ΑΞΙΟΠΙΣΤΙΑ ΥΛΙΚΟΥ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΞΙΟΠΙΣΤΙΑ ΥΛΙΚΟΥ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ"

Transcript

1 ΑΞΙΟΠΙΣΤΙΑ ΥΛΙΚΟΥ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ Εισαγωγή Ηεµφάνιση ηλεκτρονικών υπολογιστών και λογισµικού σε εφαρµογές µε υψηλές απαιτήσεις αξιοπιστίας, όπως είναι διαστηµικά προγράµµατα, στρατιωτικές τηλεπικοινωνίες, βιοϊατρική τεχνολογία κ.α., έκανε ιδιαίτερα επιτακτική την ανάγκη για τη µελέτη αξιοπιστίας υλικού και λογισµικού. Οι βλάβες που εµφανίζει το υλικό των ηλεκτρονικών υπολογιστών µελετώνται µε τις γενικές αρχές µοντελοποίησης που παρουσιάστηκαν και µε ειδικές συνδεσµολογίες των υπολογιστικών συστηµάτων. Τα σφάλµατα του λογισµικού µπορούν να µοντελοποιηθούν µε διάφορους τρόπους και η µελέτη τους εντάσσεται στο γενικότερο πλαίσιο των διαδικασιών βελτίωσης του λογισµικού µε δοκιµές και διορθώσεις. 1

2 οµές πλεονασµού Ηβελτίωση της αξιοπιστίας του υλικού µπορεί να επιτευχθεί µε τη χρησιµοποίηση εξαρτηµάτων υψηλής αξιοπιστίας (υψηλού κόστους) ή µε τη χρήση πλεονασµού ή / και εφεδρείας. Σε κάθε περίπτωση ο σχεδιασµός των υπολογιστικών συστηµάτων, όσον αφορά το υλικό αλλά και το λογισµικό, πρέπει να αποσκοπεί στο να ανέχεται σφάλµατα (fault tolerant design), δηλαδή να έχει προβλέψει τρόπους ώστε το σύστηµα να λειτουργεί επαρκώς παρόλο την εµφάνιση βλαβών στις λειτουργικές του µονάδες. Αυτό επιτυγχάνεται κυρίως: Πλεονασµός υλικού µε τη χρήση εφεδρικών υποσυστηµάτων ή συνδεσµολογίες «ψηφοφόρων». Πλεονασµός λογισµικού µε διαδικασίες ελέγχου των αποτελεσµάτων, υπολογιστικές διαδικασίες «ψηφοφόρων». Σύστηµα µε µία υπολογιστική µονάδα Υπενθυµίζεται ότι ένα σύστηµα µε µία υπολογιστική µονάδα ρυθµού βλάβης λ και επισκευής µ, οι δείκτες αξιοπιστίας του συστήµατος για χρόνο λειτουργίας Τ δίνονται από τις ακόλουθες σχέσεις: R=e -λτ Αξιοπιστία: µ ιαθεσιµότητα: A = λ + µ λ Μη ιαθεσιµότητα: U = 1 A= λ + µ λµ Συχνότητα εµφάνισης βλαβών: f = λ + µ 2

3 Σύστηµα µε 3 πλεονάζουσες µονάδες και «ψηφοφόρο» -ΤΜR Το σύστηµα µε τρεις πλεονάζουσες µονάδες και ψηφοφόρο αποτελεί πολύ συχνή δοµή στα υπολογιστικά συστήµατα. Οι µονάδες Σύστηµα 1, Σύστηµα 2, Σύστηµα 3 έχουν λειτουργία µε έξοδο που χαρακτηρίζεται από λογική µεταβλητή. Ο ψηφοφόρος καθορίζει ως έξοδο του συνολικού συστήµατος την πλειοψηφία των εξόδων των τριών µονάδων. Ο ψηφοφόρος θεωρείται ότι είναι 100% αξιόπιστος Αξιοπιστία συνδεσµολογίας TMR ΕΙΣΟ ΟΣ A B V ΕΞΟ ΟΣ Εάν θεωρηθεί p η αξιοπιστία κάθε µονάδας Α, B ή C, η αξιοπιστία του συστήµατος δίνεται από την ακόλουθη σχέση που βασίζεται στο ανάπτυγµα διωνύµου: C Ο MTTF προκύπτει µε αντικατάσταση και ολοκλήρωση της σχέσης για την αξιοπιστία 3

4 Συγκριτική µελέτη Για περιπτώσεις όπου λτ είναι σχετικά µικρό, η συνδεσµολογία συστηµάτων TMR εµφανίζει υψηλότερη αξιοπιστία από αυτή του ενός συστήµατος. Αντίθετα, για σχετικά µεγάλες τιµές του λτ ισχύει το αντίστροφο. Το σηµείο τοµής προκύπτει από την εξίσωση των δύο σχέσεων της αξιοπιστίας. Συνδεσµολογία NMR (Ν µονάδες πλεονασµού) Ησυνδεσµολογία αυτή είναι µία γενίκευση της συνδεσµολογίας TMR.Αποτελείται από Ν=2n+1 περιττό αριθµό µονάδων και ένα ψηφοφόρο που επιλέγει την πλειοψηφία n+1. Συνεπώς η αξιοπιστία του συνολικού συστήµατος θα δίνεται από τη σχέση: Η παραπάνω σχέση χαρακτηρίζεται από αντίστοιχη συµπεριφορά όπως στην περίπτωση της συνδεσµολογίας TMR, σε συγκεκριµένες περιοχές εµφανίζει υψηλότερη τιµή από αντίστοιχες διατάξεις µε χαµηλότερο βαθµό πλεονασµού 4

5 Αξιοπιστία µε Ν-πλεονάζουσες µονάδες Σύστηµα m-σταδίων µε πλεονασµό ψηφοφόρου Το σύστηµα αυτό αποτελείται από m στάδια σε σειρά, όπου σε κάθε στάδιο έχει επιλεγεί να χρησιµοποιηθεί συνδεσµολογία Ν-πλεονασµού µε ψηφοφόρο µε 2n+1 µονάδες αντί για µία σε κάθε στάδιο. Αν p ss η αξιοπιστία της κάθε µίας από τις 2n+1 µονάδες τότε η συνολική αξιοπιστία της διάταξης δίνεται από τη σχέση: Αν λ ο ρυθµός βλάβης του συνολικού συστήµατος, τότε σε κάθε στάδιο του συστήµατος αντιστοιχεί ρυθµός βλάβης λ/m (reliability allocation), άρα εάν υπήρχε µία µονάδα σε κάθε στάδιο, αυτή θα είχε αξιοπιστία p ss =e -λt/m. Με αντικατάσταση στην εξίσωση της αξιοπιστίας µπορεί κανείς να βελτιώσει το σχεδιασµό του συστήµατος, εντός αποδεκτών ορίων κόστους, επιλέγοντας κατάλληλο ζευγάρι m,n. 5

6 Συγκριτική παρουσίαση m-σταδίων µε πλεονασµό ψηφοφόρου ιατάξεις µε ατελείς ψηφοφόρους Στην περίπτωση που θεωρείται ότι και ο ψηφοφόρος µπορεί να εµφανίσει βλάβες, η αξιοπιστία της διάταξης TMR υπολογίζεται διαφορετικά. Αν p V, p C η αξιοπιστία του ψηφοφόρου και της µονάδας στη διάταξη TMR τότε η αξιοπιστία της συνολικής διάταξης TMR δίνεται από τη σχέση : Για να υπάρχει βελτίωση από την εφαρµογή διάταξης TMR πρέπει να ισχύει: Ησυνάρτηση γίνεται µέγιστη στο p C = 0,75 που δίνει αντίστοιχη κατώτατη τιµή αξιοπιστίας του ψηφοφόρου 0,889. 6

