Η γεωµετρική εποπτεία στην παρουσίαση της απόλυτης τιµής
|
|
- Ἄννας Καλύβας
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Η γεωµετρική εποπτεία στην παρουσίαση της απόλυτης τιµής Η µέθοδος άξονα-κύκλου: µια διδακτική πρόταση για την επίλυση εξισώσεων και ανισώσεων µε απόλυτες τιµές στην Άλγεβρα της Α Λυκείου ηµήτριος Ντρίζος Σχολικός Σύµβουλος Μαθηµατικών Νοµών Τρικάλων και Καρδίτσας Στόχοι και περιγραφή δειγµατικής διδασκαλίας Στο πλαίσιο της διδακτικής µας πρότασης, η παρουσίαση της έννοιας της απόλυτης τι- µής γίνεται σε ένα γεωµετρικό περιβάλλον "πρακτικό ανακαλυπτικό" µε πολύ λίγα προαπαιτούµενα. Αυτά είναι: α) Η γνώση του άξονα των πραγµατικών αριθµών. β) Η ιδιότητα που έχουν τα σηµεία ενός κύκλου να ισαπέχουν από το κέντρο του. γ) Ο ορισµός του συµβόλου α β ή β α να εκφράζει την απόσταση των αριθ- µών α και β του άξονα. Στη συνέχεια θα περιγράψουµε µε συντοµία τους στόχους και την πορεία που ακολουθήσαµε κατά την υλοποίηση της πρότασής µας σε τάξη µαθητων Α Λυκείου, η οποία διήρκησε δύο διδακτικές ώρες. Ξεκινήσαµε τη διδασκαλία παρουσιάζοντας στους µαθητές τον άξονα των πραγµατικών αριθµών, πάνω στον οποίο βάλαµε τα σηµεία Α, Ο και Β. Στα σηµεία αυτά αντιστοιχίζονται οι πραγµατικοί αριθµοί α, 0 (µηδέν) και β. x Α Ο Β α 0 β Σχήµα 1 x Τονίσαµε ότι, όταν θα λέµε απόσταση των αριθµών α και β, θα εννοούµε το µήκος του τµήµατος ΑΒ. Το µήκος αυτό, που είναι ένας θετικός αριθµός, µπορούµε να το δηλώ- 1
2 νουµε µε το σύµβολο α β. Έτσι στην ερώτηση: "πως θα πρέπει να συµβολίζουµε το µήκος του τµήµατος ΑΟ;", προέκυψε η απάντηση: α 0 δηλαδή α. Τι εκφράζει το σύµβολο β ; Απάντηση: Το µήκος του τµήµατος ΒΟ, αφού β = β 0. Αµέσως µετά παρουσιάσαµε στην τάξη και το επόµενο σχήµα. ρ: η ακτίνα του κύκλου x Α ρ = α β Ο ρ = β α Β α β 0 β α x Σχήµα Με τη βοήθεια αυτού του σχήµατος αναλύσαµε διεξοδικά τη σχέση των συµβόλων α β και β α µεταξύ τους, αλλά και µε τους αριθµούς: α β και β α. Αξίζει να ση- µειώσουµε εδώ τη συµβολή του σχήµατος. στην αισθητοποίηση της ισότητας α β = β α. Πριν προχωρήσουµε στη ανάλυση των παραδειγµάτων µας, ο πρώτος στόχος που θέσαµε ήταν να µπορούν οι µαθητές να διατυπώνουν λεκτικά αυτό ακριβώς που ζητάµε, στην περίπτωση που τους δοθεί η τυπική µορφή µιας απλής εξίσωσης ή ανίσωσης µε απόλυτες τιµές. Για το λόγο αυτό τους δώσαµε τις εξής τυπικές µορφές: x = 3, x + 1 < 4, x 3 5, x x 3 = 10, 5x 6 < 7 και τους ζητήσαµε να "διαβάσουν" αυτές τις σχέσεις χρησιµοποιώντας τον όρο απόσταση αντί του όρου απόλυτη τιµή.
3 Τις σωστές απαντήσεις των µαθητών που προέκυψαν µετά από έναν ουσιαστικό διάλογο τις παρουσιάζουµε στον πίνακα που ακολουθεί: Τυπική µορφή εξίσωσης, ανίσωσης Το ζητούµενο διατυπωµένο λεκτικά x = 3 x + 1 < 4 x 3 5 x x 3 = 10 5x 6 < 7 Ζητάµε τις τιµές του x, ώστε η απόστασή τους από το να είναι ίση µε 3 µονάδες µήκους. Αφού x + 1 = x ( 1), ζητάµε τις τιµές του x, ώστε η απόστασή τους από τον αριθµό 1 να είναι µικρότερη από 4 µονάδες µήκους. Ζητάµε τις τιµές του x, ώστε η απόστασή του x από τον αριθµό 3 να είναι µεγαλύτερη ή ίση από 5 µονάδες µήκους. Ζητάµε τις τιµές του x, ώστε το άθροισµα των αποστάσεων του x από τους αριθµούς 4 και 3 να είναι ίση µε 10 µονάδες µήκους. Ζητάµε τις τιµές του x, ώστε η απόσταση του 5x από το 6 να είναι µικρότερη από 7 µονάδες µήκους. Τέτοιες τιµές του x δεν υπάρχουν. Κρίνουµε σκόπιµο να αναφέρουµε εδώ δύο σηµεία στα οποία οι µαθητές προβληµατίστηκαν: α) στην περίπτωση της ανίσωσης x + 1 < 4, η οποία έπρεπε να µετασχηµατιστεί στη µορφή x ( 1) < 4 και, β) στην τελευταία ανίσωση: 5x 6 < 7. Στην περίπτωση αυτή, εκτός από τη λεκτική διατύπωση, ζητήσαµε να µας πούνε αν υπάρχουν τιµές του x που την επαληθεύουν. Εδώ χρειάστηκε να υπενθυµίσουµε σε κάποιους µαθητές ότι το σύµβολο 5x 6 εκφράζει µήκος ευθυγράµµου τµήµατος. Αυτή η παρέµβασή µας διευκόλυνε την κατάσταση. 3
