ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ"

Transcript

1 ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ

2 ελιδοποίθςθ (1/10) Σόςο θ κατάτμθςθ διαμεριςμάτων ςτακεροφ μεγζκουσ όςο και θ κατάτμθςθ διαμεριςμάτων μεταβλθτοφ και άνιςου μεγζκουσ δεν κάνουν αποτελεςματικι χριςθ τθσ μνιμθσ Η πρϊτθ ζχει ωσ αποτζλεςμα τον εςωτερικό κατακερματιςμό και θ δεφτερθ τον εξωτερικό

3 ελιδοποίθςθ (2/10) Ασ υποκζςουμε ότι: Η κφρια μνιμθ είναι χωριςμζνθ ςε τμιματα ίςου και ςτακεροφ μεγζκουσ, που είναι ςχετικά μικρά Κάκε διεργαςία χωρίηεται επίςθσ ςε μικρά και ςτακεροφ μεγζκουσ τμιματα που ζχουν το ίδιο μζγεκοσ τθ ςυνζχεια τα τμιματα μιασ διεργαςίασ, τα οποία ονομάηονται σελίδες, μποροφν να ανατεκοφν ςε διακζςιμα κομμάτια μνιμθσ, τα οποία ονομάηονται πλαίσια ι πλαίσια σελίδας

4 ελιδοποίθςθ (3/10) Ερϊτθςθ: τθν προαναφερόμενθ περίπτωςθ, κα υπάρξει ςπατάλθ μνιμθσ; Θα υπάρξει κατακερματιςμόσ; Εςωτερικόσ ι εξωτερικόσ;

5 ελιδοποίθςθ (4/10) Σο ςχιμα απεικονίηει τθ χριςθ των ςελίδων και των πλαιςίων ε μια δεδομζνθ χρονικι ςτιγμι, κάποια από τα πλαίςια ςτθ μνιμθ χρθςιμοποιοφνται και κάποια άλλα είναι ελεφκερα Μια λίςτα ελευκζρων πλαιςίων διατθρείται από το Λ Πθγι: Stallings, W. (2017). Λειτουργικά Συστήματα: Αρχζς Σχεδίασης. Εκδόςεισ Σηιόλα: Θεςςαλονίκθ: 429

6 ελιδοποίθςθ (5/10) Η διεργαςία Α αποτελείται από 4 ςελίδεσ Όταν είναι ϊρα να φορτωκεί αυτι θ διεργαςία, το Λ βρίςκει 4 ελεφκερα πλαίςια και φορτϊνει τισ 4 ςελίδεσ τθσ διεργαςίασ Α ςτα 4 πλαίςια (Β) Η διεργαςία Β, που αποτελείται από 3 ςελίδεσ και θ διεργαςία Γ, που αποτελείται από 4 ςελίδεσ, φορτϊνονται μετά τθ ςυνζχεια θ διεργαςία Β αναςτζλλεται και εκτοπίηεται από τθν κφρια μνιμθ (Ε) Πθγι: Stallings, W. (2017). Λειτουργικά Συστήματα: Αρχζς Σχεδίασης. Εκδόςεισ Σηιόλα: Θεςςαλονίκθ: 429

7 ελιδοποίθςθ (6/10) Αργότερα, όλεσ οι διεργαςίεσ ςτθν κφρια μνιμθ αναςτζλλονται και το Λ πρζπει να ειςάγει μια νζα διεργαςία, τθ διεργαςία Δ, θ οποία αποτελείται από 5 ςελίδεσ Ασ υποκζςουμε ότι δεν υπάρχουν αρκετά αχρθςιμοποίθτα πλαίςια για να κρατιςουν τθ διεργαςία Η υπόκεςθ αυτι δεν εμποδίηει το Λ να φορτϊςει τθ Δ, γιατί χρθςιμοποιείται θ ιδζα τθσ λογικισ διεφκυνςθσ το Λ διατθρεί ζνα πίνακα ςελίδων για κάκε διεργαςία Ο πίνακασ ςελίδων δείχνει τθ κζςθ πλαιςίου κάκε ςελίδασ τθσ διεργαςίασ Οι 5 ςελίδεσ τθσ διεργαςίασ Δ φορτϊνονται ςτα πλαίςια 4,5,6,11 και 12 (Σ) Πθγι: Stallings, W. (2017). Λειτουργικά Συστήματα: Αρχζς Σχεδίασης. Εκδόςεισ Σηιόλα: Θεςςαλονίκθ: 429

8 ελιδοποίθςθ (7/10) Μζςα ςτο πρόγραμμα, κάκε λογικι διεφκυνςθ αποτελείται από ζναν αρικμό ςελίδασ και μια απόκλιςθ εντόσ τθσ ςελίδασ τθν περίπτωςθ τθσ απλισ κατάτμθςθσ, μια λογικι διεφκυνςθ είναι θ κζςθ μιασ λζξθσ ςε ςχζςθ με τθν αρχι του προγράμματοσ ο επεξεργαςτισ τθ μεταφράηει ςε φυςικι διεφκυνςθ Με τθ ςελιδοποίθςθ, θ μετάφραςθ από τθ λογικι ςτθ φυςικι διεφκυνςθ εξακολουκεί να γίνεται από το υλικό του επεξεργαςτι Ο επεξεργαςτισ χρθςιμοποιεί τον πίνακα ςελίδων για να παράγει τθ φυςικι διεφκυνςθ, που αντιςτοιχεί ςε μια λογικι διεφκυνςθ

9 ελιδοποίθςθ (8/10) Ζνασ πίνακασ ςελίδων περιζχει μια εγγραφι για κάκε ςελίδα τθσ διεργαςίασ, ζτςι ϊςτε ο πίνακασ να είναι εφκολο να δεικτοδοτθκεί από τον αρικμό ςελίδασ (ξεκινϊντασ από τθ ςελίδα 0) Κάκε εγγραφι του πίνακα ςελίδων περιζχει, αν υπάρχει, τον αρικμό του πλαιςίου ςτθν κφρια μνιμθ, το οποίο ζχει ανατεκεί ςτθν αντίςτοιχθ ςελίδα Επιπρόςκετα, το Λ διατθρεί μια μοναδικι λίςτα ελεφκερων πλαιςίων, θ οποία περιλαμβάνει όλα τα πλαίςια ςτθν κφρια μνιμθ που εκείνθ τθ ςτιγμι είναι ελεφκερα και διακζςιμα για τισ ςελίδεσ

10 ελιδοποίθςθ (9/10) Σο ςχιμα δείχνει διάφορουσ πίνακεσ ςελίδων ςε μια οριςμζνθ ςτιγμι (Πθγι: Stallings, W. (2017). Λειτουργικά Συστήματα: Αρχζς Σχεδίασης. Εκδόςεισ Σηιόλα: Θεςςαλονίκθ: 431)

11 ελιδοποίθςθ (10/10) Η απλι ςελιδοποίθςθ, είναι παρόμοιασ λογικισ με τθν κατάτμθςθ ςτακεροφ μεγζκουσ Οι διαφορζσ είναι ότι με τθ ςελιδοποίθςθ, τα διαμερίςματα είναι αρκετά μικρά, ζνα πρόγραμμα μπορεί να κατζχει περιςςότερα από ζνα διαμερίςματα και τα διαμερίςματα αυτά δε χρειάηεται να είναι ςυνεχόμενα Για να γίνει αυτό το ςχιμα λειτουργικό, το μζγεκοσ ςελίδασ και κατά ςυνζπεια το μζγεκοσ πλαιςίου, πρζπει να είναι δφναμθ του 2

12 Παράδειγμα Ασ εξετάςουμε μια διεφκυνςθ από n+m bits, όπου τα n πιο αριςτερά bits είναι ο αρικμόσ ςελίδασ και τα m πιο δεξιά bits είναι θ απόκλιςθ Η μετάφραςθ τθσ διεφκυνςθσ γίνεται ωσ εξισ: Εξαγωγι του αρικμοφ ςελίδασ από τα n πιο αριςτερά bits τθσ λογικισ διεφκυνςθσ Χριςθ του αρικμοφ ςελίδασ ωσ δείκτθ ςτον πίνακα ςελίδων τθσ διεργαςίασ για τθν εφρεςθ του αρικμοφ πλαιςίου k Η φυςικι διεφκυνςθ μπορεί να παραχκεί προςαρτϊντασ τον αρικμό πλαιςίου ςτθν απόκλιςθ