7 ιατάξεις µε πλεονασµό ψηφοφόρων Στην παραπάνω διάταξη, έχουν χρησιµοποιηθεί 3 ψηφοφόροι, µε αποτέλεσµα να εµφανίζεται υψηλότερη ανοχή σε σφάλµατα αφού σφάλµα ενός ψηφοφόρου διοχετεύεται µόνο για ένα στάδιο. ιάταξη TMR µε επισκευή Η µελέτη της διάταξης TMR µε ρυθµό επισκευής µ, στην περίπτωση µόνο που υπάρχει µία βλάβη, γίνεται µε χρήση του παραπάνω διαγράµµατος Markov. Θεωρώντας τις καταστάσεις s 0 και s 1 ως καταστάσεις λειτουργίας της διάταξης, επιλύοντας το διάγραµµα Markov µε στοχαστικό πίνακα και µετασχηµατισµό Laplace καταλήγουµε ότι η διαθεσιµότητα δίνεται από τη σχέση: 7

8 Αξιοπιστία λογισµικού Ηαξιοπιστία λογισµικού (software reliability) αφορά την πιθανότητα το λογισµικό να εκτελέσει την επιθυµητή λειτουργία του (όπως αυτή ορίζεται στις προδιαγραφές) χωρίς σφάλµα για µια συγκεκριµένη χρονική περίοδο. Η ανάπτυξη και εφαρµογή πιθανοτικών µεθόδων για την περιγραφή της εµφάνισης σφαλµάτων του λογισµικού συνεργάζεται άµεσα µε τις φάσεις του σχεδιασµού, προγραµµατισµού και δοκιµών στο κύκλο ζωής. Οι πιθανοτικές µέθοδοι αντλούν δεδοµένα από τα σφάλµατα που εντοπίζονται και αποσκοπούν στην περιγραφή της διαδικασίας βελτίωσης του λογισµικού µε κατάλληλες πιθανοτικές κατανοµές και παραµέτρους. Φάσεις του κύκλου ζωής λογισµικού 8

9 Κύκλος ζωής λογισµικού (χωρίς πρωτότυπο) Κύκλος ζωής λογισµικού (µε πρωτότυπο) 9

10 Κύκλος ζωής λογισµικού µε σταδιακή ανάπτυξη Πιθανοτική περιγραφή δεικτών αξιοπιστίας λογισµικού Aν n(t) ο αριθµός των συστηµάτων υπό δοκιµή τη χρονική στιγµή t, µε κατάλληλη λογική αναπτύσσονται οι µαθηµατικές εξισώσεις και τα µεγέθη που περιγράφουν την αξιοπιστία: όπου z(t) ο ρυθµός βλάβης, f(t) η σππ της εµφάνισης βλάβης και R(t) η αξιοπιστία. Συνεπώς, εύκολα προκύπτουν οι σχετικοί δείκτες: 10

11 Σφάλµατα λογισµικού «Σφάλµατα» (faults) στον κώδικα µπορεί να προκαλέσουν «λάθη» (errors) στη λειτουργία του λογισµικού µε τελικό αποτέλεσµα την «απώλεια λειτουργίας» (failure) του συστήµατος. Πάντως οι µηχανικοί λογισµικού σπάνια διαφοροποιούν τόσο πολύ τα γεγονότα αυτά και συνήθως αναφέρονται σε σφάλµατα κώδικα (software bugs). Στις µελέτες αξιοπιστίας λογισµικού, ως σφάλµατα θεωρούνται: Σφάλµατα που είχαν προέλθει στη φάση της ανάλυσης των απαιτήσεων και καθορισµού των προδιαγραφών, αφού αυτά τελικά µεταβιβάζονται στον κώδικα και προκαλούν µη επιθυµητή λειτουργία του συστήµατος. Σφάλµατα λογικής του προγράµµατος π.χ. σε ένα loop να εκτελείται κώδικας n- 1 φορές ενώ θα έπρεπε να εκτελείται n φορές. Σφάλµατα στο σχεδιασµό του κώδικα, τα οποία συνήθως εντοπίζονται στα διαγράµµατα τύπου ψευδοκώδικα (H-diagrams, control graphs κ.α.) Τα σφάλµατα αυτά και οι αντίστοιχες διορθώσεις πρέπει να καταγράφονται αναλυτικά κατά τη φάση του ελέγχου διάρθρωσης (configuration control). Πιθανοτικά µοντέλα για τη διόρθωση σφαλµάτων κώδικα Εάν στο χρόνο τ=0 υπάρχουν Ε Τ σφάλµατα τότε µετά από χρόνο τ θα έχουν διορθωθεί Ε C (τ) σφάλµατα και θα έχουν παραµείνει Ε r (τ) σφάλµατα έτσι ώστε να ισχύει Ηδιαδικασία διόρθωσης σφαλµάτων κώδικα ενδέχεται να προκαλεί την εµφάνιση νέων σφαλµάτων του κώδικα. Συνεπώς η διαδικασία επιδιόρθωσης σφαλµάτων µπορεί να περιγραφεί µε τα ακόλουθα διαγράµµατα 11

12 Γραµµικό µοντέλο διόρθωσης σφαλµάτων λογισµικού Σύµφωνα µε αυτό το µοντέλο ο αριθµός των σφαλµάτων που επιδιορθώνονται αυξάνει γραµµικά, µε το χρόνο ελέγχου του λογισµικού, οπότε θα ισχύουν οι ακόλουθες σχέσεις: όπου ρ 0 µπορεί να εκφραστεί ως αριθµός σφαλµάτων που επιδιορθώνονται στη µονάδα του χρόνου ή σε κάποια µοντέλα στην ανθρωποώρα, έτσι ώστε να περιλαµβάνεται και η επίδραση του ανθρώπινου δυναµικού της εταιρείας λογισµικού που ασχολείται µε τον έλεγχο και τις δοκιµές του αναπτυσσόµενου λογισµικού. Μοντέλο ρυθµού διόρθωσης σφαλµάτων λογισµικού µε γραµµική µείωση Σύµφωνα µε το µοντέλο αυτό (Musa 1987) ο ρυθµός επιδιόρθωσης των σφαλµάτων µειώνεται γραµµικά, όποτε ισχύουν τα ακόλουθα: Αν τ 0 είναι ο χρόνος όπου µηδενίζεται ο ρυθµός επιδιόρθωσης σφαλµάτων, τότε θεωρούµε ως Κ την αρχική τιµή του ρυθµού βλάβης, τα εναποµείναντα σφάλµατα θα δίνονται από την ακόλουθη σχέση: 12

13 Μοντέλο ρυθµού διόρθωσης σφαλµάτων λογισµικού µε εκθετική µείωση Σύµφωνα µε το µοντέλο αυτό, ο ρυθµός διόρθωσης σφαλµάτων εξαρτάται γραµµικά µε τον αριθµό των σφαλµάτων που αποµένουν στο λογισµικό Με την κατάστρωση και επίλυση της διαφορικής εξίσωσης από την παραπάνω σχέση, προκύπτουν οι ακόλουθες σχέσεις Πιθανοτικά µοντέλα αξιοπιστίας λογισµικού Στη συνέχεια, θα πρέπει να συσχετιστούν τα µοντέλα διόρθωσης σφαλµάτων λογισµικού µε τους πιθανοτικούς δείκτες της αξιοπιστίας του λογισµικού. Σύµφωνα µε σχετικές µελέτες είναι δυνατόν να θεωρηθεί για το ρυθµό σφαλµάτων ότι: Εάν θεωρηθεί γραµµικό µοντέλο διόρθωσης σφαλµάτων κώδικα τότε: Με δεδοµένο ότι έχουµε εκτιµήσει τις παραµέτρους Ε Τ k και ρ 0 η εξάρτηση του χρόνου ελέγχου και της αξιοπιστίας του λογισµικού µπορεί να υπολογιστεί κάνοντας την ακόλουθη αντικατάσταση : 13

