορίθμου Clark & Wright Savings Εφαρμόστε τον αλγόριθμο τον αλγόριθμο Clark & Wright Savings ώστε να δημιουργήστε ένα δρομολόγιο που θα επισκέπτεται όλους τους κόμβους του παρακάτω σχήματος. Το δρομολόγιο θα πρέπει να εκκινεί από τον κόμβο 0 και να επιστρέφει σε αυτόν, αφού έχουν επισκεφτεί όλοι οι υπόλοιποι κόμβοι. Ο πίνακας περιέχει τις αποστάσεις μεταξύ των κόμβων του σχήματος Πίνακας Αποστάσεων Κόμβων Από Προς

46 1. Ορισμός κόμβου ως κόμβου αποθήκης. Υπολογισμός της εξοικονόμησης (δημιουργία πίνακα εξοικονόμησης) από τη σύνδεση των κόμβων i και j: Επίλυση του παραδείγματος εφαρμόζοντας τα βήματα του αλγορίθμου Clark & Wright Savings Ακολουθώντας τα βήματα του αλγορίθμου: Πίνακας εξοικονόμησης Από Προς S ij = c 0i + c 0j c ij Ταξινόμηση των εξοικονομήσεων (δημιουργία πίνακα ταξινόμησης) από την μεγαλύτερη στην μικρότερη Πίνακας ταξινόμησης Από Προς Σημείωση: Δεν χρειάζεται να υπολογιστούν 7

47 Επίλυση του παραδείγματος εφαρμόζοντας τα βήματα του αλγορίθμου Clark & Wright Savings. Ξεκινώντας από την καλύτερη ταξινόμηση, και στη συνέχεια ακολουθώντας την ταξινομημένη λίστα εξοικονομήσεων, σύνδεσε κατάλληλα τους κόμβους εξετάζοντας την εφικτότητα της σύνδεσης (αν δεν είναι εφικτή η σύνδεση προχώρα στην επόμενη μεγαλύτερη ταξινόμηση μέχρι να σχηματιστεί μια ολοκληρωμένη λύση Nodes: 5-3 Savings: 8 New path: Nodes: 3-5 Savings: 8 Skip Nodes: 5 - Savings: 61 New path: Nodes: - 5 Savings: 61 Skip Nodes: 3 - Savings: 59 Skip Nodes: - 3 Savings: 59 Skip Nodes: - Savings: 7 New path: Nodes: - Savings: 7 Skip Nodes: 5 - Savings: 16 Skip Nodes: - 5 Savings: 16 Skip Nodes: - 3 Savings: 16 Skip Nodes: 3 - Savings: 16 Skip Nodes: 5-1 Savings: 5 Skip Nodes: 1-5 Savings: 5 Skip Nodes: 3-1 Savings: 5 New path: Όλοι οι κόμβοι συμμετέχουν στο δρομολόγιο οπότε τελειώνει ο αλγόριθμος Clark & Wright Savings Πίνακας ταξινόμησης Από Προς Συνολική απόσταση δρομολογίου:

48 Εμπειρικοί κανόνες δρομολόγησης Ο ανθρώπινος εγκέφαλος έχει την δυνατότητα να αναγνωρίσει γρήγορα συσχετίσεις μεταξύ λύσεων και να επιλέξει την καλύτερη από αυτές Καλές αλληλουχίες κόμβων σχηματίζονται όταν οι ακμές των λύσεων δεν επικαλύπτονται μεταξύ τους Το σχήμα ενός καλού δρομολογίου θυμίζει συνήθως το σχήμα του δακρύου, ή το σχήμα των πετάλων των λουλουδιών Σε πολλές περιπτώσεις ο άνθρωπος μπορεί να σχηματίσει ένα καλό δρομολόγιο σε λίγα δευτερόλεπτα όταν ένας υπολογιστής θα έκανε ώρες (a) Poor routing paths cross (b) Good routing no paths cross Πηγή: Ballou, 00 9

I student. Μεθοδολογική προσέγγιση και απαιτήσεις για την ανάπτυξη των αλγορίθμων δρομολόγησης Χρυσοχόου Ευαγγελία Επιστημονικός Συνεργάτης ΙΜΕΤ

I student. Μεθοδολογική προσέγγιση και απαιτήσεις για την ανάπτυξη των αλγορίθμων δρομολόγησης Χρυσοχόου Ευαγγελία Επιστημονικός Συνεργάτης ΙΜΕΤ I student Μεθοδολογική προσέγγιση και απαιτήσεις για την ανάπτυξη των αλγορίθμων δρομολόγησης Χρυσοχόου Ευαγγελία Επιστημονικός Συνεργάτης ΙΜΕΤ Ινστιτούτο Bιώσιμης Κινητικότητας και Δικτύων Μεταφορών (ΙΜΕΤ)

Διαβάστε περισσότερα

«ΣΧΕΔΙΑΣΜΟΣ ΕΝΟΣ ΠΛΗΡΟΦΟΡΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΓΙΑ ΤΗΝ ΔΡΟΜΟΛΟΓΗΣΗ ΣΤΟΛΟΥ ΟΧΗΜΑΤΩΝ ΜΕ ΕΦΑΡΜΟΓΗ ΣΕ ΜΕΤΑΦΟΡΙΚΗ ΕΤΑΙΡΕΙΑ»

«ΣΧΕΔΙΑΣΜΟΣ ΕΝΟΣ ΠΛΗΡΟΦΟΡΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΓΙΑ ΤΗΝ ΔΡΟΜΟΛΟΓΗΣΗ ΣΤΟΛΟΥ ΟΧΗΜΑΤΩΝ ΜΕ ΕΦΑΡΜΟΓΗ ΣΕ ΜΕΤΑΦΟΡΙΚΗ ΕΤΑΙΡΕΙΑ» ΤΜΗΜΑ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ «ΣΧΕΔΙΑΣΜΟΣ ΕΝΟΣ ΠΛΗΡΟΦΟΡΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΓΙΑ ΤΗΝ ΔΡΟΜΟΛΟΓΗΣΗ ΣΤΟΛΟΥ ΟΧΗΜΑΤΩΝ ΜΕ ΕΦΑΡΜΟΓΗ ΣΕ ΜΕΤΑΦΟΡΙΚΗ ΕΤΑΙΡΕΙΑ» Η εργασία υποβάλλεται

Διαβάστε περισσότερα

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων Τεχνικές Σχεδιασμού Αλγορίθμων Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και Βασίλευε (Divide and

Διαβάστε περισσότερα

«ΗΛΕΚΤΡΟΝΙΚΗ ΠΛΗΡΟΦΟΡΗΣΗ & ΕΥΦΥΗ ΣΥΣΤΗΜΑΤΑ» Δρ. Ν.Κ. ΓΚΕΪΒΕΛΗΣ Σύμβουλος Διοίκησης Business development ANΚO ΑΕ

«ΗΛΕΚΤΡΟΝΙΚΗ ΠΛΗΡΟΦΟΡΗΣΗ & ΕΥΦΥΗ ΣΥΣΤΗΜΑΤΑ» Δρ. Ν.Κ. ΓΚΕΪΒΕΛΗΣ Σύμβουλος Διοίκησης Business development ANΚO ΑΕ Δρ. Ν.Κ. ΓΚΕΪΒΕΛΗΣ Σύμβουλος Διοίκησης Business development ANΚO ΑΕ ΕΥΦΥΗ ΣΥΣΤΗΜΑΤΑ ΣΤΙΣ ΜΕΤΑΦΟΡΕΣ Τομέας Συμβατικής Διακίνησης Επιβατών Τομέας Εμπορευματικών Μεταφορών Τομέας Δημόσιων Μεταφορών ΤΟΜΕΑΣ

Διαβάστε περισσότερα

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Περίληψη Αλγόριθµοι τύπου Brute-Force Παραδείγµατα Αναζήτησης Ταξινόµησης Πλησιέστερα σηµεία Convex hull Βελτιστοποίηση Knapsack problem Προβλήµατα Ανάθεσης

Διαβάστε περισσότερα

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation )

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) Σε αυτή την ενότητα θα ασχοληθούμε με προβλήματα που αφορούν τη μεταφορά αγαθών από διαφορετικά σημεία παραγωγής ή κεντρικής αποθήκευσης

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός Κεφάλαιο 5ο: Ακέραιος προγραμματισμός 5.1 Εισαγωγή Ο ακέραιος προγραμματισμός ασχολείται με προβλήματα γραμμικού προγραμματισμού στα οποία μερικές ή όλες οι μεταβλητές είναι ακέραιες. Ένα γενικό πρόβλημα

Διαβάστε περισσότερα

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2. Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...

Διαβάστε περισσότερα

Ανάπτυξη αλγορίθμου τεχνητού ανοσοποιητικού συστήματος για την επίλυση του προβλήματος Δρομολόγησης Οχημάτων

Ανάπτυξη αλγορίθμου τεχνητού ανοσοποιητικού συστήματος για την επίλυση του προβλήματος Δρομολόγησης Οχημάτων Πολυτεχνείο Κρήτης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Τομέας Επιχειρησιακής Έρευνας Ανάπτυξη αλγορίθμου τεχνητού ανοσοποιητικού συστήματος για την επίλυση του προβλήματος Δρομολόγησης Οχημάτων Διατριβή

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Αλγόριθµοι δροµολόγησης µε µέσα µαζικής µεταφοράς στο µεταφορικό δίκτυο των Αθηνών

Αλγόριθµοι δροµολόγησης µε µέσα µαζικής µεταφοράς στο µεταφορικό δίκτυο των Αθηνών 1 Αλγόριθµοι δροµολόγησης µε µέσα µαζικής µεταφοράς στο µεταφορικό δίκτυο των Αθηνών ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ της Κωτσογιάννη Μαριάννας Περίληψη 1. Αντικείµενο- Σκοπός Αντικείµενο της διπλωµατικής αυτής εργασίας

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΣΥΝΔΥΑΣΤΙΚΗΔΟΜΗ:

Διαβάστε περισσότερα

8 η ιάλεξη: σε δίκτυα δεδομένων

8 η ιάλεξη: σε δίκτυα δεδομένων Εργαστήριο ικτύων Υπολογιστών 8 η ιάλεξη: Βασικές αρχές δρομολόγησης Βασικές αρχές δρομολόγησης σε δίκτυα δεδομένων ρομολόγηση (Routing) Μεταφορά μηνυμάτων μέσω του διαδικτύου από μία πηγή σε ένα προορισμό

Διαβάστε περισσότερα

Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία. Πέτρος Ποτίκας CoReLab 4/5/2006

Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία. Πέτρος Ποτίκας CoReLab 4/5/2006 Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία Πέτρος Ποτίκας CoReLab 4/5/2006 Επισκόπηση Ετικέτες σε συνιστώσες (Component labelling) Hough μετασχηματισμοί (transforms) Πλησιέστερος

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,

Διαβάστε περισσότερα

Εφαρμογή Διαχείρισης Στόλου Οχημάτων. «RouteΤracker»

Εφαρμογή Διαχείρισης Στόλου Οχημάτων. «RouteΤracker» Εφαρμογή Διαχείρισης Στόλου Οχημάτων «RouteΤracker» Εφαρμογή Διαχείρισης Στόλου Οχημάτων «RouteΤracker» Η εφαρμογή διαχείρισης στόλου οχημάτων RouteTracker δίνει τη δυνατότητα παρακολούθησης και εποπτείας

Διαβάστε περισσότερα

Προβλήµατα Μεταφορών (Transportation)

Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Μέθοδος Simplex για Προβλήµατα Μεταφοράς Προβλήµατα Εκχώρησης (assignment) Παράδειγµα: Κατανοµή Νερού Η υδατοπροµήθεια µιας περιφέρεια

Διαβάστε περισσότερα

3.12 Το Πρόβλημα της Μεταφοράς

3.12 Το Πρόβλημα της Μεταφοράς 312 Το Πρόβλημα της Μεταφοράς Σ αυτή την παράγραφο και στις επόμενες μέχρι το τέλος του κεφαλαίου θα ασχοληθούμε με μερικά σπουδαία είδη προβλημάτων γραμμικού προγραμματισμού Οι ειδικές αυτές περιπτώσεις

Διαβάστε περισσότερα

ΔΙΚΤΥΑ (13) Π. Φουληράς

ΔΙΚΤΥΑ (13) Π. Φουληράς ΔΙΚΤΥΑ (13) Π. Φουληράς Τεχνολογίες WAN και Δρομολόγηση LAN Επεκτείνεται μόνον σε ένα κτίριο ή ομάδα κτιρίων WAN (Wide Area Network) Επεκτείνονται σε μεγάλες περιοχές MAN Ενδιάμεσο ως προς το μέγεθος της

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Διαχείριση Εφοδιαστικής Αλυσίδας

Διαχείριση Εφοδιαστικής Αλυσίδας Διαχείριση Εφοδιαστικής Αλυσίδας 1 η Διάλεξη: Βασικές Έννοιες στην Εφοδιαστική Αλυσίδα - Εξυπηρέτηση Πελατών 2015 Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Ατζέντα Εισαγωγή στη Διοίκηση

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS

ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS Χρήστος Δ. Ταραντίλης Αν. Καθηγητής ΟΠΑ ACO ΑΛΓΟΡΙΘΜΟΙ Η ΛΟΓΙΚΗ ΑΝΑΖΗΤΗΣΗΣ ΛΥΣΕΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΙΑΤΑΞΗΣ (1/3) Ε..Ε. ΙΙ Oι ACO

Διαβάστε περισσότερα

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Γραφήματα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Γραφήματα Κατευθυνόμενο Γράφημα Ένα κατευθυνόμενο γράφημα G είναι ένα ζευγάρι (V, E) όπου V είναι ένα

Διαβάστε περισσότερα

βασικές έννοιες (τόμος Β)

βασικές έννοιες (τόμος Β) θεωρία γραφημάτων Παύλος Εφραιμίδης 1 περιεχόμενα βασικές έννοιες (τόμος Α) βασικές έννοιες (τόμος Β) 2 Θεωρία Γραφημάτων Βασική Ορολογία Τόμος Α, Ενότητα 4.1 Βασική Ορολογία Γραφημάτων Γράφημα Γ = (E,V)

Διαβάστε περισσότερα

Κλάσεις Πολυπλοκότητας

Κλάσεις Πολυπλοκότητας Κλάσεις Πολυπλοκότητας Παύλος Εφραιμίδης pefraimi ee.duth.gr Κλάσεις Πολυπλοκότητας 1 Οι κλάσεις πολυπλοκότητας P και NP P: Polynomial ΗκλάσηP περιλαμβάνει όλα τα υπολογιστικά προβλήματα που μπορούν

Διαβάστε περισσότερα

Προσεγγίζοντας το Πρόβλημα του Πλανόδιου Πωλητή

Προσεγγίζοντας το Πρόβλημα του Πλανόδιου Πωλητή ΤΜΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ» Προσεγγίζοντας το Πρόβλημα του Πλανόδιου Πωλητή ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

Τµήµα Μηχανικών Παραγωγής και ιοίκησης Τοµέας Επιστήµης Αποφάσεων. Εργαστήριο Σχεδιασµού και Ανάπτυξης Συστηµάτων Υποστήριξης Αποφάσεων

Τµήµα Μηχανικών Παραγωγής και ιοίκησης Τοµέας Επιστήµης Αποφάσεων. Εργαστήριο Σχεδιασµού και Ανάπτυξης Συστηµάτων Υποστήριξης Αποφάσεων ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Τµήµα Μηχανικών Παραγωγής και ιοίκησης Τοµέας Επιστήµης Αποφάσεων Εργαστήριο Σχεδιασµού και Ανάπτυξης Συστηµάτων Υποστήριξης Αποφάσεων ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ ΜΕ

Διαβάστε περισσότερα

Εργασία για το μάθημα «Γραμμικός και μη προγραμματισμός Βελτιστοποίηση»

Εργασία για το μάθημα «Γραμμικός και μη προγραμματισμός Βελτιστοποίηση» Εργασία για το μάθημα «Γραμμικός και μη προγραμματισμός Βελτιστοποίηση» Διδάσκων: Ε. Χαρμανδάρης Θέμα: «Το πρόβλημα του περιπλανώμενου πωλητή, ακριβείς, ευριστικές και ενδιαφέρουσες λύσεις» Φώτογλου Ιωακείμ,

Διαβάστε περισσότερα

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού)

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) . Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) Η πετυχημένη διοίκηση των μεγάλων έργων χρειάζεται προσεχτικό προγραμματισμό, σχεδιασμό και συντονισμό αλληλοσυνδεόμενων δραστηριοτήτων (εργσιών).

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Θεσσαλονίκη, Μάρτιος 2009. Οι συγγραφείς. Κ. Παπαρρίζος, Ν. Σαμαράς, Α. Σιφαλέρας.

ΠΡΟΛΟΓΟΣ. Θεσσαλονίκη, Μάρτιος 2009. Οι συγγραφείς. Κ. Παπαρρίζος, Ν. Σαμαράς, Α. Σιφαλέρας. ΠΡΟΛΟΓΟΣ Το βιβλίο «Δικτυακή Βελτιστοποίηση» γράφτηκε με κύριο στόχο να καλύψει τις ανάγκες της διδασκαλίας του μαθήματος «Δικτυακός Προγραμματισμός», που διδάσκεται στο Τμήμα Εφαρμοσμένης Πληροφορικής,

Διαβάστε περισσότερα

Καταμερισμός στο δίκτυο (δημόσιες. συγκοινωνίες) με το πρόγραμμα ΕΜΜΕ/2

Καταμερισμός στο δίκτυο (δημόσιες. συγκοινωνίες) με το πρόγραμμα ΕΜΜΕ/2 Καταμερισμός στο δίκτυο (δημόσιες συγκοινωνίες) με το πρόγραμμα ΕΜΜΕ/2 Στοιχεία εισαγωγής κεντροειδή, κόμβοι τμήματα στροφές μεταφορικά μέσα οχήματα δημόσιων συγκοινωνιών συγκοινωνιακές γραμμές (γραμμές

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ. Διπλωματική Εργασία. Το Συσσωρευτικό Πρόβλημα δρομολόγησης οχημάτων με χρήση αλγορίθμου ΑCO

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ. Διπλωματική Εργασία. Το Συσσωρευτικό Πρόβλημα δρομολόγησης οχημάτων με χρήση αλγορίθμου ΑCO ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Διπλωματική Εργασία Το Συσσωρευτικό Πρόβλημα δρομολόγησης οχημάτων με χρήση αλγορίθμου ΑCO Κυριακάκης Νικόλαος-Αντώνιος Επιβλέπων Καθηγητής Ιωάννης

Διαβάστε περισσότερα

Ασηµακόπουλος Αλέξιος

Ασηµακόπουλος Αλέξιος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΚΑΘΟΡΙΣΜΟΣ ΡΥΘΜΟΥ ΕΠΙΣΚΕΨΙΜΟΤΗΤΑΣ ΣΕ ΙΚΤΥΟ ΙΑΝΟΜΗΣ ΠΡΟΙΟΝΤΩΝ ΛΙΑΝΙΚΗΣ Ασηµακόπουλος Αλέξιος

Διαβάστε περισσότερα

ιαχείριση στόλου οχηµάτων σε πραγµατικό χρόνο για την αντιµετώπιση δυναµικών γεγονότων κατά τις αστικές διανοµές προϊόντων

ιαχείριση στόλου οχηµάτων σε πραγµατικό χρόνο για την αντιµετώπιση δυναµικών γεγονότων κατά τις αστικές διανοµές προϊόντων ιαχείριση στόλου οχηµάτων σε πραγµατικό χρόνο για την αντιµετώπιση δυναµικών γεγονότων κατά τις αστικές διανοµές προϊόντων Β. Ζεϊµπέκης 1, Κ. Μαµάσης 2, Γ. Γιαγλής 1, Ι. Μίνης 2, A. Μαύρος 3 1. Εργαστήριο

Διαβάστε περισσότερα

Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 6 Ικανοποίηση Περιορισµών Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Ικανοποίηση Περιορισµών Ένα πρόβληµα ικανοποίησης περιορισµών (constraint

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΦΟΔΙΑΣΤΙΚΩΝ ΑΛΥΣΙΔΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΦΟΔΙΑΣΤΙΚΩΝ ΑΛΥΣΙΔΩΝ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΦΟΔΙΑΣΤΙΚΩΝ ΑΛΥΣΙΔΩΝ Μιχαήλ Γεωργιάδης Αναπλ. Καθηγητής Πανεπιστήμιο Δυτικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Κοζάνη 50100 Χαρακτηριστικά Μαθήματος

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Αυτόματης Προ-Δεματοποίησης (Pre-Packing)

Πληροφοριακά Συστήματα Αυτόματης Προ-Δεματοποίησης (Pre-Packing) Πληροφοριακά Συστήματα Αυτόματης Προ-Δεματοποίησης (Pre-Packing) Copyright : OPTIMUM A.E. 1. Το Πρόβλημα της Προ-Δεματοποίησης Συσκευασίας Η εκτέλεση, σε καθημερινή βάση, των παραγγελιών που δέχεται μία

Διαβάστε περισσότερα

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ 2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: Τα Logistics των πόλεων, City Logistics ΜΕΤΑΞΑΚΗΣ ΙΩΑΝΝΗΣ

ΤΙΤΛΟΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: Τα Logistics των πόλεων, City Logistics ΜΕΤΑΞΑΚΗΣ ΙΩΑΝΝΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Μ.Β.Α. ΤΙΤΛΟΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: Τα Logistics των πόλεων, City

Διαβάστε περισσότερα

Παράδειγμα δικτύου. Ορολογία (1) Ορολογία (2) Ορολογία (3) Δίκτυο με δεδομένα δυναμικότητας ροής στις ακμές

Παράδειγμα δικτύου. Ορολογία (1) Ορολογία (2) Ορολογία (3) Δίκτυο με δεδομένα δυναμικότητας ροής στις ακμές http://users.uom.gr/~acg Στοιχεία από τη Θεωρία Δικτύων Παράδειγμα δικτύου Τα δίκτυα είναι παντού (όπως και η Επιχειρησιακή Έρευνα) Τα δίκτυα είναι παντού (συνέχεια) Ένα δίκτυο είναι μία συλλογή κόμβων

Διαβάστε περισσότερα

9. Συστολικές Συστοιχίες Επεξεργαστών

9. Συστολικές Συστοιχίες Επεξεργαστών Κεφάλαιο 9: Συστολικές συστοιχίες επεξεργαστών 208 9. Συστολικές Συστοιχίες Επεξεργαστών Οι συστολικές συστοιχίες επεξεργαστών είναι επεξεργαστές ειδικού σκοπού οι οποίοι είναι συνήθως προσκολλημένοι σε

Διαβάστε περισσότερα

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης K.5.1 Γραμμή Παραγωγής Μια γραμμή παραγωγής θεωρείται μια διάταξη με επίκεντρο το προϊόν, όπου μια σειρά από σταθμούς εργασίας μπαίνουν σε σειρά με στόχο ο κάθε ένας από αυτούς να κάνει μια ή περισσότερες

Διαβάστε περισσότερα

Θέματα διπλωματικών εργασιών έτους 2012-2013

Θέματα διπλωματικών εργασιών έτους 2012-2013 Θέματα διπλωματικών εργασιών έτους 2012-2013 Θέμα 1: Διασύνδεση μεταφορών μικρών και μεγάλων αποστάσεων Εισαγωγή Στη λευκή βίβλο «WHITE PAPER Roadmap to a Single European Transport Area Towards a competitive

Διαβάστε περισσότερα

Π 2.2 ΑΛΓΟΡΙΘΜΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ

Π 2.2 ΑΛΓΟΡΙΘΜΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ Π 2.2 ΑΛΓΟΡΙΘΜΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ Αριθμός Έκδοσης: ΕΚΕΤΑ ΙΜΕΤ ΕΜ Β 2014 14 Τίτλος Έργου: «Ολοκληρωμένο σύστημα για την ασφαλή μεταφορά μαθητών» Συγγραφείς: Δρ. Μαρία Μορφουλάκη Κοτούλα Κορνηλία Μαρία ΘΕΣΣΑΛΟΝΙΚΗ,

Διαβάστε περισσότερα

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ (ΜΕ ΒΑΣΗ ΤΟ ΚΕΦ. 6 ΤΟΥ ΒΙΒΛΙΟΥ «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΤΩΝ ΒΛΑΧΑΒΑ, ΚΕΦΑΛΑ, ΒΑΣΙΛΕΙΑ Η, ΚΟΚΚΟΡΑ & ΣΑΚΕΛΛΑΡΙΟΥ) Ι. ΧΑΤΖΗΛΥΓΕΡΟΥ ΗΣ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ Είναι γνωστές µερικές

Διαβάστε περισσότερα

ΧΑΤΖΟΓΛΟΥ Χ. ΔΙΕΥΘΥΝΤΗΣ ΜΕΤΑΦΟΡΩΝ 13/12/2013

ΧΑΤΖΟΓΛΟΥ Χ. ΔΙΕΥΘΥΝΤΗΣ ΜΕΤΑΦΟΡΩΝ 13/12/2013 ΧΑΤΖΟΓΛΟΥ Χ. ΔΙΕΥΘΥΝΤΗΣ ΜΕΤΑΦΟΡΩΝ Η Ιστορία Εξάπλωση Καταστημάτων Το σύνολο των καταστημάτων ανέρχεται σε 268 και αυξάνει, καθώς το δίκτυο επεκτείνεται σε όλη τη χώρα. Δίκτυο καταστημάτων 161 46 43 12

Διαβάστε περισσότερα

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Τι είναι το Πρόβλημα της Πινακοθήκης; Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη

Διαβάστε περισσότερα

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Τομέας Υδατικών Πόρων & Περιβάλλοντος

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Τομέας Υδατικών Πόρων & Περιβάλλοντος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Τομέας Υδατικών Πόρων & Περιβάλλοντος Επιχειρησιακός Προγραμματισμός Συστημάτων Διαχείρισης ΑΣΑ Ανάπτυξη & ΕφαρμογήστηΝήσοΚέρκυρα Παρουσίαση: Αλέξανδρος

Διαβάστε περισσότερα

ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ - ΠΑΡΑΜΕΤΡΟΙ ΙΜΕ

ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ - ΠΑΡΑΜΕΤΡΟΙ ΙΜΕ ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ - ΠΑΡΑΜΕΤΡΟΙ ΙΜΕ ΙΚΑΝΟΤΗΤΑ ΜΕΤΑΦΟΡΑΣ ΕΠΙΒΑΤΩΝ ΜΙΠ ΜΕΤΑΦΟΡΙΚΗ ΙΚΑΝΟΤΗΤΑ ΠΡΟΣΩΠΩΝ ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ (1/3) Ικανότητα οχήματος: Ο μέγιστος αριθμός επιβατών που μπορεί να εξυπηρετηθεί

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

Μέρος Α Περιβάλλον Εργασίας Windows... 19. Εργαστηριακή Άσκηση 1 Το Γραφικό Περιβάλλον του Υπολογιστή... 21

Μέρος Α Περιβάλλον Εργασίας Windows... 19. Εργαστηριακή Άσκηση 1 Το Γραφικό Περιβάλλον του Υπολογιστή... 21 Περιεχόμενα Μέρος Α Περιβάλλον Εργασίας Windows... 19 Εργαστηριακή Άσκηση 1 Το Γραφικό Περιβάλλον του Υπολογιστή... 21 1.1 Εκκίνηση του ηλεκτρονικού υπολογιστή... 22 1.2 Γραφικό παραθυρικό περιβάλλον εργασίας...

Διαβάστε περισσότερα

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1)

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Ένα πολυσταδιακό πρόβλημα που αφορά στον τριμηνιαίο προγραμματισμό για μία βιομηχανική επιχείρηση παραγωγής ελαστικών (οχημάτων) Γενικός προγραμματισμός

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ

ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ 3 ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ 3.1 Εισαγωγη ΣΥΣΤΗΜΑΤΩΝ Τα συστηματα εφαρμοζονται σε αναπτυξιακα προγραμματα, σε μελετες σχεδιασμου εργων, σε προγραμματα διατηρησης ή προστασιας περιβαλλοντος και υδατικων πορων και

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Οργάνωση Υπολογιστών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Οργάνωση Υπολογιστών Οργάνωση Υπολογιστών Υπολογιστικό Σύστημα Λειτουργικό Σύστημα Αποτελεί τη διασύνδεση μεταξύ του υλικού ενός υπολογιστή και του χρήστη (προγραμμάτων ή ανθρώπων). Είναι ένα πρόγραμμα (ή ένα σύνολο προγραμμάτων)

Διαβάστε περισσότερα

ΔΕΟ 40 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΩΝ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ

ΔΕΟ 40 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΩΝ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΔΕΟ 40 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΩΝ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΟΡΙΣΜΟΣ ΤΟΥ ΕΡΓΟΥ Έργο είναι μια ακολουθία μοναδικών, σύνθετων και αλληλοσυσχετιζόμενων δραστηριοτήτων που αποσκοπούν στην επίτευξη κάποιου συγκεκριμένου

Διαβάστε περισσότερα

5.1. Προσδοκώμενα αποτελέσματα

5.1. Προσδοκώμενα αποτελέσματα 5.1. Προσδοκώμενα αποτελέσματα Όταν θα έχεις ολοκληρώσει τη μελέτη αυτού του κεφαλαίου θα έχεις κατανοήσει τις τεχνικές ανάλυσης των αλγορίθμων, θα μπορείς να μετράς την επίδοση των αλγορίθμων με βάση

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #2: Πολυωνυμικοί Αλγόριθμοι, Εισαγωγή στα Γραφήματα, Αναζήτηση κατά Βάθος, Τοπολογική Ταξινόμηση

Διαβάστε περισσότερα

Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 14: Δέντρα IV B Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: 2 3 Δένδρα, Εισαγωγή και άλλες πράξεις Άλλα Δέντρα: Β δένδρα, Β+ δέντρα, R δέντρα Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Εισαγωγικά ΘΕ ΠΛΗ 204-5 ONLINE ΕΡΓΑΣΙΑ E2- Η Online Εργασία Ε2- αποτελεί (όπως περιγράφεται αναλυτικότερα και στον Οδηγό Σπουδών της Θ.Ε. που σας έχει διατεθεί) συμπληρωματική άσκηση στα πλαίσια της Γραπτής

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι αλγόριθμος

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

Τυπικές χρήσεις της Matlab

Τυπικές χρήσεις της Matlab Matlab Μάθημα 1 Τι είναι η Matlab Ολοκληρωμένο Περιβάλλον Περιβάλλον ανάπτυξης Διερμηνευμένη γλώσσα Υψηλή επίδοση Ευρύτητα εφαρμογών Ευκολία διατύπωσης Cross platform (Wintel, Unix, Mac) Τυπικές χρήσεις

Διαβάστε περισσότερα

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5.1 Εισαγωγή στους αλγορίθμους 5.1.1 Εισαγωγή και ορισμοί Αλγόριθμος (algorithm) είναι ένα πεπερασμένο σύνολο εντολών οι οποίες εκτελούν κάποιο ιδιαίτερο έργο. Κάθε αλγόριθμος

Διαβάστε περισσότερα

Αναλυτική Περιγραφή του προτεινόμενου Προγράμματος Επικαιροποίησης Γνώσεων Αποφοίτων (ΠΕΓΑ) Περιεχόμενο Προγράμματος (μαθήματα, ώρες κλπ):

Αναλυτική Περιγραφή του προτεινόμενου Προγράμματος Επικαιροποίησης Γνώσεων Αποφοίτων (ΠΕΓΑ) Περιεχόμενο Προγράμματος (μαθήματα, ώρες κλπ): Αναλυτική Περιγραφή του προτεινόμενου Προγράμματος Επικαιροποίησης Γνώσεων Αποφοίτων (ΠΕΓΑ) Περιεχόμενο Προγράμματος (μαθήματα, ώρες κλπ): Το πρόγραμμα αποτελείται από 3 βασικές θεματικές ενότητες και

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

Ο ξεναγός (Συνοδευτική δραστηριότητα του γύρου του ίππου)

Ο ξεναγός (Συνοδευτική δραστηριότητα του γύρου του ίππου) Ο ξεναγός (Συνοδευτική δραστηριότητα του γύρου του ίππου) Ηλικίες: Προαπαιτούμενες δεξιότητες: Χρόνος: Μέγεθος ομάδας: 8 ενήλικες Καμία 15 λεπτά για τη βασική δραστηριότητα, περισσότερο για τις επεκτάσεις

Διαβάστε περισσότερα

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι:

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Μια δομή δεδομένων στην πληροφορική, συχνά αναπαριστά οντότητες του φυσικού κόσμου στον υπολογιστή. Για την αναπαράσταση αυτή, δημιουργούμε πρώτα ένα αφηρημένο μοντέλο στο οποίο προσδιορίζονται

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ ΕΛΛΗΝΙΚΗΣ ΕΚΔΟΣΗΣ... 15 ΕΙΣΑΓΩΓΗ... 17

ΠΡΟΛΟΓΟΣ ΕΛΛΗΝΙΚΗΣ ΕΚΔΟΣΗΣ... 15 ΕΙΣΑΓΩΓΗ... 17 ΠΡΟΛΟΓΟΣ ΕΛΛΗΝΙΚΗΣ ΕΚΔΟΣΗΣ... 15 ΕΙΣΑΓΩΓΗ... 17 1. ΟΡΓΑΝΩΣΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΕΝΟΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΜΕΙΩΣΗΣ ΚΟΣΤΟΥΣ... 19 Τι μπορεί να κάνει η Διοίκηση για τη μείωση του κόστους... 19 Ο συντονιστής

Διαβάστε περισσότερα

Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές

Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές 3. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΟΣ 3. Τι Είναι Απόθεμα Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές. Απόθεμα Α, Β υλών και υλικών συσκευασίας: Είναι το απόθεμα των υλικών που χρησιμοποιούνται

Διαβάστε περισσότερα

Πρόβλημα Δρομολόγησης Οχημάτων με Πολλαπλές Αποθήκες

Πρόβλημα Δρομολόγησης Οχημάτων με Πολλαπλές Αποθήκες ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: Πρόβλημα Δρομολόγησης Οχημάτων με Πολλαπλές Αποθήκες ΚΟΜΠΟΤΗΣ ΠΑΝΑΓΙΩΤΗΣ Α.Μ: 2003010029 ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΜΑΡΙΝΑΚΗΣ ΙΩΑΝΝΗΣ Χανιά 2013 ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Εύη Παπαϊωάννου. papaioan@ceid.upatras.gr papaioan@upatras.gr

Διακριτά Μαθηματικά. Εύη Παπαϊωάννου. papaioan@ceid.upatras.gr papaioan@upatras.gr Διακριτά Μαθηματικά Εύη Παπαϊωάννου papaioan@ceid.upatras.gr papaioan@upatras.gr https://www.ceid.upatras.gr/webpages/faculty/papaioan/dchmnt/2014-2015/dm/index.html Πότε και πού; Παρασκευή, 15.00 18.00,

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Άπληστοι Αλγόριθμοι Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Άπληστοι Αλγόριθμοι Είναι δύσκολο να ορίσουμε ακριβώς την έννοια του άπληστου

Διαβάστε περισσότερα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να

Διαβάστε περισσότερα

Ανάλυση Επιδόσεων Συστημάτων Πραγματικού Χρόνου

Ανάλυση Επιδόσεων Συστημάτων Πραγματικού Χρόνου ΣΥΣΤΗΜΑΤΑ ΠΡΑΓΜΑΤΙΚΟΥ ΧΡΟΝΟΥ Μάθημα Επιλογής Ανάλυση Επιδόσεων Συστημάτων Πραγματικού Χρόνου Δρ. Γεώργιος Κεραμίδας e-mail: gkeramidas@teimes.gr 1 Διεργασίες: Κατάσταση Εκτέλεσης (3-σταδίων) Κατάσταση

Διαβάστε περισσότερα

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά Τσάπελη Φανή ΑΜ: 243113 Ενισχυτική Μάθηση για το παιχνίδι dots Τελική Αναφορά Περιγραφή του παιχνιδιού Το παιχνίδι dots παίζεται με δύο παίχτες. Έχουμε έναν πίνακα 4x4 με τελείες, και σκοπός του κάθε παίχτη

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 4: Εισαγωγή / Σύνολα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Ενότητα 4 Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας

Διαβάστε περισσότερα

Διάλεξη 2η: Αλγόριθμοι και Προγράμματα

Διάλεξη 2η: Αλγόριθμοι και Προγράμματα Διάλεξη 2η: Αλγόριθμοι και Προγράμματα Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Βασίζεται σε διαφάνειες του Κ Παναγιωτάκη Πρατικάκης (CSD) Αλγόριθμοι και Προγράμματα

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή

Διαβάστε περισσότερα

ο ρόλος των αλγορίθμων στις υπολογιστικές διαδικασίες Παύλος Εφραιμίδης Δομές Δεδομένων και Αλγόριθμοι

ο ρόλος των αλγορίθμων στις υπολογιστικές διαδικασίες Παύλος Εφραιμίδης Δομές Δεδομένων και Αλγόριθμοι Παύλος Εφραιμίδης 1 περιεχόμενα αλγόριθμοι τεχνολογία αλγορίθμων 2 αλγόριθμοι αλγόριθμος: οποιαδήποτε καλά ορισμένη υπολογιστική διαδικασία που δέχεται κάποια τιμή ή κάποιο σύνολο τιμών, και δίνεικάποιατιμήήκάποιοσύνολοτιμώνως

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

Είναι η διαδικασία εύρεσης της διαδρομής που πρέπει να ακολουθήσει ένα πακέτο για να φτάσει στον προορισμό του. Η διαδικασία αυτή δεν είναι πάντα

Είναι η διαδικασία εύρεσης της διαδρομής που πρέπει να ακολουθήσει ένα πακέτο για να φτάσει στον προορισμό του. Η διαδικασία αυτή δεν είναι πάντα 1 Είναι η διαδικασία εύρεσης της διαδρομής που πρέπει να ακολουθήσει ένα πακέτο για να φτάσει στον προορισμό του. Η διαδικασία αυτή δεν είναι πάντα εύκολη, τη στιγμή που γνωρίζουμε ότι ένα σύνθετο δίκτυο

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 7: Ομαδοποίηση Μέρος Α Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

MLS Destinator Android για Vodafone Εγχειρίδιο Χρήσης

MLS Destinator Android για Vodafone Εγχειρίδιο Χρήσης MLS Destinator Android για Vodafone Εγχειρίδιο Χρήσης MLS Destinator για Android Vodafone Εγχειρίδιο Χρήσης v1.0 2 Περιεχόμενα 1 - ΕΙΣΑΓΩΓΗ... 4 ΤΙ ΕΙΝΑΙ ΤΟ MLS DESTINATOR... 4 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΟΥ MLS DESTINATOR...

Διαβάστε περισσότερα

Σενάριο με το λογισμικό modellus Πηγή: http://www.dapontes.gr/index.php?option=com_content&task=view&id=229&itemid=50 ΠΡΟΛΟΓΟΣ

Σενάριο με το λογισμικό modellus Πηγή: http://www.dapontes.gr/index.php?option=com_content&task=view&id=229&itemid=50 ΠΡΟΛΟΓΟΣ Σενάριο με το λογισμικό modellus Τίτλος: Πότε δύο τρένα έχουν την ελάχιστη απόσταση μεταξύ τους; Πηγή: http://www.dapontes.gr/index.php?option=com_content&task=view&id=229&itemid=50 ΠΡΟΛΟΓΟΣ Σε μια πρώτη

Διαβάστε περισσότερα

Πρακτική δραστηριότητα: Το πρόβλημα της λασπωμένης πόλης (σελ. 80) Πλακάκια ή τετράγωνα κομματάκια από χαρτόνι (περίπου 40 για κάθε παιδί)

Πρακτική δραστηριότητα: Το πρόβλημα της λασπωμένης πόλης (σελ. 80) Πλακάκια ή τετράγωνα κομματάκια από χαρτόνι (περίπου 40 για κάθε παιδί) 9η Δραστηριότητα Η λασπωμένη πόλη - Minimal Spanning Trees* (*είδος γραφημάτων) Περίληψη Η κοινωνία μας συνδέεται με πολλά δίκτυα: το τηλεφωνικό δίκτυο, το ενεργειακό δίκτυο, το οδικό δίκτυο. Για ένα ιδιαίτερο

Διαβάστε περισσότερα

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Γράφοι Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο πλευρές (ακµές) και κορυφές (κόµβους). Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Graph Drawing 4 πιθανές αναπαραστάσεις

Διαβάστε περισσότερα

NP-πληρότητα. Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων

NP-πληρότητα. Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων NP-πληρότητα Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων Πολυωνυμικός μετασχηματισμός Ένας πολυωνυμικός μετασχηματισμός από την L 1 Σ 1 * στην L 2 Σ 2 * είναι μια συνάρτηση

Διαβάστε περισσότερα