Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς"

Transcript

1 Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

2 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ατοµο του Υδρογόνου Κατάστρωση του προβλήµατος Ας ϑεωρήσουµε πυρήνα ατοµικού αριθµού Z και µάζας M N, και ηλεκτρόνιο το οποίον κινείται υπό την επίδραση του δυναµικού Coulomb του πυρήνα. Επειδή το δυναµικό είναι συνάρτηση της σχετικής ϑέσης των δύο σωµάτων, η κίνηση του συστήµατος ανάγεται στην ελεύθερη κίνηση της ολικής µάζας του συστήµατος, που ϑεωρείται ότι είναι τοποθετηµένη στο κέντρο µάζας, και της κίνησης της ανηγµένης µάζας του συστήµατος µ, που ορίζεται ως µ 1 = M 1 N + m 1 e, η οποία επιδέχεται την επίδραση του δυναµικού. Ως εκ τούτου η ιδιοσυνάρτηση της ενέργειας του συστήµατος γράφεται ως γινόµενο της κυµατικής συνάρτησης Φ( R) η οποία περιγράφει την ελέυθερη κίνηση της ολικής µάζας και η οποία είναι συνάρτηση του κέντρου µάζας R, και της κυµατικής συνάρτησης ψ( ) που περιγράφει την κίνηση της ανηγµένης µάζας η οποία είναι συνάρτηση της σχετικής ϑέσης ( ανυσµα µε κατέυθυνση από το κέντρο του πυρήνα στο ηλεκτρόνιο ). Η ψ( ) ικανοποιεί την εξίσωση Schödinge h2 2µ 2 ψ( ) Ze2 ψ( ) = E ψ( ). (1.1) Στην εξίσωση αυτή E είναι η ενέργεια που οφείλεται στην αλληλεπίδραση πυρήνα ηλεκτρονίου. Στην περίπτωση που το ηλεκτρόνιο δεσµεύεται από τον πυρήνα, και εποµένως σχηµατίζεται ένα Υδρογονοειδές άτοµο, η κυµατική συνάρτηση ψ( ) µηδενίζεται όταν το µέτρο του τείνει στο άπειρο, +. Το ακτινικό µέρος αυτής ικανοποιεί την εξίσωση h2 2µ ( R El + 2 R El ) + Το ενεργό δυναµικό του προβλήµατος είναι Αυτό µηδενίζεται για ( h 2 ) l(l + 1) 2 µ 2 Ze2 R El = E R El. (1.2) U() = h2 l(l + 1) 2 µ 2 Ze2. (1.3) 0 = h2 µ e 2 l(l + 1) 2 Z. (1.4) Για < 0 υπερισχύει ο ϕυγοκεντρικός όρος και το δυναµικό είναι απωστικό, εµποδίζοντας το ηλεκτρόνιο να προσεγγίσει τον πυρήνα, ενώ για > 0 κυριαρχεί ο όρος Coulomb και εποµένως το δυναµικό είναι ελκτικό. Επειδή η ανηγµένη h µάζα είναι περίπου ίση µε την µάζα του ηλεκτρονίου ο παράγοντας 2 µ e που 2 εµφανίζεται στην εξίσωση (1.4 ) έχει τιµή πολύ κοντά στην ποσότητα a B = h2 m e e 2 η οποία ονοµάζεται ακτίνα του Boh. Η ακτίνα του Boh προσδιορίζει την κλίµακα

3 1.1 Ατοµο του Υδρογόνου 3 µεγέθους των ατοµικών συστηµάτων και η τιµή της είναι περίπου cm. Η συνάρτηση χ El, που ορίζεται µέσω της σχέσης R El χ El /, ικανοποιεί την εξίσωση h2 2µ χ El + U() χ El = E χ El. (1.5) Για την εύρεση των δέσµιων ενεργειών του προβλήµατος παρατηρούµε ότι το ενεργό δυναµικό έχει αρνητικό ελάχιστο ενώ µηδενίζεται όταν +. Εποµένως οι δέσµιες ενέργειες ϑα είναι αρνητικές, E < 0. Οι εξισώσεις (1.2, 1.5) λαµβάνουν µια σχετικά απλούστερη µορφή αν ορίσουµε την αδιάστατη µεταβλητή ρ = k. (1.6) όπου η σταθερά k, που έχει µονάδες αντιστρόφου µήκους, ορίζεται ως k = ( ) 1/2 8 µ E. (1.7) h 2 Συγκεκριµµένα αυτές γίνονται R + 2 ( l(l + 1) ρ R + ρ 2 + λ ρ 1 ) R = 0 (1.8) 4 ( χ l(l + 1) + ρ 2 + λ ρ 1 ) χ = 0. (1.9) 4 Στις ανωτέρω εκφράσεις οι συναρτήσεις R, χ είναι οι R El και χ El αντίστοιχα όπου η µεταβλητή έχει τεθεί ίση µε την ρ/k. Είναι δηλαδή R(ρ) R El (ρ/k), ενω το ίδιο ισχύει και για την χ. Οι τόνοι υποδηλώνουν παραγωγίσεις ως προς την µεταβλητή ρ, ενώ η σταθερά λ ορίζεται ως ( ) µ c 2 1/2 λ Z α. (1.10) 2 E Η σταθερά α στην (1.10) είναι η λεγόµενη σταθερά της λεπτής υφής, α e 2 /(hc), της οποίας η τιµή είναι πολύ κοντά στον λόγο 1/137, 059. Από την (1.10) µπορούµε να έχουµε την ενέργεια ως συνάρτηση της παραµέτρου λ E = Z2 α 2 µ c 2 λ 2 2 = 13, 6 Z2 λ 2 ev. (1.11) Η επίλυση της (1.8) προσδιορίζει τις τιµές της παραµέτρου λ για τις οποίες έχου- µε δέσµιες ενέργειες και εποµένως µέσω της (1.11) και τις αντίστοιχες τιµές της ενέργειας. Θα δειχθεί ότι οι επιτρεπτές τιµές της παραµέτρου λ είναι ϑετικοί ακέραιοι αριθµοί.