14 Εξάρτηση της αξιοπιστίας και χρόνου ελέγχου λογισµικού (γραµ. διορθ. σφαλµ.) Στο παραπάνω διάγραµµα φαίνεται πως όσο µεγαλύτερος είναι ο χρόνος διόρθωσης σφαλµάτων τ τόσο µεγαλύτερη αξιοπιστία εµφανίζει το λογισµικό στο αντίστοιχο κανονικοποιηµένο χρονικό διάστηµα Εκθετικό µοντέλο διόρθωσης σφαλµάτων και αξιοπιστία λογισµικού Σύµφωνα µε το εκθετικό µοντέλο διόρθωσης σφαλµάτων, ο ρυθµός διόρθωσης σφαλµάτων είναι γραµµικά εξαρτώµενος από τον αριθµό των σφαλµάτων που έχουν παραµείνει στο λογισµικό. Με κατάλληλες µαθηµατικές πράξεις, υπολογίζεται η έκφραση του αριθµού σφαλµάτων που παρέµειναν στο λογισµικό. Με αντικατάσταση στην εξίσωση της αξιοπιστίας προκύπτει η ακόλουθη σχέση: Οδείκτης MTTF προκύπτει µε ολοκλήρωση της έκφρασης της αξιοπιστίας και είναι ίσος µε: 14

15 Πλεονασµός στο λογισµικό µε προγραµµατισµό Ν εκδόσεων Ηεφαρµογή TMR διατάξεων όπως παρουσιάστηκε για το υλικό, είναι δυνατόν να εµφανιστεί και στο λογισµικό. Όµως, η χρήση πανοµοιότυπων ενοτήτων προγράµµατος και διάταξη ψηφοφόρου δεν θα άλλαζε κάτι, αφού σε συγκεκριµένες αρχικές συνθήκες όλες οι ενότητες ή καµία ενότητα δεν θα εµφάνιζε σφάλµα. Στην περίπτωση αυτή αναπτύσσονται οι ενότητες προγραµµάτων µε διαφορετικό τρόπο αλλά τις ίδιες προδιαγραφές, επιτελώντας κάθε φορά την ίδια λειτουργία. Συχνά απαιτούνται ανεξάρτητες οµάδες ανάπτυξης λογισµικού, διαφορετικές σχεδιαστικές φιλοσοφίες και ενδεχοµένως διαφορετικές πλατφόρµες ανάπτυξης. Με αυτόν τον τρόπο διασφαλίζεται η ανεξαρτησία της εµφάνισης σφαλµάτων κώδικα µεταξύ των διαφόρων ενοτήτων λογισµικού. Ανάπτυξη ανεξάρτητων εκδόσεων λογισµικού Ηανάπτυξη ανεξάρτητων εκδόσεων λογισµικού πρέπει να χαρακτηρίζεται από τα ακόλουθα: Κάθε οµάδα ανάπτυξης έχει τις ίδιες προδιαγραφές λογισµικού. Η επικοινωνία µεταξύ των οµάδων ανάπτυξης πρέπει να είναι περιορισµένη και ελεγχόµενη από την κεντρική διοίκηση. Κάθε έκδοση λογισµικού υπόκειται στις ίδιες διαδικασίες δοκιµών Πιθανοί λόγοι για εξαρτηµένες βλάβες: Παρανόηση των προδιαγραφών µε τον ίδιο ακριβώς τρόπο Παρανόηση των αρχικών συνθηκών και ρυθµίσεων Ίδιος τρόπος σχεδιασµού σε συγκεκριµένα δύσκολα σηµεία του προγράµµατος. 15

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΑΞΙΟΠΙΣΤΙΑΣ ΣΥΣΤΗΜΑΤΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΑΞΙΟΠΙΣΤΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΑΞΙΟΠΙΣΤΙΑΣ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή Η τυποποιηµένη διαδικασία µοντελοποίησης της αξιοπιστίας συστηµάτων είναι η αποσύνθεση του σε υποσυστήµατα και εκτίµηση των δεικτών του συστήµατος σε συνάρτηση

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΑΞΙΟΠΙΣΤΙΑΣ ΣΥΣΤΗΜΑΤΩΝ

ΑΡΙΘΜΗΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΑΞΙΟΠΙΣΤΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΑΡΙΘΜΗΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΑΞΙΟΠΙΣΤΙΑΣ ΣΥΣΤΗΜΑΤΩΝ Συστήµατα µε στοιχεία συνδεδεµένα σε σειρά Με χρήση των αποτελεσµάτων από τα διαγράµµατα Markov, είναι δυνατόν να δηµιουργούνται ισοδύναµα διαγράµµατα

Διαβάστε περισσότερα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα Περιεχόμενα Κεφάλαιο - Ενότητα σελ 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων 1.2 Συνάρτηση δ του Dirac 1.3 Συνάρτηση του Heaviside 1.4 Οι συναρτήσεις Β, Γ και

Διαβάστε περισσότερα

συστημάτων απλής μορφής

συστημάτων απλής μορφής Αξιοπιστία συστημάτων απλής μορφής Τμήμα Μηχανικών Παραγωγής και Διοίκησης Χειμερινό 2016 2017 Διδάσκων: Καθηγητής Παντελής Ν Μπότσαρης Εργαστήρια/Ασκήσεις: Δρ Πέτρος Πιστοφίδης ΑΞΙΟΠΙΣΤΙΑ ΣΥΣΤΗΜΑΤΩΝ ΣΕ

Διαβάστε περισσότερα

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6) Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής

Διαβάστε περισσότερα

1 (15) 2 (15) 3 (15) 4 (20) 5 (10) 6 (25)

1 (15) 2 (15) 3 (15) 4 (20) 5 (10) 6 (25) Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 424: Συστηματα Ανοχης Σφαλματων Εαρινό Εξάμηνο 2014-2015 Καθηγητής: Χριστόφορος Χατζηκωστής Τελική Εξέταση Δευτέρα, 11 Μαΐου,

Διαβάστε περισσότερα

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii Περιεχόμενα Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή... 1 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων... 2 1.2 Συνάρτηση δ του Dirac...

Διαβάστε περισσότερα

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0 ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής Δεσμευμένη αξιοπιστία Η δεσμευμένη αξιοπιστία R t είναι η πιθανότητα το σύστημα να λειτουργήσει για χρονικό

Διαβάστε περισσότερα

Τεχνο-οικονοµικά Συστήµατα ιοίκηση Παραγωγής & Συστηµάτων Υπηρεσιών

Τεχνο-οικονοµικά Συστήµατα ιοίκηση Παραγωγής & Συστηµάτων Υπηρεσιών Τεχνο-οικονοµικά Συστήµατα ιοίκηση Παραγωγής & Συστηµάτων Υπηρεσιών 7. Συντήρηση και Ποιοτικός Έλεγχος Αστοχίες Αξιοπιστία Ποιοτικός έλεγχος Εισηγητής: Θοδωρής Βουτσινάς ρ Μηχ/γος Μηχ/κός Αστοχίες Α. Πρώιµες

Διαβάστε περισσότερα

ΕΠΙΠΤΩΣΕΙΣ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΛΕΙΤΟΥΡΓΙΚΗ ΑΠΟ ΟΣΗ ΤΩΝ ΑΥΤΟΝΟΜΩΝ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΕΠΙΠΤΩΣΕΙΣ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΛΕΙΤΟΥΡΓΙΚΗ ΑΠΟ ΟΣΗ ΤΩΝ ΑΥΤΟΝΟΜΩΝ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ (ΣΗΕ) ΕΠΙΠΤΩΣΕΙΣ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΛΕΙΤΟΥΡΓΙΚΗ

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

2.2 Οργάνωση και ιοίκηση (Μάνατζµεντ -Management) 2.2.1. Βασικές έννοιες 2.2.2 Ιστορική εξέλιξη τον µάνατζµεντ.