4 Στη συνέχεια της δειγµατικής διδασκαλίας προχωρήσαµε στη συζήτηση κάποιων παραδειγµάτων, τα οποία παρουσιάζουµε λυµένα για τις ανάγκες της εργασίας αυτής. α) Να λυθεί η εξίσωση x = 3 Απάντηση: Το x, δηλαδή το πρώτο µέλος της εξίσωσης, εκφράζει την απόσταση του x από τον αριθµό. Έτσι η έκφραση: "Λύστε την εξίσωση x = 3" διαβάζεται ισοδύναµα: "Βρείτε τις τιµές του x, ώστε η απόστασή του από τον αριθµό να ισούται µε 3 µονάδες µήκους". Α 3 µον. Κ 3 µον. x = 1 x = 5 Τετµ. του Α: 3 = 1 Τετµ. του Β: + 3 = 5 Β + Σχήµα 3 Γράφουµε κύκλο µε κέντρο το σηµείο Κ, στο οποίο αντιστοιχίζεται το, και ακτίνα ίση µε 3 µον. µήκους (σχήµα 3). Ο κύκλος αυτός τέµνει τον άξονα των πραγµατικών αριθµών στα σηµεία Α και Β. Οι αριθµοί 1 και 5, που αντιστοιχίζονται στα σηµεία αυτά, είναι οι λύσεις της εξίσωσης x = 3. β) Να λυθεί η ανίσωση x + 1 < 4 Απάντηση: Το x + 1 γράφεται x ( 1). Έτσι εδώ ζητάµε τις τιµές του x που η απόστασή τους από το 1 γίνεται µικρότερη από 4 µον. µήκους. 4
5 Τετµ. του Α: 1 4 = 5 Τετµ. του Β: = 3 4 µον. 4 µον. Κ Α Β 5 x 1 x 3 + Σχήµα 4 Γράφουµε κύκλο µε κέντρο το σηµείο Κ, στο οποίο αντιστοιχίζεται το 1, και ακτίνα ίση µε 4 µον. µήκους (σχήµα 4). Ο κύκλος αυτός τέµνει τον άξονα στα σηµεία Α και Β στα οποία αντιστοιχίζονται οι αριθµοί 5 και 3. Είναι φανερό ότι οι τιµές του x που ζητάµε είναι οι αριθµοί του άξονα που αντιστοιχίζονται σε σηµεία εσωτερικά του κύκλου. Οπότε οι τιµές του x που επαληθεύουν την ανίσωση είναι εκείνες για τις οποίες: 5 < x < 3. Μετά την παραπάνω προσέγγιση δώσαµε και µία άλλη γεωµετρική απάντηση, γράφοντας την ανίσωση x + 1 < 4 στη µορφή (x + 1) 0 < 4. Στο σχήµα 5. παρουσιάζεται εποπτικά η δεύτερη απάντηση: Α 4 4 µον. 4 µον. Κ Β x x Σχήµα 5 Θέλουµε τα x για τα οποία 4 < x + 1 < 4, οπότε 5 < x < 3. 5
6 γ) Να λυθεί η ανίσωση x 3 5 Απάντηση: Τετµ. του Α: 3 5 = Τετµ. του Β: = 8 5 µον. 5 µον. Κ Α Β x 3 8 x + Σχήµα 6 Eίναι φανερό ότι ζητάµε τις τιµές του x για τις οποίες οι αριθµοί x αντιστοιχίζονται σε σηµεία του άξονα που βρίσκονται στο εξωτερικό του κύκλου µαζί µε τους αριθµούς x που αντιστοιχίζονται στα Α και Β (σχήµα 6). ηλαδή θέλουµε: x ή x 8 ή ισοδύναµα: x 1 ή x 4. δ) i. Αν Α και Β είναι δύο διακεκριµένα σηµεία του άξονα των πραγµατικών αριθµών µε τετµηµένες α, β αντίστοιχα και M είναι το µέσο του τµήµατος ΑΒ, τότε για την τετµηµένη x του Μ να αποδειχτεί ότι: x = α + β ii. Να λυθεί η εξίσωση: x + 4 = x iii. Να λυθεί η ανίσωση: x + 4 < x Απάντηση: Α M Β α x β + Σχήµα 7α i. Επειδή το Μ είναι µέσο του τµήµατος ΑΒ (στο σχήµα 7α) θα ισχύει ΜΑ = ΜΒ και ισοδύναµα: α + β x α = β x άρα x = α + β και τελικά x = 6
