ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ"

Transcript

1 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ Πτυχιακή εργασία Κατασκευή πακέτου προσομοίωσης σε Matlab της κυκλικής κίνησης στην Φυσική Επιβλέπων Καθηγητής: Δρ. Απόστολος Κουιρουκίδης Όνομα Σπουδαστή: Ιωάννης Χάγιαννης Σέρρες 2015

2 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ ΠΡΟΣΟΜΟΙΩΣΗ ΚΑΙ ΟΠΤΙΚΟΠΟΙΗΣΗ Η σημασία της προσομοίωσης Η σημασία της οπτικοποίησης ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Νόμοι του Νεύτωνα Ομαλή Κυκλική κίνηση Κεντρομόλος δύναμη ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB Βασικές Πράξεις και Ορισμός Μεταβλητών M-Files Προγραμματισμός στο Matlab Δημιουργία GUI στο Matlab ΕΚΤΕΛΕΣΗ ΠΡΟΣΟΜΟΙΩΣΗ ΚΥΚΛΙΚΗΣ ΚΙΝΗΣΗΣ Θεωρητικός σχεδιασμός εφαρμογής Σχεδιασμός εφαρμογής Προγραμματισμός εφαρμογής Εκτέλεση εφαρμογής ΠΑΡΑΡΤΗΜΑ Α. Κώδικας MATLAB ΒΙΒΛΙΟΓΡΑΦΙΑ

3 ΕΙΣΑΓΩΓΗ Η κυκλική κίνηση είναι μια κίνηση που παρατηρείται πολύ συχνά, όπως στην κίνηση των τροχών των ποδηλάτων και των αυτοκινήτων, στην περιστροφή ενός ανεμιστήρα, στις κινήσεις πλανητών και δορυφόρων. Είναι γενικά εύκολο να περιγράψουμε και να μελετήσουμε τα καθαρά κινητικά χαρακτηριστικά της, όπως ακτίνα, περίοδο, συχνότητα, γωνιακή και γραμμική ταχύτητα και τις σχέσεις τους, αλλά μάλλον αδύνατο να παρατηρήσουμε την αιτία της, δηλαδή τα δυναμικά της χαρακτηριστικά, όπως την κεντρομόλο δύναμη και τις σχέσεις της με όλα τα προηγούμενα. Η μόνη εναλλακτική δυνατότητα που έχουμε, αν θέλουμε να κάνουμε την πειραματική μελέτη της δυναμικής της, είναι να καταφύγουμε σε προσομοιώσεις. Στην εργασία αυτή θα μελετήσουμε την κυκλική κίνηση μίας σημειακής μάζας και ιδιαίτερα την εξάρτηση της κεντρομόλου δύναμης από τη μάζα, την ακτίνα της τροχιάς και τη γωνιακή ταχύτητα, δημιουργώντας ένα εικονικό εργαστήριο φυσικής μέσο του λογισμικού πακέτου Μatlab. 2

4 1. ΠΡΟΣΟΜΟΙΩΣΗ ΚΑΙ ΟΠΤΙΚΟΠΟΙΗΣΗ 1.1. Η σημασία της προσομοίωσης Η προσομοίωση (simulation) είναι η τεχνητή μίμηση πραγματικών καταστάσεων, διαδικασιών ή πραγμάτων. Στις Φυσικές Επιστήμες, συνήθως αναπαριστούμε με την προσομοίωση κάποια ουσιώδη χαρακτηριστικά ή συμπεριφορές ενός φυσικού συστήματος. Η προσομοίωση την υλοποίηση μιας πειραματικής διαδικασίας, όχι όμως σε πραγματικό εργαστήριο, αλλά σε εικονικό. Σε ένα τέτοιο εικονικό εργαστήριο η λειτουργία της φύσης γίνεται από έναν ηλεκτρονικό υπολογιστή. Μερικά πλεονεκτήματα της προσομοίωσης είναι η επαναληψιμότητα όσον αφορά στα αποτελέσματα, η δυνατότητα εκτέλεσης του εικονικού πειράματος σε οποιοδήποτε περιβάλλον, η ευκολία χειρισμού μεταβλητών του περιβάλλοντος ή των αλληλεπιδράσεων, η ασφάλεια. Τελευταίο στάδιο της προσομοίωσης, είναι η ανάλυση των αποτελεσμάτων, που συχνά γίνεται με την οπτικοποίησή τους Η σημασία της οπτικοποίησης Δεν υπάρχει αμφιβολία ότι ο ανθρώπινος νους αντιλαμβάνεται πιο εύκολα και πιο γρήγορα το περιβάλλον του όταν το παρατηρεί σαν εικόνα, παρά όταν προσπαθεί να μεταφράσει τα αποτελέσματα της προσομοίωσης. Γίνεται έτσι απαραίτητο τα αποτελέσματα κάθε προσομοίωσης, που είναι αρχικά αριθμοί και που αντιστοιχούν σε συμβάντα, αντικείμενα και κατανομές στο χώρο, να «μεταφράζονται» σε εικόνες του συστήματος που μελετάμε και των παραμέτρων του. Με αυτές τις εικόνες οδηγούμαστε στην ταχύτερη και καλύτερη κατανόηση των φαινομένων. Στην επιστήμη, γενικότερα, χρησιμοποιούμε ένα πολύ μεγάλο πλήθος εικόνων και αναπαραστάσεων για την οπτικοποίηση. 3

5 2. ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ 2.1. Νόμοι του Νεύτωνα Οι δύο πρώτοι νόμοι του Νεύτωνα μας επιτρέπουν να περιγράφουμε την κίνηση που κάνει ένα σώμα όταν γνωρίζουμε τη συνισταμένη των δυνάμεων που ενεργούν σ' αυτό, την αρχική θέση του καθώς και την αρχική του ταχύτητα. Έτσι αν σε ένα σώμα δεν ασκούνται δυνάμεις, ή αν ασκούνται και έχουν συνισταμένη μηδέν, τότε σύμφωνα με τον πρώτο νόμο του Νεύτωνα αυτό θα ηρεμεί ή θα κινείται με ομαλή ευθύγραμμη κίνηση. Αν η συνισταμένη των δυνάμεων που ασκούνται σε ένα σώμα δεν είναι μηδέν, τότε σύμφωνα με το δεύτερο νόμο του Νεύτωνα αυτό έχει επιτάχυνση α, ομόρροπη της δύναμης, που προσδιορίζεται από τη σχέση F = m α, όπου m είναι η μάζα του σώματος Ομαλή Κυκλική κίνηση Ένα κινητό κάνει κυκλική κίνηση όταν η τροχιά που διαγράφει είναι περιφέρεια κύκλου. Ομαλή χαρακτηρίζεται η κυκλική κίνηση ενός κινητού, όταν η τιμή της ταχύτητάς του παραμένει σταθερή. Ο χρόνος που χρειάζεται το κινητό για να κάνει μία περιφορά, λέγεται περίοδος (Τ) της κυκλικής κίνησης. Ο αριθμός των περιφορών που εκτελεί το κινητό στη μονάδα του χρόνου λέγεται συχνότητα (f )της κυκλικής κίνησης. Γραμμική ταχύτητα (u) είναι ένα διάνυσμα που έχει μέτρο ίσο με το πηλίκο του τόξου Δs που διανύει το υλικό σημείο σε χρόνο Δt προς τον χρόνο αυτό. Γωνιακή ταχύτητα (ω) είναι ένα διάνυσμα που έχει διεύθυνση κάθετη στο επίπεδο της τροχιάς του και μέτρο ίσο με το πηλίκο της γωνίας Δθ που διαγράφει το υλικό σημείο σε χρόνο Δt προς τον χρόνο αυτό. Η κεντρομόλος επιτάχυνση(α) είναι υπεύθυνη για τη μεταβολή της διεύθυνσης της γραμμικής ταχύτητας. 4

6 5 R R a f t t Rf T R t s t s 2 2 κ υ Κεντρομόλος δύναμη Ας θεωρήσουμε την περίπτωση που ένα σώμα εκτελεί κυκλική κίνηση με ταχύτητα σταθερής τιμής. Επειδή η κατεύθυνση της ταχύτητας συνεχώς μεταβάλλεται, συνεπώς υπάρχει επιτάχυνση (κεντρομόλος) και σύμφωνα με το δεύτερο νόμο του Νεύτωνα στο σώμα ασκείται δύναμη. Η δύναμη αυτή έχει κατεύθυνση προς το κέντρο της κυκλικής τροχιάς και γι' αυτό λέγεται κεντρομόλος δύναμη Γενικά κάθε δύναμη που αναγκάζει ένα σώμα να εκτελεί ομαλή κυκλική κίνηση λέγεται κεντρομόλος δύναμη. Η κεντρομόλος επιτάχυνση έχει την ίδια κατεύθυνση με την κεντρομόλο δύναμη. R m m a F 2 κ κ υ..

7 3. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB Το λογισμικό MATLAB, παίρνει το όνομά του από τις λέξεις MATrix LABoratory, είναι ένα σύγχρονο ολοκληρωμένο μαθηματικό πακέτο για υψηλής απόδοσης αριθμητικούς υπολογισμούς (numerical computations). Είναι ένα διαδραστικό (interactive) πρόγραμμα για αριθμητικούς υπολογισμούς και για κατασκευή γραφημάτων, αλλά παρέχει επίσης και τη δυνατότητα προγραμματισμού, κάτι που το καθιστά ένα χρήσιμο εργαλείο για όλους όσους ασχολούνται με τις θετικές επιστήμες. Αποτελεί ένα εξελιγμένο υπολογιστικό εργαλείο το οποίο μπορεί να βρει εφαρμογή σε διάφορους τομείς της επιστήμης αλλά βέβαια και της πράξης, όπως για παράδειγμα τη μηχανική, την ιατρική και τη βιομηχανική παραγωγή. Μάλιστα, το φάσμα των εφαρμογών του συγκεκριμένου πακέτου λογισμικού διευρύνεται συνεχώς και περισσότερο, αναδεικνύοντας με αυτό τον τρόπο τις πολλαπλές δυνατότητες του, όπως την υψηλή απόδοση και ταχύτητα υπολογιστικών αναλύσεων, την δυνατότητα προσομοίωσης φυσικών συστημάτων, την δυνατότητα υλοποίησης αλγορίθμων, την δυνατότητα αμφίδρομης επικοινωνίας με πληθώρα άλλων προγραμμάτων και εφαρμογών και την υψηλής ποιότητας γραφικές απεικονίσεις και animations Βασικές Πράξεις και Ορισμός Μεταβλητών Η πιο απλή λειτουργία του Matlab είναι η χρήση του ως μία κοινή αριθμομηχανή. Η σειρά εκτέλεσης των πράξεων, στο Matlab είναι η ακόλουθη: Στην περίπτωση που σε μια αριθμητική παράσταση υπάρχουν παρενθέσεις εκτελούνται πρώτα οι πράξεις μέσα στις παρενθέσεις από μέσα προς τα έξω. Η εκτέλεση των πράξεων γίνεται πάντοτε από τα αριστερά προς τα δεξιά. Μεταξύ των βασικών αριθμητικών πράξεων πρώτα εκτελείται η ύψωση σε δύναμη. Στη συνέχεια εκτελούνται οι πολλαπλασιασμοί και οι διαιρέσεις με ίδια προτεραιότητα. Τελευταίες εκτελούνται οι προσθέσεις και οι αφαιρέσεις με την ίδια προτεραιότητα. 6

8 Μία εντολή εισάγεται πληκτρολογώντας στο παράθυρο εντολών δεξιά από το σύμβολο προτροπής». Η εισαγωγή της εντολής ολοκληρώνεται με το πάτημα του πλήκτρου Enter. Στην περίπτωση που δεν ορίζεται κάποια μεταβλητή, η εντολή εκτελείται και το αποτέλεσμα εμφανίζεται στην οθόνη μετά την έκφραση ans= (συντομογραφία της αγγλικής λέξης answer). Η έκφραση ans αποτελεί μια προεπιλεγμένη μεταβλητή η οποία χρησιμοποιείται για να αποθηκευτεί το αποτέλεσμα της εντολής. Στον ορισμό των μεταβλητών θα πρέπει να αναφέρουμε ότι μία μεταβλητή μπορεί να οριστεί χρησιμοποιώντας αλφαριθμητικούς χαρακτήρες και χαρακτήρες υπογράμμισης (_). To Matlab δεν δέχεται ελληνικούς χαρακτήρες για τον ορισμό τον μεταβλητών. Ο πρώτος χαρακτήρας μιας μεταβλητής θα πρέπει να είναι γράμμα του λατινικού αλφαβήτου. Ο μέγιστος αριθμός χαρακτήρων που μπορεί να έχει μία μεταβλητή είναι 63 χαρακτήρες. Μία εντολή στο Matlab εκτός από αριθμούς, μεταβλητές και αριθμητικές παραστάσεις, μπορεί να περιλαμβάνει και συναρτήσεις. To Matlab διαθέτει μία πληθώρα έτοιμων συναρτήσεων για την υλοποίηση ενός μεγάλου αριθμού μαθηματικών υπολογισμών. Κάθε συνάρτηση έχει ένα όνομα και μία παράμετρο (αριθμό, μεταβλητή, αριθμητική παράσταση) μέσα σε παρενθέσεις. To Matlab δίνει τη δυνατότητα στο χρήστη να εισάγει σχόλια μαζί με τις εντολές. Αυτό επιτυγχάνεται πληκτρολογώντας το σύμβολο επί τοις εκατό (%) στην αρχή μιας γραμμής ή δίπλα από μια εντολή. Οτιδήποτε γράφεται μετά το σύμβολο % αναγνωρίζεται από το Matlab ως σχόλιο M-Files To Matlab παρέχει τη δυνατότητα αποθήκευσης μιας ακολουθίας εντολών σε ένα αρχείο και στη συνέχεια την εκτέλεση αυτών με μία μόνο εντολή. Η ακολουθία αυτή των εντολών μπορεί να γραφεί σε ένα αρχείο κειμένου με την επέκταση (m), δηλαδή όνομααρχειου.m. Στο Matlab υπάρχουν δύο διαφορετικοί τύποι M-Files. τα αρχεία script και τα αρχεία συναρτήσεως. Τα αρχεία script : είναι ιδιαίτερα χρήσιμα σε περιπτώσεις που απαιτείται η επανάληψη μιας 7