4 4 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Η επίλυση της εξίσωσης Schödinge Για την επίλυση της (1.8), η ισοδύναµα της (1.9), ϑα αναζητήσουµε πρώτα την συµπεριφορά του ακτινικού µέρους για µικρές και για µεγάλες τιµές της ρ. Για µικρές τιµές της ρ ο ϕυγοκεντρικός όρος l(l + 1)/ρ 2 κυριαρχεί έναντι των λ/ρ, 1/4 στην εξίσωση (1.9) οι οποίοι µπορούν να παραλειφθούν. Οι ανεξάρτητες λύσεις της (1.9) στην περιοχή των µικρών ρ είναι χ(ρ) = ρ l+1, ρ l. Εξ αυτών µόνον η πρώτη είναι συµβατή µε την απαίτηση του µηδενισµού της χ() για = 0 οπως πρέπει να ισχύει σε προβλήµατα κίνησης σε κεντρικά δυναµικά. Στην περίπτωση που ϐρισκόµαστε στην περιοχή όπου οι τιµές του ρ είναι µεγάλες ο όρος 1/4 κυριαρχεί έναντι των άλλων δύο στην εξίσωση (1.9) οι οποίοι µπορούν να παραλειφθούν. Οι λύσεις σε αυτήν την περιοχή είναι χ(ρ) = exp (±ρ/2) εκ των οποίων µόνον αυτή µε τον αρνητικό εκθέτη µηδενίζεται για + όπως απαιτείται για δέσµια κατάσταση. Συνοψίζοντας χ(ρ) ρ l+1, ρ << 1 χ(ρ) exp ( ρ/2), ρ >> 1. Αυτή η συµπεριφορά υποδεικνύει να γράψουµε την χ ως χ = ρ l+1 exp ( ρ/2) H(ρ) η ισοδύναµα την R ως R = ρ l exp ( ρ/2) H(ρ). Η συνάρτηση H(ρ) ϑα πρέπει να τείνει σε µία µη µηδενική σταθερά όταν ρ = 0, έτσι ώστε η χ να συµπεριφέρεται ως ρ l+1 για µικρές τιµές του ρ, ενώ για µεγάλες τιµές του ρ ϑα πρέπει να συµπεριφέρεται µε τέτοιο τρόπο ώστε να εξασφαλίζεται ο µηδενισµός της χ για ρ +. Θέτωντας στην (1.8) αυτήν την µορφή για την R προκύπτει η ακόλουθος διαφορική εξίσωση για την συνάρτηση H H + ( 2 (l + 1) ρ ) 1 H + λ l 1 ρ η οποία επιλύεται εύκολα αν η H αναπτυχθεί σε δυναµοσειρά H = 0, (1.12) H(ρ) = k=0 α k ρ k. (1.13) Ο συντελεστής α 0 ϑα πρέπει να είναι µη µηδενικός σύµφωνα µε τα όσα εξετέθησαν παραπάνω για την συµπεριφορά της H για ρ = 0. Από την (1.12) προσδιορίζεται η ακόλουθη σχέση µεταξύ των συντελεστών α k+1 = α k k l λ (k + 1) (k l). (1.14) Για µεγάλους ακεραίους k η αναδροµική αυτή σχέση γίνεται α k+1 = α k 1 k, (1.15)

5 1.1 Ατοµο του Υδρογόνου 5 όπως ακριβώς συµβαίνει στους αντίστοιχους συντελεστές του εκθετικού αναπτύγ- µατος e ρ. Απο αυτό συµπεραίνεται ότι η συνάρτηση H συµπεριφέρεται ως H e ρ για µεγάλα ρ. Αυτή η συµπεριφορά δεν είναι αποδεκτή για την πε- ϱίπτωση των δεσµίων καταστάσεων για τις οποίες ϑα πρέπει να εξασφαλίζεται ότι χ( ) = 0. Πράγµατι από την σχέση χ = ρ l+1 e ρ/2 H(ρ) προκύπτει ότι η συνάρτηση χ απειρίζεται για ρ = + διότι για µεγάλα ρ συµπεριφέρεται ως χ = ρ l+1 e ρ/2. Αν αυτό συνέβαινε για οποιαδήποτε τιµή της παραµέτρου λ τότε ϑα οδηγούµεθα στο περίεργο συµπέρασµα ότι δεν υπάρχουν δέσµιες καταστάσεις για Υδρογονοειδή άτοµα! Παρατηρούµε όµως ότι το επιχείρηµα το οποίο αναπτύχθηκε ϐάσει του οποίου η συνάρτηση H έχει την εκθετική συµπεριφορά H e ρ παύει να ισχύει στην περίπτωση όπου η παράµετρος λ είναι ακέραιος ϑετικός λ = n. Σε αυτήν την περίπτωση ο αριθµητής στην αναδροµική σχέση (1.14) µηδενίζεται όταν k = n όπου n n l 1 και εποµένως και όλοι οι συντελεστές α k µε k n + 1. Στην περίπτωση αυτή η συνάρτηση H είναι ένα πολυώνυµο ϐαθµού n και εποµένως ο µηδενισµός της συνάρτησης χ για ρ = + εξασφαλίζεται. Εποµένως συµπεραίνουµε ότι µόνο για λ = n, µε n = 1, 2, 3,..., έχουµε δέσµιες καταστάσεις οι οποίες, λόγω της (1.11), χαρακτηρίζονται από ενέργεια E n = Z2 α 2 µ c 2 n 2 2, n = 1, 2, 3,... (1.16) Ο κβαντικός αριθµός n που χαρακτηρίζει το ενεργειακό ϕάσµα (1.16) ονοµάζεται κύριος κβαντικός αριθµός, ενώ ο ακέραιος n = n + l + 1 που χαρακτηρίζει τον ϐαθµό του πολυωνύµου H ονοµάζεται ακτινικός κβαντικός αριθµός. Να παρατηρηθεί ότι για δεδοµένη ενέργεια E n ο κβαντικός αριθµός της τροχιακής στροφορµής l µπορεί να λάβει τιµές l = 0, 1, 2,... n 1 ενώ συγχρόνως ο ακτινικός κβαντικός αριθµός παίρνει τιµές n = n 1, n 2, Αρα σε κάθε ενέργεια E n, εκτός της ϑεµελιώδους, έχουµε κατάστασεις διαφορετικής ολικής τροχιακής στροφορµής. Επειδή σε κάθε τιµή του l αντιστοιχουν 2 l + 1 τιµές του µαγνητικού κβαντικού αριθµού που χαρακτηριζει την τρίτη συνιστώσα της τροχιακής στροφορµής, m = l, l 1,... l 1, l, οι διαφορετικές καταστάσεις ίδιας ενέργειας είναι συνολικά n 2 τον αριθµό. Αρα ο ϐαθµός του εκφυλισµού που απαντάται σε κάθε ενεργειακή στάθµη που χαρακτηρίζεται από κύριο κβαντικό αριθµό n των ατόµων των Υδρογονοειδών είναι n 2 1. Για παράδειγµα για την ϐασική ενεργειακή στάθµη που χαρακτηρίζεται από n = 1 εχουµε, λόγω της 1 Παρατηρούµε ότι για τα δυναµικά τύπου Coulomb εµφανίζεται ένας αυξηµένος ϐαθµός εκφυλισµού που δεν συναντάται σε άλλα δυναµικά µε σφαιρική συµµετρία. Το ότι σε δεδοµένη ενεργειακή στάθµη υπάρχουν καταστάσεις µε διαφορετική τιµή της ολικής τροχιακής στροφορµής l είναι χα- ϱακτηριστικό των δυναµικών Coulomb και εκφράζει το γεγονός ότι τα δυναµικά Coulomb έχουν έναν µεγαλύτερο ϐαθµό συµµετρίας από άλλα κεντρικά δυναµικά τα οποία έχουν µόνον την σφαιρική συµµετρία. Αυτό µπορεί να γίνει εύκολα κατανοητό από την Κλασσική Μηχανική όπου για ένα σφαι- ϱικά συµµετρικό δυναµικό που δεν είναι του τύπου Coulomb έχουµε λόγω της σφαιρικής συµµετρίας διατήρηση του ανύσµατος της ολικής τροχιακής στροφορµής L ενώ για δυναµικό Coulomb, π.χ. στο πρόβληµα του Keple, έχουµε επί πλέον την διατήρηση σε διεύθυνση και σε µέτρο του µεγάλου ηµιάξονα της κλασσικής έλλειπτικής τροχιάς. Αρα εκτός της τροχιακής στροφορµής υπάρχει και άλλο

6 6 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς σχέσης n = n +l+1, (l, n ) = (0, 0) και δεν υπάρχει εκφυλισµός. Για n = 2 όµως έχουµε (l, n ) = (0, 1) και (l, n ) = (1, 0). Για l = 0 εχουµε µία κατάσταση µε m = 0 ενώ για l = 1 έχουµε τρείς καταστάσεις m = 1, 0, +1. Εποµένως υπάρχουν τέσσερεις συνολικά καταστάσεις για την πρώτη διεγερµένη ενεργειακή στάθµη που αντιστοιχεί σε τιµή του κύριου κβαντικού αριθµού n = Οι Κυµατικές Συναρτήσεις των Υδρογονοειδών Ο αναλυτικός τρόπος εύρεσης του ακτινικού µέρους της κυµατικής συνάρτησης των Υδρογονοειδών ατόµων αναπτύχθηκε στο προηγούµενο κεφάλαιο. Αν πολλαπλασιασθεί το ακτινικό µέρος µε την κατάλληλη σφαιρική αρµονική ϑα έχουµε την πλήρη έκφραση της κυµατικής συνάρτησης καθορισµένης ενέργειας και τροχιακής στροφορµής. Οι κανονικοποιηµένες στην µονάδα κυµατικές συναρτήσεις, όπως συνήθως δίνονται στην ϐιβλιογραφία, έχουν τις ακόλουθες εκφράσεις, ψ nlm (, θ, φ) = N lm ( Z a 0 ) 3/2 [ ρ l e ρ 2 L 2l+1 n l 1 (ρ) ] Y lm(θ, φ) ρ = 2 Z a o n N lm = 2 n 2 [ (n l 1)! ((n + l)!) 3, ( a 0 h2 µ e 2 ) ] 1/2 Η συνάρτηση L 2l+1 n l 1 δεν είναι άλλη από το πολυώνυµο H, µε κατάλληλη επιλογή του απροσδιόριστου συντελεστή α 0, που συζητήσαµε στο προηγούµενο κεφάλαιο και το οποίο ικανοποιεί την διαφορική εξίσωση (1.12) για λ = n. Τα πολυώνυµα αυτά είναι γνωστά στην ϐιβλιογραφία, όπου µπορούν να αναζητηθούν οι µαθηµατικές τους εκφράσεις και οι ιδιότητες των, ως πολυώνυµα Laguee. Αυτά χαρακτηρίζονται από δύο δείκτες L p k, µε τον κάτω δείκτη να υποδηλώνει τον ϐαθµό του πολυωνύµου αυτού, και ικανοποιούν την διαφορική εξίσωση L p k + ( p + 1 ρ ) 1 L p k + k ρ Lp k = 0 ανυσµατικό µέγεθος που διατηρείται και αυτή η διατήρηση εκφράζει έναν µεγαλύτερο ϐαθµό συµ- µετρίας. Το διατηρήσιµο αυτό µέγεθος είναι το λεγόµενο άνυσµα Runge - Lenz το οποίο για ένα δυναµικό V () = g/ δίνεται από την έκφραση M = v L + g

7 1.1 Ατοµο του Υδρογόνου 7 Ο κβαντικός αριθµός της τροχιακής στροφορµής συνήθως αναγράφεται µε τον λεγόµενο ϕασµατοσκοπικό συµβολισµό l = s, p, d, f... αντί του l = 0, 1, 2, 3,... Ετσι η κατάσταση µε n = 1, l = 0 αναφέρεται ως 1s οι n = 2, l = 1 και n = 2, l = 0 καταστάσεις ως 2p και 2s αντίστοιχα κ.ο.κ. Για το άτοµο του Υδρογόνου ( Z = 1 ) για παράδειγµα η ϑεµελιώδης κατάσταση 1s δίνεται από την ακόλουθη έκφραση, ψ 100 = (π a o 3 ) 1/2 e /ao Στην πρώτη διεγερµένη στάθµη έχουµε τις καταστάσεις 2s, 2p. Για την 2s, έχουµε µόνο µία κατάσταση µε τιµή του µαγνητικού κβαντικού αριθµού m = 0 ψ 200 = (32 π a o 3 ) 1/2 (2 a o ) e /2ao. Για την 2p υπάρχουν τρείς καταστάσεις µε m = 0 ± 1 που δίνονται από τις ακόλουθες εκφράσεις, ψ 210 = (32 π a o 3 ) 1/2 ( a o ) e /2ao cos θ ψ 21,±1 = (64 π a o 3 ) 1/2 ( a o ) e /2ao sin θ e ±i φ. Για τις s, καταστάσεις, δηλαδή αυτές µε l = 0, δεν υπάρχει γωνιακή εξάρτηση. Αυτό έχει σαν αποτέλεσµα η πιθανότητα εύρεσης του ηλεκτρονίου σε κάποια απόσταση από το κέντρο έλξης να είναι ανεξάρτητη της κατεύθυνσης. Για µη µηδενικές τιµές του l υπάρχει γωνιακή εξάρτηση όπως για παράδειγµα ϕαίνεται στίς κυµατικές συναρτήσεις 2p.

Περιλήψεις Κβαντικής Μηχανικής ΙΙ Α. Λαχανάς

Περιλήψεις Κβαντικής Μηχανικής ΙΙ Α. Λαχανάς Κεφάλαιο 1 Περιλήψεις Κβαντικής Μηχανικής ΙΙ 1.1 Συµβολισµός Dirac Ακολουθώντας τον συµβολισµό του Dirac ϑα περιγράφουµε τις ϕυσικές καταστάσεις ενός Κβαντοµηχανικού συστήµατος από ένα ανυσµα Ψ(t) που

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Στροφορµή στην Κβαντική Μηχανική 1.1.1 Τροχιακή Στροφορµή Η Τροχιακή Στροφορµή στην Κβαντική

Διαβάστε περισσότερα

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.

Διαβάστε περισσότερα

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 ΘΕΜΑ 1: ( 3 µονάδες ) Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 Ηλεκτρόνιο κινείται επάνω από µία αδιαπέραστη και αγώγιµη γειωµένη επιφάνεια που

Διαβάστε περισσότερα

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Θεωρία της στροφορμής Στέλιος Τζωρτζάκης 1 3 4 Υπενθύμιση βασικών εννοιών της στροφορμής κυματοσυνάρτηση

Διαβάστε περισσότερα

Διάλεξη 3: Το άτομο του Υδρογόνου. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για το κεντρικό δυναμικό

Διάλεξη 3: Το άτομο του Υδρογόνου. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για το κεντρικό δυναμικό Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöding για το κεντρικό δυναμικό Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 3 k V ) Αποδεικνύεται ότι οι λύσεις της ακτινικής εξίσωσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Ηλεκτρονική φασματοσκοπία ατόμων

Ηλεκτρονική φασματοσκοπία ατόμων Ηλεκτρονική φασματοσκοπία ατόμων Εξίσωση του chrodger H H H µ µ m e e 4πε r Ζe 4πε r για το άτοµο του υδρογόνου για τα υδρογονοειδή άτοµα He Ζe 4πε r < j Ζe 4πε r j για πολυηλεκτρονικά άτοµα µ m m m e

Διαβάστε περισσότερα

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής. ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Το άτομο του Υδρογόνου Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Το άτομο του Υδρογόνου Διδάσκων : Επίκ. Καθ. Μ. Μπενής ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Το άτομο του Υδρογόνου Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cetive

Διαβάστε περισσότερα

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά Διάλεξη : Κεντρικά Δυναμικά Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöing για κεντρικά δυναμικά Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03 Κεντρικά δυναμικά Εξάρτηση δυναμικού

Διαβάστε περισσότερα

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 ) vs of Io vs of Io D of Ms Scc & gg Couo Ms Scc ική Θεωλης ική Θεωλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 746 dok@cc.uo.g cs.s.uo.g/dok ομηχ ομηχ δ ά τρεις διαστ Εξίσωση Schödg σε D Σε μία διάσταση Σε τρείς

Διαβάστε περισσότερα

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση:

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Να γνωρίζει το ατοµικό πρότυπο του Bohr καθώς και τα µειονεκτήµατά του. Να υπολογίζει την ενέργεια που εκπέµπεται ή απορροφάται

Διαβάστε περισσότερα

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών Βασικά σημεία της κβαντομηχανικής Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J. De Paula (Atkins

Διαβάστε περισσότερα

Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού, το οποίο εκτείνεται από 0 έως L.

Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού, το οποίο εκτείνεται από 0 έως L. Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδια(ΑΚΠα) Να µελετηθεί το απειρόβαθο κβαντικό πηγάδι µε θετικές ενεργειακές καταστάσεις ( E > ). Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 7 Ατομική Δομή Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 7 Ατομική Δομή Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 7 Ατομική Δομή Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J. D Paula (Atkins

Διαβάστε περισσότερα

το ένα με ηλεκτρικό φορτίο Ζe και το άλλο με e. Η χαμιλτονιανή του συστήματος (στο πλαίσιο της προσέγγισης Coulomb) μπορεί να έλθει στη μορφή

το ένα με ηλεκτρικό φορτίο Ζe και το άλλο με e. Η χαμιλτονιανή του συστήματος (στο πλαίσιο της προσέγγισης Coulomb) μπορεί να έλθει στη μορφή ΚΕΦΑΛΑΙΟ 9: ΑΤΟΜΑ, Σελ. 19 έως 14 του βιβλίου ΚΣ ENOTHTA 1 Η, 13 ο VIDEO, 15/11/013, Από 55λ έως 1ω,5λ (τέλος), Σελ. 19 έως 13 του βιβλίου ΚΣ: ΙΔΙΟΤΗΤΕΣ Της ΒΑΣΙΚΉΣ ΚΑΤΑΣΤΑΣΗΣ ΥΔΡΟΓΟΝΟΕΙΔΟΥΣ ΔΥΝΑΜΙΚΟΥ

Διαβάστε περισσότερα

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Εξάρτηση του πυρηνικού δυναμικού από άλλους παράγοντες (πλην της απόστασης) Η συνάρτηση του δυναμικού

Διαβάστε περισσότερα

Κβαντική Μηχανική ΙΙ. Ενότητα 6: Άτομα σε μαγνητικά πεδία Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Μηχανική ΙΙ. Ενότητα 6: Άτομα σε μαγνητικά πεδία Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Μηχανική ΙΙ Ενότητα 6: Άτομα σε μαγνητικά πεδία Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 2/ 25 Περιεχόµενα 6ης ενότητας Φαινόµενο

Διαβάστε περισσότερα

Μάθημα 7ο. Υλοκύματα Και Η Σύγχρονη Ατομική Θεωρία

Μάθημα 7ο. Υλοκύματα Και Η Σύγχρονη Ατομική Θεωρία Μάθημα 7ο Υλοκύματα Και Η Σύγχρονη Ατομική Θεωρία h m U(x,y,z, t) ih t (x, y,z,t) (x, y,z)e iet / h H E Γενική & Ανόργανη Χημεία 06-7 Ewin Schöinge Η ανεξάρτητη από τον χρόνο εξίσωση Schöinge U m H E E

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

Κύριος κβαντικός αριθμός (n)

Κύριος κβαντικός αριθμός (n) Κύριος κβαντικός αριθμός (n) Επιτρεπτές τιμές: n = 1, 2, 3, Καθορίζει: το μέγεθος του ηλεκτρονιακού νέφους κατά μεγάλο μέρος, την ενέργεια του τροχιακού τη στιβάδα στην οποία κινείται το ηλεκτρόνιο Όσομεγαλύτερηείναιητιμήτουn

Διαβάστε περισσότερα

Κβαντικοί αριθμοί τρεις κβαντικοί αριθμοί

Κβαντικοί αριθμοί τρεις κβαντικοί αριθμοί Κβαντικοί αριθμοί Στην κβαντομηχανική εισάγονται τρεις κβαντικοί αριθμοί για τον καθορισμό της κατανομής του ηλεκτρονιακού νέφους (ατομικού τροχιακού). Οι κβαντικοί αυτοί αριθμοί προκύπτουν από την επίλυση

Διαβάστε περισσότερα

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ Στέλιος Τζωρτζάκης 1 3 4 φάση Η έννοια των ταυτόσημων σωματιδίων Ταυτόσημα αποκαλούνται όλα τα σωματίδια

Διαβάστε περισσότερα

υναµικό Coulomb - Λύση της εξίσωσης του Schrödinger

υναµικό Coulomb - Λύση της εξίσωσης του Schrödinger 4 υναµικό Coulomb - Λύση της εξίσωσης του Schrödinger 4.1 Κλασσική µηχανική - το πρόβληµα των δύο σωµάτων Θεωρούµε την αλληλεπίδραση ενός ηλεκτρονίου µε µάζα m e και ϕορτίο q e = e µε έναν πυρήνα µε ϕορτίο

Διαβάστε περισσότερα

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x. 3 Ορια συναρτήσεων 3. Εισαγωγικές έννοιες. Ας ϑεωρήσουµε την συνάρτηση f () = όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 0: Η γραφική παράσταση της συνάρτησης f () = /. ϕυσικό να αναζητήσουµε την

Διαβάστε περισσότερα

Κίνηση σε κεντρικό δυναμικό

Κίνηση σε κεντρικό δυναμικό Κίνηση σε κεντρικό δυναμικό ΦΥΣ 211 - Διαλ.13 1 q Έστω ένα σωματίδιο κάτω από την επίδραση μιας κεντρικής δύναμης Ø Δύναμη παράλληλη στο 0 F q Υποθέτουμε ότι η δύναμη είναι συντηρητική: F = V( ) m Ø V

Διαβάστε περισσότερα

Διάλεξη 5: Ατομική Δομή. Σύζευξη Σπιν-Τροχιάς

Διάλεξη 5: Ατομική Δομή. Σύζευξη Σπιν-Τροχιάς Σύζευξη Σπιν-Τροχιάς Θεωρούμε το άτομο του υδρογόνου με το ηλεκτρόνιο να «περιστρέφεται» γύρω από τον πυρήνα. Ισοδύναμα θεωρούμε τον πυρήνα να περιστρέφεται γύρω από το ηλεκτρόνιο. Στο σύστημα αυτό η μαγνητική

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Άσκηση 1 Να υπολογιστεί η πιθανότερη ακτίνα, *, στην οποία θα βρίσκεται

Διαβάστε περισσότερα

Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία

Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία Μοντέρνα Φυσική Κβαντική Θεωρία Ατομική Φυσική Μοριακή Φυσική Πυρηνική Φυσική Φασματοσκοπία ΚΒΑΝΤΙΚΗ ΘΕΩΡΙΑ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:

Διαβάστε περισσότερα

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1. 1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα

Διαβάστε περισσότερα

. Να βρεθεί η Ψ(x,t).

. Να βρεθεί η Ψ(x,t). ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ Θέμα α) Δείξτε ότι οι διακριτές ιδιοτιμές της ενέργειας σε ένα μονοδιάστατο πρόβλημα δεν είναι εκφυλισμένες β) Με βάση το προηγούμενο ερώτημα να δείξετε ότι μπορούμε να διαλέξουμε τις

Διαβάστε περισσότερα

Θεωρούµε σύστηµα δύο σωµατιδίων Σ 1 και Σ 2 µε αντίστοιχες µάζες m 1 και m 2, τα οποία αλληλοεπιδρούν χωρίς όµως να δέχονται εξωτερικές δυνάµεις.

Θεωρούµε σύστηµα δύο σωµατιδίων Σ 1 και Σ 2 µε αντίστοιχες µάζες m 1 και m 2, τα οποία αλληλοεπιδρούν χωρίς όµως να δέχονται εξωτερικές δυνάµεις. Θεωρούµε σύστηµα δύο σωµατιδίων Σ και Σ µε αντίστοιχες µάζες m και m, τα οποία αλληλοεπιδρούν χωρίς όµως να δέχονται εξωτερικές δυνάµεις. i) Nα δείξετε ότι η σχετική ορµή P του ενός, λογουχάρη του Σ ως

Διαβάστε περισσότερα

Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα

Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Κώστας

Διαβάστε περισσότερα

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Ατομική Δομή ΙΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Ατομική Δομή ΙΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Ατομική Δομή ΙΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cetive Commons.

Διαβάστε περισσότερα

Από τι αποτελείται το Φως (1873)

Από τι αποτελείται το Φως (1873) Από τι αποτελείται το Φως (1873) Ο James Maxwell έδειξε θεωρητικά ότι το ορατό φως αποτελείται από ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικό κύμα είναι η ταυτόχρονη διάδοση, μέσω της ταχύτητας του φωτός

Διαβάστε περισσότερα

Διάλεξη 6: Ατομική Δομή Συμμετρία Εναλλαγής

Διάλεξη 6: Ατομική Δομή Συμμετρία Εναλλαγής Συμμετρία Εναλλαγής Σε μονοηλεκτρονιακά άτομα ιόντα η κατάσταση του ηλεκτρονίου καθορίζεται από τέσσερις κβαντικούς αριθμούς {n, l, m l, m s } ή {n, l, j, m j }. Σε πολυηλεκτρονιακά άτομα πόσα ηλεκτρόνια

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις ΚΕΦΑΛΑΙΟ Τρισδιάστατες κινήσεις Οι µονοδιάστατες κινήσεις είναι εύκολες αλλά ζούµε σε τρισδιάστατο χώρο Θα δούµε λοιπόν τώρα πως θα αντιµετωπίζοµε την κίνηση υλικού σηµείου στις τρεις διαστάσεις Ας θεωρήσοµε

Διαβάστε περισσότερα

Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ)

Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ) Κυματική εξίσωση του Schrödinger (196) Η Ψ = Ε Ψ Η: τελεστής Hamilton (Hamiltonian operator) εκτέλεση μαθηματικών πράξεων επί της κυματοσυνάρτησης Ψ. Ε: ολική ενέργεια των ηλεκτρονίων δυναμική ενέργεια

Διαβάστε περισσότερα

Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac)

Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac) Συνεχές ϕάσµα Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac) Στην κβαντική µηχανική τα ϕυσικά µεγέθη παρίστανται µε αυτοσυζυγείς τελεστές. Για έναν αυτοσυζυγή τελεστή ˆΩ = ˆΩ είναι γνωστό ότι οι ιδιοτιµές του

Διαβάστε περισσότερα

Τροχιές σωμάτων σε πεδίο Βαρύτητας. Γιώργος Νικολιδάκης

Τροχιές σωμάτων σε πεδίο Βαρύτητας. Γιώργος Νικολιδάκης Τροχιές σωμάτων σε πεδίο Βαρύτητας Γιώργος Νικολιδάκης 9/18/2013 1 Κωνικές Τομές Είναι καμπύλες που σχηματίζονται καθώς επίπεδα τέμνουν με διάφορες γωνίες επιφάνειες κώνων. Παραβολή Έλλειψη -κύκλος Υπερβολή

Διαβάστε περισσότερα

ΕΝΔΕΙΞΕΙΣ ΣΥΛΛΟΓΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΣΕ ΠΥΡΗΝΕΣ

ΕΝΔΕΙΞΕΙΣ ΣΥΛΛΟΓΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΣΕ ΠΥΡΗΝΕΣ ΕΝΔΕΙΞΕΙΣ ΣΥΛΛΟΓΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΣΕ ΠΥΡΗΝΕΣ Πολλά πυρηνικά φαινόµενα δεν µπορούν να εξηγηθούν µε το µοντέλο της υγρής σταγόνας, ούτε το µοντέλο των ανεξαρτήτων σωµατίων. Η εξήγησή τους απαιτεί την συλλογική

Διαβάστε περισσότερα

10. Παραγώγιση διανυσµάτων

10. Παραγώγιση διανυσµάτων Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 51 10 Παραγώγιση διανυσµάτων 101 Παράγωγος διανυσµατικής συνάρτησης Αν οι συνιστώσες ενός διανύσµατος = είναι συνεχείς συναρτήσεις

Διαβάστε περισσότερα

Χημεία Γ Λυκείου Θετικής Κατεύθυνσης

Χημεία Γ Λυκείου Θετικής Κατεύθυνσης Χημεία Γ Λυκείου Θετικής Κατεύθυνσης Κεφάλαιο 1 Ηλεκτρονιακή δομή των ατόμων 1 Εισαγωγή Δομή του ατόμου Δημόκριτος Αριστοτέλης Dalton Thomson 400 π.χ. 350π.χ. 1808 1897 Απειροελάχιστα τεμάχια ύλης (τα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1)

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1) 1 ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης (1) όπου οι συντελεστές είναι δοσµένες συνεχείς συναρτήσεις ορισµένες σ ένα ανοικτό διάστηµα. Ορισµός 1. Ορίζουµε τον διαφορικό τελεστή µέσω της

Διαβάστε περισσότερα

Αρμονικός Ταλαντωτής

Αρμονικός Ταλαντωτής Αρμονικός Ταλαντωτής Δομή Διάλεξης Η χρησιμότητα του προβλήματος του αρμονικού ταλαντωτή Η Hamiltonian και οι τελεστές δημιουργίας και καταστροφής Το φάσμα ιδιοτιμών της Hamiltonian Οι ιδιοκαταστάσεις

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,

Διαβάστε περισσότερα

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Spin Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Δομή Διάλεξης Το πείραμα Stern-Gerlach: Πειραματική απόδειξη spin Ο δισδιάστατος χώρος καταστάσεων spin του ηλεκτρονίου: οι πίνακες Pauli Χρονική εξέλιξη

Διαβάστε περισσότερα

ΑΤΟΜΙΚΑ ΤΟΜΙΚΑ ΠΡΟΤΥΠΑ

ΑΤΟΜΙΚΑ ΤΟΜΙΚΑ ΠΡΟΤΥΠΑ ΑΤΟΜΙΚΑ ΠΡΟΤΥΠΑ Thomson (σταφιδόψωμο) Rutherford (πλανητικό μοντέλο) Bohr (επιτρεπόμενες τροχιές ενεργειακές στάθμες) Κβαντομηχανική β ή (τροχιακό) ρχ 24/9/2008 1 ΑΤΟΜΙΚΟ ΠΡΟΤΥΠΟ Bohr 1η Συνθήκη (Μηχανική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 4 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε µε σαφήνεια και συντοµία. Η ορθή πλήρης απάντηση θέµατος εκτιµάται περισσότερο από τη

Διαβάστε περισσότερα

ETY-202 ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ETY-202 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ETY-202 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ Στέλιος Τζωρτζάκης 1 3 4 Ο νόμος της χρονικής μεταβολής των μέσων τιμών και το

Διαβάστε περισσότερα

Κβαντικοί αριθμοί. l =0 υποφλοιός S σφαίρα m l =0 ένα τροχιακό με σφαιρική συμμετρία

Κβαντικοί αριθμοί. l =0 υποφλοιός S σφαίρα m l =0 ένα τροχιακό με σφαιρική συμμετρία Κβαντικοί αριθμοί Η θεωρία του Bohr χρειάζεται μόνο τον κύριο κβαντικό αριθμό η, για να καθορίσει ενέργεια για το άτομο του υδρογόνου Ε η =-2,18.10-18 /η 2 κυκλική τροχιά. και επιτρεπτή Στην κβαντομηχανική

Διαβάστε περισσότερα

Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3)

Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3) Παράδειγµα 1: Έστω ένα σύστηµα που περιγράφεται από τη διαφορική εξίσωση () +2 () 29 () +42()=() (1) µε µηδενικές αρχικές συνθήκες. (δηλαδή ()(0) = () (0)=()(0)=0) (2) Ζητείται να µελετηθεί το εν λόγω

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Ατομική Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Ατομική Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Ατομική Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Common.

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο

Διαβάστε περισσότερα

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές

Διαβάστε περισσότερα

Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά

Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά Δομή Διάλεξης Τετραγωνικό Πηγάδι Δυναμικού: Δέσμιες καταστάσεις - ιδιοτιμές Οριακές Περιπτώσεις: δ δυναμικό, άπειρο βάθος Σκέδαση σε μια διάσταση: Σκαλοπάτι

Διαβάστε περισσότερα

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 10/11/2013

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 10/11/2013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 10/11/2013 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Κεφάλαιο 1 Χημικός δεσμός

Κεφάλαιο 1 Χημικός δεσμός Κεφάλαιο 1 Χημικός δεσμός 1.1 Άτομα, Ηλεκτρόνια, και Τροχιακά Τα άτομα αποτελούνται από + Πρωτόνια φορτισμένα θετικά μάζα = 1.6726 X 10-27 kg Νετρόνια ουδέτερα μάζα = 1.6750 X 10-27 kg Ηλεκτρόνια φορτισμένα

Διαβάστε περισσότερα

Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς

Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς Στόχος : Να εξηγήσουμε την επίδραση του δυναμικού του κρυστάλλου στις Ε- Ειδικώτερα: Το δυναμικό του κρυστάλλου 1. εισάγονται χάσματα στα σημεία όπου τέμνονται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εφαρμογές Θεωρίας Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εφαρμογές Θεωρίας Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Εφαρμογές Θεωρίας Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Δευτερόνιο & ιδιότητες των πυρηνικών δυνάμεων μεταξύ δύο νουκλεονίων Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Δευτερόνιο & ιδιότητες των πυρηνικών δυνάμεων μεταξύ δύο νουκλεονίων Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Δευτερόνιο & ιδιότητες των πυρηνικών δυνάμεων μεταξύ δύο νουκλεονίων Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής REF: ezphysics.nchu.edu.tw Αλληλεπίδραση νουκλεονίου-νουκλεονίου Οι πυρήνες αποτελούνται από

Διαβάστε περισσότερα

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i.

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i. Στροφορμή στερεού q Η στροφορµή του στερεού γράφεται σαν: q Αλλά ο τανυστής αδράνειας έχει οριστεί σαν: q H γωνιακή ταχύτητα δίνεται από: ω = 2 l = m a ra ω ω ra ω e a ΦΥΣ 211 - Διαλ.31 1 r a I j = m a

Διαβάστε περισσότερα

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000 Ζήτηµα 1ο Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2 Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα µε το πρότυπο

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ ΚΑΙ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ

ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ ΚΑΙ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ ΚΑΙ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ Απεικόνιση ηλεκτρονίων ατόμων σιδήρου ως κύματα, διατεταγμένων κυκλικά σε χάλκινη επιφάνεια, με την τεχνική μικροσκοπικής σάρωσης σήραγγας. Δημήτρης

Διαβάστε περισσότερα

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 7/5/2000 Μηχανική ΙI Μετασχηµατισµοί Legendre Έστω µια πραγµατική συνάρτηση. Ορίζουµε την παράγωγο συνάρτηση της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα).

Διαβάστε περισσότερα

Συμπέρασμα: η Η/Μ ακτινοβολία έχει διπλή φύση, κυματική και σωματιδιακή.

Συμπέρασμα: η Η/Μ ακτινοβολία έχει διπλή φύση, κυματική και σωματιδιακή. ΑΤΟΜΙΚΗ ΦΥΣΙΚΗ Άτομα μόρια Από 10-10 m ως 10-6 m Συνήθεις μονάδες: 1 Å (Angstrom) = 10-10 m (~ διάμετρος ατόμου Υδρογόνου) 1 nm = 10-9 m 1 μm = 10-6 m Διαστάσεις βιομορίων. Πχ διάμετρος σφαιρικής πρωτεΐνης

Διαβάστε περισσότερα

Μηχανική ΙI. Λαγκρανζιανή συνάρτηση. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 3/2001

Μηχανική ΙI. Λαγκρανζιανή συνάρτηση. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 3/2001 Τµήµα Π Ιωάννου & Θ Αποστολάτου 3/2001 Μηχανική ΙI Λαγκρανζιανή συνάρτηση Είδαµε στο προηγούµενο κεφάλαιο ότι ο δυναµικός νόµος του Νεύτωνα είναι ισοδύναµος µε την απαίτηση η δράση ως το ολοκλήρωµα της

Διαβάστε περισσότερα

ΑΤΟΜΙΚΑ ΠΡΟΤΥΠΑ. Θέμα B

ΑΤΟΜΙΚΑ ΠΡΟΤΥΠΑ. Θέμα B ΑΤΟΜΙΚΑ ΠΡΟΤΥΠΑ Θέμα B _70 Β. Το ηλεκτρόνιο ενός ατόμου υδρογόνου που βρίσκεται στη τρίτη διεγερμένη ενεργειακή κατάσταση (n = ), αποδιεγείρεται εκπέμποντας φωτόνιο ενέργειας Ε.Κατά τη συγκεκριμένη αποδιέγερση

Διαβάστε περισσότερα

ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ

ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ Ενότητα 9 Ηλεκτρονική Φασματοσκοπία Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins,

Διαβάστε περισσότερα

( J) e 2 ( ) ( ) x e +, (9-14) = (9-16) ω e xe v. De = (9-18) , (9-19)

( J) e 2 ( ) ( ) x e +, (9-14) = (9-16) ω e xe v. De = (9-18) , (9-19) Ασκήσεις Φασµατοσκοπίας Η φασµατική περιοχή στην οποία βρίσκεται µια φωτεινή ακτινοβολία χαρακτηρίζεται από την συχνότητα ν (Hz) µε την οποία ταλαντώνεται το ηλεκτρικό και το µαγνητικό πεδίο του φωτός.

Διαβάστε περισσότερα

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙΙ Χρονικά Ανεξάρτητη Θεωρία Διαταραχών. Τα περισσότερα φυσικά συστήματα που έχομε προσεγγίσει μέχρι τώρα περιγράφονται από μία κύρια Χαμιλτονιανή η οποία

Διαβάστε περισσότερα

Κβαντομηχανική εικόνα του ατομικού μοντέλου

Κβαντομηχανική εικόνα του ατομικού μοντέλου Κβαντομηχανική εικόνα του ατομικού μοντέλου 1. Ερώτηση: Τι είναι η κβαντομηχανική; H κβαντομηχανική, είναι η σύγχρονη αντίληψη μιας νέας μηχανικής που μπορεί να εφαρμοστεί στο μικρόκοσμο του ατόμου. Σήμερα

Διαβάστε περισσότερα

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ Στέλιος Τζωρτζάκης Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ 1 3 4 Το δυναμικό του αρμονικού ταλαντωτή Η παραβολική προσέγγιση βρίσκει άμεση

Διαβάστε περισσότερα

Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών

Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2013-14) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό

Διαβάστε περισσότερα

Κβαντομηχανική ή κυματομηχανική

Κβαντομηχανική ή κυματομηχανική Κβαντομηχανική ή κυματομηχανική Ποια ήταν τα αναπάντητα ερωτήματα της θεωρίας του Bohr; 1. Φάσματα πολυηλεκτρονικών ατόμων 2. Κυκλικές τροχιές 3. Γιατί η ενέργεια του e είναι κβαντισμένη; Κβαντομηχανική

Διαβάστε περισσότερα

Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ-" ηµόκριτος"

Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ- ηµόκριτος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ NATIONAL TECHNICAL UNIVERSITY ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & DEPARTMENT OF PHYSICS ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ZOGRAFOU CAMPUS ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 157 80 ATHENS -

Διαβάστε περισσότερα

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας 7 Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας Συζευγµένες ταλαντώσεις Βιβλιογραφία F S Crawford Jr Κυµατική (Σειρά Μαθηµάτων Φυσικής Berkeley, Τόµος 3 Αθήνα 979) Κεφ H J Pai Φυσική των ταλαντώσεων

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΚΒΑΝΤΙΚΩΝ ΜΕΤΑΠΤΩΣΕΩΝ ΣΤΟ ΑΤΟΜΟ Na

ΜΕΛΕΤΗ ΚΒΑΝΤΙΚΩΝ ΜΕΤΑΠΤΩΣΕΩΝ ΣΤΟ ΑΤΟΜΟ Na ΜΕΛΕΤΗ ΚΒΑΝΤΙΚΩΝ ΜΕΤΑΠΤΩΣΕΩΝ ΣΤΟ ΑΤΟΜΟ Na Αναγνωρίσαμε τις κυριότερες κβαντικές μεταπτώσεις του ατόμου του Na και υπολογίσαμε το μήκος κύματος και την ενέργεια της ακτινοβολίας για κάθε μία. Βρέθηκε η

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Πρόσθεση Στροφορμών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Πρόσθεση Στροφορμών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Πρόσθεση Στροφορμών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: , Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 10 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 10 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr Ε ΟΥΑΡ ΟΣ ΛΑΓΑΝΑΣ, Ph.D KENTΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ &

Διαβάστε περισσότερα

( ) ( r) V r. ( ) + l 2. Τι είδαμε: m!! r = l 2. 2mr 2. 2mr 2 + V r. q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης

( ) ( r) V r. ( ) + l 2. Τι είδαμε: m!! r = l 2. 2mr 2. 2mr 2 + V r. q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης ΦΥΣ 2 - Διαλ.4 Τι είδαμε: q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης ü Ανάγαμε το πρόβλημα 2 σωμάτων σε πρόβλημα κεντρικής δύναμης ü διατήρηση ορμής CM μετατρέπει το πρόβλημα από 6 DoF σε

Διαβάστε περισσότερα

Δρ. Ιωάννης Καλαμαράς, Διδάκτωρ Χημικός. 100 Ερωτήσεις τύπου Σωστού Λάθους Στο τέλος οι απαντήσεις

Δρ. Ιωάννης Καλαμαράς, Διδάκτωρ Χημικός. 100 Ερωτήσεις τύπου Σωστού Λάθους Στο τέλος οι απαντήσεις 1 ο Κεφάλαιο Χημείας Θετικής Κατεύθυνσης Γ Λυκείου 100 Ερωτήσεις τύπου Σωστού Λάθους Στο τέλος οι απαντήσεις 1. Η εξίσωση E = h v μας δίνει την ενέργεια μιας ηλεκτρομαγνητικής ακτινοβολίας 2. H κβαντική

Διαβάστε περισσότερα

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική

Διαβάστε περισσότερα

3. Το πρότυπο του Bohr εξήγησε το ότι το φάσμα της ακτινοβολίας που εκπέμπει το αέριο υδρογόνο, είναι γραμμικό.

3. Το πρότυπο του Bohr εξήγησε το ότι το φάσμα της ακτινοβολίας που εκπέμπει το αέριο υδρογόνο, είναι γραμμικό. ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 16 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ-ΠΡΟΤΥΠΟ BOHR ΟΜΑΔΑ Α Να χαρακτηρίσετε τις παρακάτω προτάσεις ως Σωστές ή Λάθος και να αιτιολογήσετε αυτές που είναι λάθος : 1.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 2016 Φλοιώδης Δομή των Πυρήνων Η σύζευξη Spin Τροχιάς (L S)( Διέγερση και Αποδιέγερση

Διαβάστε περισσότερα

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F!

Υλικό σηµείο µάζας m, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F! Υλικό σηµείο µάζας, κινείται εντός δυναµικού πεδίου δεχόµενο ελκτική κεντρική δύναµη F (), η οποία ακολουθεί τον νόµο του αντιστρόφου τετραγώνου της απόστασης από το ελκτι κό κέντρο Ο, δηλαδή περιγράφεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη.

ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη. ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη. 1 β) Σε ένα πεδίο κεντρικών δυνάµεων F =, ένα σώµα, µε µάζα

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος ΘΕΜΑ α) Υλικό σημείο μάζας κινείται στον άξονα Ο υπό την επίδραση του δυναμικού V=V() Αν για t=t βρίσκεται στη θέση = με ενέργεια Ε δείξτε ότι η κίνησή του δίνεται από

Διαβάστε περισσότερα

Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις

Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις Δομή Διάλεξης Εκφυλισμένη Θεωρία Διαταραχών: Γενική Μέθοδος για την αντιμετώπιση των απειρισμών λόγω εκφυλισμού Εφαρμογή σε διεγερμένη κατάσταση υδρογόνου

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΙΑΛΕΞΗ 1: ΟΜΗ ΤΟΥ ΑΤΟΜΟΥ. ιδάσκων Ευθύµιος Τάγαρης Φυσικός, ρ Περιβαλλοντικών Επιστηµών

ΦΥΣΙΚΗ ΙΑΛΕΞΗ 1: ΟΜΗ ΤΟΥ ΑΤΟΜΟΥ. ιδάσκων Ευθύµιος Τάγαρης Φυσικός, ρ Περιβαλλοντικών Επιστηµών ρ. Ευθύµιος Α. Τάγαρης ΦΥΣΙΚΗ ΙΑΛΕΞΗ 1: ΟΜΗ ΤΟΥ ΑΤΟΜΟΥ ιδάσκων Ευθύµιος Τάγαρης Φυσικός, ρ Περιβαλλοντικών Επιστηµών ρ. Ευθύµιος Α. Τάγαρης ΒΑΣΙΚΕΣ ΑΝΑΚΑΛΥΨΗΣ 1.Νόµος ηλεκτρόλυσης Faraday Απέδειξε πειραµατικά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ Στο κεφάλαιο αυτό θα ασχοληθούµε αρχικά µε ένα µεµονωµένο σύστηµα δύο σωµάτων στα οποία ασκούνται µόνο οι µεταξύ τους κεντρικές δυνάµεις, επιτρέποντας ωστόσο και την

Διαβάστε περισσότερα

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες.

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες. Στην περίπτωση της ταλάντωσης µε κρίσιµη απόσβεση οι δύο γραµµικώς ανεξάρτητες λύσεις εκφυλίζονται (καταλήγουν να ταυτίζονται) Στην περιοχή ασθενούς απόσβεσης ( ) δύο γραµµικώς ανεξάρτητες λύσεις είναι

Διαβάστε περισσότερα

Μοριακά Τροχιακά ιατοµικών Μορίων

Μοριακά Τροχιακά ιατοµικών Μορίων Μοριακά Τροχιακά ιατοµικών Μορίων Για την περιγραφή της ηλεκτρονικής δοµής των µορίων θα χρησιµοποιήσουµε µοριακά τροχιακά που θα είναι γραµµικοί συνδυασµοί ατοµικών τροχιακών. Τα µοριακά τροχιακά θα αποτελούν

Διαβάστε περισσότερα