7 ii. Η εξίσωση γίνεται: x ( 4) = x. Α M Β 4 x + Σχήµα 7β Θέλουµε το x να ισαπέχει από τους αριθµούς 4 και (σχήµα 7β). Αυτό σηµαίνει ότι το x είναι η τετµηµένη του µέσου Μ του τµήµατος ΑΒ, οπότε, σύµφωνα µε το προηγούµενο ερώτηµα (i), θα είναι: x = 4 +, δηλαδή x = 1. iii. Η ανίσωση γίνεται x ( 4) < x. Α M Β x 4 x 1 + Σχήµα 7γ Γεωµετρικά, θέλουµε τα σηµεία του άξονα που βρίσκονται πιο κοντά στο Α από ότι στο Β (σχήµα 7γ). Είναι φανερό λοιπόν ότι εδώ ζητάµε τις τετµηµένες x των σηµείων της ηµιευθείας ΜΑ, από την οποία εξαιρείται η αρχή της Μ (Μ: µέσο του τµή- µατος ΑΒ). Εποµένως η ανίσωση αληθεύει για κάθε πραγµατικό αριθµό x < 1. ε) Να λυθεί η εξίσωση x x 3 = 10 Σύµφωνα µε όσα προηγήθηκαν για την αισθητοποίηση της απόλυτης τιµής ως µήκους ενός ευθυγράµµου τµήµατος, η εξίσωση: x x 3 = 10 σε γεωµετρική γλώσσα γράφεται: ΓΑ + ΓΒ = 10, όπου Α, Β είναι δύο σηµεία του άξονα των πραγµατικών αριθµών µε τετµηµένες αντίστοιχα 4 και 3, ενώ το Γ άλλο σηµείο του άξονα µε άγνωστη τετµηµένη x. 7
8 x Α Γ Β x 4 x µον. x Γ Α Β x x µον. x Α Β Γ x 4 3 x + 7 µον. Σχήµα 8α Σχήµα 8β Σχήµα 8γ Στο σχήµα 8α, για κάθε θέση του σηµείου Γ πάνω στο ευθύγραµµο τµήµα ΑΒ ισχύει ΓΑ + ΓΒ = 7. Εµείς όµως θέλουµε: ΓΑ + ΓΒ = 10, εποµένως το Γ που ζητάµε δεν µπορεί να είναι ση- µείο του ευθυγράµµου τµήµατος ΑΒ. Είναι πλέον φανερό ότι το Γ µπορεί να είναι σηµείο των ηµιευθειών Αx ή Βx. Στο σχήµα 8β θέλουµε το Γ για το οποίο είναι: ΓΑ + ΓΒ = 10. ΓΑ + (ΓΑ + ΑΒ) = 10 ΓΑ + 7 = 10 ΓΑ = 3. Άρα το Γ βρίσκεται 3 µονάδες αριστερά του Α, oπότε x = = Στο σχήµα 8γ θέλουµε το Γ για το οποίο είναι: ΓΑ + ΓΒ = 10 (ΓΒ + ΑΒ) + ΓΒ = 10 ΓΒ + 7 = 10 ΓΒ = 3. Άρα το Γ βρίσκεται 3 µονάδες δεξιά του Β, οπότε x = = Εποµένως οι λύσεις της εξίσωσης x x 3 = 10 είναι οι αριθµοί: 11 9 x =, x = 8
9 Άσκηση Πάνω στον άξονα x x σηµειώστε τα σηµεία Α(, 0) και Β(4, 0). ιερευνείστε αν υπάρχουν θέσεις (και πόσες;) του άξονα x x, στις οποίες θα µπορούσατε να τοποθετήσετε το σηµείο Μ(x, 0) έτσι, ώστε: (i) MA + MB = (ii) MA + MB = 1 ιατυπώστε έπειτα τις "γεωµετρικές" ισότητες (i) και (ii) χρησιµοποιώντας το σύµβολο της απόλυτης τιµής. Ποιες είναι οι λύσεις αυτών των εξισώσεων; ιατύπωση προβληµατισµού µε στόχο την επέκταση της µεθόδου "άξονας-κύκλος" και σε άλλες µορφές Ας ξεκινήσουµε µε την ερώτηση: Η µέθοδος του άξονα κύκλου πώς θα µπορούσε να αντιµετωπίσει µια ανίσωση µε απόλυτες τιµές, όταν µέσα στο σύµβολο υπήρχε παράσταση της µορφής αx + βx + γ, όπου α 0, αντί της µορφής αx + β; Να ληφθεί υπ' όψη ότι τη χρονική περίοδο, που οι µαθητές της Α Λυκείου διδάσκονται την έννοια της απόλυτης τιµής, δεν γνωρίζουν να λύνουν ανισώσεις δευτέρου βαθµού. ίνουµε ένα σχετικό παράδειγµα: Να λυθεί η ανίσωση: x 3x 1 > 3 Απάντηση: Γράφοντας την ανίσωση στη µορφή (x 3x) 1 > 3 γίνεται φανερό ότι ζητάµε εκείνες τις τιµές του x για τις οποίες οι αριθµοί x 3x απέχουν από τον αριθµό 1 απόσταση µεγαλύτερη από 3 µον. µήκους. x 3x Α Κ Β x 3x Σχήµα 11 9
10 x 3x < x 3x > 4 ή x 3x + < 0 ή x 3x 4 > 0 Οι ρίζες των τριωνύµων είναι: x = 1 ή x = x = 1 ή x = 4 Η επίλυση των ανισώσεων γίνεται εποπτικά µε βάση τα σχήµατα 1α και 1β. που ακολουθούν. y x 3x+ y x 3x Σχήµα 1α Σχήµα 1β Ερµηνεύοντας το σχήµα 1α, βρίσκουµε ότι η ανίσωση: x 3x + < 0 αληθεύει για όλα τα x, για τα οποία ισχύει: 1 < x <. Ερµηνεύοντας το σχήµα (β), βρίσκουµε ότι η ανίσωση: x 3x 4 > 0 αληθεύει για όλα τα x, για τα οποία ισχύει: x < 1 ή x > 4. Εποµένως η ανίσωση x 3x 1 > 3 αληθεύει τελικά για όλα τα x για τα οποία ισχύει: x < 1 ή 1 < x < ή x > 4. ίνουµε στη συνέχεια ακόµη ένα παράδειγµα εξίσωσης µε απόλυτες τιµές παραστάσεων της µορφής αx + βx + γ, α 0. Να βρεθούν οι τιµές του x, ώστε x 3x + 5 = x 3x 1 10