9 μεγάλης ακολουθίας εντολών, δεν έχουν μεταβλητές εισόδου και εξόδου, οι μεταβλητές που υπολογίζονται προστίθενται στο χώρο εργασίας με αποτέλεσμα να μπορούν να χρησιμοποιηθούν και από άλλα αρχεία script ή από το παράθυρο εντολών. Πρόκειται δηλαδή για καθολικές μεταβλητές (global variables). Τα αρχεία συναρτήσεων : επιτρέπουν τον εμπλουτισμό της γλώσσας προγραμματισμού Matlab στα πλαίσια των εφαρμογών του χρήστη, δέχονται μεταβλητές εισόδου και επιστρέφουν μεταβλητές εξόδου, οι μεταβλητές που ορίζονται μέσα στη συνάρτηση ισχύουν μόνο για τη συνάρτηση, είναι δηλαδή τοπικές μεταβλητές (local variables) Προγραμματισμός στο Matlab To Matlab ως γλώσσα προγραμματισμού διαθέτει ένα πλούσιο σύνολο εργαλείων που μπορούν να χρησιμοποιηθούν για τον έλεγχο της ροής ενός προγράμματος. Ένα πρόγραμμα είναι μια ακολουθία εντολών που στην απλούστερη του μορφή οι εντολές εκτελούνται η μία μετά την άλλη, με τη σειρά που έχουν πληκτρολογηθεί. Τις περισσότερες φορές σε πιο σύνθετα προγράμματα, διαφορετικές μεταβλητές εισόδου απαιτούν την υπό συνθήκη εκτέλεση κάποιων τμημάτων εντολών του προγράμματος ή μπορεί να απαιτείται η επανάληψη μιας ακολουθίας εντολών. Συνεπώς θα πρέπει να δηλώνεται κατά την πληκτρολόγηση του κώδικα ενός προγράμματος η πιθανή μεταβολή της ροής του προγράμματος. Αυτό πραγματοποιείται με τη χρήση των σχεσιακών και λογικών τελεστών καθώς και με τις δομές ελέγχου. Η δομή if χρησιμοποιείτε στην περίπτωση που υπάρχει μια αμοιβαία αποκλειόμενη περίπτωση που καθορίζετε από την ισχύ μιας συνθήκης. Η δομή if else χρησιμοποιείτε στην περίπτωση που υπάρχουν δύο αμοιβαία αποκλειόμενες περιπτώσεις που καθορίζονται από την ισχύ μιας συνθήκης. Η δομή if else if else χρησιμοποιείτε στην περίπτωση που υπάρχουν περισσότερες από δύο αμοιβαία αποκλειόμενες περιπτώσεις 8

10 Οι πιο συχνά χρησιμοποιούμενες δομές επανάληψης είναι ο βρόχος (loop) του for και ο βρόχος του while. Σε ένα βρόχο μία εντολή ή μια ομάδα εντολών επαναλαμβάνεται συνεχώς για έναν προκαθορισμένο αριθμό επαναλήψεων ή έως ότου ισχύσει μια συνθήκη. Σε κάθε επανάληψη, η οποία ονομάζεται βήμα, τουλάχιστον μία μεταβλητή η οποία ορίζεται μέσα στον βρόχο λαμβάνει νέα τιμή. Ειδικότερα, ο βρόχος for χρησιμοποιείται για την εκτέλεση μιας εντολής ή μιας ομάδας εντολών για συγκεκριμένο αριθμό επαναλήψεων. Από την άλλη, ο βρόχος while χρησιμοποιείται για την εκτέλεση μιας εντολής ή μιας ομάδας εντολών όταν δεν είναι προκαθορισμένο το πλήθος των επαναλήψεων αλλά εξαρτάται από την ισχύ μιας συγκεκριμένης συνθήκης Η δομή switch επιτρέπει την επιλογή εκτέλεσης διαφορετικών συνόλων εντολών ανάλογα με την τιμή μιας έκφρασης. Ουσιαστικά είναι εναλλακτική της δομής if else if - else - για την περίπτωση όπου οι διάφορες ελεγχόμενες συνθήκες είναι συνθήκες ισότητας. Η δομή switch χρησιμοποιείται συνήθως για τη δημιουργία ενός μενού επιλογών. Μερικές έτοιμες συναρτήσεις που είναι υλοποιημένες στη Matlab, τις οποίες χρησιμοποίησα για την υλοποίηση του προγράμματος είναι: Hold on Διατηρεί το τρέχον γράφημα και προσθέτει άλλο ένα γράφημα σε αυτό. Η MATLAB προσαρμόζει τα όρια στους άξονες και σημειώνει τις ετικέτες όπως είναι απαραίτητο για να εμφανιστεί το πλήρες φάσμα του γραφήματος που προστίθεται. Hold off Επαναφέρει την κατάσταση «hold» στην προεπιλεγμένη συμπεριφορά, στην οποία η MATLAB καθαρίζει το υπάρχον γράφημα και επαναφέρει τις ιδιότητες των αξόνων στις προεπιλογές τους πριν την σχεδίαση νέων γραφημάτων. Str2double Μετατρέπει τη συμβολοσειρά που δέχεται ως είσοδο σε μια αναπαράσταση πραγματικού αριθμού. Η συμβολοσειρά θα πρέπει να είναι σε μια αναπαράσταση χαρακτήρα τύπου ASCII που αντιστοιχεί σε ένα πραγματικό αριθμό. 9

11 3.4. Δημιουργία GUI στο Matlab Το ΜΑΤLΑΒ προσφέρει στο χρήστη τη δυνατότητα να κατασκευάσει δικές του γραφικές διεπιφάνειες, (GUI). Ένα GUI αποτελείται συνήθως από διάφορα παράθυρα, τα οποία περιέχουν ποικίλα στοιχεία ελέγχου όπως πεδία κειμένου, γραμμές κύλισης, λίστες, πεδία εισαγωγής κειμένου κ.α. Τα παράθυρα αυτά είναι δυνατόν να καλούν το ένα το άλλο, να δέχονται δεδομένα από το χρήστη, να μεταβιβάζουν πιθανώς τα δεδομένα από το ένα παράθυρο στο άλλο και γενικά να επιτελούν διάφορες λειτουργίες. Η ανάπτυξη μίας εφαρμογής σε GUI χωρίζεται σε τέσσερα στάδια: Θεωρητική σχεδίαση της εφαρμογής πριν την υλοποίησή της σε MATLAB. Σχεδίαση της εφαρμογής στο κατάλληλο περιβάλλον (GUIDE Layout Editor) και δημιουργία των απαιτούμενων αντικειμένων. Καθορισμός των ιδιοτήτων του GUI και του κάθε αντικειμένου. Προγραμματισμός του κάθε αντικειμένου, εάν χρειάζεται. To GUIDE είναι το πρόγραμμα σχεδιασμού GUI της Matlab. Εμφανίζεται με την εντολή GUIDE και μας δίνει τη δυνατότητα να σχεδιάσουμε το GUI και να προσθέσουμε τον κώδικα. Το GUIDE για να το πετύχει αυτό δημιουργεί για κάθε νέο παράθυρο δύο αρχεία. Τα αρχεία αυτά είναι το Fig-file και το M-file. Το Fig-file ουσιαστικά είναι το παράθυρο figure, όπου το ΜΑΤLΑΒ αποθηκεύει τα στοιχεία ελέγχου και την ακριβή θέση τους. Εδώ ο προγραμματιστής σχεδιάζει την εμφάνιση του παραθύρου. Στο M-file ο προγραμματιστής πρέπει να γράψει τον κώδικα που θα ενσωματωθεί στα στοιχεία ελέγχου (π.χ. κουμπιά ή φόρμες εισαγωγής δεδομένων), ώστε αυτά να επιτελέσουν τις επιθυμητές λειτουργίες. Πρέπει να σημειωθεί ότι κάθε αρχείο *.fig πρέπει να συνοδεύεται από το αντίστοιχο αρχείο *.m (με το ίδιο όνομα). Αν για κάποιο λόγο, χαθεί ή καταστραφεί το *.m αρχείο, τότε το παράθυρο *.fig δε θα είναι λειτουργικό. Κάθε φορά που κάποιος χρήστης δημιουργεί ένα νέο παράθυρο (figure), το 10

12 GUIDE δημιουργεί αυτομάτως και τους δυο προαναφερθέντες τύπους αρχείων. 11

13 4. ΕΚΤΕΛΕΣΗ ΠΡΟΣΟΜΟΙΩΣΗ ΚΥΚΛΙΚΗΣ ΚΙΝΗΣΗΣ 4.1. Θεωρητικός σχεδιασμός εφαρμογής Η εφαρμογή που θα δημιουργήσουμε αφορά την μελέτη της κυκλική κίνησης μίας σημειακής μάζας, οπτικοποιώντας την εκτέλεση της κίνησης σε ρυθμό προσομοίωσης που επιλέγει ο χρήστης. Οι πράξεις που θα υπολογίζει η εφαρμογή θα αφορούν την εξάρτηση της κεντρομόλου δύναμης από τη μάζα, την ακτίνα της τροχιάς και τη γωνιακή ταχύτητα. Για την καλύτερη λειτουργία του συγκεκριμένου προγράμματος, οι τιμές στις μεταβλητές είναι εντός καθορισμένων οριακών τιμών. Ο χρήστης θα χειρίζεται το πρόγραμμα μέσω μιας διεπιφάνειας, η οποία θα περιέχει τα απαραίτητα στοιχεία ελέγχου: 5 κουμπιά εκτέλεσης εντολών (push_button) για να εκτελούν τις λειτουργίες Εκτέλεση, Διακοπή, Ανανέωση, Έξοδος, Βοήθεια. 6 στοιχεία ελέγχου (edit_text). για πάρουμε την τιμή που θα εισάγει μέσα σε αυτό ο χρήστης. Δημιουργία γραφήματος (axes) σε πραγματικό χρόνο για οπτικοποίηση των αποτελεσμάτων Σχεδιασμός εφαρμογής Αρχικά εκκινούμε το GUIDE και δημιουργούμε ένα νέο παράθυρο-figure. Το αποθηκεύουμε δίνοντάς του ταυτόχρονα το όνομα gkentromolos. Σε αυτό το σημείο το ΜΑΤLΑΒ αυτομάτως εκκινεί τον Μ-file editor και δημιουργεί το αντίστοιχο Μ-file. Παρατηρούμε ότι στο Μ-file δημιουργούνται κάποιες ενσωματωμένες συναρτήσεις, όπως είναι οι ακόλουθες: function varargout = gkentromolos (varargin) function gkentromolos _OpeningFcn(hObject, eventdata, handles, varargin) function varargout = gkentromolos _OutputFcn(hObject, eventdata, handles) 12

14 Οι παραπάνω συναρτήσεις που ενσωματώθηκαν στο Μ-file, είναι απαραίτητες για τη σωστή λειτουργία του παραθύρου. Το ΜΑΤLΑΒ για κάθε μία από αυτές συμπεριλαμβάνει κάποια επεξηγηματικά σχόλια. Συγκεκριμένα, η πρώτη συνάρτηση χρειάζεται ώστε να μπορεί ο χρήστης να καλεί το παράθυρο από τη γραμμή εντολών πληκτρολογώντας το όνομά του (» gkentromolos). Επιπλέον, ο κώδικας που περιλαμβάνεται στο σώμα εντολών της δεύτερης συνάρτησης εκτελείται ακριβώς πριν εκκινήσει το παράθυρο. Τέλος, οι εντολές που υπάρχουν στην τρίτη συνάρτηση, εξάγουν τα αποτελέσματά τους στη γραμμή εντολών του ΜΑΤLΑΒ. Έπειτα θα αρχίσουμε να εισάγουμε από την αριστερή κάθετη γραμμή εργαλείων τα διάφορα στοιχεία ελέγχου. Εισάγουμε πρώτα ένα πλαίσιο (frame), αλλάζοντας το μέγεθός του έτσι ώστε να καλύπτει τον χώρο στον οποίο θα βάλουμε τα στοιχειά έλεγχου της εφαρμογής μας, καθώς και την διαμόρφωση του. Στη συνέχεια εισάγουμε όλα στοιχεία ελέγχου που θα μας χρειαστούν. Αναλυτικά, πέντε push buttons, έξι edit text, έξι static text και axes. 13

15 Συνεχίζουμε αλλάζοντας, εάν θέλουμε, για όλα αυτά τα στοιχεία που έχουμε εισάγει το χρώμα τους κατά τη βούληση μας, καθώς επίσης και το κείμενο που θα φαίνεται επάνω τους αλλά και το μέγεθος των στοιχείων ελέγχου. Επιπλέον, όπως προαναφέραμε, μπορούμε να τα στοιχίσουμε για να πετύχουμε ομοιόμορφη εμφάνιση Προγραμματισμός εφαρμογής Σε αυτό το σημείο στο αντίστοιχο Μ file, παρατηρεί κανείς ότι έχουν ενσωματωθεί πολλές ακόμη συναρτήσεις. Στην συνεχεία θα αρχίσουμε τον προγραμματισμό των push buttons, τα οποία θα εκτελούν κάποιες λειτουργίες. Μέσα στο Μ-file υπάρχουν οι αντίστοιχες συναρτήσεις : function pushbutton1_callback(hobject, eventdata, handles) %Εκτέλεση function pushbutton2 _Callback(hObject, eventdata, handles) % Διακοπή function pushbutton3 _Callback(hObject, eventdata, handles) %Ανανέωση function pushbutton4 _Callback(hObject, eventdata, handles) %Έξοδος function pushbutton5 _Callback(hObject, eventdata, handles) % Βοήθεια Στην πρώτη θα δηλώσουμε τις εντολές που χρειάζονται για να εκτελεστεί η λειτουργία Εκτέλεση. Δηλαδή την εκτέλεση της εφαρμογής και την ενεργοποίηση των λειτουργιών Ανανέωση και Έξοδος. Στην δεύτερη θα δηλώσουμε τις εντολές που χρειάζονται για να εκτελεστεί η λειτουργία Διακοπή. Δηλαδή την παύση εκτέλεσης της εφαρμογής και την ενεργοποίηση των λειτουργιών Συνεχεία, Ανανέωση και Έξοδος. Στην τρίτη θα δηλώσουμε τις εντολές που χρειάζονται για να εκτελεστεί η λειτουργία Ανανέωση. Δηλαδή να διαγράφεται το όποιο αποτέλεσμα της εφαρμογής και να εμφανίζονται κενά (Nul) τα edit texts, για να εισάγει ξανά ο χρήστης τις τιμές και την ενεργοποίηση την λειτουργιάς Εκτέλεση. Στην τέταρτη θα δηλώσουμε τις εντολές που χρειάζονται για να εκτελεστεί η λειτουργία Έξοδος, όπου θα κλείνει η εφαρμογή. Στην πέμπτη θα δηλώσουμε τις εντολές που χρειάζονται για να εκτελεστεί η λειτουργία Βοήθεια, όπου θα παραπέμπει σε βοηθητικό αρχείο με επεξηγήσεις. 14