2.2 Οργάνωση και ιοίκηση (Μάνατζµεντ -Management) 2.2.1. Βασικές έννοιες 2.2.2 Ιστορική εξέλιξη τον µάνατζµεντ. 2.2 Οργάνωση και ιοίκηση (Μάνατζµεντ -Management) 2.2.1. Βασικές έννοιες Έχει παρατηρηθεί ότι δεν υπάρχει σαφής αντίληψη της σηµασίας του όρου "διοίκηση ή management επιχειρήσεων", ακόµη κι από άτοµα που

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ

ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ Βασικός τελικός στόχος κάθε επιστηµονικής τεχνολογικής εφαρµογής είναι: H γενική βελτίωση της ποιότητας του περιβάλλοντος Η βελτίωση της ποιότητας ζωής Τα µέσα µε τα

Διαβάστε περισσότερα

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 16/5/2000 Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville Στη Χαµιλτονιανή θεώρηση η κατάσταση του συστήµατος προσδιορίζεται κάθε στιγµή από ένα και µόνο σηµείο

Διαβάστε περισσότερα

Κεφάλαιο 10 ο Υποπρογράµµατα

Κεφάλαιο 10 ο Υποπρογράµµατα Κεφάλαιο 10 ο Υποπρογράµµατα Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον Η αντιµετώπιση των σύνθετων προβληµάτων και η ανάπτυξη των αντίστοιχων προγραµµάτων µπορεί να γίνει µε την ιεραρχική σχεδίαση,

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

Κύρια σημεία. Η έννοια του μοντέλου. Έρευνα στην εφαρμοσμένη Στατιστική. ΈρευναστηΜαθηματικήΣτατιστική. Αντικείμενο της Μαθηματικής Στατιστικής

Κύρια σημεία. Η έννοια του μοντέλου. Έρευνα στην εφαρμοσμένη Στατιστική. ΈρευναστηΜαθηματικήΣτατιστική. Αντικείμενο της Μαθηματικής Στατιστικής Κύρια σημεία Ερευνητική Μεθοδολογία και Μαθηματική Στατιστική Απόστολος Μπουρνέτας Τμήμα Μαθηματικών ΕΚΠΑ Αναζήτηση ερευνητικού θέματος Εισαγωγή στην έρευνα Ολοκλήρωση ερευνητικής εργασίας Ο ρόλος των

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Μετασχηµατισµός Laplace. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Μετασχηµατισµός Laplace. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Μετασχηµατισµός Laplace Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Διευρύνει τη κλάση των σηµάτων για τα οποία µπορεί να επιτευχθεί η µετάβαση

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου II

Συστήματα Αυτομάτου Ελέγχου II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου II Ενότητα #2: Ποιοτικά Χαρακτηριστικά Συστημάτων Κλειστού Βρόχου - Μόνιμα Σφάλματα Δημήτριος Δημογιαννόπουλος

Διαβάστε περισσότερα

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 7/5/2000 Μηχανική ΙI Μετασχηµατισµοί Legendre Έστω µια πραγµατική συνάρτηση. Ορίζουµε την παράγωγο συνάρτηση της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα).

Διαβάστε περισσότερα

Μοντελοποίηση Προσομοίωση

Μοντελοποίηση Προσομοίωση Μοντελοποίηση Προσομοίωση Σχεδιασμός είναι η διαδικασία μετατροπής των φυσικών νόμων σε μαθηματικές εξισώσεις είναι το κατάλληλο λογισμικό το οποίο χρησιμοποιώντας το μαθηματικό μοντέλο προβλέπει τη συμπεριφορά

Διαβάστε περισσότερα

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε

Διαβάστε περισσότερα

website:

website: Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ατοµο του Υδρογόνου 1.1.1 Κατάστρωση του προβλήµατος Ας ϑεωρήσουµε πυρήνα ατοµικού αριθµού Z

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 2 Οκτωβρίου 23 ιάρκεια: 2 ώρες Έστω το παρακάτω γραµµικώς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18 ΑΞΙΟΠΙΣΤΙΑ ΛΟΓΙΣΜΙΚΟΥ

ΚΕΦΑΛΑΙΟ 18 ΑΞΙΟΠΙΣΤΙΑ ΛΟΓΙΣΜΙΚΟΥ ΚΕΦΑΛΑΙΟ 18 ΑΞΙΟΠΙΣΤΙΑ ΛΟΓΙΣΜΙΚΟΥ ΣΤΟΧΟΙ Να περιγράψουµε τους τρόπους προδιαγραφών αξιοπιστίας και µέτρησης Να εισάγουµε µονάδες µέτρησης της αξιοπιστίας και την χρησιµότητα τους στις προδιαγραφές αξιοπιστίας

Διαβάστε περισσότερα

Ασφαλή Συστήματα Μέθοδοι ελέγχου και εξακρίβωσης ορθής λειτουργίας

Ασφαλή Συστήματα Μέθοδοι ελέγχου και εξακρίβωσης ορθής λειτουργίας Λειτουργικά Συστήματα Πραγματικού Χρόνου 2006-07 Ασφαλή Συστήματα Μέθοδοι ελέγχου και εξακρίβωσης ορθής λειτουργίας Μ.Στεφανιδάκης Ενσωματωμένα Συστήματα: Απαιτήσεις Αξιοπιστία (reliability) Χρηστικότητα

Διαβάστε περισσότερα

Ελεγχος, Αξιοπιστία και Διασφάλιση Ποιότητας Λογισµικού Πολυπλοκότητα

Ελεγχος, Αξιοπιστία και Διασφάλιση Ποιότητας Λογισµικού Πολυπλοκότητα Ελεγχος, Αξιοπιστία και Διασφάλιση Ποιότητας Λογισµικού Πολυπλοκότητα Τµήµα Διοίκησης Επιχειρήσεων Τει Δυτικής Ελλάδας Μεσολόγγι Δρ. Α. Στεφανή Διάλεξη 5 2 Εγκυροποίηση Λογισµικού Εγκυροποίηση Λογισµικού

Διαβάστε περισσότερα

ΕΙΚΤΕΣ ΑΠΟ ΟΣΗΣ ΚΑΙ ΚΟΣΤΟΣ ΑΞΙΟΠΙΣΤΙΑΣ ΛΕΙΤΟΥΡΓΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΦΟΡΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΑΠΑΙΤΗΣΕΙΣ ΠΟΙΟΤΗΤΑΣ ΠΕΛΑΤΩΝ

ΕΙΚΤΕΣ ΑΠΟ ΟΣΗΣ ΚΑΙ ΚΟΣΤΟΣ ΑΞΙΟΠΙΣΤΙΑΣ ΛΕΙΤΟΥΡΓΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΦΟΡΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΑΠΑΙΤΗΣΕΙΣ ΠΟΙΟΤΗΤΑΣ ΠΕΛΑΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ (ΣΗΕ) ΕΙΚΤΕΣ ΑΠΟ ΟΣΗΣ ΚΑΙ ΚΟΣΤΟΣ ΑΞΙΟΠΙΣΤΙΑΣ ΛΕΙΤΟΥΡΓΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΦΟΡΑΣ

Διαβάστε περισσότερα

Πρόταση για Ανασχηματισμό του Προγράμματος Προπτυχιακών Σπουδών της ΣΗΜΜΥ

Πρόταση για Ανασχηματισμό του Προγράμματος Προπτυχιακών Σπουδών της ΣΗΜΜΥ Πρόταση για Ανασχηματισμό του Προγράμματος Προπτυχιακών Σπουδών της ΣΗΜΜΥ Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών Περίληψη Τί προτείνουμε, πώς και γιατί με λίγα λόγια: 55 μαθήματα = 30 για ενιαίο

Διαβάστε περισσότερα

ΑΞΙΟΠΙΣΤΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΑΞΙΟΠΙΣΤΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΞΙΟΠΙΣΤΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Αξιοπιστία Λειτουργίας κατά την Ανάπτυξη Ηλεκτρονικών Προϊόντων ΠΡΟ ΙΑΓΡΑΦΕΣ ΤΗΣ ΑΞΙΟΠΙΣΤΙΑΣ ΛΕΙΤΟΥΡΓΙΑΣ ΤΟΥ ΠΡΟΪΟΝΤΟΣ ΣΧΕ ΙΑΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΠΡΟ ΪΟΝΤΩΝ Μ Ε ΚΡΙΤΗΡΙΑ

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss Γραµµική Άλγεβρα Εισαγωγικά Υπάρχουν δύο βασικά αριθµητικά προβλήµατα στη Γραµµική Άλγεβρα. Το πρώτο είναι η λύση γραµµικών συστηµάτων Aλγεβρικών εξισώσεων και το δεύτερο είναι η εύρεση των ιδιοτιµών και

Διαβάστε περισσότερα

Αντιµετώπιση προβληµάτων MPEG

Αντιµετώπιση προβληµάτων MPEG MPEG Η ενότητα αυτή αφορά τους χρήστες καρδιολογίας που προβάλλουν αρχεία MPEG. Ανατρέξτε στα θέµατα που ακολουθούν για βοήθεια στα προβλήµατα που ενδεχοµένως αντιµετωπίζετε κατά την προβολή αρχείων MPEG.