11 Απάντηση: H εξίσωση γράφεται: (x 3x) ( 5) = (x 3x) 1, οπότε θέλουµε το x 3x να ισαπέχει από τους αριθµούς 5 και 1. Α M Β 5 x 3x 1 + Σχήµα 13 Άρα το x 3x θα είναι η τετµηµένη του µέσου Μ του τµήµατος ΑΒ (στο σχήµα 13), οπότε θα είναι: x 3x = δηλαδή x 3x + = 0, που έχει ρίζες τις: x = 1, x =. Θα ασχοληθούµε τώρα µε µία άλλη πολύ ενδιαφέρουσα ερώτηση: Αν στον άξονα των πραγµατικών αριθµών πάρουµε δύο αριθµούς α και β, τότε να προσδιοριστεί η θέση των αριθµών α β και β α πάνω στον άξονα. Απάντηση: Ας πάρουµε, καταρχήν, τους αριθµούς α και β σε µία τυχαία τοποθέτηση πάνω στον άξονα των πραγµατικών αριθµών. Με κέντρο την αρχή του άξονα και ακτίνα ρ = α β γράφουµε τον κύκλο που τέµνει τον άξονα στα σηµεία Γ και. Οι αριθµοί που αντιστοιχίζονται στα σηµεία αυτά είναι οι α β και β α. Γ Α Κ Β α + ρ= α β α β 0 β ρ= α β Είναι φανερό ότι: (ΑΒ) = (ΚΓ) = (Κ ). Σχήµα 14 Συγκεκριµένα: αν β > α, τότε ο αριθµός β α αντιστοιχίζεται στο, ενώ ο α β στο Γ. 11
12 Στην περίπτωση που ήταν β < α, τότε ο αριθµός α β θα αντιστοιχιζόταν στο και ο β α στο Γ. Η σκέψη που µας οδήγησε στην παραπάνω λύση στηρίζεται στην προφανή ισότητα: α β = (α β) 0 και στο γεωµετρικό νόηµα που αποδίδουµε σε κάθε µέλος αυτής της ισότητας. Πρόταση: Για οποιουσδήποτε πραγµατικούς αριθµούς α και β, ισχύει: α + β α + β Απόδειξη: Παίρνουµε δύο αριθµούς α και β σε µια τυχαία τοποθέτηση πάνω στον άξονα των πραγµατικών αριθµών (σχήµα 15). Α Κ Β Α α 0 β α + ρ =α ρ = α Σχήµα 15 Με κέντρο την αρχή Κ του άξονα και ακτίνα ρ = α γράφουµε κύκλο που τέµνει τον άξονα στα σηµεία Α και Α. Οι αριθµοί που αντιστοιχίζονται στα σηµεία αυτά είναι οι α και α. Είναι α = (ΑΚ) = ρ, α = (Α Κ) = ρ και β = (ΒΚ). Επίσης το α + β γράφεται β ( α), οπότε α + β = β ( α) = (ΒΑ ). Έτσι η σχέση α + β α + β, που θέλουµε να αποδείξουµε, µετασχηµατίζεται στη γεωµετρική µορφή: (ΒΑ ) (Α Κ) + (ΒΚ), σχέση που ισχύει για οποιεσδήποτε θέσεις των σηµείων Β, Α και Κ επί µιας ευθείας γραµµής, σύµφωνα µε γνωστή πρόταση της Ευκλείδειας Γεωµετρίας. 1
13 Βιβλιογραφικές πηγές [1] Ντρίζος,. "Η γεωµετρική εποπτεία στην παρουσίαση της απόλυτης τιµής Μια διδακτική πρόταση για την επίλυση εξισώσεων και ανισώσεων µε απόλυτες τιµές στην Α Λυκείου", άρθρο στο περιοδικό Ευκλείδης Γ, τχ (Ιανουάριος- εκέµβριος 000), σσ , Αθήνα: Έκδοση της Ε.Μ.Ε. [] Ντρίζος,. (00). "Ο ρόλος των γεωµετρικών αναπαραστάσεων στη διδασκαλία της Ανάλυσης" ιπλωµατική Εργασία, Τµ. Μαθηµατικών του Εθνικού και Καποδιστριακού Παν/µίου Αθηνών. 13
Η Γεωµετρική Εποπτεία στην Παρουσίαση της Απόλυτης Τιµής
ΕΥΚΛΕΙ ΗΣ Γ, Τόµος 17, Τεύχος 53-54, 2000 Η Γεωµετρική Εποπτεία στην Παρουσίαση της Απόλυτης Τιµής ΜΙΑ ΠΡΟΤΑΣΗ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΑΝΙΣΩΣΕΩΝ ΜΕ ΑΠΟΛΥΤΕΣ ΤΙΜΕΣ ΣΤΗΝ Α ΛΥΚΕΙΟΥ ηµήτρης Ντρίζος 6ο
Διαβάστε περισσότεραΜΙΑ ΠΡΟΤΑΣΗ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΑΝΙΣΩΣΕΩΝ ΜΕ ΑΠΟΛΥΤΕΣ ΤΙΜΕΣ ΣΤΗΝ Α ΛΥΚΕΙΟΥ. ημήτρης Ντρίζος ΠΕΡΙΛΗΨΗ *
Η ΓΕΩΜΕΤΡΙΚΗ ΕΠΟΠΤΕΙΑ ΣΤΗΝ ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΜΙΑ ΠΡΟΤΑΣΗ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΑΝΙΣΩΣΕΩΝ ΜΕ ΑΠΟΛΥΤΕΣ ΤΙΜΕΣ ΣΤΗΝ Α ΛΥΚΕΙΟΥ ημήτρης Ντρίζος ΠΕΡΙΛΗΨΗ * Με την εργασία μας αυτή θέλουμε
Διαβάστε περισσότεραΑ. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ
8 Παραβολή Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισµός Παραβολή είναι ο γεωµετρικός τόπος των σηµείων Μ του επιπέδου τα οποία ισαπέχουν από µια σταθερή ευθεία (δ) που λέγεται διευθετούσα της παραβολής και από
Διαβάστε περισσότεραΑ. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε.
Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 55) Μαθηματικά για την Α τάξη του Λυκείου Το τριώνυμο f(x) = α x + β x + γ, α Κώστα Βακαλόπουλου, Νίκου Ταπεινού Α. Η γραφική παράσταση της συνάρτησης f(x) αx βx γ,
Διαβάστε περισσότεραΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού
Διαβάστε περισσότεραΑπό το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46
ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία
Διαβάστε περισσότεραΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ
ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,
Διαβάστε περισσότεραΛύνοντας ασκήσεις µε αντίστροφες συναρτήσεις ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Η αντίστροφη συνάρτηση µιας αντιστρέψιµης συνάρτησης είναι
Διαβάστε περισσότεραΜΑΘΗΜΑ ΣΥΝΑΡΤΗΣΕΙΣ Σύνολο τιµών Γραφική παράσταση συνάρτησης Βασικές συναρτήσεις Ισότητα συναρτήσεων Πράξεις µε συναρτήσεις
ΜΑΘΗΜΑ. ΣΥΝΑΡΤΗΣΕΙΣ Σύνολο τιµών Γραφική παράσταση συνάρτησης Βασικές συναρτήσεις Ισότητα συναρτήσεων Πράξεις µε συναρτήσεις Θεωρία Σχόλια Ασκήσεις ΘΕΩΡΙΑ. Ορισµός του συνόλου τιµών, κατάλληλος για τις
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα
Διαβάστε περισσότεραΜαθηματικές Συναντήσεις
Μαθηματικές Συναντήσεις ΣΗΜΕΙΩΜΑ 1 / ΟΚΤΩΒΡΙΟΣ 16 Ενδεικτικά θέματα μαθηματικών για τις Α, Β και Γ τάξεις του Γενικού Λυκείου Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμούλου Μαθηματικών Τρικάλων και Καρδίτσας Τα
Διαβάστε περισσότεραΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία
ΜΑΘΗΜΑ 8. B.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία Θεωρία Ασκήσεις γ. τόπου και µεγιστο ελάχιστου Στις ασκήσεις αυτού του µαθήµατος χρησιµοποιούµε ανισωτικές σχέσεις από την Ευκλείδεια Γεωµετρία. Θυµίζουµε
Διαβάστε περισσότεραΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ
ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ο Γενικό Επαναληπτικό Διαγώνισμα ΘΕΜΑ ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα
Διαβάστε περισσότεραΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ (2), 2008 "Η ΓΕΩΜΕΤΡΙΑ ΤΩΝ ΜΙΓΑ ΙΚΩΝ ΑΡΙΘΜΩΝ"
ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ (), 008 "Η ΓΕΩΜΕΤΡΙΑ ΤΩΝ ΜΙΓΑ ΙΚΩΝ ΑΡΙΘΜΩΝ" Του ηµητρίου Α Ντρίζου Σχολικού Συµβούλου Μαθηµατικών Τα παρακάτω θέµατα εντάσσονται στο ίδιο ακριβώς πλαίσιο διδακτικών στόχων µε άλλα προηγούµενα
Διαβάστε περισσότερα3.1 Ο ΚΥΚΛΟΣ. 1. Εξίσωση κύκλου (Ο, ρ) 2. Παραµετρικές εξισώσεις κύκλου. 3. Εφαπτοµένη κύκλου
3. Ο ΚΥΚΛΟΣ ΘΕΩΡΙΑ. Εξίσωση κύκλου (Ο, ρ) + y ρ. Παραµετρικές εξισώσεις κύκλου ρσυνφ και y ρηµφ 3. Εφαπτοµένη κύκλου + yy ρ 4. Εξίσωση κύκλου µε κέντρο το σηµείο Κ( o, y ο ) και ακτίνα ρ ( o ) + (y y ο
Διαβάστε περισσότεραΣχολικός Σύµβουλος ΠΕ03
Ασκήσεις Μαθηµατικών Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις
Διαβάστε περισσότερα5 Γενική µορφή εξίσωσης ευθείας
5 Γενική µορφή εξίσωσης ευθείας Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Κάθε ευθεία έχει εξίσωση της µορφής: Ax + By +Γ= 0, µε Α 0 ηβ 0 () και αντιστρόφως κάθε εξίσωση της µορφής () παριστάνει ευθεία γραµµή.
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ
1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..
Διαβάστε περισσότεραΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Άσκηση 1. Έστω ότι η συνάρτηση f: R R είναι γνησίως αύξουσα στο R και η γραφική της παράσταση τέµνει τον άξονα y y στο. Να λύσετε την ανίσωση: f(x 9)
Διαβάστε περισσότεραΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΗΣ ΕΠΙ ΟΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΟ 3ο ΚΑΙ ΤΟ 4ο ΚΕΦΑΛΑΙΟ ΤΗΣ ΑΛΓΕΒΡΑΣ
ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΗΣ ΕΠΙ ΟΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΟ 3ο ΚΑΙ ΤΟ 4ο ΚΕΦΑΛΑΙΟ ΤΗΣ ΑΛΓΕΒΡΑΣ Τα θέµατα που συνθέτουν τα σχέδια κριτηρίων που ακολουθούν αντλήθηκαν από τις ερωτήσεις του σχεδιασµού αξιολόγησης
Διαβάστε περισσότεραΠαρουσίαση 1 ΙΑΝΥΣΜΑΤΑ
Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά
Διαβάστε περισσότερα2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ A ΑΛΓΕΒΡΑ Α' Γενικού Λυκείου Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Πεδίο ορισμού μιας συνάρτησης f (x) από ένα σύνολο Α σε ένα σύνολο Β ονομάζουμε το σύνολο Α, στο οποίο φαίνονται οι
Διαβάστε περισσότεραΜαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου
Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν
Διαβάστε περισσότερα1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:
ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις συµπλήρωσης 1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: Φυσική γλώσσα Μαθηµατική γλώσσα ύο αριθµοί x, y διαφέρουν κατά και έχουν γινόµενο x (x
Διαβάστε περισσότεραΑν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο(0,0) τότε έχει εξίσωση της μορφής : x y και αντίστροφα. Ειδικότερα Ο κύκλος με κέντρο Ο(0,0)
. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν γνωρίζουμε το κέντρο του, και την ακτίνα του ρ. Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο, τότε έχει εξίσωση της μορφής : και αντίστροφα. Ειδικότερα
Διαβάστε περισσότερα1 η δεκάδα θεµάτων επανάληψης
1 1 η δεκάδα θεµάτων επανάληψης 1. Α. Έστω α = (x 1, y 1 ) και β = (x, y ) δύο διανύσµατα Να γράψετε την αναλυτική έκφραση του εσωτερικού γινοµένου τους i Αν τα διανύσµατα δεν είναι παράλληλα προς τον
Διαβάστε περισσότεραΒ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ. Óõíåéñìüò ΑΠΑΝΤΗΣΕΙΣ
Επαναληπτικά Θέµατα ΟΕΦΕ 011 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ο α. I. Σχολικό βιβλίο σελ. 41. ΙΙ. Σχολικό βιβλίο σελ. 89. β. Σχολικό βιβλίο σελ. 71. γ. Σχολικό βιβλίο σελ.60. δ. Σ, Λ,
Διαβάστε περισσότερα4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ
1 4. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ ΘΕΩΡΙΑ 1. Η γενική µορφή του τριωνύµου µε µεταβλητή x R i) α x + βx + γ, α 0 ii) β α x + α 4α, α 0. Ειδικές µορφές του τριωνύµου Όταν > 0 τότε α x + βx + γ α(x x 1 )(x x ), όπου
Διαβάστε περισσότερατων θετικών µαθηµάτων Ηµερήσιου και Εσπερινού Γυµνασίου για το σχ.
Παραγοντοποίηση του τριωνύµου αx + βx + γ (α ) ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ3 e-mail@p-theodoropoulos.gr Πρόλογος Η παραγοντοποίηση ενός πολυωνύµου είναι µία από τις πιο βασικές
Διαβάστε περισσότεραΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.
Να διατηρηθεί µέχρι... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο
Διαβάστε περισσότεραΜαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου
Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης - - Γ Λυκείου ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Ορισμός Έστω ο μιγαδικός αριθμός x yi και M(x, y) η εικόνα του στο μιγαδικό επίπεδο Ορίζουμε ως μέτρο του την απόσταση
Διαβάστε περισσότεραΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 5 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη
Διαβάστε περισσότεραΕ π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση
Διαβάστε περισσότεραΑπό το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46
ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11 2. Σύνολα..............................................................
Διαβάστε περισσότεραe-mail@p-theodoropoulos.gr
Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων
Διαβάστε περισσότεραΤ ρ α π ε ζ α Θ ε μ α τ ω ν
Τ ρ α π ε ζ α Θ ε μ α τ ω ν Α λ γ ε β ρ α Α Λ υ κ ε ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α Α Λ υ κ ε ι ο υ Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Π ι θ α ν ο τ η τ ε ς 868 936 064 073 080
Διαβάστε περισσότεραΑναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ
Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι
Διαβάστε περισσότερα) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A
[Επιλογή Ιαν.. Εμβαδόν Τριγώνου ΣΤΟΧΟΙ: Ο µαθητής ϖρέϖει: να είναι ικανός να υϖολογίζει την αϖόσταση σηµείου αϖό ευθεία να είναι ικανός να υϖολογίζει το εµβαδό ενός τριγώνου αϖό τις συντεταγµένες των κορυφών
Διαβάστε περισσότερα1. Η ευθεία y = 5 είναι κάθετη στον άξονα y y. Σ Λ. 2. Η ευθεία x = - 2 είναι παράλληλη προς τον άξονα x x. Σ Λ
ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις του τύπου «σωστό-λάθος» 1. Η ευθεία y = 5 είναι κάθετη στον άξονα y y. Σ Λ 2. Η ευθεία x = - 2 είναι παράλληλη προς τον άξονα x x. Σ Λ 3. Οι ευθείες x = κ και y
Διαβάστε περισσότεραΑ Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα
Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό
Διαβάστε περισσότεραΕρωτήσεις σωστού-λάθους
ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Α ΜΕΡΟΣ (ΑΛΓΕΒΡΑ) ΚΕΦ ο : Μιγαδικοί Αριθμοί Φυλλάδιο ο Κεφ..: Η Έννοια του Μιγαδικού Αριθμού Κεφ..: Πράξεις στο Σύνολο C των Mιγαδικών Κεφ..: Πράξεις στο Σύνολο
Διαβάστε περισσότερα2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ
O z είναι πραγματικός, αν και μόνο αν Ο z είναι φανταστικός, αν και μόνο αν β) Αν και να αποδείξετε ότι ο αριθμός είναι πραγματικός, ενώ ο αριθμός είναι φανταστικός. 9. Να βρείτε το γεωμετρικό τόπο των
Διαβάστε περισσότεραΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού
ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α
ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση θεωρίας 1 ΘΕΜΑ Α Τι ονομάζουμε πραγματική συνάρτηση
Διαβάστε περισσότεραΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε
Διαβάστε περισσότεραΕπαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:
Διαβάστε περισσότεραΦεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ
Διαβάστε περισσότερα2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
Διαβάστε περισσότεραΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη
Διαβάστε περισσότεραΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.
ΘΕΜΑ ΘΕΜΑ Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β = 4 και αβ + αβ = 0 α) Να αποδείξετε ότι: α + β = 5. (Μονάδες 0) β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β
Διαβάστε περισσότεραΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,
Διαβάστε περισσότεραΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού
ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού 108 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθµό, να υπολογιστεί
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ
ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2
Διαβάστε περισσότεραΛύνοντας ασκήσεις µε αντίστροφες συναρτήσεις ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Η αντίστροφη συνάρτηση f µιας αντιστρέψιµης συνάρτησης f είναι
Διαβάστε περισσότεραΆσκηση 1 Να βρεθούν οι συντεταγμένες του σημείου A(x, y), αν αυτές επαληθεύουν την ισότητα: x 2 6xy + 11y 2 8y + 8 = 0
Άσκηση 1 Να βρεθούν οι συντεταγμένες του σημείου A(x, y), αν αυτές επαληθεύουν την ισότητα: x 6xy + 11y 8y + 8 = 0 Τι είναι αυτό που έχει δοθεί στην άσκηση; Μία ισότητα την οποία επαληθεύουν οι x, y. Τι
Διαβάστε περισσότεραΣΧΕ ΙΑΣΜΟΣ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ
ΣΧΕ ΙΑΣΜΟΣ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ 140 ΣΧΕ ΙΑΣΜΟΣ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ Για την αξιολόγηση του µαθητή και της διδασκαλίας ενός µαθήµατος θα πρέπει να υπάρχει ένας συνολικός σχεδιασµός κατά ευρύτερη διδακτική ενότητα
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο
Διαβάστε περισσότεραΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.
ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014)
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου 4 ο ΘΕΜΑ Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (9//4) Θέματα 4 ης Ομάδας Μαθηματικά Προσανατολισμού Β Λυκείου GI_V_MATHP_4_866 [παράγραφος
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 3 Κεφάλαιο ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ο ΜΕΡΟΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 6. Λ 8. Λ. Σ 7. Σ 9. Λ 3. Λ 8. Λ 3. Σ 4. Σ 9. Σ 3. α) Σ 5. Σ. Σ β) Σ 6.
Διαβάστε περισσότεραΜιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση
Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Υποδειγματικά Λυμένες Ασκήσεις Άλυτες Ασκήσεις ΛΑ Να βρείτε
Διαβάστε περισσότεραΜιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση
Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη
Διαβάστε περισσότεραΝα αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1
Διαβάστε περισσότεραΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;
ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση
Διαβάστε περισσότεραΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΚΑΙ
1.1.. ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΚΑΙ ΕΜΑ ΟΝ ΤΡΙΓΩΝΟΥ ΘΕΩΡΙΑ 1. Εξίσωση γραµµής C Μια εξίσωση µε δύο αγνώστους x, y λέγεται εξίσωση µιας γραµµής C, όταν οι συντεταγµένες των σηµείων της C, και µόνον αυτές, την επαληθεύουν..
Διαβάστε περισσότεραii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας
. Δίνεται η εξίσωση, (). i) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει μία τουλάχιστον πραγματική ρίζα. ii) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει δύο ίσες πραγματικές ρίζες. iii) Να βρεθεί ο
Διαβάστε περισσότερα1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1.
1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1. Διανύσματα Ισότητα διανυσμάτων Πρόσθεση διανυσμάτων Ερωτήσεις 1. Τ ι ονομάζουμε διάνυσμα;. Τι λέμε μέτρο ενός διανύσματος ;. Τι λέμε μηδενικό διάνυσμα; 4. Τι λέμε φορέα διανύσματος;
Διαβάστε περισσότεραΑΝΙΣΩΣΕΙΣ. 3.1 ΑΝΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Οι ανισώσεις: αx + β > 0 και αx + β < 0
3 ΝΙΣΩΣΕΙΣ 31 ΝΙΣΩΣΕΙΣ 1 ου ΒΘΜΟΥ Οι ανισώσεις: α + β > 0 και α + β < 0 Γνωρίσαμε στο Γυμνάσιο τη διαδικασία επίλυσης μιας ανίσωσης της μορφής α β 0 ή της μορφής α β 0, με α και β συγκεκριμένους αριθμούς
Διαβάστε περισσότεραΗ Ευκλείδεια διαίρεση
1 Η Ευκλείδεια διαίρεση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Αποδεικνύεται ότι για οποιουσδήποτε ακέραιους α και β, β 0, ισχύει το παρακάτω θεώρηµα και διατυπώνεται ως εξής : Αν α και β ακέραιοι µε β
Διαβάστε περισσότερα7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει
8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα:
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:. -. (Προτείνεται να διατεθούν 5 διδακτικές ώρες).3 (Προτείνεται να διατεθούν
Διαβάστε περισσότερα4.2 Η ΣΥΝΑΡΤΗΣΗ y = αx 2 + βx + γ µε α 0
1. Η ΣΥΝΑΡΤΗΣΗ y = α + + γ µε α 0 ΘΕΩΡΙΑ 1. Τετραγωνική συνάρτηση : Ονοµάζεται κάθε συνάρτηση της µορφής y = α + + γ, α 0. Γραφική παράσταση της συνάρτησης y = α + + γ, α 0 Η γραφική παράσταση της συνάρτησης
Διαβάστε περισσότεραΒΑΣΙΚΑ ΘΕΩΡΗΜΑΤΑ ΣΥΝΕΧΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΣΕ ΚΛΕΙΣΤΟ ΔΙΑΣΤΗΜΑ
ΒΑΣΙΚΑ ΘΕΩΡΗΜΑΤΑ ΣΥΝΕΧΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΣΕ ΚΛΕΙΣΤΟ ΔΙΑΣΤΗΜΑ Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ σχολικού συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας drizosdim@yahoo.gr Εισαγωγή Σύντομη ιστορική αναδρομή Το
Διαβάστε περισσότεραΣας εύχομαι καλή μελέτη και επιτυχία.
ΠΡΟΛΟΓΟΣ Το βιβλίο αυτό αποτελεί συνέχεια του Α τεύχους και απευθύνεται κυρίως στους μαθητές της Α Λυκείου, αλλά και στους καθηγητές που διδάσκουν το μάθημα «Άλγεβρα και στοιχεία πιθανοτήτων» της Α Λυκείου.
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
6ο κεφάλαιο: Συναρτήσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα
Διαβάστε περισσότεραΠΟΛΥΧΡΟΝΙΑΔΗΣ ΝΙΚΟΣ ΤΑΥΤΟΤΗΤΕΣ
ΘΕΩΡΙΑ Α ΛΥΚΕΙΟΥ ΤΑΥΤΟΤΗΤΕΣ ). (α + β) = α +αβ + β ). (α β) = α αβ + β. 3). (α + β) 3 = α 3 + 3α β +3αβ + β 3 ). (α β) 3 = α 3 3α β +3αβ β 3. 5). α β = (α β)(α + β) 6). α + β = (α + β) αβ. 6). α 3 β 3
Διαβάστε περισσότερα7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήματος (α). x 1. Δίνονται οι ανισώσεις: 3x 1
Διαβάστε περισσότεραΟρισμένες σελίδες του βιβλίου
Ορισμένες σελίδες του βιβλίου 7. Θεωρούμε το σύνολο αναφοράς 0,,. Να οριστούν τα σύνολα: Α. των τριψηφίων αριθμών που σχηματίζουν τα στοιχεία του Ω. Β. των τριψηφίων αριθμών με διαφορετικά ψηφία Γ. των
Διαβάστε περισσότεραΜάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.
Μάθηµα 1 Κεφάλαιο 1o: Συστήµατα Θεµατικές Ενότητες: A. Συστήµατα Γραµµικών Εξισώσεων B. Συστήµατα 3x3 Α. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ορισµοί Κάθε εξίσωση της µορφής α x+β =γ, µε α, β, γ R παριστάνει
Διαβάστε περισσότερα2 είναι λύσεις της ανίσωσης 2x2 3x+1<0.
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΕΞΙΣΩΣΕΙΣ. α) Να βρείτε τις ρίζες της εξίσωσης x +0x=. x + 0x β) Να λύσετε την εξίσωση x. ίνεται η εξίσωση: x λx+(λ +λ )=0 (), λ R. α) Να προσδιορίσετε τον πραγµατικό αριθµό λ, ώστε η
Διαβάστε περισσότερα1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ
Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:
Διαβάστε περισσότερα2.3 ΜΕΣΟΚΑΘΕΤΟΣ ΕΥΘΥΓΡΑΜΜΟΥ ΤΜΗΜΑΤΟΣ
1 3 ΜΕΣΚΘΕΤΣ ΕΥΘΥΡΜΜΥ ΤΜΗΜΤΣ ΘΕΩΡΙ Μεσοκάθετος ευθυγράµµου τµήµατος Λέγεται η ευθεία που διέρχεται από το µέσο του ευθυγράµµου τµήµατος και είναι κάθετη σ αυτό. Ιδιότητα : Κάθε σηµείο της µεσοκαθέτου ενός
Διαβάστε περισσότερα1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ
. ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ : ΓΡΑΜΜΙΚΗ ΕΞΙΣΩΣΗ Η εξίσωση με και 0 ή 0 λέγεται γραμμική εξίσωση. Οι μεταβλητές είναι οι άγνωστοι της εξίσωσης αυτής. Οι αριθμοί λέγονται συντελεστές των αγνώστων
Διαβάστε περισσότερα3. Μία τεθλασµένη γραµµή αποτελείται από πέντε διαφορετικά ευθύγραµµα
1. Να συγκρίνεις το µήκος της γραµµής ΑΒΓ Ε µε το µήκος του ευθύγραµµου τµήµατος ΖΗ, όπως φαίνονται στο διπλανό σχήµα. Μετρώντας µε το υποδεκάµετρο βρίσκουµε ΑΒ = 1,3cm, ΒΓ = 1,3cm, Γ = 1,4cm και Ε = 2,4cm
Διαβάστε περισσότεραΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)
6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,
Διαβάστε περισσότεραI. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr
I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -
Διαβάστε περισσότερα1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R
. ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε συνάρτηση µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου συνόλου Β. Σηµείωση: Στο εξής θα είναι Α R και
Διαβάστε περισσότερα4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ
1 4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ ΘΕΩΡΙΑ 1. Εξίσωση µε έναν άγνωστο: Ονοµάζουµε µία ισότητα η οποία περιέχει αριθµούς και ένα γράµµα που είναι ο άγνωστος της εξίσωσης.. Λύση ή ρίζα της εξίσωσης : Είναι ο αριθµός
Διαβάστε περισσότεραΤρία συνηθισµένα λάθη που κάνουν µαθητές της Γ Λυκείου σε ασκήσεις του ιαφορικού Λογισµού ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ3 e-mail@p-thedrpuls.gr Πρόλογος Στην εργασία αυτή επισηµαίνονται
Διαβάστε περισσότεραΠώς είναι δυνατόν να είναι ισοδύναµες οι εξισώσεις που αναφέρονται στο ερώτηµα ii, αφού δεν έχουν το ίδιο πεδίο ορισµού 2 ;
1 Ισοδύναµες εξισώσεις και η έννοια του «κοντά» ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-thedrpuls.gr Εισαγωγή Στην εργασία αυτή αναλύονται και αναπτύσσονται οι έννοιες που
Διαβάστε περισσότερα4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 112 114
1. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 11 11 A Ομάδας 1. Να μετατρέψετε σε γινόμενα παραγόντων τα τριώνυμα: x 3x + x 3x Δ ( 3). 1. 9 8 1 > 0 Ρίζες: x Άρα ( 3) 1.1 3 1 3 1 ή 31 x 3x +
Διαβάστε περισσότεραΕρωτήσεις ανάπτυξης 1. ** 2. ** 3. ** 4. ** 5. ** 6. **
Ερωτήσεις ανάπτυξης 1. ** ίνονται επίπεδο p και τρία µη συνευθειακά σηµεία του Α, Β και Γ καθώς και ένα σηµείο Μ, που δεν συµπίπτει µε το Α. Αν η ευθεία ΑΜ τέµνει την ευθεία ΒΓ, να δείξετε ότι το Μ είναι
Διαβάστε περισσότερα3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = βα + β, Β = α β + αβ
ΑΝΙΣΩΣΕΙΣ 1 Α ν ι σ ω σ η 1 ο υ β α θ μ ο υ 3. Να δειχτει οτι α + 110 0α. Ποτε ισχυει το ισον; Μορφη: αx + β > 0 με α,β. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = βα + β, Β = α β + αβ Αν α > 0
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1
Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες
Διαβάστε περισσότεραΘέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος 013-014, Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός
Διαβάστε περισσότεραΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο
Διαβάστε περισσότερα