Γραµµατικοί κανόνες Κανόνες µεταγραφής συµβόλων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γραµµατικοί κανόνες Κανόνες µεταγραφής συµβόλων"

Transcript

1 Πανεπιστήµιο Αθηνών, Τµήµα Ε.Μ.Μ.Ε. Εαρινό εξάµηνο 2004 Σ. A. Μοσχονάς, Γενική Γλωσσολογία 25 Μαΐου 2004 Γραµµατικοί κανόνες - Κανόνες µεταγραφής Ιεραρχία γραµµατικών: Γραµµατικές Πεπερασµένων Καταστάσεων, Συµφραστικά Ανεξάρτητες Γραµµατικές, Συµφραστικά Εξαρτηµένες γραµµατικές, Γραµµατικές Φραστικής οµής, Μετασχηµατιστικές Γραµµατικές Παραγωγή συµβολοσειρών Φραστικοί δείκτες οµική αµφισηµία Πρόταση Π Φράσεις ΟΦ, ΡΦ µη τερµατικά σύµβολα Μέρη του λόγου Α, Ο, Ρ Λέξεις ο Βαγγέλης κοιµάται τερµατικά σύµβολα Γραµµατικοί κανόνες Κανόνες µεταγραφής συµβόλων Α! Β / Γ, όπου: 1. Α, Β, Γ, είναι σύµβολα ή σειρές συµβόλων (συµβολοσειρές) 2. Α ή Β (αλλά όχι Α και Β) µπορούν να είναι Ø (κενά) 3. Γ, µπορούν να είναι Ø. Εάν Γ ή Ø, ο κανόνας λέγεται συµφραστικά εξαρτηµένος (contextsensitive) εάν Γ και = Ø, ο κανόνας λέγεται συµφραστικά ανεξάρτητος (context-free). Εάν Α! X Α, ο κανόνας λέγεται αναδροµικός (αναδροµικός δεξιά). Εάν Α! Α X, ο κανόνας λέγεται αναδροµικός αριστερά. Μια γραµµατική αποτελείται από (1) ένα αρχικό σύµβολο Π [=Πρόταση], (2α) ένα σύνολο τερµατικών συµβόλων, (2β) ένα σύνολο µη τερµατικών συµβόλων και (3) ένα σύνολο κανόνων που παράγουν συµβολοσειρές. Μια γλώσσα είναι ένα (άπειρο) σύνολο τερµατικών συµβολοσειρών. Λέµε ότι µια γλώσσα «περιγράφεται» ή «γεννιέται» ή «παράγεται» ή «απαριθµείται» ή «υπολογίζεται» από µια γραµµατική. Είδη γραµµατικής Γραµµατική Πεπερασµένων Καταστάσεων: Α! α Β (ή Α! Β α), Α! α, όπου τα Α, Β είναι µη τερµατικά (τελικά) σύµβολα και το α είναι τερµατικό (τελικό) σύµβολο. Συµφραστικά Ανεξάρτητη Γραµµατική: όπου το Α είναι µη τερµατικό σύµβολο και το Β είναι µια σειρά τερµατικών ή µη τερµατικών συµβόλων. Συµφραστικά Εξαρτηµένη Γραµµατική: ΓΑ! ΓΒ (Α! Β / Γ ), όπου το Α είναι µη τερµατικό σύµβολο, τα Γ, είναι σειρές τερµατικών ή µη τερµατικών συµβόλων και τουλάχιστον ένα από τα Γ, δεν είναι Ø. Εναλλακτικά: όπου Α, Β είναι δύο οποιεσδήποτε συµβολοσειρές: Α Β, όπου Χ το µήκος της συµβολοσειράς Χ. 1

2 Γραµµατικές Φραστικής οµής: όπου Α, Β είναι δύο οποιεσδήποτε συµβολοσειρές, τερµατικών ή µη τερµατικών συµβόλων. Μετασχηµατιστικές Γραµµατικές: γραµµατικές εξαρτηµένες ή ανεξάρτητες συµφραστικά οι οποίες, επιπλέον, περιέχουν κανόνες φραστικής δοµής όπου Α, Β είναι οποιεσδήποτε σειρές τερµατικών ή µη τερµατικών συµβόλων. Οι κανόνες αυτοί λέγονται µετασχηµατισµοί. Ιεραρχία των γραµµατικών µετασχηµατιστικές γραµµατικές γραµµατικές φραστικής δοµής συµφραστικά εξαρτηµένες γραµµατικές συµφραστικά ανεξάρτητες γραµµατικές γραµµατικές πεπερασµένων καταστάσεων µετασχηµατιστικές γραµµατικές γραµµατικές φραστικής δοµής συµφραστικά εξαρτηµένες γραµµατικές συµφραστικά ανεξάρτητες γραµµατικές γραµµατικές πεπερασµένων καταστάσεων Παραδείγµατα 1. comes S! the A, A! man B 1, man A! men B 2, S F B 1! comes F, the B 2! come F. men come 2. άνθρωπος έρχεται πολύ S! o Α 1, S! oι Α 2, Α 1! άνθρωπος Β 1, o Β 1! έρχεται Γ 1, Γ 1! πολύ Γ 1 S F Γ 1! γρήγορα F οι γρήγορα Α 2! άνθρωποι Β 2, έρχονται Β 2! έρχονται Γ 2, Γ 2! πολύ Γ 2 άνθρωποι Γ 2! γρήγορα F. 2

3 3. Επίθετο Όνοµα Ρήµα ενικός αριθµός Επιρ. Προσδ. Άρθρο S Επίρρηµα F Άρθρο Όνοµα Ρήµα πληθυντικός αριθµός Επίθετο 4. {αβ, ααββ, αααβββ, } = {α ν β ν : ν 1} Μη τερµατικά σύµβολα: Π 1. Π! α Π β 2. Π! Ø α Π β α α Π β β α α Ø ββ α α β β 5. {αα, ββ, αββα, βααβ, αααα, ββββ, ααββαα, αββββα, } = {ww R : w = α,β} Μη τερµατικά σύµβολα: Π 1. Π! α Π α 2. Π! β Π β 3. Π! Ø 6. {αα, ββ, αβαβ, βαβα, αααα, ββββ, ααβααβ, αββαββ, } = {ww: w = α,β} Μη τερµατικά σύµβολα: Π, Χ 1, Χ 2, Χ 3, Α, Β 1. Π! Χ 1 Χ 2 Χ 3 2. Χ 1 Χ 2! α Χ 1 Α 3. Χ 1 Χ 2! β Χ 1 Β 4. Α β! β Α 5. Β α! α Β 6. Α Χ 3! Χ 2 α Χ 3 7. Β Χ 3! Χ 2 β Χ 3 8. α Χ 2! Χ 2 α 9. β Χ 2! Χ 2 β 10. Χ 1 Χ 2! Ø 11. Χ 3! Ø α Π α α α Π α α α α β Π β α α α α β α Π α β α α α α β α Ø α β α α α α β α α β α α Χ 1 Χ 2 Χ 3 α Χ 1 Α Χ 3 α Χ 1 Χ 2 α Χ 3 α β Χ 1 Β α Χ 3 α β Χ 1 α Β Χ 3 α β Χ 1 α Χ 2 β Χ 3 α β Χ 1 Χ 2 α β Χ 3 α β Ø α β Ø α β α β 3