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΒΕΣ 6: ΠΡΟΣΑΡΜΟΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Ακαδηµαϊκό Έτος 26 27, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΥΝΟΛΩΝ ΚΑΙ ΣΥΝΔΥΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΥΝΟΛΩΝ ΚΑΙ ΣΥΝΔΥΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΥΝΟΛΩΝ ΚΑΙ ΣΥΝΔΥΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ 17 ΣΥΝΟΛΑ ΣΧΕΣΕΙΣ - ΣΥΝΑΡΤΗΣΕΙΣ 17 1. Η έννοια του συνόλου 17 2. Εγκλεισμός και ισότητα συνόλων 19

Διαβάστε περισσότερα

ΚΩ ΙΚΕΣ ΑΓΟΡΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΠΛΑΙΣΙΟ ΒΑΣΙΚΩΝ ΑΡΧΩΝ ΣΧΕ ΙΑΣΜΟΥ ΑΓΟΡΑΣ ΚΑΙ ΜΕΤΑΒΑΤΙΚΕΣ ΙΑΤΑΞΕΙΣ

ΚΩ ΙΚΕΣ ΑΓΟΡΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΠΛΑΙΣΙΟ ΒΑΣΙΚΩΝ ΑΡΧΩΝ ΣΧΕ ΙΑΣΜΟΥ ΑΓΟΡΑΣ ΚΑΙ ΜΕΤΑΒΑΤΙΚΕΣ ΙΑΤΑΞΕΙΣ ΚΩ ΙΚΕΣ ΑΓΟΡΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΠΛΑΙΣΙΟ ΒΑΣΙΚΩΝ ΑΡΧΩΝ ΣΧΕ ΙΑΣΜΟΥ ΑΓΟΡΑΣ ΚΑΙ ΜΕΤΑΒΑΤΙΚΕΣ ΙΑΤΑΞΕΙΣ 28-2-2005 Προτάσεις της ΡΑΕ επιτυγχάνουν αποδεκτό Σχέδιο Κωδίκων χωρίς συµβιβασµούς στην Κοινωνική τους

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Μάθημα 8: Σύγχρονα ακολουθιακά κυκλώµατα (µέρος Α ) Διδάσκων: Καθηγητής Ν. Φακωτάκης Κυκλώµατα οδηγούµενα από

Διαβάστε περισσότερα

ιδάσκων: ηµήτρης Ζεϊναλιπούρ

ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 1.3-1.4: Εισαγωγή Στον Προγραµµατισµό ( ιάλεξη 2) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Περιεχόµενα Εισαγωγικές Έννοιες - Ορισµοί Ο κύκλος ανάπτυξης προγράµµατος Παραδείγµατα Πότε χρησιµοποιούµε υπολογιστή?

Διαβάστε περισσότερα

Επώνυµη ονοµασία. Ενότητα 13 η Σχεδίαση,Επιλογή, ιανοµή Προϊόντων 1

Επώνυµη ονοµασία. Ενότητα 13 η Σχεδίαση,Επιλογή, ιανοµή Προϊόντων 1 Επώνυµη ονοµασία Η επώνυµη ονοµασία είναι αυτή η ονοµασία που ξεχωρίζει τα προϊόντα και τις υπηρεσίες µας από αυτές των ανταγωνιστών. Οι σχετικές αποφάσεις θα επηρεαστούν από τις εξής ερωτήσεις: 1. Χρειάζεται

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. =. Οι πρώτες µερικές u x y

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. =. Οι πρώτες µερικές u x y ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Καταρχήν θα µελετήσουµε την συνάρτηση f Η f γράφεται f ( ) = ( x + )( x ) ( x ) ή ακόµα f ( ) = u( x,

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ Σηµειώσεις µαθήµατος ηµήτρης Βαλουγεώργης Αναπληρωτής Καθηγητής Τµήµα Μηχανολόγων Μηχανικών Βιοµηχανίας Εργαστήριο Φυσικών και Χηµικών ιεργασιών Πολυτεχνική Σχολή Πανεπιστήµιο Θεσσαλίας

Διαβάστε περισσότερα

Έλεγχος στροφών κινητήρα DC με ελεγκτή PI, και αντιστάθμιση διαταραχής.

Έλεγχος στροφών κινητήρα DC με ελεγκτή PI, και αντιστάθμιση διαταραχής. ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Έλεγχος στροφών κινητήρα DC με ελεγκτή PI, και αντιστάθμιση διαταραχής. Α) Σκοπός: Σκοπός της παρούσας άσκησης είναι να επιδειχθεί ο έλεγχος των στροφών

Διαβάστε περισσότερα

Εντολές κίνησης σε συστήματα CNC

Εντολές κίνησης σε συστήματα CNC Εντολές κίνησης σε συστήματα CNC Τραπεζοειδές προφίλ ταχύτητας Τραπεζοειδές προφίλ επιτάχυνσης Βασικές έννοιες Ι Στο G code δίνεται η πρόωση f διανυσματικά. Δεδομένα γνωστά επιτάχυνση Α επιβράδυνση D παράγωγος

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

ΠΕΡΙ ΜΕΤΑΒΑΣΗΣ ΑΠΟ ΤΑ ΙΑΓΡΑΜΜΑΤΑ ΡΟΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΕ ΙΑΓΡΑΜΜΑΤΑ ΟΜΗΣ Ε ΟΜΕΝΩΝ

ΠΕΡΙ ΜΕΤΑΒΑΣΗΣ ΑΠΟ ΤΑ ΙΑΓΡΑΜΜΑΤΑ ΡΟΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΕ ΙΑΓΡΑΜΜΑΤΑ ΟΜΗΣ Ε ΟΜΕΝΩΝ ΠΕΡΙ ΜΕΤΑΒΑΣΗΣ ΑΠΟ ΤΑ ΙΑΓΡΑΜΜΑΤΑ ΡΟΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΕ ΙΑΓΡΑΜΜΑΤΑ ΟΜΗΣ Ε ΟΜΕΝΩΝ Μερικές παρατηρήσεις και σκέψεις του συγγραφέα του βιβλίου Σχετικά µε τη µετάβαση από Ρ σε ΠΠ υπάρχουν 2 σηµαντικά ερωτήµατα:

Διαβάστε περισσότερα

Καθ. Βλάσης Κουµούσης

Καθ. Βλάσης Κουµούσης ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ Καθ. Βλάσης Κουµούσης Κυλινδρικά Κελύφη Καµπτική Θεωρία Οι µεµβρανικές δυνάµεις που προσδιορίζει η µεµβρανική θεωρία

Διαβάστε περισσότερα

Πολύγωνο αθροιστικών σχετικών συχνοτήτων και διάµεσος µιας τυχαίας µεταβλητής ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Πρόλογος Στην εργασία αυτή αναλύονται

Διαβάστε περισσότερα

ΣΥΣΚΕΥΗ ΤΕΡΜΑΤΙΣΜΟΥ ΟΠΤΙΚΩΝ ΙΝΩΝ & ΠΟΛΥΠΛΕΚΤΩΝ (OLTE/MUX) ΥΛΙΚΟ: Με τον παρόν Συµπλήρωµα:

ΣΥΣΚΕΥΗ ΤΕΡΜΑΤΙΣΜΟΥ ΟΠΤΙΚΩΝ ΙΝΩΝ & ΠΟΛΥΠΛΕΚΤΩΝ (OLTE/MUX) ΥΛΙΚΟ: Με τον παρόν Συµπλήρωµα: ΑΝΕΞΑΡΤΗΤΟΣ ΙΑΧΕΙΡΙΣΤΗΣ ΜΕΤΑΦΟΡΑΣ ΑΡΙΘ. ΙΑΚΗΡΥΞΗΣ : 401306 ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΥΜΠΛΗΡΩΜΑ Νο 3 ΙΕΥΘΥΝΣΗ ΑΠΟΘΗΚΩΝ, ΠΡΟΜΗΘΕΙΩΝ & ΜΕΤΑΦΟΡΩΝ ΗΜΕΡΟΜΗΝΙΑ: 21-06-2013 Οδός ΥΡΡΑΧΙΟΥ 89 & ΚΗΦΙΣΟΥ Τ.Κ. 104 43 ΑΘΗΝΑ

