Γραµµατικοί κανόνες Κανόνες µεταγραφής συµβόλων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γραµµατικοί κανόνες Κανόνες µεταγραφής συµβόλων"

Transcript

1 Πανεπιστήµιο Αθηνών, Τµήµα Ε.Μ.Μ.Ε. Εαρινό εξάµηνο 2004 Σ. A. Μοσχονάς, Γενική Γλωσσολογία 25 Μαΐου 2004 Γραµµατικοί κανόνες - Κανόνες µεταγραφής Ιεραρχία γραµµατικών: Γραµµατικές Πεπερασµένων Καταστάσεων, Συµφραστικά Ανεξάρτητες Γραµµατικές, Συµφραστικά Εξαρτηµένες γραµµατικές, Γραµµατικές Φραστικής οµής, Μετασχηµατιστικές Γραµµατικές Παραγωγή συµβολοσειρών Φραστικοί δείκτες οµική αµφισηµία Πρόταση Π Φράσεις ΟΦ, ΡΦ µη τερµατικά σύµβολα Μέρη του λόγου Α, Ο, Ρ Λέξεις ο Βαγγέλης κοιµάται τερµατικά σύµβολα Γραµµατικοί κανόνες Κανόνες µεταγραφής συµβόλων Α! Β / Γ, όπου: 1. Α, Β, Γ, είναι σύµβολα ή σειρές συµβόλων (συµβολοσειρές) 2. Α ή Β (αλλά όχι Α και Β) µπορούν να είναι Ø (κενά) 3. Γ, µπορούν να είναι Ø. Εάν Γ ή Ø, ο κανόνας λέγεται συµφραστικά εξαρτηµένος (contextsensitive) εάν Γ και = Ø, ο κανόνας λέγεται συµφραστικά ανεξάρτητος (context-free). Εάν Α! X Α, ο κανόνας λέγεται αναδροµικός (αναδροµικός δεξιά). Εάν Α! Α X, ο κανόνας λέγεται αναδροµικός αριστερά. Μια γραµµατική αποτελείται από (1) ένα αρχικό σύµβολο Π [=Πρόταση], (2α) ένα σύνολο τερµατικών συµβόλων, (2β) ένα σύνολο µη τερµατικών συµβόλων και (3) ένα σύνολο κανόνων που παράγουν συµβολοσειρές. Μια γλώσσα είναι ένα (άπειρο) σύνολο τερµατικών συµβολοσειρών. Λέµε ότι µια γλώσσα «περιγράφεται» ή «γεννιέται» ή «παράγεται» ή «απαριθµείται» ή «υπολογίζεται» από µια γραµµατική. Είδη γραµµατικής Γραµµατική Πεπερασµένων Καταστάσεων: Α! α Β (ή Α! Β α), Α! α, όπου τα Α, Β είναι µη τερµατικά (τελικά) σύµβολα και το α είναι τερµατικό (τελικό) σύµβολο. Συµφραστικά Ανεξάρτητη Γραµµατική: όπου το Α είναι µη τερµατικό σύµβολο και το Β είναι µια σειρά τερµατικών ή µη τερµατικών συµβόλων. Συµφραστικά Εξαρτηµένη Γραµµατική: ΓΑ! ΓΒ (Α! Β / Γ ), όπου το Α είναι µη τερµατικό σύµβολο, τα Γ, είναι σειρές τερµατικών ή µη τερµατικών συµβόλων και τουλάχιστον ένα από τα Γ, δεν είναι Ø. Εναλλακτικά: όπου Α, Β είναι δύο οποιεσδήποτε συµβολοσειρές: Α Β, όπου Χ το µήκος της συµβολοσειράς Χ. 1

2 Γραµµατικές Φραστικής οµής: όπου Α, Β είναι δύο οποιεσδήποτε συµβολοσειρές, τερµατικών ή µη τερµατικών συµβόλων. Μετασχηµατιστικές Γραµµατικές: γραµµατικές εξαρτηµένες ή ανεξάρτητες συµφραστικά οι οποίες, επιπλέον, περιέχουν κανόνες φραστικής δοµής όπου Α, Β είναι οποιεσδήποτε σειρές τερµατικών ή µη τερµατικών συµβόλων. Οι κανόνες αυτοί λέγονται µετασχηµατισµοί. Ιεραρχία των γραµµατικών µετασχηµατιστικές γραµµατικές γραµµατικές φραστικής δοµής συµφραστικά εξαρτηµένες γραµµατικές συµφραστικά ανεξάρτητες γραµµατικές γραµµατικές πεπερασµένων καταστάσεων µετασχηµατιστικές γραµµατικές γραµµατικές φραστικής δοµής συµφραστικά εξαρτηµένες γραµµατικές συµφραστικά ανεξάρτητες γραµµατικές γραµµατικές πεπερασµένων καταστάσεων Παραδείγµατα 1. comes S! the A, A! man B 1, man A! men B 2, S F B 1! comes F, the B 2! come F. men come 2. άνθρωπος έρχεται πολύ S! o Α 1, S! oι Α 2, Α 1! άνθρωπος Β 1, o Β 1! έρχεται Γ 1, Γ 1! πολύ Γ 1 S F Γ 1! γρήγορα F οι γρήγορα Α 2! άνθρωποι Β 2, έρχονται Β 2! έρχονται Γ 2, Γ 2! πολύ Γ 2 άνθρωποι Γ 2! γρήγορα F. 2

3 3. Επίθετο Όνοµα Ρήµα ενικός αριθµός Επιρ. Προσδ. Άρθρο S Επίρρηµα F Άρθρο Όνοµα Ρήµα πληθυντικός αριθµός Επίθετο 4. {αβ, ααββ, αααβββ, } = {α ν β ν : ν 1} Μη τερµατικά σύµβολα: Π 1. Π! α Π β 2. Π! Ø α Π β α α Π β β α α Ø ββ α α β β 5. {αα, ββ, αββα, βααβ, αααα, ββββ, ααββαα, αββββα, } = {ww R : w = α,β} Μη τερµατικά σύµβολα: Π 1. Π! α Π α 2. Π! β Π β 3. Π! Ø 6. {αα, ββ, αβαβ, βαβα, αααα, ββββ, ααβααβ, αββαββ, } = {ww: w = α,β} Μη τερµατικά σύµβολα: Π, Χ 1, Χ 2, Χ 3, Α, Β 1. Π! Χ 1 Χ 2 Χ 3 2. Χ 1 Χ 2! α Χ 1 Α 3. Χ 1 Χ 2! β Χ 1 Β 4. Α β! β Α 5. Β α! α Β 6. Α Χ 3! Χ 2 α Χ 3 7. Β Χ 3! Χ 2 β Χ 3 8. α Χ 2! Χ 2 α 9. β Χ 2! Χ 2 β 10. Χ 1 Χ 2! Ø 11. Χ 3! Ø α Π α α α Π α α α α β Π β α α α α β α Π α β α α α α β α Ø α β α α α α β α α β α α Χ 1 Χ 2 Χ 3 α Χ 1 Α Χ 3 α Χ 1 Χ 2 α Χ 3 α β Χ 1 Β α Χ 3 α β Χ 1 α Β Χ 3 α β Χ 1 α Χ 2 β Χ 3 α β Χ 1 Χ 2 α β Χ 3 α β Ø α β Ø α β α β 3

4 Θεώρηµα 1. Οι φυσικές γλώσσες δεν µπορούν να παραχθούν από γραµµατικές πεπερασµένων καταστάσεων. Απόδειξη: Έστω µια γλώσσα που περιέχει τις µονάδες (σύµβολα) α, β. Οι ακόλουθες δοµές της γλώσσας αυτής δεν µπορούν να παραχθούν από γραµµατικές πεπερασµένων καταστάσεων: (i) αβ, ααββ, αααβββ, Γ={α ν β ν : ν 1} (ii) αα, ββ, αββα, βααβ, αααα, ββββ, ααββαα, αββββα, Γ = {ww R : w = α,β} (iii) αα, ββ, αβαβ, βαβα, αααα, ββββ, ααβααβ, αββαββ, Γ= {ww: w = α,β} Η (i) και η (ii) παράγονται από µια συµφραστικά ανεξάρτητη γραµµατική. Η (iii) παράγεται από µια γραµµατική φραστικής δοµής (βλ. παραπάνω). Όµως οι δοµές αυτού του τύπου είναι πολύ διαδεδοµένες στις φυσικές γλώσσες. Π.χ., Εάν Π 1 τότε Π 2 Είτε Π 3 είτε Π 4 [ α [ α [ α ] β ] β ] β Είπε ότι θα έρθει, αλλά πολύ αµφιβάλλω αν θα έρθει Ο άνθρωπος που είπε ότι Π 5 φτάνει σήµερα Ήρθε και ο σκύλος και τρόµαξε το γάτο που έφαγε τον ποντικό που πήρε το φυτίλι µέσα απ το καντήλι που έφεγγε και κένταγε η κόρη το µαντίλι. Άρα, οι γραµµατικές πεπερασµένων καταστάσεων δεν είναι κατάλληλες για τις φυσικές γλώσσες. Θεώρηµα 2. Οι γραµµατικές των φυσικών γλωσσών δεν είναι ισοδύναµες µε τις µετασχηµατιστικές γραµµατικές ή µε τις γραµµατικές φραστικής δοµής. Απόδειξη (Peters Ritchie): Οι µετασχηµατιστικές γραµµατικές και οι γραµµατικές φραστικής δοµής είναι πολύ ισχυρές για να είναι χρήσιµες στην περιγραφή των φυσικών γλωσσών. Ασκήσεις 1. Θ. Παυλίδου, Επίπεδα γλωσσικής ανάλυσης, σσ Πολλοί ξεχνιούνται στο ταίριασµα των παρενθέσεων. Γράψτε µια γραµµατική ισορροπηµένων παρενθέσεων, δηλ. µια γραµµατική που να παράγει τη γλώσσα: { (), (()),, ()(), ()(()),, (())(), (())(),, (()())((())),, (()()(()())), }. 3. Σχεδιάστε φραστικούς δείκτες για τις ακόλουθες δοµικά διφορούµενες φράσεις και προτάσεις: η αγάπη του Θεού η περιγραφή του παιδιού Σκότωσε τον άνθρωπο µε το πριόνι πολλοί φοιτητές και ενδιαφερόµενοι καθηγητές Έφτασε νωρίς χτες βράδι. 4. Γράψτε γραµµατικές για το ακόλουθο τµήµα της ελληνικής γλώσσας: {Ο Γιάννης, που ήρθε χτες, κοιµάται σήµερα Η Μαρία, που κοιµόταν χτες, ήρθε σήµερα Ο Νίκος, που έγραφε χτες, διαβάζει σήµερα Η Γιαννούλα, που έφυγε σήµερα, έγραφε χτες } 5. Γράψτε τη γραµµατική της γλώσσας {α ν γ ν β ν : ν 1}. Τι παρατηρείτε σε σχέση µε τη γραµµατική της γλώσσας {α ν β ν : ν 1}; 4

5 Γ = { ν ν ν : ν 1} Τ. σ.:,, Μη τ. σ.: Π,, - Κ.: 1. Π! 2.! 3.! ! ! 5

Γραµµατικοί κανόνες Κανόνες µεταγραφής συµβόλων

Γραµµατικοί κανόνες Κανόνες µεταγραφής συµβόλων Πανεπιστήµιο Αθηνών, Τµήµα Ε.Μ.Μ.Ε. Εαρινό εξάµηνο 2005 Σ. A. Μοσχονάς, Γενική Γλωσσολογία 25 & 26 Μαΐου 2005 Γραµµατικοί κανόνες - Κανόνες µεταγραφής Ιεραρχία γραµµατικών: Γραµµατικές Πεπερασµένων Καταστάσεων,

Διαβάστε περισσότερα

Εισαγωγή στη Γλωσσολογία Ι

Εισαγωγή στη Γλωσσολογία Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στη Γλωσσολογία Ι Σύνταξη Διδάσκοντες: Επίκ. Καθ. Μαρία Λεκάκου, Λέκτορας Μαρία Μαστροπαύλου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων Λύσεις Άσκηση Έστω αλφάβητο Σ και γλώσσες Α, Β επί του αλφάβητου αυτού. Για κάθε μια από τις πιο κάτω περιπτώσεις να διερευνήσετε κατά πόσο Γ Δ, ή, Δ Γ, ή και τα δύο. Σε περίπτωση, που

Διαβάστε περισσότερα

Μοντέλα γλωσσικής επεξεργασίας: σύνταξη

Μοντέλα γλωσσικής επεξεργασίας: σύνταξη Μοντέλα γλωσσικής επεξεργασίας: σύνταξη Μάθημα: Εισαγωγή στις επιστήμες λόγου και ακοής Ιωάννα Τάλλη, Ph.D. Σύνταξη Είναι ο τομέας της γλώσσας που μελετά τη δομή των προτάσεων, δηλαδή ποια είναι η σειρά

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 5: Μη κανονικές γλώσσες Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΣΥΝΤΑΚΤΙΚΟΙ ΟΡΟΙ. Η σύνταξη μιας πρότασης

ΣΥΝΤΑΚΤΙΚΟΙ ΟΡΟΙ. Η σύνταξη μιας πρότασης ΣΥΝΤΑΚΤΙΚΟΙ ΟΡΟΙ Η σύνταξη μιας πρότασης Τα δύο πιο βασικά στοιχεία σε κάθε πρόταση είναι το ρήμα και το ουσιαστικό. Το κομμάτι της πρότασης που αναφέρεται στο ρήμα το λέμε ρηματικό σύνολο (ΡΣ) ή ρηματικό

Διαβάστε περισσότερα

Εισαγωγή στη Γλωσσολογία Ι

Εισαγωγή στη Γλωσσολογία Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στη Γλωσσολογία Ι Σύνταξη Διδάσκοντες: Επίκ. Καθ. Μαρία Λεκάκου, Λέκτορας Μαρία Μαστροπαύλου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης.

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης. Γενικές Παρατηρήσεις Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα () Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Υπάρχουν µη κανονικές γλώσσες, π.χ., B = { n n n }. Αυτό

Διαβάστε περισσότερα

Μεταγλωττιστές. Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Μεταγλωττιστές. Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Μεταγλωττιστές Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Θεωρία Υπολογισµού και Πολυπλοκότητα

Θεωρία Υπολογισµού και Πολυπλοκότητα Θεωρία Υπολογισµού και Πολυπλοκότητα Κεφάλαιο 3. Γλώσσες και Συναρτήσεις 30 Ιανουαρίου 2007 ρ. Παπαδοπούλου Βίκη 1 3.1.1. Αλφάβητο Πως υλοποιούµε σεέναυπολογιστήένααλγόριθµοήµια σχέση; Αλφάβητο ή Γλώσσα

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις

Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 4: Ισοδυναμία, διάταξη, άπειρα σύνολα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 8: Υπολογισιμότητα & Γλώσσες

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 8: Υπολογισιμότητα & Γλώσσες Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 8: Υπολογισιμότητα & Γλώσσες Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Ενότητες Α και Β (Α' Μέρος). Από τη γραμμικότητα στη συστατικότητα. Δομή και συστατικότητα. Δομικοί κανόνες.

Ενότητες Α και Β (Α' Μέρος). Από τη γραμμικότητα στη συστατικότητα. Δομή και συστατικότητα. Δομικοί κανόνες. Ενότητες Α και Β (Α' Μέρος). Από τη γραμμικότητα στη συστατικότητα. Δομή και συστατικότητα. Δομικοί κανόνες. 1. Δομή/λειτουργία. Όπως όλα τα αντικείμενα που κατασκευάζονται για ένα σκοπό (κομπιούτερς,

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 14: Γραμματικές Χωρίς Συμφραζόμενα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΦΡΑΣΗΣ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑΣ ΤΟΥ ΛΟΓΟΥ ΜΟΝΑ Α ΑΥΤΟΜΑΤΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΦΥΣΙΚΩΝ ΓΛΩΣΣΩΝ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΦΡΑΣΗΣ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑΣ ΤΟΥ ΛΟΓΟΥ ΜΟΝΑ Α ΑΥΤΟΜΑΤΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΦΥΣΙΚΩΝ ΓΛΩΣΣΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΦΡΑΣΗΣ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑΣ ΤΟΥ ΛΟΓΟΥ ΜΟΝΑ Α ΑΥΤΟΜΑΤΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΦΥΣΙΚΩΝ ΓΛΩΣΣΩΝ Ονοµατικά σύνολα της Νέας Ελληνικής: Εξάλειψη µορφολογικών αµφισηµιών

Διαβάστε περισσότερα

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ, ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΔΙΚΤΥΩΝ, ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ, ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΔΙΚΤΥΩΝ, ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ, ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΔΙΚΤΥΩΝ, ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2011-2012 ΕΡΓΑΣΙΑ ΕΞΑΜΗΝΟΥ Ποιος πρέπει να ολοκληρώσει αυτή την εργασία? Φοιτητές έτους >=2 που

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 7: Πεπερασμένη αναπαράσταση γλωσσών Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές

Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 1 /

Διαβάστε περισσότερα

Ασκήσεις μελέτης της ενότητας «Συντακτική Ανάλυση»

Ασκήσεις μελέτης της ενότητας «Συντακτική Ανάλυση» Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της ενότητας «Συντακτική Ανάλυση» Παραδώστε μια αναφορά (το πολύ 5 σελίδων) για την άσκηση 9 και επιδείξτε

Διαβάστε περισσότερα

Ποιές οι θεµελιώδεις δυνατότητες και ποιοί οι εγγενείς περιορισµοί των υπολογιστών ; Τί µπορούµε και τί δε µπορούµε να υπολογίσουµε (και γιατί);

Ποιές οι θεµελιώδεις δυνατότητες και ποιοί οι εγγενείς περιορισµοί των υπολογιστών ; Τί µπορούµε και τί δε µπορούµε να υπολογίσουµε (και γιατί); Μοντελοποίηση του Υπολογισµού Στοιχεία Θεωρίας Υπολογισµού (): Τυπικές Γλώσσες, Γραµµατικές Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ποιές οι θεµελιώδεις δυνατότητες

Διαβάστε περισσότερα

Μάθημα 1. Ας γνωριστούμε λοιπόν!!! Σήμερα συναντιόμαστε για πρώτη φορά. Μαζί θα περάσουμε τους επόμενους

Μάθημα 1. Ας γνωριστούμε λοιπόν!!! Σήμερα συναντιόμαστε για πρώτη φορά. Μαζί θα περάσουμε τους επόμενους Μάθημα 1 Ας γνωριστούμε λοιπόν!!! Σήμερα συναντιόμαστε για πρώτη φορά. Μαζί θα περάσουμε τους επόμενους μήνες και θα μοιραστούμε πολλά! Ας γνωριστούμε λοιπόν. Ο καθένας από εμάς ας πει λίγα λόγια για τον

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 25: Γραμματικές Χωρίς Περιορισμούς Τμήμα Πληροφορικής ΘΥ 25: Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Μηχανές Πεπερασµένων Καταστάσεων

Μηχανές Πεπερασµένων Καταστάσεων Μηχανές Επεξεργασίας Πληροφοριών Μηχανές Πεπερασµένων Καταστάσεων Είναι µηχανές που δέχονται ένα σύνολο από σήµατα εισόδου και παράγουν ένα αντίστοιχο σύνολο σηµάτων εξόδου Σήµατα Εισόδου Μηχανή Επεξεργασίας

Διαβάστε περισσότερα

Πρόταση. Αληθείς Προτάσεις

Πρόταση. Αληθείς Προτάσεις Βασικές έννοιες της Λογικής 1 Πρόταση Στην καθημερινή μας ομιλία χρησιμοποιούμε εκφράσεις όπως: P1: «Καλή σταδιοδρομία» P2: «Ο Όλυμπος είναι το ψηλότερο βουνό της Ελλάδας» P3: «Η Θάσος είναι το μεγαλύτερο

Διαβάστε περισσότερα

Μοντελοποίηση Υπολογισμού. Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις

Μοντελοποίηση Υπολογισμού. Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις Μοντελοποίηση Υπολογισμού Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις Προβλήματα - Υπολογιστές Δεδομένου ενός προβλήματος υπάρχουν 2 σημαντικά ερωτήματα: Μπορεί να επιλυθεί με χρήση υπολογιστή;

Διαβάστε περισσότερα

Ασκήσεις μελέτης της ενότητας «Συντακτική Ανάλυση»

Ασκήσεις μελέτης της ενότητας «Συντακτική Ανάλυση» Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Διδάσκων: Ι. Ανδρουτσόπουλος, 2016-17 Ασκήσεις μελέτης της ενότητας «Συντακτική Ανάλυση» Παραδώστε μια αναφορά (το πολύ 5 σελίδων) για την άσκηση 9 και

Διαβάστε περισσότερα

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ Πεπερασμένα Αυτόματα (ΠΑ) Τα πεπερασμένα αυτόματα είναι οι απλούστερες «υπολογιστικές μηχανές». Δεν έχουν μνήμη, μόνο μία εσωτερική μονάδα με πεπερασμένο αριθμό καταστάσεων. Διαβάζουν τη συμβολοσειρά εισόδου

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 12 Οκτωβρίου 2007

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 12 Οκτωβρίου 2007 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 1) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 1 Οκτωβρίου 007 Ηµεροµηνία παράδοσης της Εργασίας: 9 Νοεµβρίου 007. Πριν από την λύση κάθε άσκησης

Διαβάστε περισσότερα

Γραµµατικές για Κανονικές Γλώσσες

Γραµµατικές για Κανονικές Γλώσσες Κανονικές Γραµµατικές Γραµµατικές για Κανονικές Γλώσσες Ταξινόµηση Γραµµατικών εξιά Παραγωγικές Γραµµατικές εξιά Παραγωγικές Γραµµατικές και NFA Αριστερά Παραγωγικές Γραµµατικές Κανονικές Γραµµατικές Γραµµατικές

Διαβάστε περισσότερα

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 4 ο : Συντακτική ανάλυση. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος:

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 4 ο : Συντακτική ανάλυση. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος: ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Μάθημα 4 ο : Συντακτική ανάλυση Γεώργιος Πετάσης Ακαδημαϊκό Έτος: 2012 2013 ΤMHMA MHXANIKΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ, Πανεπιστήμιο Πατρών, 2012 2013 Γλωσσική Τεχνολογία, Μάθημα 4 ο, Συντακτική

Διαβάστε περισσότερα

Η επιστήµη της γλωσσολογίας και η µετασχηµατιστική γραµµατική

Η επιστήµη της γλωσσολογίας και η µετασχηµατιστική γραµµατική Γ Λ Ω Σ Σ Α Η επιστήµη της γλωσσολογίας και η µετασχηµατιστική γραµµατική (2) Ο Σταύρος δεν ξέρει πόσο καλό είναι το κρέας (3) Ο Σταύρος δεν ξέρει πόσο καλό κάνει το να τρως κρέας (4) Ο Σταύρος δεν ξέρει

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ασυμφραστικές Γραμματικές (2.1) Τυπικός Ορισμός Σχεδιασμός Ασυμφραστικών Γραμματικών

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ Γ. Κατηγορίες (Μέρη του Λόγου)

ΕΝΟΤΗΤΑ Γ. Κατηγορίες (Μέρη του Λόγου) ΓΛΩ 372 ΕΝΟΤΗΤΑ Γ. Κατηγορίες (Μέρη του Λόγου) Πρέπει να ονοματίσουμε τους διάφορους κόμβους με ταμπέλες που να παραπέμπουν στα μέρη του λόγου ή, πιο τεχνικά, στις συντακτικές κατηγορίες που εμφανίζονται

Διαβάστε περισσότερα

Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα

Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα Γενικό πλάνο Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 1 Παράδειγµα δοµικής επαγωγής 2 Ορισµός δοµικής

Διαβάστε περισσότερα

771 Η - Θεωρία Υπολογισµών και Αλγορίθµων

771 Η - Θεωρία Υπολογισµών και Αλγορίθµων 771 Η - Θεωρία Υπολογισµών και Αλγορίθµων Σηµειώσεις Μέρος 4 ο ιδάσκων: Α. Ντελόπουλος Το παρόν αποτελεί σηµειώσεις που αντιστοιχούν σε µέρος των διαλέξεων για το µάθηµα 771 Η - Θεωρία Υπολογισµών και

Διαβάστε περισσότερα

Μαθηµατικά για Πληροφορική

Μαθηµατικά για Πληροφορική Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 14/10/2008 1 / 24 Γενικό πλάνο 1 Παράδειγµα δοµικής επαγωγής

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται

Διαβάστε περισσότερα

1.Σύνολα. 2. Υποσύνολα

1.Σύνολα. 2. Υποσύνολα 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα του ελληνικού αλφαβήτου θεωρούμενα ως μια ολότητα αποτελούν ένα σύνολο, το σύνολο των φωνηέντων του ελληνικού

Διαβάστε περισσότερα

Απλές ασκήσεις για αρχάριους μαθητές 5

Απλές ασκήσεις για αρχάριους μαθητές 5 Περιεχόμενα Το ελληνικό αλφάβητο... 9 Ενεστώτας (το βοηθητικό ρήμα είμαι) Γραμματική...10 Ενεστώτας (ενεργητική φωνή, α συζυγία) Γραμματική...10 Ενεστώτας (ενεργητική φωνή, α συζυγία και βοηθητικό ρήμα

Διαβάστε περισσότερα

Εισαγωγή στη Γλωσσολογία Ι

Εισαγωγή στη Γλωσσολογία Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στη Γλωσσολογία Ι Σύνταξη Διδάσκοντες: Επίκ. Καθ. Μαρία Λεκάκου, Λέκτορας Μαρία Μαστροπαύλου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κανονικές Γλώσσες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κανονικές Γλώσσες Κανονική γλώσσα αν

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 7. Κατηγορηματικές Γραμματικές 27,2 Φεβρουαρίου, 9 Μαρτίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Κατηγορηματικές Γραμματικές Ή Γραμματικές Χωρίς Συμφραζόμενα Παράδειγμα.

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΩ ΕΙΚΟΝΕΣ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ. Μια ολοκληρωμένη περιγραφή της εικόνας: Βρέχει. Σήμερα βρέχει. Σήμερα βρέχει όλη την ημέρα και κάνει κρύο.

ΠΕΡΙΓΡΑΦΩ ΕΙΚΟΝΕΣ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ. Μια ολοκληρωμένη περιγραφή της εικόνας: Βρέχει. Σήμερα βρέχει. Σήμερα βρέχει όλη την ημέρα και κάνει κρύο. ΑΣΚΗΣΕΙΣ ΠΑΡΑΓΩΓΗΣ ΠΡΟΦΟΡΙΚΟΥ ΚΑΙ ΓΡΑΠΤΟΥ ΛΟΓΟΥ (Γ ΤΑΞΗ) ΟΝΟΜΑ; ΠΕΡΙΓΡΑΦΩ ΕΙΚΟΝΕΣ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΜΕ ΜΙΑ ΛΕΞΗ (ρήμα) Μια ολοκληρωμένη περιγραφή της εικόνας: ΜΕ ΔΥΟ ΛΕΞΕΙΣ ΜΕ ΟΣΕΣ ΛΕΞΕΙΣ ΘΕΛΕΙΣ Βρέχει.

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 11 : Γραμματικές χωρίς συμφραζόμενα. Αλέξανδρος Τζάλλας

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 11 : Γραμματικές χωρίς συμφραζόμενα. Αλέξανδρος Τζάλλας 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεωρία Υπολογισμού Ενότητα 11 : Γραμματικές χωρίς συμφραζόμενα Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

HEAD INPUT. q0 q1 CONTROL UNIT

HEAD INPUT. q0 q1 CONTROL UNIT Πεπερασμένα Αυτόματα (ΠΑ) Τα πεπερασμένα αυτόματα είναι οι απλούστερες «υπολογιστικές μηχανές». Δεν έχουν μνήμη, μόνο μία εσωτερική μονάδα με πεπερασμένο αριθμό καταστάσεων. Διαβάζουν τη συμβολοσειρά εισόδου

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }. ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος Το σύνολο των δυνατών αποτελεσμάτων λέγεται δειγματικός χώρος (sample space) και συμβολίζεται συνήθως με το γράμμα Αν δηλαδή ω,,, ω2 ωκ είναι τα δυνατά αποτελέσματα ενός πειράματος

Διαβάστε περισσότερα

Απάντηση: (func endfunc)-([a-za-z])+

Απάντηση: (func endfunc)-([a-za-z])+ Γλώσσες Προγραμματισμού Μεταγλωττιστές Ασκήσεις Επανάληψης ) Περιγράψτε τις κανονικές εκφράσεις που υποστηρίζουν (i) συμβολοσειρές που ξεκινούν με το πρόθεμα "func" ή "endfunc" ακολουθούμενο το σύμβολο

Διαβάστε περισσότερα

Γλώσσες Χωρίς Συμφραζόμενα

Γλώσσες Χωρίς Συμφραζόμενα Γλώσσα χωρίς Συμφραζόμενα Γλώσσες Χωρίς Συμφραζόμενα Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 8: Ιδιότητες Γραμματικών χωρίς Συμφραζόμενα Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 2 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 2 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Γιώργος Δημητρίου Μάθημα 2 ο Αλφάβητα και Γλώσσες Αλφάβητο: Ένα μη κενό και πεπερασμένο σύνολο συμβόλων Γλώσσα: Ένα οποιοδήποτε υποσύνολο των συμβολοσειρών ενός αλφαβήτου (οι προτάσεις της γλώσσας, πχ.

Διαβάστε περισσότερα

Ψυχογλωσσολογία. Ενότητα 1 : Εισαγωγή στη Ψυχογλωσσολογία. Χριστίνα Μανουηλίδου, Επίκουρη Καθηγήτρια Τμήμα Φιλολογίας

Ψυχογλωσσολογία. Ενότητα 1 : Εισαγωγή στη Ψυχογλωσσολογία. Χριστίνα Μανουηλίδου, Επίκουρη Καθηγήτρια Τμήμα Φιλολογίας Ψυχογλωσσολογία Ενότητα 1 : Εισαγωγή στη Ψυχογλωσσολογία Χριστίνα Μανουηλίδου, Επίκουρη Καθηγήτρια Τμήμα Φιλολογίας Σκοποί ενότητας Εισαγωγή στον κλάδο της Ψυχογλωσσολογίας Μπιχιεβιοριστική προσέγγιση

Διαβάστε περισσότερα

Πρόσεξε τα παρακάτω παραδείγματα:

Πρόσεξε τα παρακάτω παραδείγματα: 1 Το άρθρο, γενικά Πρόσεξε τα παρακάτω παραδείγματα: Αυτός είναι ο Γιάννης, αυτή είναι η Έλσα και αυτό είναι το σκυλάκι τους. Οι μπαμπάδες και οι μαμάδες καμιά φορά είναι αυστηροί με τα παιδιά τους. Γιωργάκη,

Διαβάστε περισσότερα

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44.

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44. ΤΕΧΝΙΚΕΣ ΚΑΤΑΜΕΤΡΗΣΗΣ Η καταµετρηση ενος συνολου µε πεπερασµενα στοιχεια ειναι ισως η πιο παλια µαθηµατικη ασχολια του ανθρωπου. Θα µαθουµε πως, δεδοµενης της περιγραφης ενος συνολου, να µπορουµε να ϐρουµε

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { a m b n c p m,n,p 0 και είτε m + n = p είτε m = n + p } (β) { xx rev yy rev x, y {a,b}

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Τελικές εξετάσεις 3 Ιανουαρίου 27 Διάρκεια εξέτασης: 3 ώρες (2:-5:) ΘΕΜΑ ο

Διαβάστε περισσότερα

ΠΛΗ30 ΕΝΟΤΗΤΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ. Μάθηµα 3.2: ηµήτρης Ψούνης

ΠΛΗ30 ΕΝΟΤΗΤΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ. Μάθηµα 3.2: ηµήτρης Ψούνης ΠΛΗ30 ΕΝΟΤΗΤΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ Μάθηµα 3.2: Ντετερµινιστικά Πεπερασµένα Αυτόµατα ηµήτρης Ψούνης 2 ΠΕΡΙΕΧΟΜΕΝΑ Α. Σκοπός του Μαθήµατος Β. Θεωρία 1. Πεπερασµένα Αυτόµατα 1. Λειτουργία και Παραδείγµατα

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 21η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 21η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 21η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: «Artificial Intelligence A Modern Approach» των. Russel

Διαβάστε περισσότερα

8 η Ενότητα. Κατάκτηση του σημασιολογικού τομέα

8 η Ενότητα. Κατάκτηση του σημασιολογικού τομέα 8 η Ενότητα Κατάκτηση του σημασιολογικού τομέα 1. Εισαγωγή Είχαμε πει στο μάθημα Εισαγωγή στη Γλωσσολογία, ότι ο τομέας της Σημασιολογίας χωρίζεται στη λεξική και στη δομική σημασιολογία. Όσον αφορά τη

Διαβάστε περισσότερα

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος)

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) Μαθηματικά Γ Γυμνασίου Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) 1. Πως προσθέτουμε δυο πραγματικούς αριθμούς; Για να προσθέσουμε δύο ομόσημους αριθμούς, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμά

Διαβάστε περισσότερα

Αφιέρωση Στα παιδιά µας Στους µαθητές που ατενίζουν µε αισιοδοξία το µέλλον

Αφιέρωση Στα παιδιά µας Στους µαθητές που ατενίζουν µε αισιοδοξία το µέλλον Αφιέρωση Σταπαιδιάµας Στουςµαθητέςπουατενίζουν µεαισιοδοξίατοµέλλον Φίληµαθήτρια,φίλεµαθητή Τοβιβλίοαυτόέχειδιπλόσκοπό: Νασεβοηθήσειστηνάρτιαπροετοιµασίατουκαθηµερινούσχολικού µαθήµατος. Νασουδώσειόλατααπαραίτηταεφόδια,ώστενααποκτήσειςγερές

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 10: Αυτόματα Στοίβας II

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 10: Αυτόματα Στοίβας II ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 10: Αυτόματα Στοίβας II Τι θα κάνουμε σήμερα Ισοδυναμία αυτομάτων στοίβας με ασυμφραστικές γραμματικές (2.2.3) 1 Ισοδυναμία PDA με CFG Θεώρημα: Μια

Διαβάστε περισσότερα

ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ

ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ Κασαπίδης Γεώργιος Μαθηµατικός Στο άρθρο αυτό µελετάµε την πιο χαρακτηριστική ιδιότητα του συνόλου R των πραγµατικών αριθµών. ΟΡΙΣΜΟΣ 1 Ένα σύνολο Α από πραγµατικούς

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΜΗΧΑΝΩΝ ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ ΚΑΙ ΤΟ ΛΥΚΕΙΟ

ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΜΗΧΑΝΩΝ ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ ΚΑΙ ΤΟ ΛΥΚΕΙΟ ΜΕΡΟΣ ΤΡΙΤΟ Ένταξη των Τ.Π.Ε. στην διδασκαλία και τη µάθηση I) ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΜΗΧΑΝΩΝ ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ ΚΑΙ ΤΟ ΛΥΚΕΙΟ Παύλος Γ. Σπυράκης (google: Paul Spirakis) Ερευνητικό Ακαδηµαϊκό

Διαβάστε περισσότερα

Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα

Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα Κανονικές Γλώσσες Κανονικές Γλώσσες Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Κανονική γλώσσα αν παράγεται από κανονική γραμματική. Παραγωγές P (V Σ) Σ * ((V Σ) ε) Παραγωγές μορφής:

Διαβάστε περισσότερα

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών. Προδιαγραφές

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών. Προδιαγραφές Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνοσ.h.m.μ.y. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές Στάθης Ζάχος Συνεργασία: Κωστής Σαγώνας Επιμέλεια:

Διαβάστε περισσότερα

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος.

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος. Κεφάλαιο 10 Μαθηματική Λογική 10.1 Προτασιακή Λογική Η γλώσσα της μαθηματικής λογικής στηρίζεται βασικά στις εργασίες του Boole και του Frege. Ο Προτασιακός Λογισμός περιλαμβάνει στο αλφάβητό του, εκτός

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΔΗΜΗΤΡΙΟΥ ΑΘ. ΚΡΟΝΤΣΟΥ ΘΕΜΑ: ΓΡΑΜΜΑΤΙΚΗ-ΣΥΝΤΑΚΤΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΝΕΑΣ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ ΕΙΣΗΓΗΤΗΣ: ΙΩΑΝΝΗΣ ΡΕΦΑΝΙΔΗΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΔΗΜΗΤΡΙΟΥ ΑΘ. ΚΡΟΝΤΣΟΥ ΘΕΜΑ: ΓΡΑΜΜΑΤΙΚΗ-ΣΥΝΤΑΚΤΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΝΕΑΣ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ ΕΙΣΗΓΗΤΗΣ: ΙΩΑΝΝΗΣ ΡΕΦΑΝΙΔΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: ΓΡΑΜΜΑΤΙΚΗ-ΣΥΝΤΑΚΤΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΝΕΑΣ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ ΔΗΜΗΤΡΙΟΥ ΑΘ. ΚΡΟΝΤΣΟΥ ΕΙΣΗΓΗΤΗΣ: ΙΩΑΝΝΗΣ ΡΕΦΑΝΙΔΗΣ Στόχοι της εργασίας Εντρύφηση στις βασικές αρχές της Επεξεργασίας

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΤΑΥΤΟΤΗΤΕΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΤΑΥΤΟΤΗΤΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΤΑΥΤΟΤΗΤΕΣ Α ΟΜΑΔΑ. Να βρεθούν τα αναπτύγματα: ι) ιν) ιι) y ιιι) 3 4 3 a 4 ν) ( +y 3 ) νι) (3y+) 4 y νιιι) (5αα +3β y) ι) 5 a ay 3 νιι) 3 4 5 3 ) (β-) ι) (3-7y) ιι) (5α-8βy) ιιι) (9-5) ιν)

Διαβάστε περισσότερα

«Τεχνογλωσσία VIII» Εξαγωγή πληροφοριών από κείμενα

«Τεχνογλωσσία VIII» Εξαγωγή πληροφοριών από κείμενα «Τεχνογλωσσία VIII» Εξαγωγή πληροφοριών από κείμενα Σεμινάριο 4: Συντακτική Ανάλυση Ευάγγελος Καρκαλέτσης, Γεώργιος Πετάσης Εργαστήριο Τεχνολογίας Γνώσεων & Λογισμικού, Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών,

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) {0 n 1 n n > 0} {0 n 1 2n n > 0} (β) {w {a,b} * η w ξεκινά και τελειώνει με το ίδιο σύμβολο

Διαβάστε περισσότερα

ΤΑ ΠΑΡΕΠΟΜΕΝΑ ΤΟΥ ΡΗΜΑΤΟΣ ΦΩΝΗ ΣΥΖΥΓΙΑ ΔΙΑΘΕΣΗ ΧΡΟΝΙΚΗ ΒΑΘΜΙΔΑ ΠΟΙΟΝ ΕΝΕΡΓΕΙΑΣ

ΤΑ ΠΑΡΕΠΟΜΕΝΑ ΤΟΥ ΡΗΜΑΤΟΣ ΦΩΝΗ ΣΥΖΥΓΙΑ ΔΙΑΘΕΣΗ ΧΡΟΝΙΚΗ ΒΑΘΜΙΔΑ ΠΟΙΟΝ ΕΝΕΡΓΕΙΑΣ ΤΑ ΠΑΡΕΠΟΜΕΝΑ ΤΟΥ ΡΗΜΑΤΟΣ ΦΩΝΗ ΣΥΖΥΓΙΑ ΔΙΑΘΕΣΗ ΧΡΟΝΙΚΗ ΒΑΘΜΙΔΑ ΠΟΙΟΝ ΕΝΕΡΓΕΙΑΣ Α. ΣΤΟΙΧΕΙΑ ΠΟΥ ΕΧΟΥΝ ΣΧΕΣΗ ΜΕ ΤΗ ΜΟΡΦΗ ΤΟΥ ΡΗΜΑΤΟΣ Α.1. ΦΩΝΗ Τα ρήματα σχηματίζουν δύο φωνές. α. Ενεργητική Φωνή β. Παθητική

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ Τι θα κάνουμε σήμερα Επιλύσιμα Προβλήματα σχετικά με Ασυμφραστικές Γλώσσες (4.1.2) Το Πρόβλημα του Τερματισμού

Διαβάστε περισσότερα

Λίστα Λσ Προτίμησης Ανδρών. Έκτορας Βάσω Δήμητρα Άννα Ελένη Γεωργία. Βασίλης Δήμητρα Βάσω Άννα Γεωργία Ελένη Γιάννης Βάσω Ελένη Γεωργία Δήμητρα Άννα

Λίστα Λσ Προτίμησης Ανδρών. Έκτορας Βάσω Δήμητρα Άννα Ελένη Γεωργία. Βασίλης Δήμητρα Βάσω Άννα Γεωργία Ελένη Γιάννης Βάσω Ελένη Γεωργία Δήμητρα Άννα Βασίλης Βασίλης Γά Βασίλης Ανδρέας Βασίλης Βασίλης Βασίλης Ανδρέας Βασίλης Ο Ανδρέας κάνει πρόταση στην. Βασίλης Γά Βασίλης Ανδρέας Βασίλης Βασίλης Βασίλης Ανδρέας Βασίλης Βασίλης Γά Βασίλης Ανδρέας Βασίλης

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ 1)Ποιοι αριθμοί ονομάζονται άρτιοι και ποιοι περιττοί ; Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι που δεν διαιρούνται

Διαβάστε περισσότερα

Συμφράσεις και εκφράσεις

Συμφράσεις και εκφράσεις Συμφράσεις και εκφράσεις Όταν δύο λέξεις χρησιμοποιούνται σταθερά μαζί, τότε συχνά σχηματίζουν μια νέα έννοια, η οποία προέρχεται από την κύρια σημασία της κάθε λέξης. Αυτό το σχήμα λόγου λέγεται σύμφραση:

Διαβάστε περισσότερα

Εισαγωγή στη Γλωσσολογία Ι

Εισαγωγή στη Γλωσσολογία Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στη Γλωσσολογία Ι Εισαγωγικά: τι είναι γλώσσα, τι είναι γλωσσολογία Διδάσκοντες: Επίκ. Καθ. Μαρία Λεκάκου, Λέκτορας Μαρία Μαστροπαύλου Άδειες

Διαβάστε περισσότερα

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 69. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Ορισμός Ονομάζουμε εξίσωση ου βαθμού με έναν άγνωστο κάθε ισότητα που έχει την μορφή α +β+ γ = 0 με α 0 (ο είναι ο άγνωστος της εξίσωσης,

Διαβάστε περισσότερα

Γραμματική και Συντακτικό Γ Δημοτικού ανά ενότητα - Παρασκευή Αντωνίου

Γραμματική και Συντακτικό Γ Δημοτικού ανά ενότητα - Παρασκευή Αντωνίου Ενότητα 1η: «Πάλι μαζί!» Σημεία στίξης: τελεία ερωτηματικό...4 Η δομή της πρότασης: ρήμα υποκείμενο αντικείμενο...5 Ουσιαστικά: αριθμοί γένη...6 Ονομαστική πτώση ουσιαστικών...6 Οριστικό άρθρο...7 Ερωτηματικές

Διαβάστε περισσότερα

Κατηγορικές Γραµµατικές

Κατηγορικές Γραµµατικές Κατηγορικές Γραµµατικές Γραµµατικές Χωρίς περιορισµούς Με συµφραζόµενα Χωρίς συµφραζόµενα Κανονικές Πεπερασµένων επιλογών Κατηγορικές Ενεργοποίησης Γραµµατικές G = { T, N, P, S } Τ: αλφάβητο τερµατικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία

Διαβάστε περισσότερα

HY-280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.

HY-280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. HY-280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργακόπουλος Μέρος B Βασικά στοιχεία περί ασυμφραστικών

Διαβάστε περισσότερα

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)=

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)= ΣΥΝΑΡΤΗΣΕΙΣ - 9 - ΚΕΦΑΛΑΙ ΚΕΦΑΛΑΙ ο - ΣΥΝΑΡΤΗΣΕΙΣ.. ρισµός Συνάρτηση από ένα σύνολο Α σ ένα σύνολο Β είναι ένας κανόνας µε τον οποίο κάθε στοιχείο του Α απεικονίζεται σε ένα ακριβώς στοιχείο του Β. Το

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2): Αυτόµατα Στοίβας. Παραδείγµατα Σχεδιασµού CFG. Παράδειγµα 1.

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2): Αυτόµατα Στοίβας. Παραδείγµατα Σχεδιασµού CFG. Παράδειγµα 1. Σύνοψη Προηγούµενου Γλώσσες χωρίς Συµφραζόµενα 2): Αυτόµατα Στοίβας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Μη Κανονικές Γλώσσες Το Λήµµα της Αντλησης για τις

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 10: Ισοδυναμία ντετερμινιστικών και μη ντετερμινιστικών αυτομάτων Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Μερικά πρώτα παραδείγµατα συστηµάτων διακριτού χρόνου

Μερικά πρώτα παραδείγµατα συστηµάτων διακριτού χρόνου ΣΥΣΗΜΑΑ ΙΑΚΡΙΟΥ ΧΡΟΝΟΥ Από αυστηρά µαθηµατικής απόψεως σαν σύστηµα διακριτού χρόνου ορίζεται ένας οποιοσδήποτε µετασχηµατισµός ή τελεστής (operator) ο οποίος δρα σε µία ακολουθία x [ που συνήθως θεωρείται

Διαβάστε περισσότερα

Η γεωµετρική εποπτεία στην παρουσίαση της απόλυτης τιµής

Η γεωµετρική εποπτεία στην παρουσίαση της απόλυτης τιµής Η γεωµετρική εποπτεία στην παρουσίαση της απόλυτης τιµής Η µέθοδος άξονα-κύκλου: µια διδακτική πρόταση για την επίλυση εξισώσεων και ανισώσεων µε απόλυτες τιµές στην Άλγεβρα της Α Λυκείου ηµήτριος Ντρίζος

Διαβάστε περισσότερα

ΔΟΜΗ ΕΠΙΛΟΓΗΣ. Οι διάφορες εκδοχές της

ΔΟΜΗ ΕΠΙΛΟΓΗΣ. Οι διάφορες εκδοχές της ΔΟΜΗ ΕΠΙΛΟΓΗΣ Οι διάφορες εκδοχές της Απλή επιλογή Ναι Ομάδα Εντολών Α Ισχύει η Συνθήκη; Χ Χ Χ Όχι Αν (Συνθήκη =Αληθινή) Τότε Ομάδα εντολών Τέλος_αν Λειτουργία: 1. Αν ισχύει η συνθήκη εκτελείται ΠΡΩΤΑ

Διαβάστε περισσότερα

Κατανόηση γραπτού λόγου

Κατανόηση γραπτού λόγου Α1 1 Επίπεδο Α1 ιάρκεια: 30 λεπτά Πρώτο µέρος (12 µονάδες) Ερώτηµα 1 (6 µονάδες) Ένας φίλος σας σάς προσκαλεί στη βάφτιση της κόρης του. ιαβάστε το προσκλητήριο και σηµειώστε στις προτάσεις που πιστεύετε

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 04 Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΆΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: M Τετάρτη 6 Απριλίου 04 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία Σχολικό Βιβλίο (έκδοση 0) σελίδα Ε_ΜλΓΑ(α)

Διαβάστε περισσότερα

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6 Εισαγωγή στην Επιστήμη των Υπολογιστών 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές http://www.corelab.ece.ntua.gr/courses/ Αυτόματα Τρόπος κωδικοποίησης αλγορίθμων. Τρόπος περιγραφής συστημάτων πεπερασμένων

Διαβάστε περισσότερα

ΓΙΑ ΕΦΗΒΟΥΣ ΚΑΙ ΕΝΗΛΙΚΟΥΣ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α

ΓΙΑ ΕΦΗΒΟΥΣ ΚΑΙ ΕΝΗΛΙΚΟΥΣ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α ΓΙΑ ΕΦΗΒΟΥΣ ΚΑΙ ΕΝΗΛΙΚΟΥΣ Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν Μ Ν Α Δ Ε Σ Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ον/μο:.. Γ Λυκείου Τεχν. Κατ. 04-11-12 ΘΕΜΑ 1 ο Α.1)Ποιες κατηγορίες προβλημάτων γνωρίζετε; 2)Να αναπτύξετε τα κριτήρια που πρέπει να ικανοποιεί ένας αλγόριθμος. 3)Ποια τα στάδια

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 17: Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Εισαγωγή στη Γλωσσολογία Ι. Εισαγωγικά: τι είναι γλώσσα, τι είναι γλωσσολογία

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Εισαγωγή στη Γλωσσολογία Ι. Εισαγωγικά: τι είναι γλώσσα, τι είναι γλωσσολογία ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στη Γλωσσολογία Ι Εισαγωγικά: τι είναι γλώσσα, τι είναι γλωσσολογία Διδάσκοντες: Επίκ. Καθ. Μαρία Λεκάκου, Λέκτορας Μαρία Μαστροπαύλου Άδειες

Διαβάστε περισσότερα

ΚΕΙΜΕΝΑ - ΛΕΞΙΛΟΓΙΟ - ΑΣΚΗΣΕΙΣ. Η Ελένη, η Σοφία, η Βασιλική, η Ειρήνη, ο Κωνσταντίνος, ο Απόστολος και ο Αλέξανδρος χαιρετούν τους φίλους τους

ΚΕΙΜΕΝΑ - ΛΕΞΙΛΟΓΙΟ - ΑΣΚΗΣΕΙΣ. Η Ελένη, η Σοφία, η Βασιλική, η Ειρήνη, ο Κωνσταντίνος, ο Απόστολος και ο Αλέξανδρος χαιρετούν τους φίλους τους ΕΝΟΤΗΤΑ 1 Καλημέρα! A ΜΕΡΟΣ ΚΕΙΜΕΝΑ - ΛΕΞΙΛΟΓΙΟ - ΑΣΚΗΣΕΙΣ Α. ΔΙΑΛΟΓΟΣ Καλημέρα! Η Ελένη, η Σοφία, η Βασιλική, η Ειρήνη, ο Κωνσταντίνος, ο Απόστολος και ο Αλέξανδρος χαιρετούν τους φίλους τους Καλημέρα,

Διαβάστε περισσότερα

Ψυχογλωσσολογία. Ενότητα 4 : Επεξεργασία προτάσεων. Χριστίνα Μανουηλίδου, Επίκουρη Καθηγήτρια Τμήμα Φιλολογίας

Ψυχογλωσσολογία. Ενότητα 4 : Επεξεργασία προτάσεων. Χριστίνα Μανουηλίδου, Επίκουρη Καθηγήτρια Τμήμα Φιλολογίας Ψυχογλωσσολογία Ενότητα 4 : Επεξεργασία προτάσεων Χριστίνα Μανουηλίδου, Επίκουρη Καθηγήτρια Τμήμα Φιλολογίας Σκοποί ενότητας Συντακτική επεξεργασία-ανάλυση (parsing) Στρατηγικές συντακτικής επεξεργασίας

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.)

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «Διερμηνεία και Μετάφραση» Tων Τμημάτων: Φιλολογίας, Αγγλικής Γλώσσας και Φιλολογίας, Γαλλικής Γλώσσας και

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΛΕΥΚΩΣΙΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα. Οδηγίες

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΛΕΥΚΩΣΙΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα. Οδηγίες ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΛΕΥΚΩΣΙΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΤΑΞΗ Α ΕΛΛΗΝΙΚΑ ΔΙΑΓΝΩΣΤΙΚΟ 17/05/2014 Χρόνος: 1 ώρα Οδηγίες 1. Έλεγξε ότι το γραπτό που έχεις μπροστά σου αποτελείται από τις σελίδες 1-8. 2. Όλες τις

Διαβάστε περισσότερα