16 4.4. Εκτέλεση εφαρμογής Κατά την εκτέλεση του προγράμματος εμφανίζεται το figure της εικονικής απεικόνισης της Κυκλικής Κίνησης με προκαθορισμένες τιμές στις μεταβλητές / παραμέτρους Μάζα Κινητού (m), Χρόνος Παρατήρησης (t) και Ρυθμός Προσομοίωσης. Στις τιμές αυτές υπάρχει η δυνατότητα αλλαγής τους. Στις μεταβλητές Ακτίνα Τροχιάς (R), Γραμμική Ταχύτητα(u), Γωνιακή Ταχύτητα (ω), θα πρέπει να δώσουμε τιμές στις δύο από τις τρείς μεταβλητές στα όρια που έχουμε καθορίσει. 15

17 Στην περίπτωση που ο χρήστης δεν δηλώσει τις δυο από τις τρεις μεταβλητές ή καταχωρήσει τιμές σε οπουδήποτε μεταβλητή εκτός των πιο πάνω ορίων, τότε εμφανίζετε μήνυμα λάθους, μέσο της εντολής : h=warndlg(warningstring). if (R>2) hfin=warndlg('βάλτε στην Ακτίνα Τροχιάς τιμή μικρότερη ή ίση του 2'); return Η εντολή εμφανίζει ένα παράθυρο διαλόγου (dialog box) με το μήνυμα προειδοποίησης που είναι δηλωμένο στο string. Η εντολή h=questdlg(warningstring) εμφανίζει παράθυρο διαλόγου (dialog box) με το μήνυμα προειδοποίησης. Το παράθυρο διαλόγου έχει τρία κουπιά, YES, NO, CANCEL και με την επιλογή τους δίνουν τον ανάλογο string στην h. Ο χρήσης δηλώνει τιμές στις μεταβλητές που επιθυμεί, μέσο των edit text, και πατώντας το push button Εκτέλεση, η εφαρμογή αρχίζει να εκτελείται. Η εφαρμογή εκτελείτε για χρόνο παρατήρησης (t) που έχει δηλώσει ο χρήστης. Κατά την διάρκεια της εκτέλεσης ο χρήστης έχει την δυνατότητα : 16

18 να λάβει τις τιμές των φυσικών παραμέτρων της κυκλικής κίνησης καθώς και την τιμή της κεντρομόλου δύναμης Οι τιμές των φυσικών παραμέτρων της κυκλικής κίνησης υπολογιστήκαν βάση τις τιμές των μεταβλητών που δήλωσε ο χρήστης και με βάση τις μαθηματικές σχέσεις που δηλώθηκαν στο πρόγραμμα : R ί ά R ή ύ ή ύ R 2 υ Fκ m. R ό ύ a1=isnan(r); %η εντολή isnan (is not a number) επιστρέφει true or false a2=isnan(omega); a3=isnan(v); if (a1==1) R=v/omega; if (a2==1) omega=v/r; if (a3==1) v=omega*r; Fk=m*v*v/R; Στην περίπτωση τις πιο πάνω εφαρμογής η κεντρομόλος δύναμη που αναγκάζει τη σφαίρα να κινηθεί σε κυκλική τροχιά είναι η τάση του νήματος. ή Fκ m. 2 υ R ό ύ 17

19 Αν η σφαίρα περιφέρεται με ολοένα αυξανόμενη ταχύτητα, τότε σύμφωνα με τη πιο πάνω σχέση απαιτείται μεγαλύτερη δύναμη για να τη συγκρατήσει σε κυκλική τροχιά. Αν η δύναμη αυτή υπερβεί την τάση θραύσης του νήματος, τότε αυτό κόβεται και η σφαίρα κινείται ευθύγραμμα κατά την εφαπτομένη της τροχιάς στη θέση που κόπηκε το νήμα. Στην περίπτωση τις εφαρμογής αυτής η τάση θραύσης του νήματος ορίστηκε 200 kgm/sec 2. F K >200 Όταν η τιμή της κεντρομόλου είναι μεγαλύτερη από 200 kgm/sec2 τότε επιτρέπουμε στο σώμα να εκτελέσει την κυκλική κίνηση για μια περίοδο και τότε δείχνουμε την πορεία που ακλουθεί το σώμα μετά το σπάσιμο του νήματος, το όποιο κινείται ευθύγραμμα κατά την εφαπτομένη του τροχιά στη θέση που κόπηκε το νήμα. Η πορεία εκτέλεσης του προγράμματος με βάση την τιμή της κεντρομόλου δύναμης, έγινε με την χρήση της δομής if else, oπου: if (Fk<=200) %εντολές else %εντολές 18

20 19

21 να παρακολουθεί τη πορεία του σώματος και των δυνάμεων που ασκούνται σε αυτό. Για να επιτύχουμε το πιο πάνω σχεδιάγραμμα που απεικονίζει την κίνηση του σώματος, το όποιο είναι στερεωμένο σε νήμα και εκτελεί κυκλική κίνηση με την βοήθεια ενός χεριού, χρησιμοποιήσαμε την εντολή fill όπου δέχεται συντεταμένες (Χ,Υ)και δημιουργεί κλειστά πολύγωνα με καθορισμένο χρώμα. 20

22 ΠΑΡΑΡΤΗΜΑ Α. Κώδικας MATLAB function varargout = kentromolos(varargin) % KENTROMOLOS M-file for kentromolos.fig % KENTROMOLOS, by itself, creates a new KENTROMOLOS or raises the existing % singleton*. % % H = KENTROMOLOS returns the handle to a new KENTROMOLOS or the handle to % the existing singleton*. % % KENTROMOLOS('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in KENTROMOLOS.M with the given input arguments. % % KENTROMOLOS('Property','Value',...) creates a new KENTROMOLOS or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before kentromolos_openingfcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to kentromolos_openingfcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help kentromolos % Begin initialization code - DO NOT EDIT gui_singleton = 1; gui_state = struct('gui_name', mfilename,... 'gui_singleton', gui_singleton,... 'gui_layoutfcn', [],... 'gui_callback', []); if nargin && ischar(varargin{1}) gui_state.gui_callback = str2func(varargin{1}); if nargout [varargout{1:nargout}] = gui_mainfcn(gui_state, varargin{:}); else gui_mainfcn(gui_state, varargin{:}); % End initialization code - DO NOT EDIT % --- Executes just before kentromolos is made visible. function kentromolos_openingfcn(hobject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hobject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to kentromolos (see VARARGIN) % Choose default command line output for kentromolos handles.output = hobject; % Update handles structure guidata(hobject, handles); % UIWAIT makes kentromolos wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = kentromolos_outputfcn(hobject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hobject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; function edit1_callback(hobject, eventdata, handles) % hobject handle to edit1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) 21

23 % Hints: get(hobject,'string') returns contents of edit1 as text % str2double(get(hobject,'string')) returns contents of edit1 as a double % --- Executes during object creation, after setting all properties. function edit1_createfcn(hobject, eventdata, handles) % hobject handle to edit1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hobject,'backgroundcolor'), get(0,'defaultuicontrolbackgroundcolor')) set(hobject,'backgroundcolor','white'); function edit2_callback(hobject, eventdata, handles) % hobject handle to edit2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hobject,'string') returns contents of edit2 as text % str2double(get(hobject,'string')) returns contents of edit2 as a double % --- Executes during object creation, after setting all properties. function edit2_createfcn(hobject, eventdata, handles) % hobject handle to edit2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hobject,'backgroundcolor'), get(0,'defaultuicontrolbackgroundcolor')) set(hobject,'backgroundcolor','white'); function edit3_callback(hobject, eventdata, handles) % hobject handle to edit3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hobject,'string') returns contents of edit3 as text % str2double(get(hobject,'string')) returns contents of edit3 as a double % --- Executes during object creation, after setting all properties. function edit3_createfcn(hobject, eventdata, handles) % hobject handle to edit3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hobject,'backgroundcolor'), get(0,'defaultuicontrolbackgroundcolor')) set(hobject,'backgroundcolor','white'); function edit4_callback(hobject, eventdata, handles) % hobject handle to edit4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hobject,'string') returns contents of edit4 as text % str2double(get(hobject,'string')) returns contents of edit4 as a double % --- Executes during object creation, after setting all properties. function edit4_createfcn(hobject, eventdata, handles) % hobject handle to edit4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hobject,'backgroundcolor'), get(0,'defaultuicontrolbackgroundcolor')) set(hobject,'backgroundcolor','white'); function edit5_callback(hobject, eventdata, handles) % hobject handle to edit5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) 22

24 % Hints: get(hobject,'string') returns contents of edit5 as text % str2double(get(hobject,'string')) returns contents of edit5 as a double % --- Executes during object creation, after setting all properties. function edit5_createfcn(hobject, eventdata, handles) % hobject handle to edit5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hobject,'backgroundcolor'), get(0,'defaultuicontrolbackgroundcolor')) set(hobject,'backgroundcolor','white'); function edit6_callback(hobject, eventdata, handles) % hobject handle to edit6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hobject,'string') returns contents of edit6 as text % str2double(get(hobject,'string')) returns contents of edit6 as a double % --- Executes during object creation, after setting all properties. function edit6_createfcn(hobject, eventdata, handles) % hobject handle to edit6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hobject,'backgroundcolor'), get(0,'defaultuicontrolbackgroundcolor')) set(hobject,'backgroundcolor','white'); % --- Executes on button press in pushbutton1. function pushbutton1_callback(hobject, eventdata, handles) % hobject handle to pushbutton1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global m; global v; global omega; global RR; global t; global ryt; m=str2double(get(handles.edit1,'string')); %object mass RR=str2double(get(handles.edit2,'String')); %orbit radius omega=str2double(get(handles.edit3,'string')); %angular velocity v=str2double(get(handles.edit4,'string')); %linear velocity t=str2double(get(handles.edit5,'string')); %observation time ryt=str2double(get(handles.edit6,'string')); %simulation speed global stam; stam=0; set(handles.pushbutton2,'string','διακοπή'); global status; status=0; %check if RR, omega and v are specified a1=isnan(rr); a2=isnan(omega); a3=isnan(v); suma=a1+a2+a3; %check variable values and issue warnings if values are outside of %specified limits if (suma~=1) hfin=warndlg('επιλέξτε ακριβώς 2 από τις τρείς μεταβλητές'); return if (ryt>0.5 ryt<0.001) h=warndlg('βάλτε στο Ρυθμό Προσομοίωσης τιμή μεταξύ και 0.5'); return 23

25 if (t<10) hfin=warndlg('βάλτε στο Χρόνο Παρατήρησης τιμή μεγαλύτερη ή ίση του 10'); return if (t>400) hfin=warndlg('βάλτε στο Χρόνο Παρατήρησης τιμή μικρότερη ή ίση του 400'); return if (m<1) hfin=warndlg('βάλτε στη Μάζα τιμή μεγαλύτερη ή ίση του 1'); return if (m>3) hfin=warndlg('βάλτε στη Μάζα τιμή μικρότερη ή ίση του 3'); return if (a1==0) if (RR<0.5) hfin=warndlg('βάλτε στην Ακτίνα Τροχιάς τιμή μεγαλύτερη ή ίση του 0.5'); return if (RR>2) hfin=warndlg('βάλτε στην Ακτίνα Τροχιάς τιμή μικρότερη ή ίση του 2'); return if (a2==0) if (omega<5) hfin=warndlg('βάλτε στην Γωνιακή Ταχύτητα τιμή μεγαλύτερη ή ίση του 5'); return if (omega>10) hfin=warndlg('βάλτε στην Γωνιακή Ταχύτητα τιμή μικρότερη ή ίση του 10'); return if (a3==0) if (v<5) hfin=warndlg('βάλτε στη Γραμμική Ταχύτητα τιμή μεγαλύτερη ή ίση του 5'); return if (v>10) hfin=warndlg('βάλτε στη Γραμμική Ταχύτητα τιμή μικρότερη ή ίση του 10'); return ryte =-ryt ; set(handles.edit1,'enable','off'); set(handles.edit2,'enable','off'); set(handles.edit3,'enable','off'); set(handles.edit4,'enable','off'); set(handles.edit5,'enable','off'); set(handles.edit6,'enable','off'); set(handles.pushbutton1,'enable','off'); set(handles.pushbutton3,'enable','off') set(handles.pushbutton4,'enable','off') axes(handles.axes1) axis off; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 24