Διαβάστε περισσότερα

Ελληνικό Ανοικτό Πανεπιστήµιο. Η Ανάλυση και ο Σχεδιασµός στην Ενοποιηµένη ιαδικασία. ρ. Πάνος Φιτσιλής

Ελληνικό Ανοικτό Πανεπιστήµιο. Η Ανάλυση και ο Σχεδιασµός στην Ενοποιηµένη ιαδικασία. ρ. Πάνος Φιτσιλής 1 Ελληνικό Ανοικτό Πανεπιστήµιο Η και ο στην Ενοποιηµένη ιαδικασία ρ. Πάνος Φιτσιλής Περιεχόµενα Γενικές αρχές ανάλυσης και σχεδιασµού Τα βήµατα της ανάλυσης και του σχεδιασµού Συµπεράσµατα 2 3 Η ανάλυση

Διαβάστε περισσότερα

(1) v = k[a] a [B] b [C] c, (2) - RT

(1) v = k[a] a [B] b [C] c, (2) - RT Χηµική Κινητική Αντικείµενο της Χηµικής Κινητικής είναι η µελέτη της ταχύτητας µιας αντιδράσεως, ο καθορισµός των παραγόντων που την επηρεάζουν και η εύρεση ποσοτικής έκφρασης για τον κάθε παράγοντα, δηλ.

Διαβάστε περισσότερα

Τεχνολογία Λογισµικού Ι Κεφάλαιο 6

Τεχνολογία Λογισµικού Ι Κεφάλαιο 6 ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα σπουδών "ΠΛΗΡΟΦΟΡΙΚΗ" - Θ.Ε. ΠΛΗ11 Τεχνολογία Λογισµικού Ι Κεφάλαιο 6 Βασίλειος Βεσκούκης ιδάκτωρ Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών v.vescoukis@cs.ntua.gr

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΜΑΖΑΣ-ΕΛΑΤΗΡΙΟΥ-ΑΠΟΣΒΕΣΤΗΡΑ

ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΜΑΖΑΣ-ΕΛΑΤΗΡΙΟΥ-ΑΠΟΣΒΕΣΤΗΡΑ ΤΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΜΑΖΑΣ-ΕΛΑΤΗΡΙΟΥ-ΑΠΟΣΒΕΣΤΗΡΑ Μ. Σφακιωτάκης mfak@taff.teicrete.gr Χειµερινό Οκτώβριος εξάµηνο 2010-11 2017 Σύστηµα Μάζας-Ελατηρίου-Αποσβεστήρα

Διαβάστε περισσότερα

3. Προσομοίωση ενός Συστήματος Αναμονής.

3. Προσομοίωση ενός Συστήματος Αναμονής. 3. Προσομοίωση ενός Συστήματος Αναμονής. 3.1. Διατύπωση του Προβλήματος. Τα συστήματα αναμονής (queueing systems), βρίσκονται πίσω από τα περισσότερα μοντέλα μελέτης της απόδοσης υπολογιστικών συστημάτων,

Διαβάστε περισσότερα

) = a ο αριθµός των µηχανών n ο αριθµός των δειγµάτων που παίρνω από κάθε µηχανή

) = a ο αριθµός των µηχανών n ο αριθµός των δειγµάτων που παίρνω από κάθε µηχανή Ανάλυση Συνδιακύµανσης Alsis of Covrice Η ανάλυση συνδιακύµανσης είναι µία άλλη τεχνική για να βελτιώσουµε την ακρίβεια της προσέγγισης του µοντέλου µας στο πείραµα. Ας υποθέσουµε ότι σ ένα πείραµα εκτός

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11 2. Σύνολα..............................................................

Διαβάστε περισσότερα

Βασίλειος Κοντογιάννης ΠΕ19

Βασίλειος Κοντογιάννης ΠΕ19 Ενότητα2 Προγραμματιστικά Περιβάλλοντα Δημιουργία Εφαρμογών 5.1 Πρόβλημα και Υπολογιστής Τι ονομάζουμε πρόβλημα; Πρόβλημα θεωρείται κάθε ζήτημα που τίθεται προς επίλυση, κάθε κατάσταση που μας απασχολεί

Διαβάστε περισσότερα

ΛΕΙΤΟΥΡΓΙΚΗ ΑΠΟ ΟΣΗ ΚΑΙ ΑΞΙΟΠΙΣΤΙΑ ΛΕΙΤΟΥΡΓΙΑΣ ΤΩΝ ΝΗΣΙΩΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΜΕ ΧΡΗΣΗ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ

ΛΕΙΤΟΥΡΓΙΚΗ ΑΠΟ ΟΣΗ ΚΑΙ ΑΞΙΟΠΙΣΤΙΑ ΛΕΙΤΟΥΡΓΙΑΣ ΤΩΝ ΝΗΣΙΩΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΜΕ ΧΡΗΣΗ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ (ΣΗΕ) ΛΕΙΤΟΥΡΓΙΚΗ ΑΠΟ ΟΣΗ ΚΑΙ ΑΞΙΟΠΙΣΤΙΑ ΛΕΙΤΟΥΡΓΙΑΣ ΤΩΝ ΝΗΣΙΩΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Διαβάστε περισσότερα

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,

Διαβάστε περισσότερα

Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3)

Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3) Παράδειγµα 1: Έστω ένα σύστηµα που περιγράφεται από τη διαφορική εξίσωση () +2 () 29 () +42()=() (1) µε µηδενικές αρχικές συνθήκες. (δηλαδή ()(0) = () (0)=()(0)=0) (2) Ζητείται να µελετηθεί το εν λόγω

Διαβάστε περισσότερα

Σεµινάριο Αυτοµάτου Ελέγχου

Σεµινάριο Αυτοµάτου Ελέγχου Σεµινάριο Αυτοµάτου Ελέγχου Μάθηµα 5 Εξισώσεις εσωτερικής κατάστασης Ελεγξιµότητα και Παρατηρησιµότητα Καλλιγερόπουλος 5 Εξισώσεις εσωτερικής κατάστασης Η εξωτερική συµπεριφορά ενός συστήµατος ορίζεται

Διαβάστε περισσότερα

ΚΥΚΛΟΣ ΖΩΗΣ ΛΟΓΙΣΜΙΚΟΥ και ΔΙΑΓΡΑΜΜΑΤΑ ΡΟΗΣ ΔΕΔΟΜΕΝΩΝ

ΚΥΚΛΟΣ ΖΩΗΣ ΛΟΓΙΣΜΙΚΟΥ και ΔΙΑΓΡΑΜΜΑΤΑ ΡΟΗΣ ΔΕΔΟΜΕΝΩΝ ΚΥΚΛΟΣ ΖΩΗΣ ΛΟΓΙΣΜΙΚΟΥ και ΔΙΑΓΡΑΜΜΑΤΑ ΡΟΗΣ ΔΕΔΟΜΕΝΩΝ Ο κύκλος ζωής λογισµικού (συνοπτικά) Η παραδοσιακή φάση ανάπτυξης του κύκλου ζωής λογισµικού Φάση καθορισµού απαιτήσεων (1/2) ΤΙ πρέπει να κάνει το

Διαβάστε περισσότερα

ΕΙΣΗΓΗΣΗ ΣΥΛΛΟΓΟΥ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΒΟΡΕΙΟΥ ΕΛΛΑ ΟΣ

ΕΙΣΗΓΗΣΗ ΣΥΛΛΟΓΟΥ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΒΟΡΕΙΟΥ ΕΛΛΑ ΟΣ ΕΙΣΗΓΗΣΗ ΣΥΛΛΟΓΟΥ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΒΟΡΕΙΟΥ ΕΛΛΑ ΟΣ Το πρόγραµµα του Εθνικού Κτηµατολογίου δέκα χρόνια από την έναρξή του βρίσκεται στην πιο κρίσιµη φάση του.αυτό οφείλεται τόσο στα πρακτικά