4 Θεώρηµα 1. Οι φυσικές γλώσσες δεν µπορούν να παραχθούν από γραµµατικές πεπερασµένων καταστάσεων. Απόδειξη: Έστω µια γλώσσα που περιέχει τις µονάδες (σύµβολα) α, β. Οι ακόλουθες δοµές της γλώσσας αυτής δεν µπορούν να παραχθούν από γραµµατικές πεπερασµένων καταστάσεων: (i) αβ, ααββ, αααβββ, Γ={α ν β ν : ν 1} (ii) αα, ββ, αββα, βααβ, αααα, ββββ, ααββαα, αββββα, Γ = {ww R : w = α,β} (iii) αα, ββ, αβαβ, βαβα, αααα, ββββ, ααβααβ, αββαββ, Γ= {ww: w = α,β} Η (i) και η (ii) παράγονται από µια συµφραστικά ανεξάρτητη γραµµατική. Η (iii) παράγεται από µια γραµµατική φραστικής δοµής (βλ. παραπάνω). Όµως οι δοµές αυτού του τύπου είναι πολύ διαδεδοµένες στις φυσικές γλώσσες. Π.χ., Εάν Π 1 τότε Π 2 Είτε Π 3 είτε Π 4 [ α [ α [ α ] β ] β ] β Είπε ότι θα έρθει, αλλά πολύ αµφιβάλλω αν θα έρθει Ο άνθρωπος που είπε ότι Π 5 φτάνει σήµερα Ήρθε και ο σκύλος και τρόµαξε το γάτο που έφαγε τον ποντικό που πήρε το φυτίλι µέσα απ το καντήλι που έφεγγε και κένταγε η κόρη το µαντίλι. Άρα, οι γραµµατικές πεπερασµένων καταστάσεων δεν είναι κατάλληλες για τις φυσικές γλώσσες. Θεώρηµα 2. Οι γραµµατικές των φυσικών γλωσσών δεν είναι ισοδύναµες µε τις µετασχηµατιστικές γραµµατικές ή µε τις γραµµατικές φραστικής δοµής. Απόδειξη (Peters Ritchie): Οι µετασχηµατιστικές γραµµατικές και οι γραµµατικές φραστικής δοµής είναι πολύ ισχυρές για να είναι χρήσιµες στην περιγραφή των φυσικών γλωσσών. Ασκήσεις 1. Θ. Παυλίδου, Επίπεδα γλωσσικής ανάλυσης, σσ Πολλοί ξεχνιούνται στο ταίριασµα των παρενθέσεων. Γράψτε µια γραµµατική ισορροπηµένων παρενθέσεων, δηλ. µια γραµµατική που να παράγει τη γλώσσα: { (), (()),, ()(), ()(()),, (())(), (())(),, (()())((())),, (()()(()())), }. 3. Σχεδιάστε φραστικούς δείκτες για τις ακόλουθες δοµικά διφορούµενες φράσεις και προτάσεις: η αγάπη του Θεού η περιγραφή του παιδιού Σκότωσε τον άνθρωπο µε το πριόνι πολλοί φοιτητές και ενδιαφερόµενοι καθηγητές Έφτασε νωρίς χτες βράδι. 4. Γράψτε γραµµατικές για το ακόλουθο τµήµα της ελληνικής γλώσσας: {Ο Γιάννης, που ήρθε χτες, κοιµάται σήµερα Η Μαρία, που κοιµόταν χτες, ήρθε σήµερα Ο Νίκος, που έγραφε χτες, διαβάζει σήµερα Η Γιαννούλα, που έφυγε σήµερα, έγραφε χτες } 5. Γράψτε τη γραµµατική της γλώσσας {α ν γ ν β ν : ν 1}. Τι παρατηρείτε σε σχέση µε τη γραµµατική της γλώσσας {α ν β ν : ν 1}; 4

5 Γ = { ν ν ν : ν 1} Τ. σ.:,, Μη τ. σ.: Π,, - Κ.: 1. Π! 2.! 3.! ! ! 5

Εισαγωγή στη Γλωσσολογία Ι

Εισαγωγή στη Γλωσσολογία Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στη Γλωσσολογία Ι Σύνταξη Διδάσκοντες: Επίκ. Καθ. Μαρία Λεκάκου, Λέκτορας Μαρία Μαστροπαύλου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΣΥΝΤΑΚΤΙΚΟΙ ΟΡΟΙ. Η σύνταξη μιας πρότασης

ΣΥΝΤΑΚΤΙΚΟΙ ΟΡΟΙ. Η σύνταξη μιας πρότασης ΣΥΝΤΑΚΤΙΚΟΙ ΟΡΟΙ Η σύνταξη μιας πρότασης Τα δύο πιο βασικά στοιχεία σε κάθε πρόταση είναι το ρήμα και το ουσιαστικό. Το κομμάτι της πρότασης που αναφέρεται στο ρήμα το λέμε ρηματικό σύνολο (ΡΣ) ή ρηματικό

Διαβάστε περισσότερα

Εισαγωγή στη Γλωσσολογία Ι

Εισαγωγή στη Γλωσσολογία Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στη Γλωσσολογία Ι Σύνταξη Διδάσκοντες: Επίκ. Καθ. Μαρία Λεκάκου, Λέκτορας Μαρία Μαστροπαύλου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Θεωρία Υπολογισµού και Πολυπλοκότητα

Θεωρία Υπολογισµού και Πολυπλοκότητα Θεωρία Υπολογισµού και Πολυπλοκότητα Κεφάλαιο 3. Γλώσσες και Συναρτήσεις 30 Ιανουαρίου 2007 ρ. Παπαδοπούλου Βίκη 1 3.1.1. Αλφάβητο Πως υλοποιούµε σεέναυπολογιστήένααλγόριθµοήµια σχέση; Αλφάβητο ή Γλώσσα

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 8: Υπολογισιμότητα & Γλώσσες

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 8: Υπολογισιμότητα & Γλώσσες Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 8: Υπολογισιμότητα & Γλώσσες Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Μεταγλωττιστές. Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Μεταγλωττιστές. Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Μεταγλωττιστές Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Ενότητες Α και Β (Α' Μέρος). Από τη γραμμικότητα στη συστατικότητα. Δομή και συστατικότητα. Δομικοί κανόνες.

Ενότητες Α και Β (Α' Μέρος). Από τη γραμμικότητα στη συστατικότητα. Δομή και συστατικότητα. Δομικοί κανόνες. Ενότητες Α και Β (Α' Μέρος). Από τη γραμμικότητα στη συστατικότητα. Δομή και συστατικότητα. Δομικοί κανόνες. 1. Δομή/λειτουργία. Όπως όλα τα αντικείμενα που κατασκευάζονται για ένα σκοπό (κομπιούτερς,

Διαβάστε περισσότερα

Μηχανές Πεπερασµένων Καταστάσεων

Μηχανές Πεπερασµένων Καταστάσεων Μηχανές Επεξεργασίας Πληροφοριών Μηχανές Πεπερασµένων Καταστάσεων Είναι µηχανές που δέχονται ένα σύνολο από σήµατα εισόδου και παράγουν ένα αντίστοιχο σύνολο σηµάτων εξόδου Σήµατα Εισόδου Μηχανή Επεξεργασίας

Διαβάστε περισσότερα

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ Πεπερασμένα Αυτόματα (ΠΑ) Τα πεπερασμένα αυτόματα είναι οι απλούστερες «υπολογιστικές μηχανές». Δεν έχουν μνήμη, μόνο μία εσωτερική μονάδα με πεπερασμένο αριθμό καταστάσεων. Διαβάζουν τη συμβολοσειρά εισόδου

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται

Διαβάστε περισσότερα

Μάθημα 1. Ας γνωριστούμε λοιπόν!!! Σήμερα συναντιόμαστε για πρώτη φορά. Μαζί θα περάσουμε τους επόμενους

Μάθημα 1. Ας γνωριστούμε λοιπόν!!! Σήμερα συναντιόμαστε για πρώτη φορά. Μαζί θα περάσουμε τους επόμενους Μάθημα 1 Ας γνωριστούμε λοιπόν!!! Σήμερα συναντιόμαστε για πρώτη φορά. Μαζί θα περάσουμε τους επόμενους μήνες και θα μοιραστούμε πολλά! Ας γνωριστούμε λοιπόν. Ο καθένας από εμάς ας πει λίγα λόγια για τον

Διαβάστε περισσότερα

Γραµµατικές για Κανονικές Γλώσσες

Γραµµατικές για Κανονικές Γλώσσες Κανονικές Γραµµατικές Γραµµατικές για Κανονικές Γλώσσες Ταξινόµηση Γραµµατικών εξιά Παραγωγικές Γραµµατικές εξιά Παραγωγικές Γραµµατικές και NFA Αριστερά Παραγωγικές Γραµµατικές Κανονικές Γραµµατικές Γραµµατικές

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ Γ. Κατηγορίες (Μέρη του Λόγου)

ΕΝΟΤΗΤΑ Γ. Κατηγορίες (Μέρη του Λόγου) ΓΛΩ 372 ΕΝΟΤΗΤΑ Γ. Κατηγορίες (Μέρη του Λόγου) Πρέπει να ονοματίσουμε τους διάφορους κόμβους με ταμπέλες που να παραπέμπουν στα μέρη του λόγου ή, πιο τεχνικά, στις συντακτικές κατηγορίες που εμφανίζονται

Διαβάστε περισσότερα

Μοντελοποίηση Υπολογισμού. Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις

Μοντελοποίηση Υπολογισμού. Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις Μοντελοποίηση Υπολογισμού Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις Προβλήματα - Υπολογιστές Δεδομένου ενός προβλήματος υπάρχουν 2 σημαντικά ερωτήματα: Μπορεί να επιλυθεί με χρήση υπολογιστή;

Διαβάστε περισσότερα

Εισαγωγή στη Γλωσσολογία Ι

Εισαγωγή στη Γλωσσολογία Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στη Γλωσσολογία Ι Σύνταξη Διδάσκοντες: Επίκ. Καθ. Μαρία Λεκάκου, Λέκτορας Μαρία Μαστροπαύλου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β.

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Η έννοια της ακολουθίας Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Δηλαδή: f : A B Η ακολουθία είναι συνάρτηση.

Διαβάστε περισσότερα

ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ

ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ Κασαπίδης Γεώργιος Μαθηµατικός Στο άρθρο αυτό µελετάµε την πιο χαρακτηριστική ιδιότητα του συνόλου R των πραγµατικών αριθµών. ΟΡΙΣΜΟΣ 1 Ένα σύνολο Α από πραγµατικούς

Διαβάστε περισσότερα

Η γεωµετρική εποπτεία στην παρουσίαση της απόλυτης τιµής

Η γεωµετρική εποπτεία στην παρουσίαση της απόλυτης τιµής Η γεωµετρική εποπτεία στην παρουσίαση της απόλυτης τιµής Η µέθοδος άξονα-κύκλου: µια διδακτική πρόταση για την επίλυση εξισώσεων και ανισώσεων µε απόλυτες τιµές στην Άλγεβρα της Α Λυκείου ηµήτριος Ντρίζος

Διαβάστε περισσότερα

Γλώσσες Χωρίς Συμφραζόμενα

Γλώσσες Χωρίς Συμφραζόμενα Γλώσσες Χωρίς Συμφραζόμενα Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γλώσσα χωρίς

Διαβάστε περισσότερα

Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα

Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα Κανονικές Γλώσσες Κανονικές Γλώσσες Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Κανονική γλώσσα αν παράγεται από κανονική γραμματική. Παραγωγές P (V Σ) Σ * ((V Σ) ε) Παραγωγές μορφής:

Διαβάστε περισσότερα

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 4 ο : Συντακτική ανάλυση. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος:

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 4 ο : Συντακτική ανάλυση. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος: ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Μάθημα 4 ο : Συντακτική ανάλυση Γεώργιος Πετάσης Ακαδημαϊκό Έτος: 2012 2013 ΤMHMA MHXANIKΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ, Πανεπιστήμιο Πατρών, 2012 2013 Γλωσσική Τεχνολογία, Μάθημα 4 ο, Συντακτική

Διαβάστε περισσότερα

Απάντηση: (func endfunc)-([a-za-z])+

Απάντηση: (func endfunc)-([a-za-z])+ Γλώσσες Προγραμματισμού Μεταγλωττιστές Ασκήσεις Επανάληψης ) Περιγράψτε τις κανονικές εκφράσεις που υποστηρίζουν (i) συμβολοσειρές που ξεκινούν με το πρόθεμα "func" ή "endfunc" ακολουθούμενο το σύμβολο

Διαβάστε περισσότερα

Ψυχογλωσσολογία. Ενότητα 1 : Εισαγωγή στη Ψυχογλωσσολογία. Χριστίνα Μανουηλίδου, Επίκουρη Καθηγήτρια Τμήμα Φιλολογίας

Ψυχογλωσσολογία. Ενότητα 1 : Εισαγωγή στη Ψυχογλωσσολογία. Χριστίνα Μανουηλίδου, Επίκουρη Καθηγήτρια Τμήμα Φιλολογίας Ψυχογλωσσολογία Ενότητα 1 : Εισαγωγή στη Ψυχογλωσσολογία Χριστίνα Μανουηλίδου, Επίκουρη Καθηγήτρια Τμήμα Φιλολογίας Σκοποί ενότητας Εισαγωγή στον κλάδο της Ψυχογλωσσολογίας Μπιχιεβιοριστική προσέγγιση

Διαβάστε περισσότερα

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι. 1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44.

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44. ΤΕΧΝΙΚΕΣ ΚΑΤΑΜΕΤΡΗΣΗΣ Η καταµετρηση ενος συνολου µε πεπερασµενα στοιχεια ειναι ισως η πιο παλια µαθηµατικη ασχολια του ανθρωπου. Θα µαθουµε πως, δεδοµενης της περιγραφης ενος συνολου, να µπορουµε να ϐρουµε

Διαβάστε περισσότερα

Απλές ασκήσεις για αρχάριους μαθητές 5

Απλές ασκήσεις για αρχάριους μαθητές 5 Περιεχόμενα Το ελληνικό αλφάβητο... 9 Ενεστώτας (το βοηθητικό ρήμα είμαι) Γραμματική...10 Ενεστώτας (ενεργητική φωνή, α συζυγία) Γραμματική...10 Ενεστώτας (ενεργητική φωνή, α συζυγία και βοηθητικό ρήμα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Τελικές εξετάσεις 3 Ιανουαρίου 27 Διάρκεια εξέτασης: 3 ώρες (2:-5:) ΘΕΜΑ ο

Διαβάστε περισσότερα

8 η Ενότητα. Κατάκτηση του σημασιολογικού τομέα

8 η Ενότητα. Κατάκτηση του σημασιολογικού τομέα 8 η Ενότητα Κατάκτηση του σημασιολογικού τομέα 1. Εισαγωγή Είχαμε πει στο μάθημα Εισαγωγή στη Γλωσσολογία, ότι ο τομέας της Σημασιολογίας χωρίζεται στη λεξική και στη δομική σημασιολογία. Όσον αφορά τη

Διαβάστε περισσότερα

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)=

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)= ΣΥΝΑΡΤΗΣΕΙΣ - 9 - ΚΕΦΑΛΑΙ ΚΕΦΑΛΑΙ ο - ΣΥΝΑΡΤΗΣΕΙΣ.. ρισµός Συνάρτηση από ένα σύνολο Α σ ένα σύνολο Β είναι ένας κανόνας µε τον οποίο κάθε στοιχείο του Α απεικονίζεται σε ένα ακριβώς στοιχείο του Β. Το

Διαβάστε περισσότερα

Μερικά πρώτα παραδείγµατα συστηµάτων διακριτού χρόνου

Μερικά πρώτα παραδείγµατα συστηµάτων διακριτού χρόνου ΣΥΣΗΜΑΑ ΙΑΚΡΙΟΥ ΧΡΟΝΟΥ Από αυστηρά µαθηµατικής απόψεως σαν σύστηµα διακριτού χρόνου ορίζεται ένας οποιοσδήποτε µετασχηµατισµός ή τελεστής (operator) ο οποίος δρα σε µία ακολουθία x [ που συνήθως θεωρείται

Διαβάστε περισσότερα

Αφιέρωση Στα παιδιά µας Στους µαθητές που ατενίζουν µε αισιοδοξία το µέλλον

Αφιέρωση Στα παιδιά µας Στους µαθητές που ατενίζουν µε αισιοδοξία το µέλλον Αφιέρωση Σταπαιδιάµας Στουςµαθητέςπουατενίζουν µεαισιοδοξίατοµέλλον Φίληµαθήτρια,φίλεµαθητή Τοβιβλίοαυτόέχειδιπλόσκοπό: Νασεβοηθήσειστηνάρτιαπροετοιµασίατουκαθηµερινούσχολικού µαθήµατος. Νασουδώσειόλατααπαραίτηταεφόδια,ώστενααποκτήσειςγερές

Διαβάστε περισσότερα

2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ

2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ ΚΕΦΑΛΑΙΟ Ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΔΗΜΗΤΡΙΟΥ ΑΘ. ΚΡΟΝΤΣΟΥ ΘΕΜΑ: ΓΡΑΜΜΑΤΙΚΗ-ΣΥΝΤΑΚΤΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΝΕΑΣ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ ΕΙΣΗΓΗΤΗΣ: ΙΩΑΝΝΗΣ ΡΕΦΑΝΙΔΗΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΔΗΜΗΤΡΙΟΥ ΑΘ. ΚΡΟΝΤΣΟΥ ΘΕΜΑ: ΓΡΑΜΜΑΤΙΚΗ-ΣΥΝΤΑΚΤΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΝΕΑΣ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ ΕΙΣΗΓΗΤΗΣ: ΙΩΑΝΝΗΣ ΡΕΦΑΝΙΔΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: ΓΡΑΜΜΑΤΙΚΗ-ΣΥΝΤΑΚΤΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΝΕΑΣ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ ΔΗΜΗΤΡΙΟΥ ΑΘ. ΚΡΟΝΤΣΟΥ ΕΙΣΗΓΗΤΗΣ: ΙΩΑΝΝΗΣ ΡΕΦΑΝΙΔΗΣ Στόχοι της εργασίας Εντρύφηση στις βασικές αρχές της Επεξεργασίας

Διαβάστε περισσότερα

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6 Εισαγωγή στην Επιστήμη των Υπολογιστών 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές http://www.corelab.ece.ntua.gr/courses/ Αυτόματα Τρόπος κωδικοποίησης αλγορίθμων. Τρόπος περιγραφής συστημάτων πεπερασμένων

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα

Διαβάστε περισσότερα

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,,

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,, 1. i) Να αποδείξετε την ταυτότητα 1 ( ) ( ) ( ) + + = + +. ii) Να αποδείξετε ότι για όλους τους,, ισχύει Πότε ισχύει ισότητα; + + + +.. Λέμε ότι μια τριάδα θετικών ακεραίων (,, ) είναι όταν είναι πλευρές

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 2 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 2 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Γιώργος Δημητρίου Μάθημα 2 ο Αλφάβητα και Γλώσσες Αλφάβητο: Ένα μη κενό και πεπερασμένο σύνολο συμβόλων Γλώσσα: Ένα οποιοδήποτε υποσύνολο των συμβολοσειρών ενός αλφαβήτου (οι προτάσεις της γλώσσας, πχ.

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

ΤΑ ΠΑΡΕΠΟΜΕΝΑ ΤΟΥ ΡΗΜΑΤΟΣ ΦΩΝΗ ΣΥΖΥΓΙΑ ΔΙΑΘΕΣΗ ΧΡΟΝΙΚΗ ΒΑΘΜΙΔΑ ΠΟΙΟΝ ΕΝΕΡΓΕΙΑΣ

ΤΑ ΠΑΡΕΠΟΜΕΝΑ ΤΟΥ ΡΗΜΑΤΟΣ ΦΩΝΗ ΣΥΖΥΓΙΑ ΔΙΑΘΕΣΗ ΧΡΟΝΙΚΗ ΒΑΘΜΙΔΑ ΠΟΙΟΝ ΕΝΕΡΓΕΙΑΣ ΤΑ ΠΑΡΕΠΟΜΕΝΑ ΤΟΥ ΡΗΜΑΤΟΣ ΦΩΝΗ ΣΥΖΥΓΙΑ ΔΙΑΘΕΣΗ ΧΡΟΝΙΚΗ ΒΑΘΜΙΔΑ ΠΟΙΟΝ ΕΝΕΡΓΕΙΑΣ Α. ΣΤΟΙΧΕΙΑ ΠΟΥ ΕΧΟΥΝ ΣΧΕΣΗ ΜΕ ΤΗ ΜΟΡΦΗ ΤΟΥ ΡΗΜΑΤΟΣ Α.1. ΦΩΝΗ Τα ρήματα σχηματίζουν δύο φωνές. α. Ενεργητική Φωνή β. Παθητική

Διαβάστε περισσότερα

Λίστα Λσ Προτίμησης Ανδρών. Έκτορας Βάσω Δήμητρα Άννα Ελένη Γεωργία. Βασίλης Δήμητρα Βάσω Άννα Γεωργία Ελένη Γιάννης Βάσω Ελένη Γεωργία Δήμητρα Άννα

Λίστα Λσ Προτίμησης Ανδρών. Έκτορας Βάσω Δήμητρα Άννα Ελένη Γεωργία. Βασίλης Δήμητρα Βάσω Άννα Γεωργία Ελένη Γιάννης Βάσω Ελένη Γεωργία Δήμητρα Άννα Βασίλης Βασίλης Γά Βασίλης Ανδρέας Βασίλης Βασίλης Βασίλης Ανδρέας Βασίλης Ο Ανδρέας κάνει πρόταση στην. Βασίλης Γά Βασίλης Ανδρέας Βασίλης Βασίλης Βασίλης Ανδρέας Βασίλης Βασίλης Γά Βασίλης Ανδρέας Βασίλης

Διαβάστε περισσότερα

Εισαγωγή στη Γλωσσολογία Ι

Εισαγωγή στη Γλωσσολογία Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στη Γλωσσολογία Ι Εισαγωγικά: τι είναι γλώσσα, τι είναι γλωσσολογία Διδάσκοντες: Επίκ. Καθ. Μαρία Λεκάκου, Λέκτορας Μαρία Μαστροπαύλου Άδειες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία

Διαβάστε περισσότερα

Κατηγορικές Γραµµατικές

Κατηγορικές Γραµµατικές Κατηγορικές Γραµµατικές Γραµµατικές Χωρίς περιορισµούς Με συµφραζόµενα Χωρίς συµφραζόµενα Κανονικές Πεπερασµένων επιλογών Κατηγορικές Ενεργοποίησης Γραµµατικές G = { T, N, P, S } Τ: αλφάβητο τερµατικών

Διαβάστε περισσότερα

Παραγοντοποίηση. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Παραγοντοποίηση. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 Παραγοντοποίηση Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 1 Ενότητα 4 η Ταυτότητες Παραγοντοποίηση Σκοπός Ο σκοπός της 4 η ενότητας είναι να αποκτήσουν την ικανότητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 =

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 = ΕΞΙΩΕΙ-ΑΝΙΩΕΙ ου ΒΑΘΜΟΥ - 38 - ΚΕΦΑΑΙΟ 4 ΚΕΦΑΑΙΟ 4 ο Εξισώσεις - Ανισώσεις β βαθµού 5.1. Μορφή και διερεύνηση της εξίσωσης β βαθµού Άθροισµα και γινόµενο των ριζών της Κάθε εξίσωση β βαθµού πριν τη λύσουµε,

Διαβάστε περισσότερα

Συμφράσεις και εκφράσεις

Συμφράσεις και εκφράσεις Συμφράσεις και εκφράσεις Όταν δύο λέξεις χρησιμοποιούνται σταθερά μαζί, τότε συχνά σχηματίζουν μια νέα έννοια, η οποία προέρχεται από την κύρια σημασία της κάθε λέξης. Αυτό το σχήμα λόγου λέγεται σύμφραση:

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΜΗΧΑΝΩΝ ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ ΚΑΙ ΤΟ ΛΥΚΕΙΟ

ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΜΗΧΑΝΩΝ ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ ΚΑΙ ΤΟ ΛΥΚΕΙΟ ΜΕΡΟΣ ΤΡΙΤΟ Ένταξη των Τ.Π.Ε. στην διδασκαλία και τη µάθηση I) ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΜΗΧΑΝΩΝ ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ ΚΑΙ ΤΟ ΛΥΚΕΙΟ Παύλος Γ. Σπυράκης (google: Paul Spirakis) Ερευνητικό Ακαδηµαϊκό

Διαβάστε περισσότερα

Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç. Απάντηση Οι γωνίες που σχηµατίζονται είναι: Α. αµβλεία Β. ευθεία Γ. πλήρης. οξεία Ε. ορθή Ζ. αµβλεία Η. οξεία.

Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç. Απάντηση Οι γωνίες που σχηµατίζονται είναι: Α. αµβλεία Β. ευθεία Γ. πλήρης. οξεία Ε. ορθή Ζ. αµβλεία Η. οξεία. Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç Σε όλα τα παρακάτω αντικείµενα σχηµατίζονται διάφορες γωνίες ανάλογα µε τη σχετική θέση, κάθε φορά, δύο ηµιευθειών που έχουν ένα κοινό ση- µείο, όπως π.χ. είναι οι δείκτες του ρολογιού,

Διαβάστε περισσότερα

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 73 8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ρισμός της συνέχειας Έστω οι συναρτήσεις g h παρακάτω σχήματα των οποίων οι γραφικές παραστάσεις δίνονται στα C h 6 l ( C l g( C g l l (a Παρατηρούμε ότι:

Διαβάστε περισσότερα

1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων

1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων . Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων Tα διάφορα επιστημονικά μοντέλα ή πειράματα ή γενικότερα τα φυσικά φαινόμενα μπορεί να θεωρηθεί ότι εντάσσονται σε δύο μεγάλες κατηγορίες: τα προσδιοριστικά

Διαβάστε περισσότερα

A. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

A. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Μάθηµα 1 Κεφάλαιο: Εισαγωγικό Θεµατικές Ενότητες: A. Το Λεξιλόγιο της Λογικής B. Σύνολα A. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Ορισµός Πρόταση λέµε κάθε φράση που µε βάση το νοηµατικό της περιεχόµενο µπορούµε να

Διαβάστε περισσότερα

(είσοδος) (έξοδος) καθώς το τείνει στο.

(είσοδος) (έξοδος) καθώς το τείνει στο. Υπενθυμίζουμε ότι αν ένα σύστημα είναι ευσταθές, τότε η απόκριση είναι άθροισμα μίας μεταβατικής και μίας μόνιμης. Δηλαδή, αν το σύστημα είναι ευσταθές όπου και Είθισται, σε ένα σύστημα αυτομάτου ελέγχου

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΛΕΥΚΩΣΙΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα. Οδηγίες

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΛΕΥΚΩΣΙΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα. Οδηγίες ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΛΕΥΚΩΣΙΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΤΑΞΗ Α ΕΛΛΗΝΙΚΑ ΔΙΑΓΝΩΣΤΙΚΟ 17/05/2014 Χρόνος: 1 ώρα Οδηγίες 1. Έλεγξε ότι το γραπτό που έχεις μπροστά σου αποτελείται από τις σελίδες 1-8. 2. Όλες τις

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Ψυχογλωσσολογία. Ενότητα 4 : Επεξεργασία προτάσεων. Χριστίνα Μανουηλίδου, Επίκουρη Καθηγήτρια Τμήμα Φιλολογίας

Ψυχογλωσσολογία. Ενότητα 4 : Επεξεργασία προτάσεων. Χριστίνα Μανουηλίδου, Επίκουρη Καθηγήτρια Τμήμα Φιλολογίας Ψυχογλωσσολογία Ενότητα 4 : Επεξεργασία προτάσεων Χριστίνα Μανουηλίδου, Επίκουρη Καθηγήτρια Τμήμα Φιλολογίας Σκοποί ενότητας Συντακτική επεξεργασία-ανάλυση (parsing) Στρατηγικές συντακτικής επεξεργασίας

Διαβάστε περισσότερα

Χηµική ισοδυναµία πυρήνων και µοριακή συµµετρία

Χηµική ισοδυναµία πυρήνων και µοριακή συµµετρία Χηµική ισοδυναµία πυρήνων και µοριακή συµµετρία Οι χηµικά µη ισοδύναµοι πυρήνες βρίσκονται σε διαφορετικό χηµικό περιβάλλον και όπως ήδη γνωρίζουµε, συντονίζονται σε διαφορετική συχνότητα (παρουσιάζουν

Διαβάστε περισσότερα

«Τεχνογλωσσία VIII» Εξαγωγή πληροφοριών από κείμενα

«Τεχνογλωσσία VIII» Εξαγωγή πληροφοριών από κείμενα «Τεχνογλωσσία VIII» Εξαγωγή πληροφοριών από κείμενα Σεμινάριο 4: Συντακτική Ανάλυση Ευάγγελος Καρκαλέτσης, Γεώργιος Πετάσης Εργαστήριο Τεχνολογίας Γνώσεων & Λογισμικού, Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών,

Διαβάστε περισσότερα

CSC 314: Switching Theory

CSC 314: Switching Theory CSC 314: Switching Theory Course Summary 9 th January 2009 1 1 Θέματα Μαθήματος Ερωτήσεις Τι είναι αλγόριθμος? Τι μπορεί να υπολογιστεί? Απαντήσεις Μοντέλα Υπολογισμού Δυνατότητες και μη-δυνατότητες 2

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

ΠΡΑΞΗ: "ΠΙΣΤΟΠΟΙΗΣΗ ΕΛΛΗΝΟΜΑΘΕΙΑΣ: ΥΠΟΣΤΗΡΙΞΗ ΚΑΙ ΠΟΙΟΤΙΚΗ ΑΝΑΔΕΙΞΗ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ/ΕΚΜΑΘΗΣΗΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΩΣ ΞΕΝΗΣ/ΔΕΥΤΕΡΗΣ ΓΛΩΣΣΑΣ"

ΠΡΑΞΗ: ΠΙΣΤΟΠΟΙΗΣΗ ΕΛΛΗΝΟΜΑΘΕΙΑΣ: ΥΠΟΣΤΗΡΙΞΗ ΚΑΙ ΠΟΙΟΤΙΚΗ ΑΝΑΔΕΙΞΗ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ/ΕΚΜΑΘΗΣΗΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΩΣ ΞΕΝΗΣ/ΔΕΥΤΕΡΗΣ ΓΛΩΣΣΑΣ ΠΡΑΞΗ: "ΠΙΣΤΟΠΟΙΗΣΗ ΕΛΛΗΝΟΜΑΘΕΙΑΣ: ΥΠΟΣΤΗΡΙΞΗ ΚΑΙ ΠΟΙΟΤΙΚΗ ΑΝΑΔΕΙΞΗ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ/ΕΚΜΑΘΗΣΗΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΩΣ ΞΕΝΗΣ/ΔΕΥΤΕΡΗΣ ΓΛΩΣΣΑΣ" Υπουργείο Πολιτισμού, Παιδείας και Θρησκευμάτων Κέντρο Ελληνικής Γλώσσας

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Α. ΘΕΩΡΙΑ Εστω μια συνάρτηση f και x. του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x., όταν

Α. ΘΕΩΡΙΑ Εστω μια συνάρτηση f και x. του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x., όταν Α ΘΕΩΡΙΑ Εστω μια συνάρτηση και ένα σημείο του πεδίου ορισμού της Θα λέμε ότι η είναι συνεχής στο όταν Για παράδειγμα η συνάρτηση είναι συνεχής στο αφού Σύμφωνα με τον παραπάνω ορισμό μια συνάρτηση δεν

Διαβάστε περισσότερα

Κεφάλαιο 2. Συντακτικές κατηγορίες

Κεφάλαιο 2. Συντακτικές κατηγορίες Κεφάλαιο 2 Συντακτικές κατηγορίες Σύνοψη Στο κεφάλαιο αυτό εξετάζουμε τα βασικά μέρη της πρότασης, δηλαδή το υποκείμενο και το κατηγόρημα, και δίνουμε ιδιαίτερη έμφαση στις συντακτικές κατηγορίες, αυτό

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

τ και τ' οι ημιπερίμετροι των βάσεων, Β και β τα εμβαδά των βάσεων, υ το ύψος και υ' το παράπλευρο ύψος της πυραμίδας.

τ και τ' οι ημιπερίμετροι των βάσεων, Β και β τα εμβαδά των βάσεων, υ το ύψος και υ' το παράπλευρο ύψος της πυραμίδας. ΣΤΕΡΕΑ ΜΑΘΗΜΑ 12 ΑΝΑΚΕΦΑΛΑΙΩΣΗ 1. Αν τυχαία πυραμίδα τμηθεί με επίπεδο παράλληλο στη βάση της, έχουμε: KA/KA' = KB/KB' = ΚΓ/ΚΓ' = ΚΗ/Κ'Η' = λ και ΑΒΓ Α'Β'Γ' με λόγο ομοιότητας λ. 2. Μέτρηση κανονικής πυραμίδας:

Διαβάστε περισσότερα

ΕΦΗ ΜΙΧΟΠΟΥΛΟΥ. Αλληλεπιδράσεις γονιδίων Ι ασκήσεις

ΕΦΗ ΜΙΧΟΠΟΥΛΟΥ. Αλληλεπιδράσεις γονιδίων Ι ασκήσεις Αλληλεπιδράσεις γονιδίων Ι ασκήσεις 1. Στους σκύλους Labrador ένα θηλυκό άτομο με καστανό χρωματισμό διασταυρώθηκε με αρσενικό που είχε χρυσαφί χρωματισμό. Όλοι οι F1 απόγονοι είχαν μαύρο χρωματισμό. Η

Διαβάστε περισσότερα

Γραμματική και Συντακτικό Γ Δημοτικού ανά ενότητα - Παρασκευή Αντωνίου

Γραμματική και Συντακτικό Γ Δημοτικού ανά ενότητα - Παρασκευή Αντωνίου Ενότητα 1η: «Πάλι μαζί!» Σημεία στίξης: τελεία ερωτηματικό...4 Η δομή της πρότασης: ρήμα υποκείμενο αντικείμενο...5 Ουσιαστικά: αριθμοί γένη...6 Ονομαστική πτώση ουσιαστικών...6 Οριστικό άρθρο...7 Ερωτηματικές

Διαβάστε περισσότερα

Ι δ ι ο τ η τ ε ς Π ρ ο σ θ ε σ η ς - Π ο λ λ α π λ α σ ι α σ μ ο υ ΙΔΙΟΤΗΤΑ ΠΡΟΣΘΕΣΗ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Ι δ ι ο τ η τ ε ς Π ρ ο σ θ ε σ η ς - Π ο λ λ α π λ α σ ι α σ μ ο υ ΙΔΙΟΤΗΤΑ ΠΡΟΣΘΕΣΗ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1 Π ρ α γ μ α τ ι κ ο ι Α ρ ι θ μ ο ι : Υ π ο σ υ ο λ α του Το συολο τω φυσικω 3. αριθμω: Να δειχτει οτι = α {0,1,,3, } + 110 0α. Ποτε ισχυει το ισο; Το συολο τω. A ακεραιω α, β θετικοι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Α) Συµπληρώστε τα κενά στις παρακάτω προτάσεις: 1) Ο κύκλος µε κέντρο Κ(α, β) και ακτίνα ρ > έχει εξίσωση... ) Η εξίσωση του κύκλου µε κέντρο στην αρχή

Διαβάστε περισσότερα

HY-280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.

HY-280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. HY-280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργακόπουλος Μέρος B Βασικά στοιχεία περί ασυμφραστικών

Διαβάστε περισσότερα

Κεφάλαιο 8. Η οµάδα S n. 8.1 Βασικές ιδιότητες της S n

Κεφάλαιο 8. Η οµάδα S n. 8.1 Βασικές ιδιότητες της S n Κεφάλαιο 8 Η οµάδα S n Στο κεφάλαιο αυτό ϑα µελετήσουµε την οµάδα µεταθέσεων ή συµµετρική οµάδα S n εφαρµόζοντας τη ϑεωρία που αναπτύχθηκε στα προηγούµενα κε- ϕάλαια. Η σηµαντικότητα της S n εµφανίστηκε

Διαβάστε περισσότερα

Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ: Ας γνωριστούμε

Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ: Ας γνωριστούμε Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ: Ας γνωριστούμε Ενότητα: Χαιρετισμοί, συστάσεις, γνωριμία (2 φύλλα εργασίας) Επίπεδο: Α1, Α2 Κοινό: αλλόγλωσσοι ενήλικες ιάρκεια: 4 ώρες (2 δίωρα) Υλικοτεχνική υποδομή: Για τον διδάσκοντα:

Διαβάστε περισσότερα

Ανοικτά και κλειστά σύνολα

Ανοικτά και κλειστά σύνολα 5 Ανοικτά και κλειστά σύνολα Στην παράγραφο αυτή αναπτύσσεται ο µηχανισµός που θα µας επιτρέψει να µελετήσουµε τις αναλυτικές ιδιότητες των συναρτήσεων πολλών µεταβλητών. Θα χρειαστούµε τις έννοιες της

Διαβάστε περισσότερα

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 2.1 Συνάρτηση Η έννοια της συνάρτησης είναι ϐασική σ όλους τους κλάδους των µαθη- µατικών, αλλά και πολλών άλλων επιστηµών. Ο λόγος είναι, ότι µορφοποιεί τη σχέση

Διαβάστε περισσότερα

9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού

9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού 1 2 Τα θεωρήματα του Green, Stokes και Gauss 211 9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού Ήδη στην παράγραφο 5.7 ασχοληθήκαμε με την ύπαρξη συνάρτησης

Διαβάστε περισσότερα

Επίπεδα Γραφήματα (planar graphs)

Επίπεδα Γραφήματα (planar graphs) Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους 1 2 1 2 3 4 3 4 Άρα αυτό το γράφημα είναι επίπεδο Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι

Διαβάστε περισσότερα

6. Εγγεγραμμένα Σχήματα. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr

6. Εγγεγραμμένα Σχήματα. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr 6. Εγγεγραμμένα Σχήματα Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr 1 Επίκεντρη γωνία Μια γωνία λέγεται επίκεντρη γωνία ενός κύκλου αν η κορυφή της είναι το κέντρο του κύκλου. Το τόξο ΑΓΒ που

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Εισαγωγή στη Γλωσσολογία Ι. Εισαγωγικά: τι είναι γλώσσα, τι είναι γλωσσολογία

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Εισαγωγή στη Γλωσσολογία Ι. Εισαγωγικά: τι είναι γλώσσα, τι είναι γλωσσολογία ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στη Γλωσσολογία Ι Εισαγωγικά: τι είναι γλώσσα, τι είναι γλωσσολογία Διδάσκοντες: Επίκ. Καθ. Μαρία Λεκάκου, Λέκτορας Μαρία Μαστροπαύλου Άδειες

Διαβάστε περισσότερα

Κατανόηση γραπτού λόγου

Κατανόηση γραπτού λόγου Α1 1 Επίπεδο Α1 ιάρκεια: 30 λεπτά Πρώτο µέρος (12 µονάδες) Ερώτηµα 1 (6 µονάδες) Ένας φίλος σας σάς προσκαλεί στη βάφτιση της κόρης του. ιαβάστε το προσκλητήριο και σηµειώστε στις προτάσεις που πιστεύετε

Διαβάστε περισσότερα

1. Ποιος μαθητής πήγε στους Αρχιερείς; Τι του έδωσαν; (Μτ 26,14-16) Βαθ. 1,0 2. Πόσες μέρες έμεινε στην έρημο; (Μκ 1,12)

1. Ποιος μαθητής πήγε στους Αρχιερείς; Τι του έδωσαν; (Μτ 26,14-16) Βαθ. 1,0 2. Πόσες μέρες έμεινε στην έρημο; (Μκ 1,12) ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΘΡΗΣΚΕΥΤΙΚΑ ΤΑΞΗ: Β ΤΕΤΡΑΜΗΝΟ Α ΟΜΑΔΑ: 1 1. Ποιος μαθητής πήγε στους Αρχιερείς; Τι του έδωσαν; (Μτ 26,14-16),0 2. Πόσες μέρες έμεινε στην έρημο; (Μκ 1,12),0 3. Ποιοι είναι οι μαθητές του

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156. Όρια και συνέχεια συναρτήσεων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016

Βιομαθηματικά BIO-156. Όρια και συνέχεια συναρτήσεων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016 Βιομαθηματικά BIO-156 Όρια και συνέχεια συναρτήσεων Ντίνα Λύκα Εαρινό Εξάμηνο, 216 lika@biology.uoc.gr Παράδειγμα Υποθετικός πληθυσμός βακτηρίων Ας υποθέσουμε ότι ένας πληθυσμός βακτηρίων αυξάνει με το

Διαβάστε περισσότερα

3 Αναδροµή και Επαγωγή

3 Αναδροµή και Επαγωγή 3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 27 ΣΕΠΤΕΜΒΡΙΟΥ 2016 ΕΙΣΑΓΩΓΗ Ο απειροστικός λογισμός αποτελείται από το διαφορικό και ολοκληρωτικό

Διαβάστε περισσότερα

ΓΙΑ ΕΦΗΒΟΥΣ ΚΑΙ ΕΝΗΛΙΚΟΥΣ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α

ΓΙΑ ΕΦΗΒΟΥΣ ΚΑΙ ΕΝΗΛΙΚΟΥΣ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α ΓΙΑ ΕΦΗΒΟΥΣ ΚΑΙ ΕΝΗΛΙΚΟΥΣ Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν Μ Ν Α Δ Ε Σ Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η

Διαβάστε περισσότερα

Σε αυτό το µάθηµα. Εισαγωγή στις Μηχανές Turing. Μηχανή Turing (Turing Machine - TM) Μηχανές Turing. Παραδείγµατα Μηχανών Turing

Σε αυτό το µάθηµα. Εισαγωγή στις Μηχανές Turing. Μηχανή Turing (Turing Machine - TM) Μηχανές Turing. Παραδείγµατα Μηχανών Turing Σε αυτό το µάθηµα Εισαγωγή στις Μηχανές Turing Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Παραδείγµατα Μηχανών Turing Παραλλαγές: Πολυταινιακές, Μη ντετερµινιστικές

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ Α ΓΥΜΝΑΣΙΟΥ Ημερομηνία: 20/12/08 Ώρα εξέτασης: 09:30-12:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα.κάθε θέμα βαθμολογείται με 10 μονάδες. 2. Να γράφετε με

Διαβάστε περισσότερα

Θεώρημα Ι Η διάμεσος ορθογωνίου τριγώνου που φέρουμε από την κορυφή της ορθής γωνίας είναι ίση με το μισό της υποτείνουσας.

Θεώρημα Ι Η διάμεσος ορθογωνίου τριγώνου που φέρουμε από την κορυφή της ορθής γωνίας είναι ίση με το μισό της υποτείνουσας. ΠΡΟΛΟΓΟΣ Τα πιο κάτω θεωρήματα καθώς και το Θεώρημα Ι σ. 104 είναι SOS όχι μόνο για θεωρία αλλά και για χρήση στις ασκήσεις, οπότε πρέπει να κατανοήσετε τι λένε, να ξέρετε την απόδειξη και να είστε έτοιμοι

Διαβάστε περισσότερα

Εισαγωγή στη Γλωσσολογία Ι

Εισαγωγή στη Γλωσσολογία Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στη Γλωσσολογία Ι Σημασιολογία Διδάσκοντες: Επίκ. Καθ. Μαρία Λεκάκου, Λέκτορας Μαρία Μαστροπαύλου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 16 1.4 1.5 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ xo

ΜΑΘΗΜΑ 16 1.4 1.5 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ xo ΜΑΘΗΜΑ 6.4.5 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ R Η έννια τυ ρίυ Όρι ταυττικής σταθερής συνάρτησης Ι ΙΟΤΗΤΕΣ ΤΩΝ ΟΡΙΩΝ Όρι και διάταξη Όρια και πράξεις Κριτήρι παρεµβλής Τριγωνµετρικά όρια Όρι σύνθετης συνάρτησης Θεωρία

Διαβάστε περισσότερα

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ 1 4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ ΘΕΩΡΙΑ 1. Θεώρηµα Αν α, β ακέραιοι µε β 0, τότε υπάρχουν µοναδικοί ακέραιοι κ και υ, έτσι ώστε α = κβ + υ µε 0 υ < β. 2. Τέλεια διαίρεση Αν το υπόλοιπο υ της Ευκλείδειας

Διαβάστε περισσότερα

Kangourou Greek Competition 2014

Kangourou Greek Competition 2014 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus Kangourou Greek Competition 2014 Level 3 4 Γ - Δ Δημοτικού 15 Νοεμβρίου/November 2014 10:00 11:15 Ερωτήσεις 1 12 = 3 βαθμοί η

Διαβάστε περισσότερα

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ.

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 1. Οι φυσικοί αριθμοί. Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 0, 1,2,3,4,5,6,7,8,9, 10,..., 100,..., 1.000,..., 10.0000,10.001,..., 100.000, 100.001, 100.002,..., 200.000,...,

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

ΚΕΙΜΕΝΑ - ΛΕΞΙΛΟΓΙΟ - ΑΣΚΗΣΕΙΣ. Η Ελένη, η Σοφία, η Βασιλική, η Ειρήνη, ο Κωνσταντίνος, ο Απόστολος και ο Αλέξανδρος χαιρετούν τους φίλους τους

ΚΕΙΜΕΝΑ - ΛΕΞΙΛΟΓΙΟ - ΑΣΚΗΣΕΙΣ. Η Ελένη, η Σοφία, η Βασιλική, η Ειρήνη, ο Κωνσταντίνος, ο Απόστολος και ο Αλέξανδρος χαιρετούν τους φίλους τους ΕΝΟΤΗΤΑ 1 Καλημέρα! A ΜΕΡΟΣ ΚΕΙΜΕΝΑ - ΛΕΞΙΛΟΓΙΟ - ΑΣΚΗΣΕΙΣ Α. ΔΙΑΛΟΓΟΣ Καλημέρα! Η Ελένη, η Σοφία, η Βασιλική, η Ειρήνη, ο Κωνσταντίνος, ο Απόστολος και ο Αλέξανδρος χαιρετούν τους φίλους τους Καλημέρα,

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Επανάληψη Μαθήματος Το Μάθημα σε μια Διαφάνεια Υπολογιστικά μοντέλα Κανονικές Γλώσσες Ντετερμινιστικά Αυτόματα Μη Ντετερμινιστικά Αυτόματα Κανονικές Εκφράσεις

Διαβάστε περισσότερα

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1)

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1) 1 ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης (1) όπου οι συντελεστές είναι δοσµένες συνεχείς συναρτήσεις ορισµένες σ ένα ανοικτό διάστηµα. Ορισµός 1. Ορίζουµε τον διαφορικό τελεστή µέσω της

Διαβάστε περισσότερα

ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ;

ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ; ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ; Γιώργου Τσαπακίδη Είναι εύκολο να παρατηρήσουμε ότι τα συμμετρικά σχήματα έχουν πολύ περισσότερες ιδιότητες από τα μη συμμετρικά σχήματα. Το ισοσκελές τρίγωνο, που έχει άξονα

Διαβάστε περισσότερα