13 Σμθματοποίθςθ (1/5) φμφωνα με τθν τμθματοποίθςθ, το πρόγραμμα και τα ςχετικά με αυτό δεδομζνα χωρίηονται ςε ζνα πλικοσ τμθμάτων Όλα τα τμιματα όλων των προγραμμάτων δε χρειάηεται να ζχουν το ίδιο μικοσ, αν και υπάρχει ζνα μζγιςτο μικοσ τμιματοσ Όπωσ και ςτθ ςελιδοποίθςθ, μια λογικι διεφκυνςθ, με χριςθ τμθματοποίθςθσ, αποτελείται από δφο μζρθ που ςε αυτι τθν περίπτωςθ είναι ο αρικμόσ τμιματοσ και θ απόκλιςθ

14 Σμθματοποίθςθ (2/5) Εξαιτίασ τθσ χριςθσ τμθμάτων άνιςου μεγζκουσ, θ τμθματοποίθςθ είναι παρόμοια με τθ δυναμικι κατάτμθςθ Θα μποροφςε να απαιτείται θ φόρτωςθ όλων των τμθμάτων ενόσ προγράμματοσ ςτθ μνιμθ για εκτζλεςθ, λόγω τθσ ζλλειψθσ ενόσ ςχιματοσ επικάλυψθσ ι τθσ χριςθσ ιδεατισ μνιμθσ Η διαφορά με τθ δυναμικι κατάτμθςθ, είναι ότι με τθν τμθματοποίθςθ ζνα πρόγραμμα μπορεί να κατζχει περιςςότερα από ζνα διαμερίςματα και τα διαμερίςματα αυτά δε χρειάηεται να είναι ςυνεχόμενα Η τμθματοποίθςθ ελαχιςτοποιεί τον εςωτερικό κατακερματιςμό, αλλά υςτερεί ςτο κζμα του εξωτερικοφ κατακερματιςμοφ Ωςτόςο, ο εξωτερικόσ κατακερματιςμόσ μπορεί να είναι μικρότεροσ, κακϊσ μια διεργαςία διαιρείται ςε ζνα πλικοσ μικρότερων κομματιϊν

15 Σμθματοποίθςθ (3/5) Μια ςυνζπεια τθν χριςθ τμθμάτων διαφορετικοφ μεγζκουσ είναι ότι δεν υπάρχει καμία απλι ςχζςθ ανάμεςα ςε λογικζσ και φυςικζσ διευκφνςεισ Όπωσ και ςτθ ςελιδοποίθςθ, ζνα ςχιμα απλισ τμθματοποίθςθσ κα ζκανε χριςθ ενόσ πίνακα τμθμάτων για κάκε διεργαςία και μιασ λίςτασ ελεφκερων blocks κφριασ μνιμθσ Κάκε εγγραφι του πίνακα τμθμάτων κα πρζπει να παρζχει τθν αρχικι διεφκυνςθ του αντίςτοιχου τμιματοσ ςτθν κφρια μνιμθ και το μικοσ του τμιματοσ, ϊςτε να εξαςφαλίηεται ότι δε χρθςιμοποιοφνται άκυρεσ διευκφνςεισ

16 Σμθματοποίθςθ (4/5) Παράδειγμα: Ασ εξετάςουμε μια διεφκυνςθ n+m bits, όπου τα n πιο αριςτερά bits είναι ο αρικμόσ τμιματοσ και τα m πιο δεξιά bits είναι θ απόκλιςθ Για τθ μετάφραςθ τθσ διεφκυνςθσ απαιτοφνται τα ακόλουκα βιματα: Εξαγωγι του αρικμοφ τμιματοσ από τα n πιο αριςτερά bits τθσ λογικισ διεφκυνςθσ Χριςθ του αρικμοφ τμιματοσ ωσ δείκτθ ςτον πίνακα τμθμάτων τθσ διεργαςίασ φγκριςθ τθσ απόκλιςθσ (θ οποία εκφράηεται από τα m πιο δεξιά bits) με το μικοσ του τμιματοσ. Αν θ απόκλιςθ είναι μεγαλφτερθ ι ίςθ με το μικοσ, θ διεφκυνςθ είναι άκυρθ Η φυςικι διεφκυνςθ είναι το άκροιςμα τθσ πρϊτθσ φυςικισ διεφκυνςθσ του τμιματοσ ςυν τθν απόκλιςθ

17 Σμθματοποίθςθ (5/5) Για n=4 και m=12, το μζγεκοσ τμιματοσ είναι 2 12 = 4096

18 Ερωτιςεισ.. Σι ςτόχο ζχει θ διαχείριςθ μνιμθσ; ε ζνα ςχιμα κατάτμθςθσ ςτακεροφ μεγζκουσ, ποια τα πλεονεκτιματα τθσ χριςθσ διαμεριςμάτων άνιςου μεγζκουσ; Ποια θ διαφορά ανάμεςα ςτον εςωτερικό και τον εξωτερικό κατακερματιςμό; Ποια θ διαφορά ανάμεςα ςτθ ςελίδα και το πλαίςιο;

19 Βιβλιογραφία Stallings, W. (2017). Λειτουργικά Συστήματα: Αρχζς Σχεδίασης. Εκδόςεισ Σηιόλα: Θεςςαλονίκθ.

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 9 θ & 10 θ Διάλεξθ Ιδεατι Μνιμθ Μζροσ Β

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 9 θ & 10 θ Διάλεξθ Ιδεατι Μνιμθ Μζροσ Β 1 ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ 9 θ & 10 θ Διάλεξθ Ιδεατι Μνιμθ Μζροσ Β 2 ελιδοποίθςθ με Χριςθ Ιδεατισ Μνιμθσ (1/5) Ο όροσ ιδεατή μνήμη ςυνικωσ ςχετίηεται με ςυςτιματα τα οποία εφαρμόηουν ςελιδοποίθςθ, παρόλο που

Διαβάστε περισσότερα

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 8 θ Διάλεξθ Ιδεατι Μνιμθ Μζροσ Α

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 8 θ Διάλεξθ Ιδεατι Μνιμθ Μζροσ Α ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ 8 θ Διάλεξθ Ιδεατι Μνιμθ Μζροσ Α Βαςικι Ορολογία Ιδεατή Μνήμη: χιμα ανάκεςθσ αποκθκευτικοφ χϊρου, ςτο οποίο θ δευτερεφουςα μνιμθ μπορεί να διευκυνςιοδοτθκεί ςαν να ιταν μζροσ τθσ κφριασ

Διαβάστε περισσότερα

ΛΕΙΤΟΥΓΙΚΆ ΣΥΣΤΉΜΑΤΑ. 6 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Β

ΛΕΙΤΟΥΓΙΚΆ ΣΥΣΤΉΜΑΤΑ. 6 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Β ΛΕΙΤΟΥΓΙΚΆ ΣΥΣΤΉΜΑΤΑ 6 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Β Δυναμικι Κατάτμθςθ (1/8) Η δυναμικι κατάτμθςθ αναπτφχκθκε με ςτόχο να ξεπεραςτοφν οριςμζνεσ από τισ βαςικζσ δυςκολίεσ τθσ κατάτμθςθσ ςτακεροφ

Διαβάστε περισσότερα

Μάθημα 9 ο ΤΕΧΝΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΙΚΟΝΙΚΗΣ ΜΝΗΜΗΣ

Μάθημα 9 ο ΤΕΧΝΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΙΚΟΝΙΚΗΣ ΜΝΗΜΗΣ Μάθημα 9 ο ΤΕΧΝΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΙΚΟΝΙΚΗΣ ΜΝΗΜΗΣ Ειςαγωγό Όπωσ είδαμε, ο χϊροσ εικονικϊν διευκφνςεων μνιμθσ που χρθςιμοποιεί κάκε διεργαςία, είναι αρκετά μεγαλφτεροσ από το χϊρο των φυςικϊν διευκφνςεων.

Διαβάστε περισσότερα

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 2 ο Εργαςτιριο Διαχείριςθ Διεργαςιϊν

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 2 ο Εργαςτιριο Διαχείριςθ Διεργαςιϊν ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ 2 ο Εργαςτιριο Διαχείριςθ Διεργαςιϊν Τπόβακρο (1/3) τουσ παλαιότερουσ υπολογιςτζσ θ Κεντρικι Μονάδα Επεξεργαςίασ (Κ.Μ.Ε.) μποροφςε κάκε ςτιγμι να εκτελεί μόνο ζνα πρόγραμμα τουσ ςφγχρονουσ

Διαβάστε περισσότερα

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.

Διαβάστε περισσότερα

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Διαχείριςθ Μνιμθσ Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Κάκε μεταβλθτι ςχετίηεται με μία κζςθ ςτθν κφρια μνιμθ του υπολογιςτι. Κάκε κζςθ ςτθ μνιμθ ζχει τθ δικι τθσ ξεχωριςτι διεφκυνςθ. Με άμεςθ

Διαβάστε περισσότερα

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: ΕΠΙΚΟΙΝΩΝΩ ΜΕ ΤΟΝ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 5: Αρχεία - Φάκελοι

ΕΝΟΤΗΤΑ 2: ΕΠΙΚΟΙΝΩΝΩ ΜΕ ΤΟΝ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 5: Αρχεία - Φάκελοι ΕΝΟΤΗΤΑ 2: ΕΠΙΚΟΙΝΩΝΩ ΜΕ ΤΟΝ ΥΠΟΛΟΓΙΣΤΗ Αρχείο (File) Φάκελοσ (Folder) Διαχειριςτισ Αρχείων (File Manager) Τφποι Αρχείων Σε τι εξυπθρετεί θ οργάνωςθ των εργαςιϊν μασ ςτουσ υπολογιςτζσ; Πϊσ κα οργανϊςουμε

Διαβάστε περισσότερα

Παράςταςη ςυμπλήρωμα ωσ προσ 1

Παράςταςη ςυμπλήρωμα ωσ προσ 1 Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Ιοφνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1.Εθνικό Τυπογραφείο... 3 1.1. Είςοδοσ... 3 1.2. Αρχική Οθόνη... 4 1.3. Διεκπεραίωςη αίτηςησ...

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Πάτρα, 2013 Περιεχόμενα: Ειςαγωγή... 4 1. Επιμελητήριο... Error! Bookmark not defined. 1.1 Διαχειριςτήσ Αιτήςεων Επιμελητηρίου...

Διαβάστε περισσότερα

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 3: Εργονομία

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 3: Εργονομία ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ Εργονομία, ωςτι ςτάςθ εργαςίασ, Εικονοςτοιχείο (pixel), Ανάλυςθ οκόνθσ (resolution), Μζγεκοσ οκόνθσ Ποιεσ επιπτϊςεισ μπορεί να ζχει θ πολφωρθ χριςθ του υπολογιςτι ςτθν

Διαβάστε περισσότερα

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό. Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα

Διαβάστε περισσότερα

Η άςκθςθ αποτελεί τροποποιθμζνθ εκδοχι του κζματοσ φυςικισ, τθσ Ευρωπαϊκισ Ολυμπιάδασ Φυςικών Επιςτθμών 2009_επιμζλεια κζματοσ: Κώςτασ Παπαμιχάλθσ

Η άςκθςθ αποτελεί τροποποιθμζνθ εκδοχι του κζματοσ φυςικισ, τθσ Ευρωπαϊκισ Ολυμπιάδασ Φυςικών Επιςτθμών 2009_επιμζλεια κζματοσ: Κώςτασ Παπαμιχάλθσ ΕΚΦΕ Αχαρνών Η άςκθςθ αποτελεί τροποποιθμζνθ εκδοχι του κζματοσ φυςικισ, τθσ Ευρωπαϊκισ Ολυμπιάδασ Φυςικών Επιςτθμών 9_επιμζλεια κζματοσ: Κώςτασ Παπαμιχάλθσ Εφαρμογζσ τθσ Αρχισ του Αρχιμιδθ & τθσ ςυνκικθσ

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ. Ειρινθ Φιλιοποφλου

ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ. Ειρινθ Φιλιοποφλου ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ Ειρινθ Φιλιοποφλου Ειςαγωγι Ο Παγκόςμιοσ Ιςτόσ (World Wide Web - WWW) ι πιο απλά Ιςτόσ (Web) είναι μία αρχιτεκτονικι για τθν προςπζλαςθ διαςυνδεδεμζνων εγγράφων

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 5: Γνωριμία με το λογιςμικό του υπολογιςτι

ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 5: Γνωριμία με το λογιςμικό του υπολογιςτι ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ ΚΕΦΑΛΑΙΟ 5: Γνωριμία με το λογιςμικό του υπολογιςτι Λογιςμικό (Software), Πρόγραμμα (Programme ι Program), Προγραμματιςτισ (Programmer), Λειτουργικό Σφςτθμα (Operating

Διαβάστε περισσότερα

3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ

3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ 3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ 1) Τίτλοσ τθσ ζρευνασ: «Ποια είναι θ επίδραςθ τθσ κερμοκραςίασ ςτθ διαλυτότθτα των ςτερεϊν ςτο νερό;» 2) Περιγραφι του ςκοποφ τθσ ζρευνασ: Η ζρευνα

Διαβάστε περισσότερα

Διαχείριςθ του φακζλου "public_html" ςτο ΠΣΔ

Διαχείριςθ του φακζλου public_html ςτο ΠΣΔ Διαχείριςθ του φακζλου "public_html" ςτο ΠΣΔ Οι παρακάτω οδθγίεσ αφοροφν το χριςτθ webdipe. Για διαφορετικό λογαριαςμό χρθςιμοποιιςτε κάκε φορά το αντίςτοιχο όνομα χριςτθ. = πατάμε αριςτερό κλικ ςτο Επιςκεφκείτε

Διαβάστε περισσότερα

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων)

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων) 1)Πώσ ορύζεται η Στατιςτικό επιςτόμη; Στατιςτικι είναι ζνα ςφνολο αρχϊν και μεκοδολογιϊν για: το ςχεδιαςμό τθσ διαδικαςίασ ςυλλογισ δεδομζνων τθ ςυνοπτικι και αποτελεςματικι παρουςίαςι τουσ τθν ανάλυςθ

Διαβάστε περισσότερα

Ιςοηυγιςμζνα δζντρα και Β- δζντρα. Δομζσ Δεδομζνων

Ιςοηυγιςμζνα δζντρα και Β- δζντρα. Δομζσ Δεδομζνων Ιςοηυγιςμζνα δζντρα και Β- δζντρα Δομζσ Δεδομζνων Περιεχόμενα Ιςοηυγιςμζνα δζντρα Μζκοδοι ιςοηφγιςθσ δζντρων Μονι Περιςτροφι Διπλι Περιςτροφι Β - δζντρα Ιςοηυγιςμζνα δζντρα Η μορφι ενόσ δυαδικοφ δζντρου

Διαβάστε περισσότερα

Διαδικαςία Προγράμματοσ Ωρομζτρθςθσ. (v.1.0.7)

Διαδικαςία Προγράμματοσ Ωρομζτρθςθσ. (v.1.0.7) (v.1.0.7) 1 Περίλθψθ Σο ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ Διαδικαςίασ Προγράμματοσ Ωρομζτρθςθσ. Παρακάτω προτείνεται μια αλλθλουχία ενεργειϊν τθν οποία ο χριςτθσ πρζπει

Διαβάστε περισσότερα

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 3: υςτιματα ουρϊν αναμονισ Κακθγθτισ Γιάννθσ Γιαννίκοσ χολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Σμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ Μελζτθ ςυςτθμάτων

Διαβάστε περισσότερα

ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ. ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας

ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ. ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας 1 ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας Μόνιμα Φορτία Ίδιον Βάροσ (για Οπλιςμζνο Σκυρόδεμα): g=25 KN/m 3 Σε οδικζσ γζφυρεσ πρζπει

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium V Στατιςτική Συμπεραςματολογία Ι Σημειακζσ Εκτιμήςεισ Διαςτήματα Εμπιςτοςφνησ Στατιςτική Συμπεραςματολογία (Statistical Inference) Το πεδίο τθσ Στατιςτικισ Συμπεραςματολογία,

Διαβάστε περισσότερα

ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β

ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β 4 o ΔΙΓΩΝΙΜ ΠΡΙΛΙΟ 04: ΔΝΔΔΙΚΣΙΚΔ ΠΝΣΗΔΙ ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΤΔΥΘΥΝΣΗΣ 4 ο ΔΙΓΩΝΙΣΜ ΔΝΔΔΙΚΤΙΚΔΣ ΠΝΤΗΣΔΙΣ ΘΔΜ. β. β 3. α 4. γ 5. α.σ β.σ γ.λ δ.σ ε.λ. ΘΔΜ Β Σωςτι είναι θ απάντθςθ γ. Έχουμε ελαςτικι

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες) Ιούνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1. Περιφζρεια... 3 1.1 Διαχειριςτήσ Αιτήςεων Περιφζρειασ... 3 1.1.1. Είςοδοσ... 3 1.1.2. Αρχική

Διαβάστε περισσότερα

Πωσ δθμιουργώ φακζλουσ;

Πωσ δθμιουργώ φακζλουσ; Πωσ δθμιουργώ φακζλουσ; Για να μπορζςετε να δθμιουργιςετε φακζλουσ ςτο χαρτοφυλάκιό ςασ ςτο Mahara κα πρζπει να μπείτε ςτο ςφςτθμα αφοφ πατιςετε πάνω ςτο ςφνδεςμο Mahara profiles από οποιοδιποτε ςελίδα

Διαβάστε περισσότερα

Δζντρα. Δομζσ Δεδομζνων

Δζντρα. Δομζσ Δεδομζνων Δζντρα Δομζσ Δεδομζνων Περιεχόμενα Δζντρα Γενικζσ ζννοιεσ Κόμβοσ ενόσ δζντρου Δυαδικά δζντρα αναηιτθςθσ Αναηιτθςθ Κόμβου Ειςαγωγι ι δθμιουργία κόμβου Δζντρα Γενικζσ ζννοιεσ Οι προθγοφμενεσ δομζσ που εξετάςτθκαν

Διαβάστε περισσότερα

Joomla! - User Guide

Joomla! - User Guide Joomla! - User Guide τελευταία ανανέωση: 10/10/2013 από την ICAP WEB Solutions 1 Η καταςκευι τθσ δυναμικισ ςασ ιςτοςελίδασ ζχει ολοκλθρωκεί και μπορείτε πλζον να προχωριςετε ςε αλλαγζσ ι προςκικεσ όςον

Διαβάστε περισσότερα

ΗΥ101: Ειςαγωγι ςτθν Πλθροφορικι

ΗΥ101: Ειςαγωγι ςτθν Πλθροφορικι Παράςταςη κινητήσ υποδιαςτολήσ Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ Παράςταςη ςταθεροφ ςημείου Παράςταςη αριθμών κινητοφ ςημείου 2 Παράςταςη ςταθεροφ ςημείου Στθν παράςταςθ αρικμϊν ςτακεροφ ςθμείου (Fixed

Διαβάστε περισσότερα

17. Πολυδιάςτατοι πίνακεσ

17. Πολυδιάςτατοι πίνακεσ Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 17. Πολυδιάςτατοι πίνακεσ Ιωάννθσ Κατάκθσ Πολυδιάςτατοι πίνακεσ o Μζχρι τϊρα μιλοφςαμε για μονοδιάςτατουσ πίνακεσ ι int age[5]= 31,28,31,30,31; o Για παράλλθλουσ

Διαβάστε περισσότερα

Αςκιςεισ ςε (i) Δομζσ Ευρετθρίων και Οργάνωςθ Αρχείων (ii) Κανονικοποίθςθ

Αςκιςεισ ςε (i) Δομζσ Ευρετθρίων και Οργάνωςθ Αρχείων (ii) Κανονικοποίθςθ Αςκιςεισ ςε (i) Δομζσ Ευρετθρίων και Οργάνωςθ Αρχείων (ii) Κανονικοποίθςθ Δεκζμβριοσ 2016 Άςκθςθ 1 Θεωρείςτε ότι κζλουμε να διαγράψουμε τθν τιμι 43 ςτο Β+ δζντρο τθσ Εικόνασ 1. Η διαγραφι αυτι προκαλεί

Διαβάστε περισσότερα

Η ίδια κατά μζτρο δφναμθ όταν εφαρμοςκεί ςε διαφορετικά ςθμεία τθσ πόρτασ προκαλεί διαφορετικά αποτελζςματα Ροιά;

Η ίδια κατά μζτρο δφναμθ όταν εφαρμοςκεί ςε διαφορετικά ςθμεία τθσ πόρτασ προκαλεί διαφορετικά αποτελζςματα Ροιά; ; Η ίδια κατά μζτρο δφναμθ όταν εφαρμοςκεί ςε διαφορετικά ςθμεία τθσ πόρτασ προκαλεί διαφορετικά αποτελζςματα Ροιά; 30/1/ 2 Η φυςικι τθσ ςθμαςία είναι ότι προςδιορίηει τθ ςτροφικι κίνθςθ ενόσ ςτερεοφ ωσ

Διαβάστε περισσότερα

ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ

ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ Οδηγός Χρήσης Εφαρμογής Ελέγχου Προσφορών Αφοφ πιςτοποιθκεί ο λογαριαςμόσ που δθμιουργιςατε ςτο πρόγραμμα ωσ Πάροχοσ Προςφορϊν, κα λάβετε ζνα e-mail με

Διαβάστε περισσότερα

Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ

Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Για τθν ανάδειξθ του κζματοσ κα λφνουμε κάποια προβλιματα

Διαβάστε περισσότερα

Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις

Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί

Διαβάστε περισσότερα

Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό. Διάλεξθ 10

Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό. Διάλεξθ 10 Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό Διάλεξθ 10 Γενικό Σχιμα Μετατροπζασ Αναλογικοφ ςε Ψθφιακό Ψθφιακό Τθλεπικοινωνιακό Κανάλι Μετατροπζασ Ψθφιακοφ ςε Αναλογικό Τα αναλογικά ςιματα μετατρζπονται ςε

Διαβάστε περισσότερα

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 3 ο Εργαςτιριο υγχρονιςμόσ Διεργαςιϊν

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 3 ο Εργαςτιριο υγχρονιςμόσ Διεργαςιϊν ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ 3 ο Εργαςτιριο υγχρονιςμόσ Διεργαςιϊν Παράλλθλεσ Διεργαςίεσ (1/5) Δφο διεργαςίεσ λζγονται «παράλλθλεσ» (concurrent) όταν υπάρχει ταυτοχρονιςμόσ, δθλαδι οι εκτελζςεισ τουσ επικαλφπτονται

Διαβάστε περισσότερα

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 2: Σο Τλικό του Τπολογιςτι

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 2: Σο Τλικό του Τπολογιςτι ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ ΚΕΦΑΛΑΙΟ 2: Σο Τλικό του Τπολογιςτι Τλικό υπολογιςτι (Hardware), Προςωπικόσ Τπολογιςτισ (ΡC), υςκευι ειςόδου, υςκευι εξόδου, Οκόνθ (Screen), Εκτυπωτισ (Printer), αρωτισ

Διαβάστε περισσότερα

Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3)

Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3) Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3) Το όνομα ενόσ πίνακα, όπωσ και κάκε άλλου αντικειμζνου, μπορεί να ζχει μζγεκοσ ζωσ 64 χαρακτιρεσ. Το όνομα ενόσ πεδίου μπορεί να ζχει μζγεκοσ ζωσ 64 χαρακτιρεσ. Κάκε

Διαβάστε περισσότερα

Θεςιακά ςυςτιματα αρίκμθςθσ

Θεςιακά ςυςτιματα αρίκμθςθσ Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ

Διαβάστε περισσότερα

Η γλώςςα προγραμματιςμού C

Η γλώςςα προγραμματιςμού C Η γλώςςα προγραμματιςμού C Οι εντολζσ επανάλθψθσ (while, do-while, for) Γενικά για τισ εντολζσ επανάλθψθσ Συχνά ςτο προγραμματιςμό είναι επικυμθτι θ πολλαπλι εκτζλεςθ μιασ ενότθτασ εντολϊν, είτε για ζνα

Διαβάστε περισσότερα

ΕΝΟΤΘΤΑ 2: ΕΠΙΚΟΙΝΩΝΩ ΜΕ ΤΟΝ ΥΠΟΛΟΓΙΣΤΘ. ΚΕΦΑΛΑΙΟ 6: Θ «Βοικεια» ςτον Υπολογιςτι

ΕΝΟΤΘΤΑ 2: ΕΠΙΚΟΙΝΩΝΩ ΜΕ ΤΟΝ ΥΠΟΛΟΓΙΣΤΘ. ΚΕΦΑΛΑΙΟ 6: Θ «Βοικεια» ςτον Υπολογιςτι ΕΝΟΤΘΤΑ 2: ΕΠΙΚΟΙΝΩΝΩ ΜΕ ΤΟΝ ΥΠΟΛΟΓΙΣΤΘ ΚΕΦΑΛΑΙΟ 6: Θ «Βοικεια» ςτον Υπολογιςτι Βοικεια (Help), Ευρετιριο, Κόμβοσ, Λζξθ κλειδί, Σφνδεςμόσ, Υπερκείμενο Τι είναι θ «Βοικεια» ςτουσ υπολογιςτζσ; Πώσ ενεργοποιοφμε

Διαβάστε περισσότερα

Τάξη Β. Φυςικθ Γενικθσ Παιδείασ. Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ. Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά

Τάξη Β. Φυςικθ Γενικθσ Παιδείασ. Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ. Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά Τάξη Β Φυςικθ Γενικθσ Παιδείασ Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά k 2 9 9 10 Nm 2 1. Δφο ακίνθτα ςθμειακά θλεκτρικά φορτία q 1 = - 2 μq και q 2 = + 3 μq, βρίςκονται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Δίκτυα Επικοινωνιϊν ΙΙ Διδάςκων: Απόςτολοσ Γκάμασ (Διδάςκων ΠΔ 407/80) Βοθκόσ Εργαςτθρίου: Δθμιτριοσ Μακρισ Ενδεικτική Λύση 2

Διαβάστε περισσότερα

ΟΔΗΓΙΕ ΔΗΜΙΟΤΡΓΙΑ ΚΑΙ ΡΤΘΜΙΗ ΔΩΡΕΑΝ ΗΛΕΚΣΡΟΝΙΚΟΤ ΣΑΧΤΔΡΟΜΕΙΟΤ ΣΟ GOOGLE (G-MAIL)

ΟΔΗΓΙΕ ΔΗΜΙΟΤΡΓΙΑ ΚΑΙ ΡΤΘΜΙΗ ΔΩΡΕΑΝ ΗΛΕΚΣΡΟΝΙΚΟΤ ΣΑΧΤΔΡΟΜΕΙΟΤ ΣΟ GOOGLE (G-MAIL) ΟΔΗΓΙΕ ΔΗΜΙΟΤΡΓΙΑ ΚΑΙ ΡΤΘΜΙΗ ΔΩΡΕΑΝ ΗΛΕΚΣΡΟΝΙΚΟΤ ΣΑΧΤΔΡΟΜΕΙΟΤ ΣΟ GOOGLE (G-MAIL) Ανοίγουμε το πρόγραμμα περιιγθςθσ ιςτοςελίδων (εδϊ Internet Explorer). Αν θ αρχικι ςελίδα του προγράμματοσ δεν είναι θ ςελίδα

Διαβάστε περισσότερα

Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1

Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1 Πολυπλέκτες Ο πολυπλζκτθσ (multipleer - ) είναι ζνα ςυνδυαςτικό κφκλωμα που επιλζγει δυαδικι πλθροφορία μιασ από πολλζσ γραμμζσ ειςόδου και τθν κατευκφνει ςε μια και μοναδικι γραμμι εξόδου. Η επιλογι μιασ

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ

ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ Ειςαγωγή Τπάρχουν τρία επίπεδα ςτα οποία καλείςτε να αξιολογιςετε το εργαςτιριο D-ID: Νζα κζματα Σεχνολογία Διδακτικι Νέα θέματα Σο εργαςτιριο κα ειςαγάγουν τουσ ςυμμετζχοντεσ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ Κεφάλαιο 8 Η γλϊςςα Pascal Παράγραφοσ 8.2 Βαςικοί τφποι δεδομζνων Σα δεδομζνα ενόσ προγράμματοσ μπορεί να: είναι αποκθκευμζνα εςωτερικά ςτθν μνιμθ είναι αποκθκευμζνα εξωτερικά

Διαβάστε περισσότερα

Αςκήςεισ. Ενότητα 1. Πηγζσ τάςησ, ρεφματοσ και αντιςτάςεισ

Αςκήςεισ. Ενότητα 1. Πηγζσ τάςησ, ρεφματοσ και αντιςτάςεισ Αςκήςεισ Ενότητα 1. Πηγζσ τάςησ, ρεφματοσ και αντιςτάςεισ 1. Ζςτω το ςιμα τάςθσ V(t)=V dc +Asin(ωt) που βλζπουμε ςτο επόμενο ςχιμα. Να προςδιορίςετε το πλάτοσ Α και τθν dc ςυνιςτώςα κακώσ και να υπολογίςτε

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Α ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ IMC (Key Stage II) 9 Μαρτίου 2016 ΧΡΟΝΟΣ: 2 ΩΡΕΣ Λύςεισ : Πρόβλημα 1 (α) Να βρείτε τθν τιμι του για να ιςχφει θ πιο κάτω ςχζςθ: (β) Ο Ανδρζασ τελειϊνει

Διαβάστε περισσότερα

Διαχείριςη Αριθμοδεικτών (v.1.0.7)

Διαχείριςη Αριθμοδεικτών (v.1.0.7) Διαχείριςη Αριθμοδεικτών (v.1.0.7) Περιεχόμενα 1. Μενοφ... 5 1.1 Αρικμοδείκτεσ.... 5 1.1.1 Δθμιουργία Αρικμοδείκτθ... 6 1.1.2 Αντιγραφι Αρικμοδείκτθ... 11 2. Παράμετροι... 12 2.1.1 Κατθγορίεσ Αρικμοδεικτϊν...

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 9 10 (Γ Γυμνασίου- Α Λυκείου)

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 9 10 (Γ Γυμνασίου- Α Λυκείου) ΕΠΙΠΕΔΟ 9 10 (Γ Γυμνασίου- Α Λυκείου) 19 Μαρτίου 011 10:00-11:15 3 point/μονάδες 1) Μια διάβαςθ πεηϊν ζχει άςπρεσ και μαφρεσ λωρίδεσ, πλάτουσ 50 cm. ε ζνα δρόμο θ διάβαςθ ξεκινά και τελειϊνει με άςπρεσ

Διαβάστε περισσότερα

Ψθφιακά Ηλεκτρονικά. Ενότθτα 5 : Ανάλυςθ κυκλώματοσ με D και JK FLIP- FLOP Φώτιοσ Βαρτηιώτθσ

Ψθφιακά Ηλεκτρονικά. Ενότθτα 5 : Ανάλυςθ κυκλώματοσ με D και JK FLIP- FLOP Φώτιοσ Βαρτηιώτθσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 5 : Ανάλυςθ κυκλώματοσ με D και JK FLIP- FLOP Φώτιοσ Βαρτηιώτθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Σμιμα

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του

Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του Αυτόνομοι Πράκτορες Αναφορά Εργασίας Εξαμήνου Το αστέρι του Aibo και τα κόκαλα του Jaohar Osman Η πρόταςθ εργαςίασ που ζκανα είναι το παρακάτω κείμενο : - ξ Aibo αγαπάει πάρα πξλύ ρα κόκαλα και πάμρα ρα

Διαβάστε περισσότερα

Πωσ δημιουργώ μάθημα ςτο e-class του ΠΣΔ [επίπεδο 1]

Πωσ δημιουργώ μάθημα ςτο e-class του ΠΣΔ [επίπεδο 1] Το e-class του Πανελλινιου Σχολικοφ Δίκτυου [ΠΣΔ/sch.gr] είναι μια πολφ αξιόλογθ και δοκιμαςμζνθ πλατφόρμα για αςφγχρονο e-learning. Ανικει ςτθν κατθγορία του ελεφκερου λογιςμικοφ. Αρχίηουμε από τθ διεφκυνςθ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9. ΑΝΩΣΗ Η αρχή του Αρχιμήδη

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9. ΑΝΩΣΗ Η αρχή του Αρχιμήδη ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9 ΑΝΩΣΗ Η αρχή του Αρχιμήδη Όργανα Τλικά: Δυναμόμετρο 2 ι 2,5Ν Δοκιμαςτικόσ ςωλινασ Βαρίδι 50g Βάςθ Ράβδοι ςτιριξθσ Δοχείο με νερό κοπόσ τθσ άςκθςθσ: Οι μακθτζσ να κατανοιςουν ότι θ

Διαβάστε περισσότερα

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ Ω ΕΝΙΑΙΟ ΤΣΗΜΑ. ΚΕΦΑΛΑΙΟ 2: Σο Εςωτερικό του Τπολογιςτι

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ Ω ΕΝΙΑΙΟ ΤΣΗΜΑ. ΚΕΦΑΛΑΙΟ 2: Σο Εςωτερικό του Τπολογιςτι ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ ΚΕΦΑΛΑΙΟ 2: Σο Εςωτερικό του Τπολογιςτι 2.1 Ο Προςωπικόσ Υπολογιςτήσ εςωτερικά Σροφοδοτικό, Μθτρικι πλακζτα (Motherboard), Κεντρικι Μονάδα Επεξεργαςίασ (CPU), Κφρια Μνιμθ

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 6: Το γραφικό περιβάλλον Επικοινωνίασ (Γ.Π.Ε)

ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 6: Το γραφικό περιβάλλον Επικοινωνίασ (Γ.Π.Ε) ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ ΚΕΦΑΛΑΙΟ 6: Το γραφικό περιβάλλον Επικοινωνίασ (Γ.Π.Ε) Γραφικό Περιβάλλον Επικοινωνίασ Περιβάλλον Εντολϊν Γραμμισ (Graphical User Interface/GUI), (Command Line Interface),

Διαβάστε περισσότερα

Aντιπτζριςθ (ΕΠ027) Ενότθτα 12

Aντιπτζριςθ (ΕΠ027) Ενότθτα 12 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςθ (ΕΠ027) Ενότθτα 12: Σακτικι διπλοφ μικτοφ τεπάν-αρκίσ Παρτεμιάν Σμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ

Διαβάστε περισσότερα

Σφντομεσ Οδθγίεσ Χριςθσ

Σφντομεσ Οδθγίεσ Χριςθσ Σφντομεσ Οδθγίεσ Χριςθσ Περιεχόμενα 1. Επαφζσ... 3 2. Ημερολόγιο Επιςκζψεων... 4 3. Εκκρεμότθτεσ... 5 4. Οικονομικά... 6 5. Το 4doctors ςτο κινθτό ςου... 8 6. Υποςτιριξθ... 8 2 1. Επαφζσ Στισ «Επαφζσ»

Διαβάστε περισσότερα

ΒΙΟΛΟΓΟΙ ΓΙΑ ΦΥΣΙΚΟΥΣ

ΒΙΟΛΟΓΟΙ ΓΙΑ ΦΥΣΙΚΟΥΣ ΦΥΣΙΚΗ vs ΒΙΟΛΟΓΙΑ ΒΙΟΛΟΓΟΙ ΓΙΑ ΦΥΣΙΚΟΥΣ «Προτείνω να αναπτφξουμε πρώτα αυτό που κα μποροφςε να ζχει τον τίτλο: «ιδζεσ ενόσ απλοϊκοφ φυςικοφ για τουσ οργανιςμοφσ». Κοντολογίσ, τισ ιδζεσ που κα μποροφςαν

Διαβάστε περισσότερα

Εγχειρίδιο Χριςθσ τθσ διαδικτυακισ εφαρμογισ «Υποβολι και παρακολοφκθςθ τθσ ζγκριςθσ Εκπαιδευτικών Πακζτων»

Εγχειρίδιο Χριςθσ τθσ διαδικτυακισ εφαρμογισ «Υποβολι και παρακολοφκθςθ τθσ ζγκριςθσ Εκπαιδευτικών Πακζτων» Εγχειρίδιο Χριςθσ τθσ διαδικτυακισ εφαρμογισ «Υποβολι και παρακολοφκθςθ τθσ ζγκριςθσ Εκπαιδευτικών Πακζτων» Το Πλθροφοριακό Σφςτθμα τθσ δράςθσ «e-κπαιδευτείτε» ζχει ςτόχο να αυτοματοποιιςει τισ ακόλουκεσ

Διαβάστε περισσότερα

Ενεργειακά Τηάκια. Πουκεβίλ 2, Ιωάννινα Τθλ. 26510.23822 www.energeiaka-ktiria.gr www.facebook.com/energeiaka.ktiria

Ενεργειακά Τηάκια. Πουκεβίλ 2, Ιωάννινα Τθλ. 26510.23822 www.energeiaka-ktiria.gr www.facebook.com/energeiaka.ktiria Ενεργειακά Τηάκια Πουκεβίλ 2, Ιωάννινα Τθλ. 26510.23822 www.facebook.com/energeiaka.ktiria Σελ. 2 Η ΕΣΑΙΡΕΙΑ Η εταιρεία Ενεργειακά Κτίρια δραςτθριοποιείται ςτθν παροχι ολοκλθρωμζνων υπθρεςιϊν και ςτθν

Διαβάστε περισσότερα

Ενθμζρωςθ και προςταςία των καταναλωτών από τουσ κινδφνουσ που απορρζουν από τα χθμικά προϊόντα

Ενθμζρωςθ και προςταςία των καταναλωτών από τουσ κινδφνουσ που απορρζουν από τα χθμικά προϊόντα Ενθμζρωςθ και προςταςία των καταναλωτών από τουσ κινδφνουσ που απορρζουν από τα χθμικά προϊόντα Γενικό Χθμείο του Κράτουσ Διεφκυνςθ Περιβάλλοντοσ Δρ. Διμθτρα Δανιιλ Χθμικά προϊόντα Οι χθμικζσ ουςίεσ υπάρχουν

Διαβάστε περισσότερα

Ενδεικτικζσ Λφςεισ Θεμάτων

Ενδεικτικζσ Λφςεισ Θεμάτων c AM (t) x(t) ΤΕΙ Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σειρά Β Ειςηγητήσ: Δρ Απόςτολοσ Γεωργιάδησ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Ενδεικτικζσ Λφςεισ Θεμάτων Θζμα 1 ο (1 μον.) Ζςτω περιοδικό ςιμα πλθροφορίασ με περίοδο.

Διαβάστε περισσότερα

Ερωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά

Ερωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά Τα νύλιμα! ΧΟΡΗΓΟΣ Ερωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά τα ξφλινα! 1. Γιατί τα λζμε ξφλινα πνευςτά; Πνευςτά ονομάηονται τα όργανα ςτα οποία ο ιχοσ παράγεται μζςα ςε ζνα ςωλινα απ όπου περνάει ο

Διαβάστε περισσότερα

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων

Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 7: Ειςαγωγι ςτο Δυναμικό Προγραμματιςμό Κακθγθτισ Γιάννθσ Γιαννίκοσ Σχολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Τμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ. Ειρινθ Φιλιοποφλου

ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ. Ειρινθ Φιλιοποφλου ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ Ειρινθ Φιλιοποφλου Τι είναι το URL Σο URL (Uniform Resource Locator) είναι θ διεφκυνςθ που χρθςιμοποιεί το WWW για να δθλϊςει τθ κζςθ άλλων αρχείων που βρίςκονται

Διαβάστε περισσότερα

ΟΔΗΓΙΕ ΓΙΑ ΣΗΝ ΕΙΑΓΩΓΗ ΕΚΔΡΟΜΩΝ & ΝΕΩΝ - ΑΝΑΚΟΙΝΩΕΩΝ ΣΗΝ ΙΣΟΕΛΙΔΑ ΣΗ Δ.Δ.Ε. ΘΕΠΡΩΣΙΑ

ΟΔΗΓΙΕ ΓΙΑ ΣΗΝ ΕΙΑΓΩΓΗ ΕΚΔΡΟΜΩΝ & ΝΕΩΝ - ΑΝΑΚΟΙΝΩΕΩΝ ΣΗΝ ΙΣΟΕΛΙΔΑ ΣΗ Δ.Δ.Ε. ΘΕΠΡΩΣΙΑ ΟΔΗΓΙΕ ΓΙΑ ΣΗΝ ΕΙΑΓΩΓΗ ΕΚΔΡΟΜΩΝ & ΝΕΩΝ - ΑΝΑΚΟΙΝΩΕΩΝ ΣΗΝ ΙΣΟΕΛΙΔΑ ΣΗ Δ.Δ.Ε. ΘΕΠΡΩΣΙΑ ΕΙΑΓΩΓΗ Ο νζοσ δικτυακόσ τόποσ τθσ Δ.Δ.Ε. Θεςπρωτίασ παρζχει πλζον τθ δυνατότθτα τθσ καταχϊρθςθσ νζων, ειδιςεων και

Διαβάστε περισσότερα

Ανϊτερεσ πνευματικζσ λειτουργίεσ Μνιμθ Μάκθςθ -Συμπεριφορά

Ανϊτερεσ πνευματικζσ λειτουργίεσ Μνιμθ Μάκθςθ -Συμπεριφορά Ανϊτερεσ πνευματικζσ λειτουργίεσ Μνιμθ Μάκθςθ -Συμπεριφορά Οδθγίεσ Προτείνεται να γίνει ςαφισ ο ρόλοσ κάκε τμιματοσ του ΚΝΣ και να αναδειχκεί θ ςχζςθ που ζχουν τα μζρθ αυτά με τισ ανϊτερεσ πνευματικζσ

Διαβάστε περισσότερα

Ψθφιακι Επεξεργαςία ιματοσ

Ψθφιακι Επεξεργαςία ιματοσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακι Επεξεργαςία ιματοσ Ενότθτα 3 : Παρακφρωςθ Δεδομζνων Κωνςταντίνοσ Αγγζλθσ Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Σμιμα Μθχανικών

Διαβάστε περισσότερα

Μελζτθ αλγορίκμων αναςτροφισ και τυχαίασ μετάκεςθσ πίνακα με αξιοποίθςθ τθσ κρυφισ μνιμθσ

Μελζτθ αλγορίκμων αναςτροφισ και τυχαίασ μετάκεςθσ πίνακα με αξιοποίθςθ τθσ κρυφισ μνιμθσ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΠΟΛΤΣΕΧΝΙΚΗ ΧΟΛΗ ΣΜΗΜΑ ΗΛΕΚΣΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΤΠΟΛΟΓΙΣΩΝ ΣΟΜΕΑ ΗΛΕΚΣΡΟΝΙΚΗ & ΤΠΟΛΟΓΙΣΩΝ Μελζτθ αλγορίκμων αναςτροφισ και τυχαίασ μετάκεςθσ πίνακα με αξιοποίθςθ

Διαβάστε περισσότερα

Αυτόματη δημιουργία στηλών Αντιστοίχηση νέων λογαριασμών ΦΠΑ

Αυτόματη δημιουργία στηλών Αντιστοίχηση νέων λογαριασμών ΦΠΑ Αυτόματη δημιουργία στηλών Αντιστοίχηση νέων λογαριασμών ΦΠΑ 1 Περίληψη Το ςυγκεκριμζνο εγχειρίδιο δημιουργήθηκε για να βοηθήςει την κατανόηςη τησ διαδικαςίασ αυτόματησ δημιουργίασ ςτηλών και αντιςτοίχιςησ

Διαβάστε περισσότερα

25. Ποια είναι τα ψυκτικά φορτία από εξωτερικζσ πθγζσ. Α) Τα ψυκτικά φορτία από αγωγιμότθτα. Β) Τα ψυκτικά φορτία από ακτινοβολία και

25. Ποια είναι τα ψυκτικά φορτία από εξωτερικζσ πθγζσ. Α) Τα ψυκτικά φορτία από αγωγιμότθτα. Β) Τα ψυκτικά φορτία από ακτινοβολία και 25. Ποια είναι τα ψυκτικά φορτία από εξωτερικζσ πθγζσ Α) Τα ψυκτικά φορτία από αγωγιμότθτα. Β) Τα ψυκτικά φορτία από ακτινοβολία και Γ) Τα ψυκτικά φορτία από είςοδο εξωτερικοφ αζρα. 26. Ποιζσ είναι οι

Διαβάστε περισσότερα

NH 2 R COOH. Σο R είναι το τμιμα του αμινοξζοσ που διαφζρει από αμινοξφ ςε αμινοξφ. 1 Πρωτεΐνες

NH 2 R COOH. Σο R είναι το τμιμα του αμινοξζοσ που διαφζρει από αμινοξφ ςε αμινοξφ. 1 Πρωτεΐνες 1 Πρωτεΐνες Πρωτεΐνεσ : Οι πρωτεΐνεσ είναι ουςίεσ «πρώτθσ» γραμμισ για τουσ οργανιςμοφσ (άρα και για τον άνκρωπο). Σα κφτταρα και οι ιςτοί αποτελοφνται κατά κφριο λόγο από πρωτεΐνεσ. Ο ςθμαντικότεροσ όμωσ

Διαβάστε περισσότερα

Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα:

Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα: 2 ο Σετ Ασκήσεων Δομές Δεδομένων - Πίνακες Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα: 2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 8

Διαβάστε περισσότερα

Δίκτυα Μεταγωγισ Δεδομζνων

Δίκτυα Μεταγωγισ Δεδομζνων Δίκτυα Μεταγωγισ Δεδομζνων Χ.25 (1/9): Πρόκειται για ζνα πρωτόκολλο τθσ ITU για δίκτυα WAN, το οποίο κακορίηει πωσ ςυνδζονται οι ςυςκευζσ του χριςτθ και του δικτφου. Είναι ανεξάρτθτο από τον τφπο των ςυςτθμάτων

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ Φιλιοποφλου Ειρινθ Προςθήκη νζων πεδίων Ασ υποκζςουμε ότι μετά τθ δθμιουργία του πίνακα αντιλαμβανόμαςτε ότι ζχουμε ξεχάςει κάποια πεδία. Είναι ζνα πρόβλθμα το οποίο

Διαβάστε περισσότερα

Μθχανολογικό Σχζδιο, από τθ κεωρία ςτο πρακτζο Χριςτοσ Καμποφρθσ, Κων/νοσ Βαταβάλθσ

Μθχανολογικό Σχζδιο, από τθ κεωρία ςτο πρακτζο Χριςτοσ Καμποφρθσ, Κων/νοσ Βαταβάλθσ Λεπτζσ Αξονικζσ γραμμζσ χρθςιμοποιοφνται για να δθλϊςουν τθν φπαρξθ ςυμμετρίασ του αντικειμζνου. Υπενκυμίηουμε ότι οι άξονεσ ςυμμετρίασ χρθςιμοποιοφνται μόνον όταν το ίδιο το εξάρτθμα είναι πραγματικά

Διαβάστε περισσότερα

Οδηγόσ εγκατάςταςησ και ενεργοποίηςησ

Οδηγόσ εγκατάςταςησ και ενεργοποίηςησ Οδηγόσ εγκατάςταςησ και ενεργοποίηςησ Ευχαριςτοφμε που επιλζξατε το memoq 4.5, το πρωτοκλαςάτο περιβάλλον μετάφραςθσ για ελεφκερουσ επαγγελματίεσ μεταφραςτζσ, μεταφραςτικά γραφεία και επιχειριςεισ. Αυτό

Διαβάστε περισσότερα

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 12 θ Διάλεξθ Διαχείριςθ Αρχείων

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 12 θ Διάλεξθ Διαχείριςθ Αρχείων ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ 12 θ Διάλεξθ Διαχείριςθ Αρχείων Αρχεία και υςτιματα Αρχείων (1/3) 2 Όςον αφορά ςτουσ χριςτεσ, ζνα από τα πιο ςθμαντικά τμιματα του Λ είναι το ςφςτθμα αρχείων, το οποίο τουσ επιτρζπει

Διαβάστε περισσότερα

ςυςτιματα γραμμικϊν εξιςϊςεων

ςυςτιματα γραμμικϊν εξιςϊςεων κεφάλαιο 7 Α ςυςτιματα γραμμικϊν εξιςϊςεων αςικζσ ζννοιεσ Γραμμικά, λζγονται τα ςυςτιματα εξιςϊςεων ςτα οποία οι άγνωςτοι εμφανίηονται ςτθν πρϊτθ δφναμθ. Σα γραμμικά ςυςτιματα με δφο εξιςϊςεισ και δφο

Διαβάστε περισσότερα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Περιεχόμενα Ζννοια δομισ Οριςμόσ δομισ Διλωςθ μεταβλθτϊν Απόδοςθ Αρχικϊν τιμϊν Αναφορά ςτα μζλθ μιασ δομισ Ζνκεςθ Δομισ Πίνακεσ Δομϊν Η ζννοια τθσ δομισ Χρθςιμοποιιςαμε

Διαβάστε περισσότερα

Μετατροπεσ Παραςταςεων

Μετατροπεσ Παραςταςεων Δρ. Χρήστος Ηλιούδης Μεηαηποπή 346 10 ζε δςαδικο 346 10 1) 346/2 = 173 με ςπόλοιπο 0 2) 173/2 = 86 με ςπόλοιπο 1 3) 86/2 = 43 με ςπόλοιπο 0 4) 43/2 = 21 με ςπόλοιπο 1 5) 21/2 = 10 με ςπόλοιπο 1 6) 10/2

Διαβάστε περισσότερα

ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO

ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO Το Micro Worlds Pro είναι ζνα ολοκλθρωμζνο περιβάλλον προγραμματιςμοφ. Χρθςιμοποιεί τθ γλϊςςα προγραμματιςμοφ Logo (εξελλθνιςμζνθ) Το Micro Worlds Pro περιλαμβάνει

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 13 η : Επαναλθπτικι Ενότθτα Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εφδοξοσ+ Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)».

Εφδοξοσ+ Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)». Εφδοξοσ+ Διαθζτοντασ βιβλία μζςω του «Εφδοξοσ+» Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)». Εμφανίηεται θ λίςτα με όλα ςασ τα βιβλία. Από εδϊ μπορείτε: -

Διαβάστε περισσότερα

Συςκευζσ τθλεπικοινωνιϊν και δικτφωςθσ:

Συςκευζσ τθλεπικοινωνιϊν και δικτφωςθσ: Συςκευζσ τθλεπικοινωνιϊν και δικτφωςθσ: Σειριακι Θφρα (1/2): Σειριακι Θφρα Σειριακι (2/2): Σειριακι Θφρα Σειριακι Θφρα (1/2): Σειριακι Θφρα Ακροδζκτεσ Σειριακισ Θφρασ Σειριακι Θφρα Dial Up Mo.dem: Mo.dem:

Διαβάστε περισσότερα

GNSS Solutions guide. 1. Create new Project

GNSS Solutions guide. 1. Create new Project GNSS Solutions guide 1. Create new Project 2. Import Raw Data Αναλόγωσ τον τφπο των δεδομζνων επιλζγουμε αντίςτοιχα το Files of type. παράδειγμα ζχουν επιλεγεί για ειςαγωγι αρχεία τφπου RINEX. το Με τθν

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ

Επαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ Επαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί ςτθ

Διαβάστε περισσότερα

Ειδικά Θζματα Βάςεων Δεδομζνων

Ειδικά Θζματα Βάςεων Δεδομζνων Ειδικά Θζματα Βάςεων Δεδομζνων Ενότθτα 12: Ευρετιρια Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Πλθροφορικισ ΤΕ Άδειεσ Χριςθσ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:

Διαβάστε περισσότερα

Aντιπτζριςη (ΕΠ027) Ενότητα 6

Aντιπτζριςη (ΕΠ027) Ενότητα 6 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςη (ΕΠ027) Ενότητα 6: Backhand Overhead Clear Στεπάν-Σαρκίσ Παρτεμιάν Τμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ

Διαβάστε περισσότερα

Ιδιότθτεσ πεδίων Γενικζσ.

Ιδιότθτεσ πεδίων Γενικζσ. Οι ιδιότθτεσ των πεδίων διαφζρουν ανάλογα με τον τφπο δεδομζνων που επιλζγουμε. Ορίηονται ςτο κάτω μζροσ του παρακφρου ςχεδίαςθσ του πίνακα, ςτθν καρτζλα Γενικζσ. Ιδιότθτα: Μζγεκοσ πεδίου (Field size)

Διαβάστε περισσότερα

Aντιπτζριςη (ΕΠ027) Ενότητα 5

Aντιπτζριςη (ΕΠ027) Ενότητα 5 ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΣΑ Aντιπτζριςη (ΕΠ027) Ενότητα 5: Lift Στεπάν-Σαρκίσ Παρτεμιάν Τμιμα Επιςτιμθσ Φυςικισ Αγωγισ και Ακλθτιςμοφ Θεςςαλονίκθσ Άδειεσ Χρήςησ Το παρόν

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΗ ΗΛΕΚΣΡΟΝΙΚΟΤ ΤΣΗΜΑΣΟ ΑΡΧΑΙΡΕΙΩΝ

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΗ ΗΛΕΚΣΡΟΝΙΚΟΤ ΤΣΗΜΑΣΟ ΑΡΧΑΙΡΕΙΩΝ ΕΝΔΟΠΑΝΕΠΙΣΗΜΙΑΚΟ ΔΙΚΣΤΟ ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΗ ΗΛΕΚΣΡΟΝΙΚΟΤ ΤΣΗΜΑΣΟ ΑΡΧΑΙΡΕΙΩΝ Εγχειρίδιο διαχειριςτι Πάτρα, Δεκζμβριοσ 2011 το κάτω μζροσ ςτο μενοφ τθσ ςελίδασ διαχείριςθσ, υπάρχει θ επιλογι αρχαιρεςίεσ. Χρθςιμοποιϊντασ

Διαβάστε περισσότερα

Ονοματεπϊνυμο.. ΔΙΑΓΩΝΙΣΜΑ ΑΕΠΠ

Ονοματεπϊνυμο.. ΔΙΑΓΩΝΙΣΜΑ ΑΕΠΠ Ονοματεπϊνυμο.. ΔΙΑΓΩΝΙΣΜΑ ΑΕΠΠ ΘΕΜΑ 1 Ο Α) Ερωτισεις τφπου ωστοφ-λάκους 1. Κάκε βρόχος Για μπορεί να μετατραπεί σε Όσο 2. Κάκε βρόχος που υλοποιείται με τθν εντολι Όσο...επανάλαβε μπορεί να γραφεί και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου)

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) 19 Μαρτίου 2011 10:00-11:15 3 point/μονάδες 1) Στθν πιο κάτω εικόνα πρζπει να υπάρχει αρικμόσ ςε κάκε κουκκίδα ϊςτε το άκροιςμα των αρικμϊν ςτα άκρα κάκε ευκφγραμμου τμιματοσ

Διαβάστε περισσότερα