Διαβάστε περισσότερα

Περιεχόµενα. Ανασκόπηση - Ορισµοί. Ο κύκλος ανάπτυξης προγράµµατος. Γλώσσες Προγραµµατισµού Ασκήσεις

Περιεχόµενα. Ανασκόπηση - Ορισµοί. Ο κύκλος ανάπτυξης προγράµµατος. Γλώσσες Προγραµµατισµού Ασκήσεις Προγραµµατισµός Η/Υ Ανασκόπηση - Ορισµοί Περιεχόµενα Ο κύκλος ανάπτυξης προγράµµατος Περιγραφή προβλήµατος Ανάλυση προβλήµατος Λογικό ιάγραµµα Ψευδοκώδικας Κωδικοποίηση Συντήρηση Γλώσσες Προγραµµατισµού

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΠΡΟΓΡΑΜΜΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο ΕΞΑΜΗΝΟ 3ο ΕΞΑΜΗΝΟ 5ο ΕΞΑΜΗΝΟ 7ο ΕΞΑΜΗΝΟ 9ο ΕΞΑΜΗΝΟ 30/01/2017 31/01/2017 01/02/2017 02/02/2017 03/02/2017 Γραμμική Άλγεβρα Εισαγωγικό Εργαστήριο Ηλεκτρονικής και Τηλεπικοινωνιών Διαφορικές

Διαβάστε περισσότερα

Kεφάλαιο 5. µετασχηµατισµού Laplace.

Kεφάλαιο 5. µετασχηµατισµού Laplace. 5 Εισαγωγή Kεφάλαιο 5 Ο µετασχηµατισµός Lplce Τόσο οι συνήθεις όσο και οι µερικές διαφορικές εξισώσεις περιγράφουν νόµους µε τους οποίους κάποιες ποσότητες µεταβάλλονται σε σχέση µε το χρόνο, όπως το ρεύµα

Διαβάστε περισσότερα

ΣΤΗΑ ΨΕΣ /4/2013 2:12 πµ

ΣΤΗΑ ΨΕΣ /4/2013 2:12 πµ ΣΤΗΑ ΨΕΣ -3 4/4/3 : πµ ΑΝΤΙΚΕΙΜΕΝΟ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Ψηφιακή Επεξεργασία Σήµατος ΨΕΣ Η Επεξεργασία Σήµατος µέσω της ψηφιοποίησής του και της επεξεργασίας µε ηλεκτρονικό υπολογιστή ή ειδικά ολοκληρωµένα κυκλώµατα

Διαβάστε περισσότερα

Δομή της παρουσίασης

Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη η Τα Σήματα στις Τηλεπικοινωνίες

Διαβάστε περισσότερα

Εισαγωγή στα Προσαρµοστικά Συστήµατα

Εισαγωγή στα Προσαρµοστικά Συστήµατα ΒΕΣ 06 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Εισαγωγή στα Προσαρµοστικά Συστήµατα Νικόλας Τσαπατσούλης Επίκουρος Καθηγητής Π..407/80 Τµήµα Επιστήµη και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου

Διαβάστε περισσότερα

Σύστημα και Μαθηματικά μοντέλα συστημάτων

Σύστημα και Μαθηματικά μοντέλα συστημάτων Σύστημα και Μαθηματικά μοντέλα συστημάτων Όταν μελετούμε έναν συγκεκριμένο μηχανισμό η μια φυσική διεργασία επικεντρώνουμε το ενδιαφέρον μας στα φυσικά μεγέθη του μηχανισμού τα οποία μας ενδιαφέρει να

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις για το µάθηµα Ψηφιακή Επεξεργασία Σηµάτων

Επαναληπτικές Ασκήσεις για το µάθηµα Ψηφιακή Επεξεργασία Σηµάτων Άσκηση η α) Πώς θα µετρήσετε πρακτικά πόσο κοντά είναι ένα σήµα σε λευκό θόρυβο; Αναφέρατε 3 διαφορετικές µεθόδους (κριτήρια) για την απόφαση: "Ναι, πρόκειται για σήµα που είναι πολύ κοντά σε λευκό θόρυβο"

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R )

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) Γράφημα της συνάρτησης f( x), αν p x< 0 F( x) = f( x), αν 0 x p και F( x+ 2 p) = F( x), x R (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) ΠΡΟΛΟΓΟΣ Το Βιβλίο αυτό απευθύνεται στους

Διαβάστε περισσότερα

Ανάλυση Απαιτήσεων Απαιτήσεις Λογισµικού

Ανάλυση Απαιτήσεων Απαιτήσεις Λογισµικού ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΜΑΤΙΚΗΣ Ανάλυση Απαιτήσεων Απαιτήσεις Λογισµικού Μάρα Νικολαϊδου Δραστηριότητες Διαδικασιών Παραγωγής Λογισµικού Καθορισµός απαιτήσεων και εξαγωγή προδιαγραφών

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 10 ΟΥ ΚΕΦΑΛΑΙΟΥ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ 1. Πως ορίζεται ο τμηματικός προγραμματισμός; Τμηματικός προγραμματισμός

Διαβάστε περισσότερα

ΑΞΙΟΠΙΣΤΙΑ ΛΕΙΤΟΥΡΓΙΑΣ ΤΩΝ ΣΥΧΡΟΝΩΝ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΥΜΒΟΛΗ Υ ΡΟΗΛΕΚΤΡΙΚΩΝ ΣΤΑΘΜΩΝ ΠΑΡΑΓΩΓΗΣ

ΑΞΙΟΠΙΣΤΙΑ ΛΕΙΤΟΥΡΓΙΑΣ ΤΩΝ ΣΥΧΡΟΝΩΝ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΥΜΒΟΛΗ Υ ΡΟΗΛΕΚΤΡΙΚΩΝ ΣΤΑΘΜΩΝ ΠΑΡΑΓΩΓΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ (ΣΗΕ) ΑΞΙΟΠΙΣΤΙΑ ΛΕΙΤΟΥΡΓΙΑΣ ΤΩΝ ΣΥΧΡΟΝΩΝ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΥΜΒΟΛΗ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

6. ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ

6. ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ 6. ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ 6. Διανυσματικοί χώροι παραμέτρων και μετρήσεων. Θα δανειστούµε για µία ακόµη φορά έννοιες της Γραµµικής Άλγεβρας προκειµένου να δούµε πως µπορούµε να χειριστούµε

Διαβάστε περισσότερα

y 1 Output Input y 2 Σχήµα 1.1 Βασική δοµή ενός συστήµατος ελέγχου κλειστού βρόγχου

y 1 Output Input y 2 Σχήµα 1.1 Βασική δοµή ενός συστήµατος ελέγχου κλειστού βρόγχου Τ.Ε.Ι. ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜHΜΑ ΗΛΕΚΤΡΟΛΟΓIΑΣ Σηµειώσεις για το εργαστήριο του µαθήµατος ΣΥΣΤΗΜΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ I ΓΑΥΡΟΣ ΚΩΝ/ΝΟΣ ΚΟΖΑΝΗ 2008 Κεφάλαιο 1 ο Ορισµός Συστηµάτων

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εφαρμοσμένος & Υπολογιστικός Ηλεκτρομαγνητισμός Ηλ. Αιθ. 012, 013. Στοχαστικά Συστήματα & Επικοινωνίες Ηλ. Αμφ.