26 %set some variables L0=1; th=0:0.01:pi; th1=0:0.01:2*pi; Rmin=0.0125; Rmin1=0.04; L=0.5; Dx=0.325; Dy=-0.025; %set initial co-ordinates of objects on the diagram %wall co-ordinates xtoixos=[0,3,3,0]; ytoixos=[-0.5,-0.5,0.5,0.5]; %hand co-ordinates xxeri=[1.00, , , , , , , Rmin*cos(3*pi/2-th), Rmin*cos(3*pi/2-th), Rmin*cos(3*pi/2-th), Rmin*cos(3*pi/2-th)]; xxeri=xxeri+l-0.06*l ; yxeri=[0.40, , , , , , , Rmin+Rmin*sin(3*pi/2-th), Rmin+Rmin*sin(3*pi/2-th), Rmin+Rmin*sin(3*pi/2-th), Rmin+Rmin*sin(3*pi/2-th)]; yxeri=yxeri ; xxeri1=[1.015+rmin*cos(3*pi/2-th), ,1.060, Rmin*cos(pi/2-th),1.015]; xxeri1=xxeri1+l-0.06*l ; yxeri1=[0.30+rmin+rmin*sin(3*pi/2-th), ,0.325, Rmin+Rmin*sin(pi/2-th),0.30]; yxeri1=yxeri ; xxeri2=[1.005+rmin*cos(3*pi/2-th), ,1.060, Rmin*cos(pi/2-th),1.005]; xxeri2=xxeri2+l-0.06*l ; yxeri2=[0.325+rmin+rmin*sin(3*pi/2-th), ,0.350, Rmin+Rmin*sin(pi/2-th),0.325]; yxeri2=yxeri ; xxeri3=[0.99+rmin*cos(3*pi/2-th), ,1.060, Rmin*cos(pi/2-th),0.99]; xxeri3=xxeri3+l-0.06*l ; yxeri3=[0.350+rmin+rmin*sin(3*pi/2-th), ,0.375, Rmin+Rmin*sin(pi/2-th),0.350]; yxeri3=yxeri ; xxeri4=[1.00+rmin*cos(3*pi/2-th), ,1.060, Rmin*cos(pi/2-th),1.00]; xxeri4=xxeri4+l-0.06*l ; 25

27 yxeri4=[0.375+rmin+rmin*sin(3*pi/2-th), ,0.40, Rmin+Rmin*sin(pi/2-th),0.375]; yxeri4=yxeri ; xxeri5=[1.10+rmin1*cos(pi/2+2*th/3), Rmin1*cos(pi/2+2*pi/3)+3*Rmin*sin(th/2),1.125]; xxeri5=xxeri5+l-0.06*l ; yxeri5=[0.40-rmin1+rmin1*sin(pi/2+2*th/3), Rmin1+Rmin1*sin(pi/2+2*pi/3)-2*Rmin*cos(pi/2+th/2),0.38]; yxeri5=yxeri ; xxeri6=[0.1,0.15+rmin1*cos(5*pi/4+th/2),0.15+rmin1*cos(5*pi/4+pi/2-th/2)]; xxeri6=xxeri6+l-0.06*l+0.50; yxeri6=[0.0,rmin1*sin(5*pi/4+th/2),rmin1*sin(5*pi/4+pi/2-th/2)]; yxeri6=yxeri ; %bar co-ordinates xstick=[1.4,1.42,1.42,1.4]-0.035; ystick=[0.185,0.185,0.2,0.2]-0.024; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %5<w<10 %1<m<3 %t=10; %ryt=0.05; %m=3; %omega=5; %v=5; %RR=v/omega; %if not specified set the radius of rotation if (a1==1) RR=v/omega; %if not specified set the angular velocity if (a2==1) omega=v/rr; %if not specified set the linear velocity if (a3==1) v=omega*rr; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %force= mass * (linear velocity)^2 / radius; Fk=m*v*v/RR; %Lom = 0.1 * (angular velocity) / 5 Lom=0.1*omega/5; a=0.65*rr; b=0.05*rr; %pythagoras theorem for ab ab=(a*a+b*b)^0.5; xc= ; yc= ; Rb=0.06*(m/3)^(1/3); LFk=0.5; LFkx=LFk*a; LFky=LFk*b; Lv=0.4; Lvx=Lv*a; Lvy=Lv*b; %estimate orbit in x-direction: a*cosine(theta1), same but shifted by xtroxia=[a*cos(th1),(a+0.005)*cos(th1)]+xc; %estimate orbit in y-direction: a*sine(theta1), same but shifted by ytroxia=[b*sin(th1),(b+0.005)*sin(th1)]+yc; xvectorom=xc+[0.0065,0.0065,0.025,0.0,-0.025, , ]; yvectorom=yc+[0.0,lom,lom,lom+0.02,lom,lom,0.0]; xpivakas=[0.2,2.75,2.75,0.2]; ypivakas=[ ,-0.05,-0.05]; 26

28 xpivakasb=[0.18,2.77,2.77,0.18]; ypivakasb=[ ,-0.04,-0.04]; xgom=xc; ygom=yc+lom+0.03; nm=num2str(0.01*round(100*m)); nv=num2str(0.01*round(100*v)); nr=num2str(0.01*round(100*rr)); nom=num2str(0.01*round(100*omega)); nfk=num2str(0.01*round(100*fk)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t1=(3*pi/2)/omega; NN=t1/0.05; NN=round(NN); %time step for simulation if Force > 200N Dt=t1/NN; %if the force is smaller than 200N, execute this loop; else execute loop if (Fk<=200) %%%%%%%%%%%% %simulate system for t seconds in time steps of 0.05 for time=0.0:0.05:t if (stam==1) cc1=stam; while (cc1==1) cc1=stam; pause(0.01); if (status==1) return nt=num2str(0.01*round(100*time)); phi1=omega*time; %calculate angle at each time step xhand=(a/20)*cos(phi1); yhand=(b/20)*sin(phi1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %co-odrinates for hand image xxeri=[1.00, , , , , , , Rmin*cos(3*pi/2-th), Rmin*cos(3*pi/2-th), Rmin*cos(3*pi/2-th), Rmin*cos(3*pi/2-th)]; xxeri=xxeri+l-0.06*l xhand; yxeri=[0.40, , , , , , , Rmin+Rmin*sin(3*pi/2-th), Rmin+Rmin*sin(3*pi/2-th), Rmin+Rmin*sin(3*pi/2-th), Rmin+Rmin*sin(3*pi/2-th)]; yxeri=yxeri yhand; xxeri1=[1.015+rmin*cos(3*pi/2-th), ,1.060,... 27

29 Rmin*cos(pi/2-th),1.015]; xxeri1=xxeri1+l-0.06*l xhand; yxeri1=[0.30+rmin+rmin*sin(3*pi/2-th), ,0.325, Rmin+Rmin*sin(pi/2-th),0.30]; yxeri1=yxeri yhand; xxeri2=[1.005+rmin*cos(3*pi/2-th), ,1.060, Rmin*cos(pi/2-th),1.005]; xxeri2=xxeri2+l-0.06*l xhand; yxeri2=[0.325+rmin+rmin*sin(3*pi/2-th), ,0.350, Rmin+Rmin*sin(pi/2-th),0.325]; yxeri2=yxeri yhand; xxeri3=[0.99+rmin*cos(3*pi/2-th), ,1.060, Rmin*cos(pi/2-th),0.99]; xxeri3=xxeri3+l-0.06*l xhand; yxeri3=[0.350+rmin+rmin*sin(3*pi/2-th), ,0.375, Rmin+Rmin*sin(pi/2-th),0.350]; yxeri3=yxeri yhand; xxeri4=[1.00+rmin*cos(3*pi/2-th), ,1.060, Rmin*cos(pi/2-th),1.00]; xxeri4=xxeri4+l-0.06*l xhand; yxeri4=[0.375+rmin+rmin*sin(3*pi/2-th), ,0.40, Rmin+Rmin*sin(pi/2-th),0.375]; yxeri4=yxeri yhand; xxeri5=[1.10+rmin1*cos(pi/2+2*th/3), Rmin1*cos(pi/2+2*pi/3)+3*Rmin*sin(th/2),1.125]; xxeri5=xxeri5+l-0.06*l xhand; yxeri5=[0.40-rmin1+rmin1*sin(pi/2+2*th/3), Rmin1+Rmin1*sin(pi/2+2*pi/3)-2*Rmin*cos(pi/2+th/2),0.38]; yxeri5=yxeri yhand; xxeri6=[0.1,0.15+rmin1*cos(5*pi/4+th/2),0.15+rmin1*cos(5*pi/4+pi/2-th/2)]; xxeri6=xxeri6+l-0.06*l+0.50+xhand; yxeri6=[0.0,rmin1*sin(5*pi/4+th/2),rmin1*sin(5*pi/4+pi/2-th/2)]; yxeri6=yxeri yhand; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %co-ordinates for bar xbar=xc+[0.005*sin(phi1),0.005*sin(phi1)+a*cos(phi1), *sin(phi1)+a*cos(phi1),-0.005*sin(phi1)]; ybar=yc+[-0.005*cos(phi1),-0.005*cos(phi1)+b*sin(phi1), *cos(phi1)+b*sin(phi1),0.005*cos(phi1)]; xbody=xc+a*cos(phi1)+rb*cos(th1); ybody=yc+b*sin(phi1)+(rb-0.6*rb)*sin(th1); xbody1=xc+a*cos(phi1)+0.97*rb*cos(th1); ybody1=yc+b*sin(phi1)+0.97*(rb-0.6*rb)*sin(th1)+0.002; xbody2=xc+a*cos(phi1)+0.93*rb*cos(th1); ybody2=yc+b*sin(phi1)+0.93*(rb-0.6*rb)*sin(th1)+0.002; xbody3=xc+a*cos(phi1)+0.85*rb*cos(th1); ybody3=yc+b*sin(phi1)+0.85*(rb-0.6*rb)*sin(th1)+0.002; xbody4=xc+a*cos(phi1)+0.75*rb*cos(th1); ybody4=yc+b*sin(phi1)+0.75*(rb-0.6*rb)*sin(th1) ;

30 xbody5=xc+a*cos(phi1)+0.62*rb*cos(th1); ybody5=yc+b*sin(phi1)+0.62*(rb-0.6*rb)*sin(th1) ; xbody6=xc+a*cos(phi1)+0.48*rb*cos(th1); ybody6=yc+b*sin(phi1)+0.48*(rb-0.6*rb)*sin(th1)+0.003; xbody7=xc+a*cos(phi1)+0.32*rb*cos(th1); ybody7=yc+b*sin(phi1)+0.32*(rb-0.6*rb)*sin(th1)+0.003; xbody8=xc+a*cos(phi1)+0.14*rb*cos(th1); ybody8=yc+b*sin(phi1)+0.14*(rb-0.6*rb)*sin(th1) ; xbody9=xc+a*cos(phi1)+0.02*rb*cos(th1); ybody9=yc+b*sin(phi1)+0.02*(rb-0.025)*sin(th1) ; xk=xc+a*cos(phi1); yk=yc+b*sin(phi1); xvectorf=xk+[0.005*sin(phi1),0.005*sin(phi1)-lfkx*cos(phi1), *sin(phi1)-LFkx*cos(phi1)+0.01*sin(phi1),... -(LFkx+0.085*a)*cos(phi1), *sin(phi1)-LFkx*cos(phi1)-0.01*sin(phi1), *sin(phi1)-LFkx*cos(phi1),-0.005*sin(phi1)]; yvectorf=yk+[-0.005*cos(phi1),-0.005*cos(phi1)-lfky*sin(phi1), *cos(phi1)-LFky*sin(phi1)-0.01*cos(phi1),... -(LFky+0.085*b)*sin(phi1), *cos(phi1)-LFky*sin(phi1)+0.01*cos(phi1), *cos(phi1)-LFky*sin(phi1),0.005*cos(phi1)]; xgf=xc+0.8*a*cos(phi1-pi/10); ygf=yc+0.8*b*sin(phi1-pi/10); xgv=xc+1.2*a*cos(phi1+pi/10); ygv=yc+1.2*b*sin(phi1+pi/10); xvectorv=xk+[0.004*cos(phi1),0.004*cos(phi1)-lvx*sin(phi1)/ab, *cos(phi1)-Lvx*sin(phi1)/ab+0.02*a*cos(phi1)/ab,... -(Lvx+0.085*a)*sin(phi1)/ab, *cos(phi1)-Lvx*sin(phi1)/ab-0.02*a*cos(phi1)/ab, *cos(phi1)-Lvx*sin(phi1)/ab,-0.004*cos(phi1)]; yvectorv=yk+[0.004*sin(phi1),0.004*sin(phi1)+lvy*cos(phi1)/ab, *sin(phi1)+Lvy*cos(phi1)/ab+0.02*b*sin(phi1)/ab,... (Lvy+0.085*b)*cos(phi1)/ab, *sin(phi1)+Lvy*cos(phi1)/ab-0.02*b*sin(phi1)/ab, *sin(phi1)+Lvy*cos(phi1)/ab,-0.004*sin(phi1)]; %start drawing image fill(xtoixos,ytoixos,[ ],... xpivakasb, ypivakasb,[0.5,0.4,0.3],... xpivakas,ypivakas,[0.95,0.95,0.95],... xstick,ystick,[0.2,0.2,0.2],... xtroxia,ytroxia,[0.2,0.2,0.2],... xvectorf,yvectorf,[0,0.0,1],... xvectorv,yvectorv,[1,1,0],... xvectorom,yvectorom,[0.9,0.,0.9],... xbody,ybody,[0.4,0.4,0.],... xbody1,ybody1,[0.42,0.42,0.2],... xbody2,ybody2,[0.44,0.44,0.2],... xbody3,ybody3,[0.46,0.46,0.2],... xbody4,ybody4,[0.49,0.49,0.2],... xbody5,ybody5,[0.52,0.52,0.2],... xbody6,ybody6,[0.56,0.56,0.2],... xbody7,ybody7,[0.6,0.6,0.2],... xbody8,ybody8,[0.65,0.65,0.2],... xbody9,ybody9,[0.7,0.7,0.2],... 'Linestyle','None') hold on %draw hand fill(xxeri+dx,yxeri+dy,[0.45,0.45,0.1],... xxeri6+dx,yxeri6+dy,[0.45,0.45,0.1],... xxeri1+dx,yxeri1+dy,[0.45,0.45,0.1],... xxeri2+dx,yxeri2+dy,[0.45,0.45,0.1],... xxeri3+dx,yxeri3+dy,[0.45,0.45,0.1],... xxeri4+dx,yxeri4+dy,[0.45,0.45,0.1],... xxeri5+dx,yxeri5+dy,[0.45,0.45,0.1]) 29

31 hold on %draw orbit and object body fill(xtroxia,ytroxia,[0.2,0.2,0.2],... xbar,ybar,[0.2,0.2,0.2],... xvectorf,yvectorf,[0,0.0,1],... xvectorv,yvectorv,[1,1,0],... xvectorom,yvectorom,[0.9,0.,0.9],... xbody,ybody,[0.4,0.4,0.],... xbody1,ybody1,[0.42,0.42,0.2],... xbody2,ybody2,[0.44,0.44,0.2],... xbody3,ybody3,[0.46,0.46,0.2],... xbody4,ybody4,[0.49,0.49,0.2],... xbody5,ybody5,[0.52,0.52,0.2],... xbody6,ybody6,[0.56,0.56,0.2],... xbody7,ybody7,[0.6,0.6,0.2],... xbody8,ybody8,[0.65,0.65,0.2],... xbody9,ybody9,[0.7,0.7,0.2],... 'Linestyle','None') hold off % text(0.8,-0.07,'ομαλη ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ - Κεντρομόλος Δύναμη ','Color','b','Fontsize',9) % text(1.75,-0.07,'γραμμική Ταχύτητα','Color','k','Fontsize',8) %%%%%% %fill in table with variables, their values, units and equations text(xgf,ygf,'f_κ','color','b','fontsize',8) text(xgv,ygv,'υ','color','y','fontsize',8) text(xgom,ygom,'ω','color',[ ],'Fontsize',8) text(0.3, ,'m =','Color','k','Fontsize',8) text(0.4, ,nm,'color','k','fontsize',8) text(0.55, ,'kgm','color','k','fontsize',8) text(0.3, ,'r =','Color','k','Fontsize',8) text(0.4, ,nr,'color','k','fontsize',8) text(0.55, ,'m','color','k','fontsize',8) text(0.3, ,'υ =','Color','k','Fontsize',8) text(0.4, ,nv,'color','k','fontsize',8) text(0.55, ,'m/sec','color','k','fontsize',8) text(0.3, ,'ω =','Color','k','Fontsize',8) text(0.4, ,nom,'color','k','fontsize',8) text(0.55, ,'rad/sec','color','k','fontsize',8) text(0.3, ,'f_κ =','Color','k','Fontsize',8) text(0.4, ,nfk,'color','k','fontsize',8) text(0.55, ,'kgm/sec^2','color','k','fontsize',8) text(0.3+1, ,'t =','Color','b','Fontsize',8) text(0.4+1, ,nt,'color','b','fontsize',8) text(0.55+1, ,'sec','color','b','fontsize',8) axis([0,3,-0.5,0.5]) axis off arx1 = [0.85, 0.95] ; tel1 = [-0.12, -0.12] ; line(arx1, tel1, 'Color','r'); text( , ,'mυ^2','color','r','fontsize',9) text( , ,'F_κ = (1)','Color','r','Fontsize',9) text( , ,'r ','Color','r','Fontsize',9) text( , ,'υ = ωr (2)','Color','b','Fontsize',9) text( , ,'F_κ = mω^2r (3)','Color','r','Fontsize',9) text( , ,'F_κ = mωυ pause(ryte) (4)','Color','r','Fontsize',9) %if Force is >200N, execute this loop which shows that the object excapes %the orbit 30

32 %%%%% else %%%%% % pause(1000) for time=0.0:dt:t1 if (stam==1) cc1=stam; while (cc1==1) cc1=stam; pause(0.01); if (status==1) return nt=num2str(0.01*round(100*time)); %estimate angle of rotation phi1=omega*time; xhand=(a/20)*cos(phi1); yhand=(b/20)*sin(phi1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xxeri=[1.00, , , , , , , Rmin*cos(3*pi/2-th), Rmin*cos(3*pi/2-th), Rmin*cos(3*pi/2-th), Rmin*cos(3*pi/2-th)]; xxeri=xxeri+l-0.06*l xhand; yxeri=[0.40, , , , , , , Rmin+Rmin*sin(3*pi/2-th), Rmin+Rmin*sin(3*pi/2-th), Rmin+Rmin*sin(3*pi/2-th), Rmin+Rmin*sin(3*pi/2-th)]; yxeri=yxeri yhand; xxeri1=[1.015+rmin*cos(3*pi/2-th), ,1.060, Rmin*cos(pi/2-th),1.015]; xxeri1=xxeri1+l-0.06*l xhand; yxeri1=[0.30+rmin+rmin*sin(3*pi/2-th), ,0.325, Rmin+Rmin*sin(pi/2-th),0.30]; yxeri1=yxeri yhand; xxeri2=[1.005+rmin*cos(3*pi/2-th), ,1.060, Rmin*cos(pi/2-th),1.005]; xxeri2=xxeri2+l-0.06*l xhand; yxeri2=[0.325+rmin+rmin*sin(3*pi/2-th), ,0.350, Rmin+Rmin*sin(pi/2-th),0.325]; yxeri2=yxeri yhand; xxeri3=[0.99+rmin*cos(3*pi/2-th), ,1.060, Rmin*cos(pi/2-th),0.99]; 31

33 32 xxeri3=xxeri3+l-0.06*l xhand; yxeri3=[0.350+rmin+rmin*sin(3*pi/2-th), ,0.375, Rmin+Rmin*sin(pi/2-th),0.350]; yxeri3=yxeri yhand; xxeri4=[1.00+rmin*cos(3*pi/2-th), ,1.060, Rmin*cos(pi/2-th),1.00]; xxeri4=xxeri4+l-0.06*l xhand; yxeri4=[0.375+rmin+rmin*sin(3*pi/2-th), ,0.40, Rmin+Rmin*sin(pi/2-th),0.375]; yxeri4=yxeri yhand; xxeri5=[1.10+rmin1*cos(pi/2+2*th/3), Rmin1*cos(pi/2+2*pi/3)+3*Rmin*sin(th/2),1.125]; xxeri5=xxeri5+l-0.06*l xhand; yxeri5=[0.40-rmin1+rmin1*sin(pi/2+2*th/3), Rmin1+Rmin1*sin(pi/2+2*pi/3)-2*Rmin*cos(pi/2+th/2),0.38]; yxeri5=yxeri yhand; xxeri6=[0.1,0.15+rmin1*cos(5*pi/4+th/2),0.15+rmin1*cos(5*pi/4+pi/2-th/2)]; xxeri6=xxeri6+l-0.06*l+0.50+xhand; yxeri6=[0.0,rmin1*sin(5*pi/4+th/2),rmin1*sin(5*pi/4+pi/2-th/2)]; yxeri6=yxeri yhand; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xbar=xc+[0.005*sin(phi1),0.005*sin(phi1)+a*cos(phi1), *sin(phi1)+a*cos(phi1),-0.005*sin(phi1)]; ybar=yc+[-0.005*cos(phi1),-0.005*cos(phi1)+b*sin(phi1), *cos(phi1)+b*sin(phi1),0.005*cos(phi1)]; xbody=xc+a*cos(phi1)+rb*cos(th1); ybody=yc+b*sin(phi1)+(rb-0.6*rb)*sin(th1); xbody1=xc+a*cos(phi1)+0.97*rb*cos(th1); ybody1=yc+b*sin(phi1)+0.97*(rb-0.6*rb)*sin(th1)+0.002; xbody2=xc+a*cos(phi1)+0.93*rb*cos(th1); ybody2=yc+b*sin(phi1)+0.93*(rb-0.6*rb)*sin(th1)+0.002; xbody3=xc+a*cos(phi1)+0.85*rb*cos(th1); ybody3=yc+b*sin(phi1)+0.85*(rb-0.6*rb)*sin(th1)+0.002; xbody4=xc+a*cos(phi1)+0.75*rb*cos(th1); ybody4=yc+b*sin(phi1)+0.75*(rb-0.6*rb)*sin(th1) ; xbody5=xc+a*cos(phi1)+0.62*rb*cos(th1); ybody5=yc+b*sin(phi1)+0.62*(rb-0.6*rb)*sin(th1) ; xbody6=xc+a*cos(phi1)+0.48*rb*cos(th1); ybody6=yc+b*sin(phi1)+0.48*(rb-0.6*rb)*sin(th1)+0.003; xbody7=xc+a*cos(phi1)+0.32*rb*cos(th1); ybody7=yc+b*sin(phi1)+0.32*(rb-0.6*rb)*sin(th1)+0.003; xbody8=xc+a*cos(phi1)+0.14*rb*cos(th1); ybody8=yc+b*sin(phi1)+0.14*(rb-0.6*rb)*sin(th1) ; xbody9=xc+a*cos(phi1)+0.02*rb*cos(th1); ybody9=yc+b*sin(phi1)+0.02*(rb-0.6*rb)*sin(th1) ; xk=xc+a*cos(phi1); yk=yc+b*sin(phi1); xvectorf=xk+[0.005*sin(phi1),0.005*sin(phi1)-lfkx*cos(phi1), *sin(phi1)-LFkx*cos(phi1)+0.01*sin(phi1),... -(LFkx+0.085*a)*cos(phi1), *sin(phi1)-LFkx*cos(phi1)-0.01*sin(phi1), *sin(phi1)-LFkx*cos(phi1),-0.005*sin(phi1)]; yvectorf=yk+[-0.005*cos(phi1),-0.005*cos(phi1)-lfky*sin(phi1), *cos(phi1)-LFky*sin(phi1)-0.01*cos(phi1),...

34 -(LFky+0.085*b)*sin(phi1), *cos(phi1)-LFky*sin(phi1)+0.01*cos(phi1), *cos(phi1)-LFky*sin(phi1),0.005*cos(phi1)]; xgf=xc+0.8*a*cos(phi1-pi/10); ygf=yc+0.8*b*sin(phi1-pi/10); xgv=xc+1.2*a*cos(phi1+pi/10); ygv=yc+1.2*b*sin(phi1+pi/10); xvectorv=xk+[0.004*cos(phi1),0.004*cos(phi1)-lvx*sin(phi1)/ab, *cos(phi1)-Lvx*sin(phi1)/ab+0.04*a*cos(phi1)/ab,... -(Lvx+0.085*a)*sin(phi1)/ab, *cos(phi1)-Lvx*sin(phi1)/ab-0.04*a*cos(phi1)/ab, *cos(phi1)-Lvx*sin(phi1)/ab,-0.004*cos(phi1)]; yvectorv=yk+[0.004*sin(phi1),0.004*sin(phi1)+lvy*cos(phi1)/ab, *sin(phi1)+Lvy*cos(phi1)/ab+0.04*b*sin(phi1)/ab,... (Lvy+0.085*b)*cos(phi1)/ab, *sin(phi1)+Lvy*cos(phi1)/ab-0.04*b*sin(phi1)/ab, *sin(phi1)+Lvy*cos(phi1)/ab,-0.004*sin(phi1)]; fill(xtoixos,ytoixos,[ ],... xpivakasb, ypivakasb,[0.5,0.4,0.3],... xpivakas,ypivakas,[0.95,0.95,0.95],... xstick,ystick,[0.5,0.5,0.5],... xtroxia,ytroxia,[0.2,0.2,0.2],... xvectorf,yvectorf,[0,0.0,1],... xvectorv,yvectorv,[1.0,1.0,0.0],... xvectorom,yvectorom,[0.9,1.0,0.9],... xbody,ybody,[0.7,0.7,0.2],... xbody,ybody,[0.4,0.4,0.],... xbody1,ybody1,[0.42,0.42,0.2],... xbody2,ybody2,[0.44,0.44,0.2],... xbody3,ybody3,[0.46,0.46,0.2],... xbody4,ybody4,[0.49,0.49,0.2],... xbody5,ybody5,[0.52,0.52,0.2],... xbody6,ybody6,[0.56,0.56,0.2],... xbody7,ybody7,[0.6,0.6,0.2],... xbody8,ybody8,[0.65,0.65,0.2],... xbody9,ybody9,[0.7,0.7,0.2],... 'Linestyle','None') hold on fill(xxeri+dx,yxeri+dy,[0.45,0.45,0.1],... xxeri6+dx,yxeri6+dy,[0.45,0.45,0.1],... xxeri1+dx,yxeri1+dy,[0.45,0.45,0.1],... xxeri2+dx,yxeri2+dy,[0.45,0.45,0.1],... xxeri3+dx,yxeri3+dy,[0.45,0.45,0.1],... xxeri4+dx,yxeri4+dy,[0.45,0.45,0.1],... xxeri5+dx,yxeri5+dy,[0.45,0.45,0.1]) hold on fill(xtroxia,ytroxia,[0.2,0.2,0.2],... xbar,ybar,[0.2,0.2,0.2],... xvectorf,yvectorf,[0,0.0,1],... xvectorv,yvectorv,[1.0,1.0,0.0],... xvectorom,yvectorom,[0.9,0.,0.9],... xbody,ybody,[0.7,0.7,0.2],... xbody,ybody,[0.4,0.4,0.],... xbody1,ybody1,[0.42,0.42,0.2],... xbody2,ybody2,[0.44,0.44,0.2],... xbody3,ybody3,[0.46,0.46,0.2],... xbody4,ybody4,[0.49,0.49,0.2],... xbody5,ybody5,[0.52,0.52,0.2],... xbody6,ybody6,[0.56,0.56,0.2],... xbody7,ybody7,[0.6,0.6,0.2],... xbody8,ybody8,[0.65,0.65,0.2],... xbody9,ybody9,[0.7,0.7,0.2],... 'Linestyle','None') hold off % text(0.8,-0.07,'ομαλη ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ - Κεντρομόλος Δύναμη ','Color','b','Fontsize',9) % text(1.75,-0.07,'γραμμική Ταχύτητα','Color','k','Fontsize',8) text(xgf,ygf,'f_κ','color','b','fontsize',8) 33

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client ΕΣΔ 516 Τεχνολογίες Διαδικτύου Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client Περιεχόμενα Περιεχόμενα Javascript και HTML Βασική σύνταξη Μεταβλητές Τελεστές Συναρτήσεις

Διαβάστε περισσότερα

Πληρουορική Γ Γσμμασίοσ

Πληρουορική Γ Γσμμασίοσ Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:

Διαβάστε περισσότερα

Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών

Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών Σκοπός Να αναπτύξουν ένα πρόγραμμα όπου θα επαναλάβουν τα βήματα ανάπτυξης μιας παραθυρικής εφαρμογής.

Διαβάστε περισσότερα

SPSS Statistical Package for the Social Sciences

SPSS Statistical Package for the Social Sciences SPSS Statistical Package for the Social Sciences Ξεκινώντας την εφαρμογή Εισαγωγή εδομένων Ορισμός Μεταβλητών Εισαγωγή περίπτωσης και μεταβλητής ιαγραφή περιπτώσεων ή και μεταβλητών ΣΤΑΤΙΣΤΙΚΗ Αθανάσιος

Διαβάστε περισσότερα

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade Για να ελέγξετε το λογισμικό που έχει τώρα η συσκευή κάντε κλικ Menu > Options > Device > About Device Versions. Στο πιο κάτω παράδειγμα η συσκευή έχει έκδοση λογισμικού 6.0.0.546 με πλατφόρμα 6.6.0.207.

Διαβάστε περισσότερα

Βυζαντινός Ρεπαντής Κολλέγιο Αθηνών 2010

Βυζαντινός Ρεπαντής Κολλέγιο Αθηνών 2010 Βυζαντινός Ρεπαντής Κολλέγιο Αθηνών 2010 Δημιουργία ενός απλού παιχνιδιού με το Gamemaker (μετάφραση από το http://www.stuffucanuse.com/downloads/gamemaker-introductionlessons/free_game_downloads_gamemaker.htm)

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07 Ακαδ έτος 2007-2008 ΠΛΗΡΟΦΟΡΙΚΗ Ι Φερεντίνος 22/11/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με ΑΜ σε 3, 7, 8 & 9 22/11/07 Παράδειγμα με if/else if και user input: import javautil*; public class Grades public

Διαβάστε περισσότερα

Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών

Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών Σκοπός Nα κατασκευάσουν πίνακες από δεδομένα. Να κατασκευάσουν συναρτήσεις με πίνακες. Να κάνουν χρήση

Διαβάστε περισσότερα

Οδηγίες για προσθήκη Web Frames Tools to the Quick Access Bar σε μεταγενέστερη έκδοση του Word

Οδηγίες για προσθήκη Web Frames Tools to the Quick Access Bar σε μεταγενέστερη έκδοση του Word Οδηγίες για προσθήκη Web Frames Tools to the Quick Access Bar σε μεταγενέστερη έκδοση του Word Επειδή οι μεταγενέστερες εκδόσεις του Word δεν περιλαμβάνουν στο μενού τη δυνατότητα δημιουργίας πολλαπλών

Διαβάστε περισσότερα

ΜΜΚ 105: Πειραματική και Στατιστική Ανάλυση Δημιουργία Πινάκων και Γραφικών Παραστάσεων στην Excel 18/09/14

ΜΜΚ 105: Πειραματική και Στατιστική Ανάλυση Δημιουργία Πινάκων και Γραφικών Παραστάσεων στην Excel 18/09/14 ΜΜΚ 105: Πειραματική και Στατιστική Ανάλυση Δημιουργία Πινάκων και Γραφικών Παραστάσεων στην Excel 18/09/14 1. Δημιουργία Πίνακα 1.1 Εισαγωγή μετρήσεων και υπολογισμός πράξεων Έστω ότι χρειάζεται να υπολογιστεί

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Καθ. Εφαρμογών: Σ. Βασιλειάδου Εργαστήριο Συστήματα Αυτομάτου Ελέγχου για Ηλεκτρολόγους Μηχανικούς Εργαστηριακές Ασκήσεις Χειμερινό

Διαβάστε περισσότερα

PRISMA WIN APPLICATION SERVER. ιαχείριση υπηρεσιών στοιχείων (COM+) Οδηγός διαχείρισης δικαιωµάτων πρόσβασης & εκκίνησης PRISMA Win Application Server

PRISMA WIN APPLICATION SERVER. ιαχείριση υπηρεσιών στοιχείων (COM+) Οδηγός διαχείρισης δικαιωµάτων πρόσβασης & εκκίνησης PRISMA Win Application Server PRISMA WIN APPLICATION SERVER ιαχείριση υπηρεσιών στοιχείων (COM+) Οδηγός διαχείρισης δικαιωµάτων πρόσβασης & εκκίνησης PRISMA Win Application Server Πέντε βασικά βήµατα για τη ρύθµιση δικαιωµάτων πρόσβασης

Διαβάστε περισσότερα

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo;

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Κεφάλαιο 2 Εισαγωγή Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Η Logo είναι μία από τις πολλές γλώσσες προγραμματισμού. Κάθε γλώσσα προγραμματισμού έχει σκοπό τη δημιουργία προγραμμάτων

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

ΜΕΤΑΦΟΡΑ ΑΡΧΕΙΩΝ FTP

ΜΕΤΑΦΟΡΑ ΑΡΧΕΙΩΝ FTP ΜΕΤΑΦΟΡΑ ΑΡΧΕΙΩΝ FTP Το FTP (File Transfer Protocol) είναι το εξειδικευμένο πρωτόκολλο μεταφοράς αρχείων στα σύγχρονα δίκτυα δεδομένων όπως το Διαδίκτυο. Δίνει τη δυνατότητα μεταφοράς αρχείων από τον υπολογιστή

Διαβάστε περισσότερα

Visual Basic Γλώσσα οπτικού

Visual Basic Γλώσσα οπτικού Visual Basi Γλώσσα οπτικού προγραµµατισµού «Η αρχή είναι το ήµισυ του παντός» Κουλλάς Χρίστος www.oullas.om oullas 2 Στόχοι Μαθήµατος Οι µαθητές να µπορούν: να εξηγούν τι είναι η Visual Basi. ναεξηγούνταστάδιαδηµιουργίας

Διαβάστε περισσότερα

M files RCL Κυκλώματα

M files RCL Κυκλώματα M files RCL Κυκλώματα Στο MATLAB γράφουμε τις δικές μας εντολές και προγράμματα μέσω αρχείων που καλούνται m-files. Έχουν το επίθεμα.m π.χ compute.m Υπάρχουν δύο είδη m-files: τα αρχεία script (script

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 3: Προγραμματιστικά Περιβάλλοντα και το Πρώτο Πρόγραμμα C

ΕΡΓΑΣΤΗΡΙΟ 3: Προγραμματιστικά Περιβάλλοντα και το Πρώτο Πρόγραμμα C ΕΡΓΑΣΤΗΡΙΟ 3: Προγραμματιστικά Περιβάλλοντα και το Πρώτο Πρόγραμμα C Στο εργαστήριο αυτό, θα ασχοληθούμε με δύο προγραμματιστικά περιβάλλοντα για τη γλώσσα C: τον gcc μεταγλωττιστή της C σε περιβάλλον

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΜΕΡΟΣ ΠΕΜΠΤΟ Triggers, Stored procedures Γιώργος Μαρκοµανώλης Περιεχόµενα Triggers-Ενηµέρωση δεδοµένων άλλων πινάκων... 1 Ασφάλεια...

Διαβάστε περισσότερα

7. Επαναλήψεις (Loops) Προγραμματισμός EV3 Ακαδημία Ρομποτικής 58

7. Επαναλήψεις (Loops) Προγραμματισμός EV3 Ακαδημία Ρομποτικής 58 7. Επαναλήψεις (Loops) Προγραμματισμός EV3 Ακαδημία Ρομποτικής 58 Στόχοι Μαθήματος 1. Πώς να επαναλάβετε μια δράση 2. Μάθετε πώς να χρησιμοποιείτε το Loop Blocks Προγραμματισμός EV3 Ακαδημία Ρομποτικής

Διαβάστε περισσότερα

Εγχειρίδιο Χρήσης Ενημέρωσης Λογισμικού Bluetooth Windows 7

Εγχειρίδιο Χρήσης Ενημέρωσης Λογισμικού Bluetooth Windows 7 Εγχειρίδιο Χρήσης Ενημέρωσης Λογισμικού Bluetooth Windows 7 Ισχύει για προϊόντα από το 2012 και μετά CDE-13xBT & CDE-W235BT & CDA-137BTi Αυτό το εγχειρίδιο περιγράφει τα βήματα που απαιτούνται για την

Διαβάστε περισσότερα

1 ΦΕΠ 012 Φυσική και Εφαρμογές

1 ΦΕΠ 012 Φυσική και Εφαρμογές 1 ΦΕΠ 012 Φυσική και Εφαρμογές Διάλεξη 10 η Ομαλή κυκλική κίνηση Δθ = ω = σταθερό Δt X = Rσυν (ωt) => X 2 +Υ 2 = R 2 Υ = Rημ(ωt) Οι προβολές της κίνησης στους άξονες των x και y είναι αρμονικές ταλαντώσεις

Διαβάστε περισσότερα

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -

Διαβάστε περισσότερα

Σενάριο 17: Παιχνίδι μνήμης με εικόνες

Σενάριο 17: Παιχνίδι μνήμης με εικόνες Σενάριο 17: Παιχνίδι μνήμης με εικόνες Φύλλο Εργασίας Τίτλος: Παιχνίδι μνήμης με εικόνες Γνωστικό Αντικείμενο: Εφαρμογές Πληροφορικής-Υπολογιστών Διδακτική Ενότητα: Διερευνώ - Δημιουργώ Ανακαλύπτω, Συνθετικές

Διαβάστε περισσότερα

POWERPOINT 2003. Είναι το δημοφιλέστερο πρόγραμμα παρουσιάσεων.

POWERPOINT 2003. Είναι το δημοφιλέστερο πρόγραμμα παρουσιάσεων. POWERPOINT 2003 1. Τι είναι το PowerPoint (ppt)? Είναι το δημοφιλέστερο πρόγραμμα παρουσιάσεων. 2. Τι δυνατότητες έχει? Δημιουργία παρουσίασης. Μορφοποίηση παρουσίασης. Δημιουργία γραφικών. Δημιουργία

Διαβάστε περισσότερα

7.5 ΑΡΑΙΕΣ ΜΗΤΡΕΣ 290 7.5.1 Κατασκευή αραιών µητρών... 290 7.5.2 Πράξεις και συναρτήσεις αραιών µητρών... 294 7.5.3 Συναρτήσεις για γραφήµατα...

7.5 ΑΡΑΙΕΣ ΜΗΤΡΕΣ 290 7.5.1 Κατασκευή αραιών µητρών... 290 7.5.2 Πράξεις και συναρτήσεις αραιών µητρών... 294 7.5.3 Συναρτήσεις για γραφήµατα... Κ. Π Α Π Α Ρ Ρ Ι Ζ Ο Σ M A T L A B 6. 5 Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Π Ρ Ο Λ Ο Γ Ο Σ............. v Κ Ε Φ Α Λ Α Ι Ο 1 Β Α Σ Ι Κ Ε Σ Λ Ε Ι Τ Ο Υ Ρ Γ Ι Ε Σ Τ Ο Υ M A T L A B 1 1.1 ΠΡΑΞΕΙΣ ΚΑΙ ΑΡΙΘΜΗΤΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ

Διαβάστε περισσότερα

Παιχνιδάκια με τη LOGO

Παιχνιδάκια με τη LOGO Όταν σβήνει ο υπολογιστής ξεχνάω τα πάντα. Κάτι πρέπει να γίνει Κάθε φορά που δημιουργώ ένα πρόγραμμα στη Logo αυτό αποθηκεύεται προσωρινά στη μνήμη του υπολογιστή. Αν θέλω να διατηρηθούν τα προγράμματά

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ VISUAL BASIC Γ ΓΥΜΝΑΣΙΟΥ

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ VISUAL BASIC Γ ΓΥΜΝΑΣΙΟΥ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ VISUAL BASIC Γ ΓΥΜΝΑΣΙΟΥ Συγγραφική Ομάδα Εποπτεία: Ιάκωβος Παπαντωνίου Ευστάθιος Ευσταθίου Θεόδουλος Κωνσταντίνου Ξένιος Ξενοφώντος Χρίστος Μινίκκης 1 Εισαγωγή στον προγραμματισμό υπολογιστών

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε κίνηση ενός κινητού; 2. Τι ονομάζουμε τροχιά ενός κινητού; 3. Τι ονομάζουμε υλικό σημείο; 4. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΜΑΘΗΜΑ : Πληροφορική Κατεύθυνσης ΤΑΞΗ : Β Αρ. σελίδων : 11 Ηµεροµηνία : 10/6/2008 Ώρα Έναρξης : 7:45 π.µ ιάρκεια : 2 ώρες Ονοµατεπώνυµο :...Τµήµα : Αριθµός :...Βαθµός

Διαβάστε περισσότερα

Παιχνίδια σε Javascript

Παιχνίδια σε Javascript Παιχνίδια σε Javascript Μάθημα 1ο Μια Γρήγορη Εισαγωγή στη Γλώσσα Τα Εργαλεία Την Javascript μπορούμε (όπως και την HTML) να τη γράψουμε σε ένα απλό συντάκτη κειμένου, ή σε ένα περιβάλλον όπως το Bluefish

Διαβάστε περισσότερα

Λογισμική Εφαρμογή Διαχείρισης Ερωτηματολογίων ΟΔΗΓΟΣ ΧΡΗΣΗΣ System Συμβουλευτική Α.Ε

Λογισμική Εφαρμογή Διαχείρισης Ερωτηματολογίων ΟΔΗΓΟΣ ΧΡΗΣΗΣ System Συμβουλευτική Α.Ε σχετικά με τον έλεγχο της καπνιστικής συνήθειας 1 22 Λογισμικές εφαρμογές καταγραφής και αξιοποίησης πληροφοριών σχετικά με τον έλεγχο της καπνιστικής συνήθειας Λογισμική Εφαρμογή Διαχείρισης Ερωτηματολογίων

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ ΛΟΓΙΣΜΙΚΟΥ E-LEARNING - 2 -

ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ ΛΟΓΙΣΜΙΚΟΥ E-LEARNING - 2 - - 2 - ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ ΛΟΓΙΣΜΙΚΟΥ E-LEARNING Περιεχόµενα Εγκατάσταση λογισµικού Οθόνη καλωσορίσµατος στην εγκατάσταση...4 Πληροφορίες ιδρύµατος και λογισµικού...5 ηµιουργία συντόµευσης στο µενού έναρξης

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β.

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β. ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Διδάσκουσα Δρ Β. Καβακλή Χειμερινό Εξάμηνο 2001 1 Σύνολο χαρακτήρων της Pascal Για

Διαβάστε περισσότερα

Οδηγίες για την Διαδικασία αποθήκευσης στοιχείων ελέγχου πινάκων για επίλυση θέματος Οριοθέτησης.

Οδηγίες για την Διαδικασία αποθήκευσης στοιχείων ελέγχου πινάκων για επίλυση θέματος Οριοθέτησης. Οδηγίες για την Διαδικασία αποθήκευσης στοιχείων ελέγχου πινάκων για επίλυση θέματος Οριοθέτησης. 1. SMART BOARD SERIAL NUMBER: Ο σειριακός αριθμός του Διαδραστικού πίνακα βρίσκεται στην δεξιά πλαϊνή μεριά

Διαβάστε περισσότερα

Τίτλος Διδακτικού Σεναρίου: «Σχεδίαση και Ανάλυση Τοπικών Δικτύων Υπολογιστών»

Τίτλος Διδακτικού Σεναρίου: «Σχεδίαση και Ανάλυση Τοπικών Δικτύων Υπολογιστών» Τίτλος Διδακτικού Σεναρίου: «Σχεδίαση και Ανάλυση Τοπικών Δικτύων Υπολογιστών» Φάση «3» Τίτλος Φάσης: «Ανάλυση Σχεδιασμού Δικτύου Ελεύθερη Προσομοίωση» Χρόνος Υλοποίησης: 30 Λεπτά Φύλλο Εργασίας 1 Σε αυτό

Διαβάστε περισσότερα

ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Εργαστηριακή Άσκηση 1

ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Εργαστηριακή Άσκηση 1 ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Εργαστηριακή Άσκηση 1 1. Εισαγωγή στο Network Simulator v2 (NS2) Το NS2 (Network Simulator version 2) είναι ένα πρόγραμμα για προσομοιώσεις δικτύων που διατίθεται δωρεάν. Ο δικτυακός

Διαβάστε περισσότερα

ΔΟΜΗΜΕΝΟΣ ΟΠΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ ΠAΡΑΘΥΡΙΚΟ ΠΕΡΙΒΑΛΛΟΝ με τη Γλώσσα Προγραμματισμού VISUAL BASIC (1 ο ΕΠΙΠΕΔΟ)

ΔΟΜΗΜΕΝΟΣ ΟΠΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ ΠAΡΑΘΥΡΙΚΟ ΠΕΡΙΒΑΛΛΟΝ με τη Γλώσσα Προγραμματισμού VISUAL BASIC (1 ο ΕΠΙΠΕΔΟ) Γενικός Σκοπός Το αναλυτικό πρόγραμμα έχει ως γενικό σκοπό να δώσει στους μαθητές τις απαιτούμενες γνωστικές, κριτικές και αναλυτικές δεξιότητες ώστε να είναι ικανοί να χρησιμοποιούν τους υπολογιστές για

Διαβάστε περισσότερα

Projects στο Εργαστήριο Αρχιτεκτονικής Υπολογιστών Version 2 Ισχύει από Φεβρουάριο 2009

Projects στο Εργαστήριο Αρχιτεκτονικής Υπολογιστών Version 2 Ισχύει από Φεβρουάριο 2009 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΜΑΘΗΜΑ : ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ 4 ο ΕΞΑΜΗΝΟ Projects στο Εργαστήριο Αρχιτεκτονικής Υπολογιστών Version 2 Ισχύει από Φεβρουάριο

Διαβάστε περισσότερα

SOAP API. https://bulksmsn.gr. Table of Contents

SOAP API. https://bulksmsn.gr. Table of Contents SOAP API https://bulksmsn.gr Table of Contents Send SMS...2 Query SMS...3 Multiple Query SMS...4 Credits...5 Save Contact...5 Delete Contact...7 Delete Message...8 Email: sales@bulksmsn.gr, Τηλ: 211 850

Διαβάστε περισσότερα

SMART Notebook 11.1 Math Tools

SMART Notebook 11.1 Math Tools SMART Ntebk 11.1 Math Tls Λειτουργικά συστήματα Windws Οδηγός χρήστη Δήλωση προϊόντος Αν δηλώσετε το προϊόν SMART, θα σας ειδοποιήσουμε για νέα χαρακτηριστικά και αναβαθμίσεις λογισμικού. Κάντε τη δήλωση

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

3 Αλληλεπίδραση Αντικειμένων

3 Αλληλεπίδραση Αντικειμένων Αφαίρεση και Αρθρωσιμότητα 3 Αλληλεπίδραση Αντικειμένων Πώς συνεργάζονται τα αντικείμενα που δημιουργούμε Αφαίρεση (abstraction) είναι η δυνατότητα να αγνοούμε τις λεπτομέρειες και να εστιάζουμε την προσοχή

Διαβάστε περισσότερα

To SIMULINK του Matlab

To SIMULINK του Matlab ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ Β ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΘ. Κ. ΚΥΠΑΡΙΣΣΙΔΗΣ, ΛΕΚΤΟΡΑΣ Χ. ΧΑΤΖΗΔΟΥΚΑΣ Τ.Θ. 472 54 124 ΘΕΣΣΑΛΟΝΙΚΗ Μάθημα: ΡΥΘΜΙΣΗ ΣΥΣΤΗΜΑΤΩΝ Ακαδ.

Διαβάστε περισσότερα

Εισαγωγή στο Libre Office. Bάιος Κολοφωτιάς Επιστημονικός Συνεργάτης Sweng Lab A.Π.Θ

Εισαγωγή στο Libre Office. Bάιος Κολοφωτιάς Επιστημονικός Συνεργάτης Sweng Lab A.Π.Θ Εισαγωγή στο Libre Office Bάιος Κολοφωτιάς Επιστημονικός Συνεργάτης Sweng Lab A.Π.Θ Εισαγωγή στο Libre Ofiice To LibreOffice είναι η ελεύθερη, πολυδύναμη (power-packed), σουΐτα προσωπικής παραγωγικότητας

Διαβάστε περισσότερα

Oικονομικές και Mαθηματικές Eφαρμογές

Oικονομικές και Mαθηματικές Eφαρμογές Το πακέτο ΕXCEL: Oικονομικές και Mαθηματικές Eφαρμογές Eπιμέλεια των σημειώσεων και διδασκαλία: Ευαγγελία Χαλιώτη* Θέματα ανάλυσης: - Συναρτήσεις / Γραφικές απεικονίσεις - Πράξεις πινάκων - Συστήματα εξισώσεων

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

Σύντομη περιγραφή 5. Για να ξεκινήσετε 6. Οι οθόνες του προγράμματος 8. Εγκατάσταση προγράμματος 6 Δημιουργία κωδικών χρήστη 7

Σύντομη περιγραφή 5. Για να ξεκινήσετε 6. Οι οθόνες του προγράμματος 8. Εγκατάσταση προγράμματος 6 Δημιουργία κωδικών χρήστη 7 Σύντομη περιγραφή 5 Για να ξεκινήσετε 6 Εγκατάσταση προγράμματος 6 Δημιουργία κωδικών χρήστη 7 Οι οθόνες του προγράμματος 8 Αρχική οθόνη 8 Στοιχεία ασθενή 9 Εργασίες - Ραντεβού 10 Εικόνες 11 Ημερολόγιο

Διαβάστε περισσότερα

Ανάπτυξη και Σχεδίαση Λογισμικού

Ανάπτυξη και Σχεδίαση Λογισμικού Ανάπτυξη και Σχεδίαση Λογισμικού Η γλώσσα προγραμματισμού C Γεώργιος Δημητρίου Εκφράσεις και Λίγες Εντολές Οι εκφράσεις της C Τελεστές Απλές και σύνθετες εντολές Εντολές ελέγχου (επιλογής) Εισαγωγή σε

Διαβάστε περισσότερα

2 Ορισμός Κλάσεων. Παράδειγμα: Μηχανή για Εισιτήρια. Δομή μιας Κλάσης. Ο Σκελετός της Κλάσης για τη Μηχανή. Ορισμός Πεδίων 4/3/2008

2 Ορισμός Κλάσεων. Παράδειγμα: Μηχανή για Εισιτήρια. Δομή μιας Κλάσης. Ο Σκελετός της Κλάσης για τη Μηχανή. Ορισμός Πεδίων 4/3/2008 Παράδειγμα: Μηχανή για Εισιτήρια 2 Ορισμός Κλάσεων Σύνταξη κλάσης: πεδία, κατασκευαστές, μέθοδοι Ένας αυτόματος εκδότης εισιτηρίων είναι μια μηχανή που δέχεται χρήματα και εκδίδει ένα εισιτήριο. Εκδίδει

Διαβάστε περισσότερα

Οδηγίες για την εγκατάσταση του πακέτου Cygwin

Οδηγίες για την εγκατάσταση του πακέτου Cygwin Οδηγίες για την εγκατάσταση του πακέτου Cygwin Ακολουθήστε τις οδηγίες που περιγράφονται σε αυτό το file μόνο αν έχετε κάποιο laptop ή desktop PC που τρέχουν κάποιο version των Microsoft Windows. 1) Copy

Διαβάστε περισσότερα

Η ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ COACH 5 ΣΤΗΝ ΔΙΔΑΣΚΑΛΙΑ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΤΟΥ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΟΜΕΑ ΤΩΝ Τ.Ε.Ε.

Η ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ COACH 5 ΣΤΗΝ ΔΙΔΑΣΚΑΛΙΑ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΤΟΥ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΟΜΕΑ ΤΩΝ Τ.Ε.Ε. 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 485 Η ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ COACH 5 ΣΤΗΝ ΔΙΔΑΣΚΑΛΙΑ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΤΟΥ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΟΜΕΑ ΤΩΝ Τ.Ε.Ε. Μπουλταδάκης Στέλιος Εκπαιδευτικός

Διαβάστε περισσότερα

Βοηθητικό Εγχειρίδιο

Βοηθητικό Εγχειρίδιο AGFN EXPERT LITE Χρηµατιστήριο Αθηνών Χρηµατιστήριο Αξιών Κύπρου Βοηθητικό Εγχειρίδιο Version 7.5.0.322 ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΗ... 2 1.1. ΕΚΚΙΝΗΣΗ ΕΦΑΡΜΟΓΗΣ AGFN EXPERTLITE... 2 2. ΣΥΝ ΕΣΗ (LOGIN)... 3

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: Εργαλεία Ανάπτυξης εφαρμογών internet.

ΜΑΘΗΜΑ: Εργαλεία Ανάπτυξης εφαρμογών internet. ΜΑΘΗΜΑ: Εργαλεία Ανάπτυξης εφαρμογών internet. ΩΡΕΣ ΔΙΔΑΣΚΑΛΙΑΣ: ΕΙΔΟΣ ΜΑΘΗΜΑΤΟΣ: Μικτό Γενικός σκοπός είναι να αποκτήσει ο καταρτιζόμενος τις αναγκαίες γνώσεις σχετικά με εργαλεία και τις τεχνικές για

Διαβάστε περισσότερα

Μονάδες 12 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

Μονάδες 12 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 5 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

ιαχείριση Πληροφοριών στο ιαδίκτυο

ιαχείριση Πληροφοριών στο ιαδίκτυο ιαχείριση Πληροφοριών στο ιαδίκτυο Εργαστήριο (Φυλλάδιο 8) ΤΕΙ Καβάλας - Σχολή ιοίκησης & Οικονοµίας Τµήµα ιαχείρισης Πληροφοριών ιδάσκων: Μαρδύρης Βασίλειος, ιπλ. Ηλ. Μηχανικός & Μηχ. Υπολογιστών, MSc

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών Εργαστήριο

Αρχιτεκτονική Υπολογιστών Εργαστήριο Αρχιτεκτονική Υπολογιστών Εργαστήριο Ενότητα: ΠΑΡΑΔΕΙΓΜΑ ΑΠΟΣΦΑΛΜΑΤΩΣΗΣ Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής

Διαβάστε περισσότερα

Μεταφορά Αρχείων µε χρήση της Υπηρεσίας FTP σελ. 1

Μεταφορά Αρχείων µε χρήση της Υπηρεσίας FTP σελ. 1 Μεταφορά Αρχείων µε χρήση της Υπηρεσίας FTP Περιεχόµενα Τι είναι η υπηρεσία FTP;...2 FTP από τη γραµµή εντολών των Windows...2 Το πρόγραµµα WS-FTP...4 Μεταφορά Αρχείων µε χρήση της Υπηρεσίας FTP σελ. 1

Διαβάστε περισσότερα

Κεφάλαιο 4 ο : Ταλαντώσεις

Κεφάλαιο 4 ο : Ταλαντώσεις Κεφάλαιο 4 ο : Ταλαντώσεις Φυσική Γ Γυμνασίου Περιοδικές Κινήσεις Όλες οι κινήσεις επαναλαμβάνονται σε ίσα χρονικά διαστήματα. Περιοδικές κινήσεις: Οι κινήσεις που επαναλαμβάνονται σε ίσα χρονικά διαστήματα.

Διαβάστε περισσότερα

Λογισμικό μετεωρολογικού σταθμού 265ΝΕ. Γρήγορος οδηγός ρύθμισης και χρήσης. Printed 12/06/09

Λογισμικό μετεωρολογικού σταθμού 265ΝΕ. Γρήγορος οδηγός ρύθμισης και χρήσης. Printed 12/06/09 Λογισμικό μετεωρολογικού σταθμού 265ΝΕ Γρήγορος οδηγός ρύθμισης και χρήσης Printed 12/06/09 Γενική περιγραφή Το πρόγραμμα Weather 265NE, σχεδιάστηκε, και εξελίσεται, στην Ελλάδα, αποκλειστικά για τον μετεωρολογικό

Διαβάστε περισσότερα

Ανάπτυξη και Σχεδίαση Λογισμικού

Ανάπτυξη και Σχεδίαση Λογισμικού Ανάπτυξη και Σχεδίαση Λογισμικού Η γλώσσα προγραμματισμού C Γεώργιος Δημητρίου Βασικά Στοιχεία Το αλφάβητο της C Οι βασικοί τύποι της C Δηλώσεις μεταβλητών Είσοδος/Έξοδος Βασικές εντολές της C Αλφάβητο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ 3.1 Η έννοια της δύναμης ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Στο κεφάλαιο των κινήσεων ασχοληθήκαμε με τη μελέτη της κίνησης χωρίς να μας απασχολούν τα αίτια που προκαλούν την κίνηση

Διαβάστε περισσότερα

Το «κλειστό» σύστημα. Ανοικτές επικοινωνίες... Εισαγωγή στην Τεχνολογία της Πληροφορικής. Εισαγωγή στην τεχνολογία της πληροφορικής

Το «κλειστό» σύστημα. Ανοικτές επικοινωνίες... Εισαγωγή στην Τεχνολογία της Πληροφορικής. Εισαγωγή στην τεχνολογία της πληροφορικής ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Εισαγωγή στην Τεχνολογία της Πληροφορικής ΓΙΩΡΓΟΣ Ν. ΓΙΑΝΝΟΠΟΥΛΟΣ Λέκτορας στο Πανεπιστήμιο Αθηνών gyannop@law.uoa.gr Το «κλειστό» σύστημα ΕΙΣΟΔΟΣ ΕΠΕΞΕΡΓΑΣΙΑ

Διαβάστε περισσότερα

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Τμημα Πληροφορικης και Τηλεματικης Τσάμη Παναγιώτα ΑΜ: 20833 ΚΑΤΑΝΕΜΗΜΕΝΑ ΣΥΣΤΗΜΑΤΑ Άσκηση 1 Αθήνα 13-12-2011 Αναφορά Ενότητα 1 A Δημιουργήστε στο φλοιό 3 εντολές (alias) που η

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013 ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

Κεφάλαιο 7: Υλοποίηση εφαρμογών σε προγραμματιστικά περιβάλλοντα. Εφαρμογές Πληροφορικής Κεφ. 7 Καραμαούνας Πολύκαρπος 1

Κεφάλαιο 7: Υλοποίηση εφαρμογών σε προγραμματιστικά περιβάλλοντα. Εφαρμογές Πληροφορικής Κεφ. 7 Καραμαούνας Πολύκαρπος 1 Κεφάλαιο 7: Υλοποίηση εφαρμογών σε προγραμματιστικά περιβάλλοντα Καραμαούνας Πολύκαρπος 1 Ανάπτυξη εφαρμογών για φορητές συσκευές: τείνουν να αντικαταστήσουν τους υπολογιστές και άλλες συσκευές. Τα δημοφιλέστερα

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015 ΛΥΚΕΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΔΑΣΟΥΠΟΛΗ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗ ΗΜΕΡΟΜΗΝΙΑ: 10 /6 / 2015 ΒΑΘΜΟΣ:... ΤΑΞΗ: Β ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

Διαβάστε περισσότερα

Visual Basic Βασικές Έννοιες

Visual Basic Βασικές Έννοιες Visual Basi Βασικές Έννοιες «Είδα στον ύπνο µου ότι η ζωή είναι χαρά. Ξύπνησα και είδα ότι είναι χρέος. Αγωνίστηκα και είδα ότι τo χρέος είναι χαρά.» Ραµπριτανάθ Ταγκόρ Κουλλάς Χρίστος www.oullas.om oullas

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C Ιανουάριος 2013 Τι είναι ένα πρόγραμμα; Πρόγραμμα είναι μία σειρά από οδηγίες που δίνουμε στον υπολογιστή προκειμένου αυτός να κάνει κάποια συγκεκριμένη εργασία Πώς

Διαβάστε περισσότερα

Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές

Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Μορφές Εντολών Είδη εντολών Απλές εντολές Εκτελούν κάποια ενέργεια Εντολές ελέγχου Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Εντολές και παραστάσεις Μιαεντολήείναιμιαπαράστασηπου ακολουθείται

Διαβάστε περισσότερα

ΔΗ Μ Ι Ο ΥΡ Γ Ι Α W I K I με τ η χρήση τ η ς υπ ηρεσίας h t t p : /www.wik id ot.com /

ΔΗ Μ Ι Ο ΥΡ Γ Ι Α W I K I με τ η χρήση τ η ς υπ ηρεσίας h t t p : /www.wik id ot.com / ΔΗ Μ Ι Ο ΥΡ Γ Ι Α W I K I με τ η χρήση τ η ς υπ ηρεσίας h t t p : /www.wik id ot.com / 1. Τι είναι το wikidot Το wikidot είναι ένας δικτυακός τόπος στον οποίο κάθε χρήστης έχει το δικαίωμα να δημιουργήσει

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Θέμα 1o A Λυκείου 22 Μαρτίου 28 Στις ερωτήσεις Α,Β,Γ,Δ,E μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής απάντησης.

Διαβάστε περισσότερα

O πύραυλος. Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου

O πύραυλος. Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου O πύραυλος Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί Στόχοι Οι

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ ΧΡΗΣΤΗ. Ηλεκτρονική Υποβολή Α.Π.Δ.

ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ ΧΡΗΣΤΗ. Ηλεκτρονική Υποβολή Α.Π.Δ. ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ ΧΡΗΣΤΗ Ηλεκτρονική Υποβολή Α.Π.Δ. ΠΕΡΙΕΧΟΜΕΝΑ 1) Είσοδος στην εφαρμογή 2) Δημιουργία Περιόδου Υποβολής 2.α) Ακύρωση Περιόδου Υποβολής 3) Μέθοδος Υποβολής: Συμπλήρωση Φόρμας 3.α) Συμπλήρωση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ

ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ ΕΙΣΑΓΩΓΗ ΠΙΝΑΚΩΝ ΣΤΟ MATHLAB Αν θέλουμε να εισάγουμε έναν πίνακα στο mathlab και να προβληθεί στην οθόνη βάζουμε τις τιμές του σε άγκιστρα χωρίζοντάς τις με κόμματα ή κενό

Διαβάστε περισσότερα

1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από

1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από 1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από 8 αυτοκίνητα σταθμευμένα ένα μετά το άλλο κάτω από μια οριζόντια πλατφόρμα. Το κάθε αυτοκίνητο έχει μήκος d = 3 m και ύψος h = 1,2 m. Τo

Διαβάστε περισσότερα

Εργασία για το Facility Game Μάθημα: Δομές Δεδομένων 2013-2014. Σωτήρης Γυφτόπουλος

Εργασία για το Facility Game Μάθημα: Δομές Δεδομένων 2013-2014. Σωτήρης Γυφτόπουλος Εργασία για το Facility Game Μάθημα: Δομές Δεδομένων 2013-2014 Σωτήρης Γυφτόπουλος Κανόνες του Facility Game (1/4) Στο Facility Game υπάρχει ένα σύνολο κόμβων που συνδέονται «σειριακά» και κάθε κόμβος

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΡΓΑΣΤΗΡΙΟ 3 ΕΡΓΑΣΤΗΡΙΟ 3 ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΕΣ ΔΟΜΕΣ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΔΗΜΙΟΥΡΓΙΑ ΔΙΑΝΥΣΜΑΤΩΝ Χ (ΤΕΤΜΗΜΕΝΩΝ) ΚΑΙ Υ (ΤΕΤΑΓΜΕΝΩΝ) ΤΩΝ ΣΗΜΕΙΩΝ

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή Ιπτάμενες Μηχανές Οδηγός για το Μαθητή Το ελικόπτερο Αφού βεβαιωθείτε ότι βρίσκεστε στο περιβάλλον του εκπαιδευτικού προγράμματος, επιλέξτε «Έναυσμα». Ακολουθώντας τις οδηγίες που παρουσιάζονται στην οθόνη

Διαβάστε περισσότερα

Μενού Προβολή. Προβολές εγγράφου

Μενού Προβολή. Προβολές εγγράφου Μενού Προβολή Προβολές εγγράφου Το Word παρέχει πέντε διαφορετικού είδους προβολές στον χρήστη, οι οποίες και βρίσκονται στο μενού Προβολή (View). Εναλλακτικά μπορούμε να επιλέξουμε το είδος προβολής που

Διαβάστε περισσότερα

ΠΛΗΡΕΣ ΒΑΘΟΣ ΕΝΤΟΛΩΝ

ΠΛΗΡΕΣ ΒΑΘΟΣ ΕΝΤΟΛΩΝ ΠΛΗΡΕΣ ΒΑΘΟΣ ΕΝΤΟΛΩΝ ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΓΙΑ ΤΟ MONOPOLY Μάρτιος 2009 Οδηγίες Χρήσης Monopoly για Σελίδα 1 από 8 1. Γενικά Το πλήρες βάθος εντολών είναι η νέα υπηρεσία του Χρηματιστηρίου Αξιών Αθηνών μέσω τις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης ΚΕΦΑΛΑΙΟ 1ο 3ο 1. Συμπληρώστε τα κενά με τη λέξη που λείπει. α. Ένα πρόβλημα το χωρίζουμε σε άλλα απλούστερα, όταν είναι ή όταν έχει τρόπο επίλυσης. β. Η επίλυση ενός προβλήματος προϋποθέτει την του. γ.

Διαβάστε περισσότερα

To Microsoft Excel XP

To Microsoft Excel XP To Microsoft Excel XP ΚΑΡΤΕΛΑ ΕΡΓΑΣΙΑΣ 1 Το Microsoft Excel XP είναι ένα πρόγραμμα που μπορεί να σε βοηθήσει να φτιάξεις μεγάλους πίνακες, να κάνεις μαθηματικές πράξεις με αριθμούς, ακόμα και να φτιάξεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2008 ΔΙΔΑΣΚΩΝ: ΑΝΤΩΝΙΟΣ ΣΑΒΒΙΔΗΣ ΒΑΣΙΚΗ ΕΡΓΑΣΙΑ ΦΑΣΗ 2η από 5 Παράδοση: Πέμπτη 10 Απριλίου 2008, 24:00 (μεσάνυχτα)

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα

Περιεχόμενα. Λίγα λόγια από το συγγραφέα... 7 1 Microsoft Word 2010... 9. 2 ημιουργία νέου εγγράφου... 17. 3 Το σύστημα Βοήθειας του Office...

Περιεχόμενα. Λίγα λόγια από το συγγραφέα... 7 1 Microsoft Word 2010... 9. 2 ημιουργία νέου εγγράφου... 17. 3 Το σύστημα Βοήθειας του Office... Περιεχόμενα Λίγα λόγια από το συγγραφέα... 7 1 Microsoft Word 2010... 9 2 ημιουργία νέου εγγράφου... 17 3 Το σύστημα Βοήθειας του Office... 31 4 Μετακίνηση σε έγγραφο και προβολές εγγράφου... 37 5 Επιλογή

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

FOSSCOMM 2013 6ο Συνέδριο Κοινοτήτων Ανοιχτού Λογισμικού Σάββατο 20 Απριλίου 2013. Ομάδα Σχολής Ικάρων Εργαστήριο Arduino

FOSSCOMM 2013 6ο Συνέδριο Κοινοτήτων Ανοιχτού Λογισμικού Σάββατο 20 Απριλίου 2013. Ομάδα Σχολής Ικάρων Εργαστήριο Arduino FOSSCOMM 2013 6ο Συνέδριο Κοινοτήτων Ανοιχτού Λογισμικού Σάββατο 20 Απριλίου 2013 Ομάδα Σχολής Ικάρων Εργαστήριο Arduino Arduino Workshop LAB 1 : Παιχνίδι με έναν αισθητήρα φωτός Τι θα χρειαστούμε: 1 LED

Διαβάστε περισσότερα

ANDROID Προγραμματισμός Εφαρμογών

ANDROID Προγραμματισμός Εφαρμογών ANDROID Προγραμματισμός Εφαρμογών Παναγιώτης Κρητιώτης ΑΜ 1607 Περιεχόμενα Εισαγωγή Βασικά Στοιχεία Χαρακτηριστικά Αρχιτεκτονική Εργαλεία Προγραμματισμού Eclipse IDE Android SDK - ADT Plugin Προσομοιωτής

Διαβάστε περισσότερα

Βάσεις δεδομένων (Access)

Βάσεις δεδομένων (Access) Βάσεις δεδομένων (Access) Όταν εκκινούμε την Access εμφανίζεται το παρακάτω παράθυρο: Για να φτιάξουμε μια νέα ΒΔ κάνουμε κλικ στην επιλογή «Κενή βάση δεδομένων» στο Παράθυρο Εργασιών. Θα εμφανιστεί το

Διαβάστε περισσότερα

ηµιουργία αρχείου στον matlab editor Πληκτρολόγηση ακολουθίας εντολών

ηµιουργία αρχείου στον matlab editor Πληκτρολόγηση ακολουθίας εντολών Προγραµµατισµός Αρχεία εντολών (script files) Τυπικό hello world πρόγραµµα σε script ηµιουργία αρχείου στον matlab editor Πληκτρολόγηση ακολουθίας εντολών disp( ( 'HELLO WORLD!'); % τυπική εντολή εξόδου

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΟΔΗΓΟΣ ΧΡΗΣΗΣ ΓΙΑ ΛΟΓΙΣΜΙΚΟ CISCO JABBER ΥΠΗΡΕΣΙΑ ΠΛΗΡΟΦΟΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΥΠΣ-ΕΔ/76

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΟΔΗΓΟΣ ΧΡΗΣΗΣ ΓΙΑ ΛΟΓΙΣΜΙΚΟ CISCO JABBER ΥΠΗΡΕΣΙΑ ΠΛΗΡΟΦΟΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΥΠΣ-ΕΔ/76 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΥΠΗΡΕΣΙΑ ΠΛΗΡΟΦΟΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΔΗΓΟΣ ΧΡΗΣΗΣ ΓΙΑ ΛΟΓΙΣΜΙΚΟ CISCO JABBER ΥΠΗΡΕΣΙΑ ΠΛΗΡΟΦΟΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΥΠΣ-ΕΔ/76 31/07/2014 ΠΕΡΙΕΧΟΜΕΝΑ ΕΓΚΑΤΑΣΤΑΣΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ... 3 ΛΕΙΤΟΥΡΓΙΑ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2010 Ι ΑΣΚΩΝ: ΑΝΤΩΝΙΟΣ ΣΑΒΒΙ ΗΣ ΒΑΣΙΚΗ ΕΡΓΑΣΙΑ ΦΑΣΗ 2η από 5 Ανάθεση: Πέµπτη 15 Απριλίου 2010, 11:00 (πρωί)

Διαβάστε περισσότερα