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εφαρμοσμένος & Υπολογιστικός Ηλεκτρομαγνητισμός Ηλ. Αιθ. 012, 013. Στοχαστικά Συστήματα & Επικοινωνίες Ηλ. Αμφ. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2014-2015 Περίοδος Ιουνίου 2015 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

Ενότητα 8. Οργάνωση Ελεγκτικής ιαδικασίας

Ενότητα 8. Οργάνωση Ελεγκτικής ιαδικασίας Ενότητα 8 Οργάνωση Ελεγκτικής ιαδικασίας Σχέση Εσωτερικού Εξωτερικού Ελέγχου Εσωτερικός Έλεγχος Εξωτερικός Έλεγχος Φύση Σχέσης Εργασιακής Υπάλληλος της οικονοµικής µονάδας Σκοπός Σκοπεύει στην εκτίµηση

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εργαστηριακή και Βιομηχανική Ηλεκτρονική Ηλ. Αμφ. 2, 3. Γλώσσες Προγραμματισμού Ι. Ηλ. Αμφ. 1, 2, 3, 4, 5

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εργαστηριακή και Βιομηχανική Ηλεκτρονική Ηλ. Αμφ. 2, 3. Γλώσσες Προγραμματισμού Ι. Ηλ. Αμφ. 1, 2, 3, 4, 5 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ Ακαδημαϊκό Έτος 2016-2017 Περίοδος Ιουνίου 2017 Έκδοση 08.06.2017 ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εφαρμοσμένος & Υπολογιστικός Ηλεκτρομαγνητισμός Ηλ. Αιθ. 012, 013. Εργαστήριο Ψηφιακών Συστημάτων Ηλ. Εργ.

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εφαρμοσμένος & Υπολογιστικός Ηλεκτρομαγνητισμός Ηλ. Αιθ. 012, 013. Εργαστήριο Ψηφιακών Συστημάτων Ηλ. Εργ. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2014-2015 Περίοδος Ιουνίου 2015 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

ENOTHTA 9 AΣΦAΛEIA KAI ΠPOΣTAΣIA

ENOTHTA 9 AΣΦAΛEIA KAI ΠPOΣTAΣIA ENOTHTA 9 Περιεχόµενα 1. Aσφάλεια vs Προστασία 2. Aσφάλεια 3. Προϋποθέσεις για ύπαρξη ασφάλειας 4. Eίδη απειλών 5. Σχεδιαστικές αρχές για ασφάλεια 6. Mηχανισµοί προστασίας 9-1 1. Aσφάλεια vs Προστασία

Διαβάστε περισσότερα

Kεφάλαιο 5. µετασχηµατισµού Laplace.

Kεφάλαιο 5. µετασχηµατισµού Laplace. 5 Εισαγωγή Kεφάλαιο 5 Ο µετασχηµατισµός Lplce Τόσο οι συνήθεις όσο και οι µερικές διαφορικές εξισώσεις περιγράφουν νόµους µε τους οποίους κάποιες ποσότητες µεταβάλλονται σε σχέση µε το χρόνο, όπως το ρεύµα

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Διαβάστε περισσότερα

Ανοχή απέναντι σε Σφάλµατα Fault Tolerance

Ανοχή απέναντι σε Σφάλµατα Fault Tolerance Ανοχή απέναντι σε Σφάλµατα Fault Tolerance Μαρία Ι. Ανδρέου ΗΜΥ417, ΗΜΥ 663 Κατανεµηµένα Συστήµατα Χειµερινό Εξάµηνο 2006-2007 Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Κύπρου Βασικές

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2016-2017 Περίοδος Σεπεμβρίου 2017 ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Έκδοση 05.07.2017 ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 3-4ο

Διαβάστε περισσότερα

Ε 07.01.10. Έκδοση 1.0 / 18.1.2010 Η ΣΤΡΑΤΗΓΙΚΗ ΣΥΝΤΗΡΗΣΗΣ ΤΗΣ ΕΠΙΔΟΜΗΣ ΤΗΣ ΓΡΑΜΜΗΣ 07 ΓΕΝΙΚΑ 01 ΓΕΝΙΚΕΣ Ο ΗΓΙΕΣ

Ε 07.01.10. Έκδοση 1.0 / 18.1.2010 Η ΣΤΡΑΤΗΓΙΚΗ ΣΥΝΤΗΡΗΣΗΣ ΤΗΣ ΕΠΙΔΟΜΗΣ ΤΗΣ ΓΡΑΜΜΗΣ 07 ΓΕΝΙΚΑ 01 ΓΕΝΙΚΕΣ Ο ΗΓΙΕΣ Ε 07.01.10 ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΥΠΟ ΟΜΗΣ ΙΕΥΘΥΝΣΗ ΓΡΑΜΜΗΣ Έκδοση 1.0 / 18.1.2010 07 ΓΕΝΙΚΑ 01 ΓΕΝΙΚΕΣ Ο ΗΓΙΕΣ 10 Η ΣΤΡΑΤΗΓΙΚΗ ΣΥΝΤΗΡΗΣΗΣ ΤΗΣ ΕΠΙΔΟΜΗΣ ΤΗΣ ΓΡΑΜΜΗΣ Η Οδηγία τέθηκε σε ισχύ με την υπ αριθμ. Γ/4.333.082/18.1.2010

Διαβάστε περισσότερα

Επεξεργασία πραγµατικού χρόνου Κατάτµηση της µνήµης

Επεξεργασία πραγµατικού χρόνου Κατάτµηση της µνήµης Επεξεργασία πραγµατικού χρόνου Κατάτµηση της µνήµης ΒΙΟΜΗΧΑΝΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΛΕΓΧΟΥ Α.ΒΑΪΡΗΣ 16 Σχεδιασµός του Λογισµικού ιεργασιών ανάπτυξη του λογισµικού λειτουργικός σχεδιασµός κωδικοποίηση δοκιµές συντήρηση

Διαβάστε περισσότερα

Case 04: Επιλογή Χαρτοφυλακίου IΙ «Null Risk Securities» ΣΕΝΑΡΙΟ

Case 04: Επιλογή Χαρτοφυλακίου IΙ «Null Risk Securities» ΣΕΝΑΡΙΟ Case 04: Επιλογή Χαρτοφυλακίου IΙ «Null Risk Securities» ΣΕΝΑΡΙΟ εκαετές πρόγραµµα επενδύσεων Οκτώ επενδυτικές ευκαιρίες Έντοκα γραµµάτια δηµοσίου, κοινές µετοχές εταιρειών, οµόλογα οργανισµών κ.ά. H επένδυση

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2015-2016 Περίοδος Σεπτεμβρίου 2016 ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1-2o ΕΞΑΜΗΝΟ 3-4ο ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015)

Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015) Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου 204 5 (Ιούνιος 205) ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος. α. Να προσδιοριστούν οι τιμές

Διαβάστε περισσότερα

Το θεώρηµα αντίστροφης απεικόνισης. ) και ακόµη ότι η g f 1 1. g y

Το θεώρηµα αντίστροφης απεικόνισης. ) και ακόµη ότι η g f 1 1. g y 5 Έστω Το θεώρηµα αντίστροφης απεικόνισης Ι R ανοικτό διάστηµα, : Ι R διαφορίσιµη της κλάσης a Ι : '( a) 0 Τότε από την συνέχεια της ' υπάρχει 0 ' 0 για κάθε ( a δ, a+ δ) δ > :( a δ, a δ) C και + Ι και

Διαβάστε περισσότερα

Σύγχρονα συστήµατα προβλέψεων και µοντελοποίησης. Τµήµα Στατιστικής και Αναλογιστικών Χρηµατοοικονοµικών Μαθηµατικών

Σύγχρονα συστήµατα προβλέψεων και µοντελοποίησης. Τµήµα Στατιστικής και Αναλογιστικών Χρηµατοοικονοµικών Μαθηµατικών Σύγχρονα συστήµατα προβλέψεων και µοντελοποίησης Τµήµα Στατιστικής και Αναλογιστικών Χρηµατοοικονοµικών Μαθηµατικών 2 Εργαλεία διαχείρισης Για κάθε µελλοντική εξέλιξη και απόφαση, η πρόβλεψη αποτελεί το

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Στοχαστικά Συστήματα & Επικοινωνίες Ηλ. Αμφ. 1, 2 Ηλ. Αιθ. 001, 002. Γλώσσες Προγραμματισμού Ι Ηλ. Αμφ.

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Στοχαστικά Συστήματα & Επικοινωνίες Ηλ. Αμφ. 1, 2 Ηλ. Αιθ. 001, 002. Γλώσσες Προγραμματισμού Ι Ηλ. Αμφ. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2015-2016 Περίοδος Ιουνίου 2016 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα