Modeli poluprovodničkih komponenata

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Modeli poluprovodničkih komponenata"

Transcript

1 odel polupoodnčk Za elke snale L + ( odel polupoodnčk L - u ( u Nelnean odel polupoodnčk odel polupoodnčk Za elke snale L + Za elke snale Nelnean Složen odel pooću ačunaa ( Lneazoan Jednosan odel odel po eda L - dealzoan - Gua pona učna analza u Za ale snale u ( Za ale snale Lnean Lnean 3 4

2 odel polupoodnčk Koje polupoodnčke kopoene znao? odel dode -ode (ša znao? lekonske koponene seesa -ode -polan anzso -OSF anzso 5 6 odel dode odel dode -ode (zasnos suje od napona na dod [] Pooj 7 S (e S Skala x nezna polazacja [] Skala x -9 ekna polazacja S(e [] -oda u elekonsko kolu dc k + ( ( (e s? 7 8

3 odel dode odel dode -oda u elekonsko kolu dc k + ( ( (e s -oda u elekonsko kolu dc k + ( ( (e s Gafčka nepeacja polea ( ( S(e [] x -3 odel dode nelneaan za elke snale ( ( S(e [] x U [] U [] odel dode odel dode -oda u elekonsko kolu dc k + ( ( (e s -oda u elekonsko kolu odel dode lneazoan za elke snale odel dode lneazoan za elke snale S(e za < γ.5 za > γ [] x -3 d ( ( U [] O.5 γ SW d aa za <.5 za > γ [] x -3 d U []

4 odel dode odel dode -oda u elekonsko kolu dc k + ( ( (e s -oda u elekonsko kolu odel dode dealzoan za elke snale odel dode dealzoan za elke snale γ za <.55 γ za γ [] x -3 ( ( U [] 3 γ O.5 SW aa za <.55 γ za γ [] x U [] 4 odel dode -oda u elekonsko kolu odel dealne dode γ za < [] x Gafčka nepeacja polea d odel dode -oda u elekonsko kolu d + d snω + snω d [] dc ac + ; snω x + -3 k + O + ( U [] [] - + 6

5 odel dode odel dode -oda u elekonsko kolu Gafčka nepeacja polea -oda u elekonsko kolu Gafčka nepeacja polea dc. ac k x [] ( dc. ac k x -3 d d [] ( [] [] odel dode odel dode -oda u elekonsko kolu Gafčka nepeacja polea -oda u elekonsko kolu Gafčka nepeacja polea dc. ac k x -3 d d [] ( dc. ac k x -3 d d [] (.. d d [] - + d d [] - + odel za ale snale Lneazoan odel za elke snale 9

6 odel dode -oda u elekonsko kolu Gafčka nepeacja polea odel dode ŽNO odel za ale snale x -3 x [] dc. ac + k + 3 d [] [] odel za ale snale Kos se u analz ponašanja kola pouđen al nazenčn snala. ada se s eleen kola zaenjuju dnačk paaea načk paaea dode jese unuašnja oponos dode [] d d d d d d d S e dalje / odel dode ŽNO odel za ale snale Oponos zas od položaja ne adne ačke! d [] x [] Posoj zasnos zeđu jednosene suje dnačke oponos. U kojoj ačk je oponos najeća? 3 Upše odoaajuć znak < l >. d d d3 d4 dalje 3 načk odel zoa konsanno napona ŽNO odel za ale snale so až za zoe jednosen napona suja zaena dnačko oponošću. Kolko će se poen napon na zou jednoseno napona ako se suja koz njea poen za? načk odel zoa konsanno napona ( je Za ale snale se ponaša kao kaak spoj 4

7 načk odel zoa konsanne suje ŽNO odel za ale snale J cc načk odel zoa konsanne suje ŽNO zo konsanne suje zaena dnačko oponošću. Kolko će se poen suja zoa konsanne suje ako se napon na njeu poen za J? J J J J J J J načk odel zoa konsanne suje ( je J Za ale snale se ponaša kao pekd J cc kolokju ponedeljak u odel polupoodnčk a se podseo OS anzso a se podseo odel OS anzsoa OS anzso nos od za G > pos od za G < 7 8

8 odel OS anzsoa odel OS anzsoa a se podseo zlazne kaakeske OSF-a a se podseo Penosne kaakeske OSF-a 9 3 odel OS anzsoa odel u olas zasćenja G W n ox (, G L µ G W kn ' (, L (, G S O S > S O Oede peašenje O G odel u olas zasćenja W nox ( L ( µ S > G odel OS anzsoa ( G S S S O, G 3 > S > - ne zas od S 3

9 odel OS anzsoa ealn odel u olas zasćenja ( S > λ ( + λ S odel OS anzsoa ealn odel u olas zasćenja S o / λ ( ( + S S S > / ( λ G ( S ( ( + S 33 o 34 odel OS anzsoa odel OS anzsoa adna ačka ucaj na odel za ale snale W µ nox ( ( L G > adna ačka značenje odela za ale snale Lnean seen Na S S Jednačna pae u - an adna paa S S adna paa Na -/ + s + d s

10 odel OS anzsoa adna ačka ucaj na odel za ale snale + s ( + s + za ale snale s ( + ( s ( s s << ( << ( s + ( s O 37 odel OS anzsoa adna ačka značenje odela za ale snale + ( d + + ( ( d d s ( s s s W µ n' ox ( L ZS od položaja adne ačke ( ( S O O s 38 [] odel OS anzsoa adna ačka značenje odela za ale snale [].8.6 x -3 ZS od položaja adne ačke [] adna ačka značenje odela za ale snale [].8.6 x -3 odel OS anzsoa sa poena zazaće azlče poene suje [] [] [] [] ( O 39 4

11 odel OS anzsoa odel za ale snale odaak odel OS anzsoa adna ačka značenje odela za ale snale S S µ n W o µ ' ox ( L ( S S O ( o ( o 4 + S S ds S S adna paa Na -/ 4 odaak odel OS anzsoa adna ačka značenje odela za ale snale oać 4. odel OS anzsoa Za nos anzso kod koa je, µ n ox µ/, W/L λ. - oded: a opse napona za koje anzso od napon S u funkcj p koe anzso ulaz u zasćenje, c dnačke paaee anzsoa o u adnoj ačk defnsanoj sa 75µ, ako se zna da anzso ad u zasćenju. d Naca odel za ale snale upsa ednos paaeaa. S S S + ds ds d >; S > +; 44µ/,.67Ω 43 44

12 odel OS anzsoa F odel a se podseo odel polano anzsoa polan anzso - J µ n ox W L ( o λ s WLox + WLo d WLo.5L L ox o. L ox 3 f π ( s + d odel polano anzsoa a se podseo Koefcjen sujno pojačanja odel polano anzsoa a se podseo Upošćen es-ollo odel (za elke snale Zajednčka aza α + - α < β >> β α α + - s α ( e 47 48

13 odel polano anzsoa a se podseo Upošćen es-ollo odel (za elke snale, seo suja azlč za NPN PNP Konfuacja zajednčk eo odel polano anzsoa odel npn anzsoa u dekno ežu Koplean es-olo odel odel npn anzsoa u nezno ežu zaene uloe odel polano anzsoa odel polano anzsoa Koplean es-olo odel Koplean es-olo odel až u s eža ada anzsoa!!! dealzoan odel: u akno ežu ne zas od ; α F S α α ( e ( e F F S ( e + α F S S S ( e << f( ; f(β, f(. U akno ežu α β F ne zas od 5 5

14 odel polano anzsoa aly-e efeka eđu, kod ealn anzsoanje ako u akno ežu c zas od odel polano anzsoa adna ačka ucaj na odel za ale snale Ulazne kaakeske adna paa Na -/ ( S e adna paa Na -/ odel polano anzsoa adna ačka ucaj na odel za ale snale zlazne kaakeske adna paa (na-saconana Na -/ odel polano anzsoa adna ačka ucaj na odel za ale snale enuna adana paa, Na -/ + e + Lnean seen u u 55 S ( e + u u 56

15 odel polano anzsoa adna ačka ucaj na odel za ale snale enuna adana paa, Na -/ u odel polano anzsoa adna ačka ucaj na odel za ale snale Na -/ Lnean seen Na -/ Skala x u c β odel polano anzsoa odel polano anzsoa eza zeđu odela za elke ale snale Hdn π odel, ajana z odela za elke snale ože da se zede alosnalon odel. Onuo ne až. Hdn π odel π + π + c + e + e Se Se načka oponos spoja e e Se e e π d d, - Jednosene elk snal 59 6

16 odel polano anzsoa odel polano anzsoa π Hdn π odel, ajana e x ( + x za x << - Jednosena elk snal e e ( e + za e << + c + e až za alo e << 6 za 3K c e e 6 c e π Hdn π odel, ajana 39 za 3K ( 6 6 odel polano anzsoa odel polano anzsoa π Hdn π odel, ajana β c β β + + c + e + c e + + e β β β β e e β β e e β β π e β β β π eza zeđu položaja adne ačke ( dnačk paaeaa (alosnaln odel π 6.6kΩ µ o + 4S 5 5k 6 Ω o 63 64

17 odel polano anzsoa odel oać 4. odel polano anzsoa e α α e α α e α 65 J sa β, polasan je u adnoj ačk sa 5. Naca dn π odel oded paaee: a π c o d α e e u adnoj ačk. f Upoed sa odoaajuć paaeo OSFa sa slajda 39. 4/;.5kΩ; 5kΩ; /; 5Ω. 66 odel polano anzsoa odel polano anzsoa paae Hdn odel paae c e + + c e 67 68

18 c e e odel polano anzsoa + Hdn odel paae + c e e c Ulazna oponos Koefcjen nezno naponsko pojačanja Koefcjen dekno sujno pojačanja c e + Hdn odel paae + c e odel polano anzsoa c zlazna ododnos 69 7 Hdn odel paae ou da se defnšu -paae za osale konfuacje Z, Z ada nose sufkse, odnosno. ednos e - paaeaa daju se u kaaloza e e fe oe odel polano anzsoa npu essan; o - oupu conducan; f [ Ω o] [ /] [ /] [ S / Ω o] - eese ansfe; - fowad ansfe odel polano anzsoa Hdn odel paae ojne ednos -paaeaa pčno S J Zajed. eo xkω x 7 7

19 odel polano anzsoa Odeđanje - paaeaa sa sačk kaakeska odel polano anzsoa Odeđanje - paaeaa sa sačk kaakeska e ons e ons ons. kω ons x ons odel polano anzsoa odel polano anzsoa Odeđanje - paaeaa sa sačk kaakeska Odeđanje - paaeaa sa sačk kaakeska c ons c ons ons ons ons ons

20 odel polano anzsoa F odel polano anzsoa odel polano anzsoa F odel polano anzsoa β + s( + ω β ( + π ω βω β π µ µ π π π de + je τ F + je µ + µ ω π + µ odel polano anzsoa odel polano anzsoa -odel J za jednosene snale β β -odel J za nazenčne snale k.7.7 NPN PNP 79 β π π π π e 8

21 odel polano anzsoa eze F odel polano anzsoa Gafčka nepeacja π + µ πf β π de + je π j µ ; ( + / 8. noea 4. odel polupoodnčk c.3.5 de τ F je je 8 dealn naponsk eneao/aeja dealn sujn eneao J Ω. noea 4. odel polupoodnčk e J J j J 8 eze eze elk snal al snal d oda za <.5 za > d d d d d γ d / γ γ Paae odela γ,5. noea 4. odel polupoodnčk d d d d d d [] Gafčka nepeacja x U [] x -3 [].8.6 d.4 d. 3 d []. 83 elk snal Olas zasćenja al snal Olas zasćenja OSF nos pos Paae odela olas zasćenja > S > - S o. noea 4. odel polupoodnčk O o l o S Gafčka nepeacja o 84

22 eze elk snal kn ež J spoj dekno spoj nezno, β Ša so naučl? azlka zedju odela za elke ale snale. lekčne šee odela dode za elke ale snale. lekčne šee odela OSF-a za elke ale snale. al snal kn ež e. noea 4. odel polupoodnčk e e e o β 85 lekčne šee odela J za elke ale snale. Na we ades p://leda.elfak.n.ac.s > UON > LKONK slajdo u pdf foau 86 spna panja? odel polupoodnčk. Lnean odel dode.. odel OSF-a za elke snale. 3. odel OSF-a za ale snale zasnos paaeaa od položaja jednosene adne ačke. 4. F odel OSF-a. 5. es-olo odel J. 6. lekčna šea paae dno π odela J. 7. efncja odedanje e -paaeaa sa kaakeska anzsoa. 8. F odel J. 9. Zasnos dnačk paaeaa J od položaja jednosene adne ačke epeaue. Sledeće časa Osnon pojačaačk sepen sa J 87 88

23 ešenje 3. lleoa eoea Oded eleene ekalenno lleoo kola za pojačaač sa slke ukupno naponsko pojačanje ((s (s/ (s u slučaju kada je Z: a pf c Ša će ako je Z/s >?? >>? Z Z u 8. noea 4. Opeacon pojačaač k u Z Z - u Z Z p u 89 ešenje 3. lleoa eoea Oded eleene ekalenno lleoo kola za pojačaač sa slke ukupno naponsko pojačanje ((s (s/ (s u slučaju kada je Z: a Z Z k ( Z Z ( u 8. noea 4. Opeacon pojačaač k u Z Z - u p u 9 ešenje 3. a lleoa eoea k Z k k Z 9. 9k ( Z Z. 99 / ( /. u u Z Z + u u 49.7 / ešenje 3. lleoa eoea Oded eleene ekalenno lleoo kola za pojačaač sa slke ukupno naponsko pojačanje ((s (s/ (s u slučaju kada je Z: pf Z Z Z jω /( jω ( pf jω( ; kao e (- u Z /( jω Z ( jω k u Z Z - u p u 8. noea 4. Opeacon pojačaač 9 8. noea 4. Opeacon pojačaač 9

24 ešenje 3. lleoa eoea k u Z / s Z + s( Z / s Z / ( / s(. f +. u u /s /s + 6 s / f d 6 π s π. s 3 3. okoa. Opeacon pojačaač - u + s 57.6kHZ 93 ešenje 3. lleoa eoea Oded eleene ekalenno lleoo kola za pojačaač sa slke ukupno naponsko pojačanje ((s (s/ (s u slučaju kada je Z: c Ša će ako je Z/s >? Z Z Z s /( s s( ( ( koneo neane pedanse. Suja enja se je je > u u 8. noea 4. Opeacon pojačaač k u Z Z p - u u 94 ešenje 3. lleoa eoea Oded eleene ekalenno lleoo kola za pojačaač sa slke ukupno naponsko pojačanje ((s (s/ (s u slučaju kada je Z: c Ša će ako je Z/s? Z /( s Z Z Z Z( u kopenzoano u u k u Z Z p - u u ešenje 3. lleoa eoea Oded eleene ekalenno lleoo kola za pojačaač sa slke ukupno naponsko pojačanje ((s (s/ (s u slučaju kada je Z: c Ša će ako je Z/s >>? Z /( s Z s( Z ; s e e < poećana pedansa. Z >Z u k u Z Z p - u u 8. noea 4. Opeacon pojačaač noea 4. Opeacon pojačaač 96

25 ešenje 3. dealn opeacon pojačaač Oded napon na zlazu pojačaača sa slke 3 4 ešenje 3.3 ealn opeacon pojačaač Zadaak: Za neosk pojačaač pouđen napono. kod koa je.k k u koe se kose Opp sa pojačanje u OP od 6d, 8d d oded: a Pojačanje u zaoenoj pelj Ponualnu poenu pojačanja u zaoenoj pelj u odnosu na slučaj sa dealn Oppo c elčnu napona na ulazu Oppa ešenje a(9,83; 99,; 99,9; (-9,7%;-,%; -,%; c(-9,8; -,99; -, a c a + c c c noea 4. Opeacon pojačaač okoa. Opeacon pojačaač 98 ealn opeacon pojačaač ešenje 3.3 odel polupoodnčk odaak Za elke snale? Za ale snale? Nelnean Lneazoan dealzoan??? Lnean? 5. okoa. Opeacon pojačaač 99

26 -ode -Sol odel dode odaak odel polano anzsoa a se podseo - Zajednčka aza (Z odaak O Kaakeska: zasnos suje od napona nezna polazacja ekna polazacja Pooj odel polano anzsoa odaak odel polano anzsoa odaak a se podseo - Zajednčk eo (Z a se podseo - Zajednčk eo (Z 3 4

27 odel polano anzsoa odaak odel polano anzsoa odaak a se podseo - Zajednčk eo (Z a se podseo Zajednčk koleko (Z 5 6 odel polano anzsoa Hdn odel paae odaak elacje zeđu -paaeaa konfuacja Z Z sa Z kada se a u du ealna čnjenca da je <<, <<, <<, <<, << -( + [ Ω o] [ /] [ /] [ S / Ω o] 7

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

Jednostepeni MOSFET pojačavači

Jednostepeni MOSFET pojačavači Osnne sbne MOS tanzsta MOSFET tanskndktansn jačaač: Nan S kntlše S Jednsteen MOSFET jačaač ne zas d, > Tanzst ad blast zasćenja: S > t ; S > S - t Laka ealzacja IC Peđenje MOSFET BJT: kaaktestke Peđenje

Διαβάστε περισσότερα

Glava 2 OPERACIONI POJAČAVAČ

Glava 2 OPERACIONI POJAČAVAČ adoje Đurć Osno analone elektronke Glaa OPEACON POJAČAAČ ETF u Beoradu - Odsek za elektronku M 8 Slka a u Slka b ešenje: a) S obzrom da se pobuda dood na ejtoe dferencjalno para M M dferencjalna ulazna

Διαβάστε περισσότερα

, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova

, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici

Διαβάστε περισσότερα

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2.

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2. Vele u ehc Rd, g eegj D. do. Sl. Veo 3. Tezo II. ed 4. Tezo IV. ed. Sl: 3 0 pod je jedc (ezo ulog ed). Veo: 3 3 pod je jedc (ezo pog ed) 3. Tezo dugog ed 3 9 pod je jedc 4. Tezoeog ed 3 4 8 pod je jedc

Διαβάστε περισσότερα

VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici.

VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici. VILJUŠKARI 1. Viljuškar e korii za uoar andardnih euro-pool palea na druko ozilo u ieu prikazano na lici. PALETOMAT a) Koliko reba iljuškara da bi ree uoara kaiona u koji aje palea bilo anje od 6 in, ako

Διαβάστε περισσότερα

Elementi energetske elektronike

Elementi energetske elektronike ELEKTRIČNE MAŠINE Elemen energeske elekronke Uvod Čme se bav energeska elekronka? Energeska elekronka se bav konverzjom (prevaranjem) razlčh oblka elekrčne energje. Uvod Gde se kors? Elemen energeske elekronke

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

MICROMASTER Vector MIDIMASTER Vector

MICROMASTER Vector MIDIMASTER Vector s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.

Διαβάστε περισσότερα

Literatura: Основна литература: 1. В. Литовски, Основи електронике, Академска. Osnovi elektronike. Literatura: Predispitne obaveze: Ispit: Zadaci 20%

Literatura: Основна литература: 1. В. Литовски, Основи електронике, Академска. Osnovi elektronike. Literatura: Predispitne obaveze: Ispit: Zadaci 20% Ono elekronke rof. dr redrag ekoć, red. prof. dr Srđan Đorđeć, aen M.S. Dejan Mrkoć, aradnk naa Ono elekronke Lerara: Основна литература: 1. В. Литовски, Основи електронике, Академска мисао, 26, ISBN:

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

Magneti opis i namena Opis: Napon: Snaga: Cena:

Magneti opis i namena Opis: Napon: Snaga: Cena: Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ Ι. 1. Ημιαγωγική γ δίοδος Ένωση pn 2. Τρανζίστορ FET

ΗΛΕΚΤΡΟΝΙΚΗ Ι. 1. Ημιαγωγική γ δίοδος Ένωση pn 2. Τρανζίστορ FET ΗΛΕΚΤΡΟΝΙΚΗ Ι 1. Ημιαγωγική γ δίοδος Ένωση pn 2. Τρανζίστορ FET 3. Πόλωση των FET - Ισοδύναμα κυκλώματα 4. Ενισχυτές με FET 5. Διπολικό τρανζίστορ (BJT) 6. Πόλωση των BJT - Ισοδύναμα κυκλώματα 7. Ενισχυτές

Διαβάστε περισσότερα

POGON SA ASINHRONIM MOTOROM

POGON SA ASINHRONIM MOTOROM OGON SA ASNHRON OTORO oučavaćemo amo ogone a tofaznim motoom. Najčešće koišćeni ogon. Ainhoni moto: - ota kontukcija; - jeftin; - efikaan. ETALN RSTEN LANRANO JEZGRO BAKARNE ŠKE KAVEZN ROTOR NAOTAJ LANRANO

Διαβάστε περισσότερα

Radivoje Đurić, Zbirka zadataka iz osnova elektronike DIODA. Elektrotehnički fakultet, Odsek za elektroniku

Radivoje Đurić, Zbirka zadataka iz osnova elektronike DIODA. Elektrotehnički fakultet, Odsek za elektroniku adoje Đurć brka zadataka z osnoa elektronke OA Elektrotehnčk fakultet Odsek za elektronku oda 3 Slka U kolu sa slke dode maju razlčte nerzne struje zasćenja S = S dok je t = kt / q= 5m T = 93K Ukolko

Διαβάστε περισσότερα

Građevinski fakultet, Beograd

Građevinski fakultet, Beograd Građesk fakule Beogra Eksploaaa zaša pozeh oa Obašea ežbe VEŽBA Pree ežbe e raspor aere u porozo sre. raspora eača presala zako oržaa ase pree a supsau koa se rasporue. Oržae ase rasporoae supsae ože a

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

pismeni br.4 4.2: Izračunati yds, gdje je K luk parabole y 2 = 2 px od ishodišta to točke

pismeni br.4 4.2: Izračunati yds, gdje je K luk parabole y 2 = 2 px od ishodišta to točke Prakkm Maemaka III Prredo DJočć smen br : Raz Forero red nkc eroda dan ormom za < za < : Izračna ds gde e k araboe od shodša o očke M : Izračna koordnae ežsa homogenog ka ckode a sn a ; : Izračna I e [

Διαβάστε περισσότερα

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ Ι Ενότητα 7

ΗΛΕΚΤΡΟΝΙΚΗ Ι Ενότητα 7 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ Ι Ενότητα 7: Πόλωση των BJT - Ισοδύναμα κυκλώματα Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών

Διαβάστε περισσότερα

www.smarterglass.com 978 65 6190 sales@smarterglass.com &&$'()!"#$%$# !!"# "#$%&'! &"# $() &() (, -. #)/ 0-.#! 0(, 0-. #)/ 1!2#! 13#25 631% -. #)/ 013#7-8(,83%&)( 2 %! 1%!#!#2!9&8!,:!##!%%3#9&8!,:!#,#!%63

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Magneti opis i namena Opis: Napon: Snaga: Cena:

Magneti opis i namena Opis: Napon: Snaga: Cena: Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Tranzistori s efektom polja. Postupak. Spoj zajedničkog uvoda. Shema pokusa

Tranzistori s efektom polja. Postupak. Spoj zajedničkog uvoda. Shema pokusa Tranzistori s efektom polja Spoj zajedničkog uvoda U ovoj vježbi ispitujemo pojačanje signala uz pomoć FET-a u spoju zajedničkog uvoda. Shema pokusa Postupak Popis spojeva 1. Spojite pokusni uređaj na

Διαβάστε περισσότερα

transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije

transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije promatramo dva oordnatna sustava S S sa zaednčm shodštem z z y y x x blo o vetor možemo raspsat u baz, A = A x + Ay + Az = ( A ) + ( A ) + ( A ) (1) sto vred za ednčne vetore sustava S = ( ) + ( ) + (

Διαβάστε περισσότερα

Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises

Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises Page 11 CHAPTER 1 V LSB 5.1V 10 bits 5.1V 104bits 5.00 mv V 5.1V MSB.560V 1100010001 9 + 8 + 4 + 0 785 10 V O 786 5.00mV or

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Osnove mikroelektronike

Osnove mikroelektronike Osnove mikroelektronike Z. Prijić T. Pešić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2006. Sadržaj Bipolarni tranzistor 1 Bipolarni tranzistor 2 Ebers-Molov model Strujno-naponske

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

Finite Integrals Pertaining To a Product of Special Functions By V.B.L. Chaurasia, Yudhveer Singh University of Rajasthan, Jaipur

Finite Integrals Pertaining To a Product of Special Functions By V.B.L. Chaurasia, Yudhveer Singh University of Rajasthan, Jaipur Global Joal of Scece oe eeac Vole Ie 4 Veo Jl Te: Doble Bld Pee eewed Ieaoal eeac Joal Pble: Global Joal Ic SA ISSN: 975-5896 e Iegal Peag To a Podc of Secal co B VBL Caaa Ydee Sg e of aaa Ja Abac - A

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Dinamika krutog tijela. 14. dio

Dinamika krutog tijela. 14. dio Dnaka kutog tjela 14. do 1 Pojov: 1. Vekto sle F (tanslacja). Moent sle (otacja) 3. Moent toost asa 4. Rad kutog tjela A 5. Knetka enegja E k 6. Moent kolna gbanja 7. u oenta kolne gbanja oenta sle M (

Διαβάστε περισσότερα

TEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave

TEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave THNIČKI FAKUTT SVUČIIŠTA U IJI Zavod za elekroenergek Sdj: Preddplomsk srčn sdj elekroehnke Kolegj: Osnove elekroehnke II Noselj kolegja: v. pred. mr.sc. Branka Dobraš, dpl. ng. el. Prjelazne pojave Osnove

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

Osnovni sklopovi pojačala sa bipolarnim tranzistorom

Osnovni sklopovi pojačala sa bipolarnim tranzistorom Osnovn sklopov pojačala sa bpolarnm tranzstorom Prrodno-matematčk fakultet u Nšu Departman za fzku dr Dejan S. Aleksd Elektronka dr Dejan S. Aleksd Elektronka - Pojačavač polarn tranzstor kao pojačavač

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Q11. 4k2 Q12. 1k7 VEE=-5.2V

Q11. 4k2 Q12. 1k7 VEE=-5.2V . ZTK 50k Slika Za logicko kolo sa slike odredii: a) logicku funkciju kola Y=f() i Y=g() ) rednosi opornosi 9 i 4 ako da su margine šuma za logicku nulu i jedinicu jednake a logicki nioi na ulazu i izlazu

Διαβάστε περισσότερα

1.1. Napisati relaciju kojom je moguće odrediti ukupan broj elektrona na nekoj orbiti: n

1.1. Napisati relaciju kojom je moguće odrediti ukupan broj elektrona na nekoj orbiti: n I ES EES - VAIJANA Zadatak bro... Nasat relacu koom e moguće odredt ukua bro elektroa a eko orbt: l 0 ( Z 0 l + ) [ + 3 + 5 + ( ) ].. Nasat relacu koa ovezue kocetrace elektroa šula kod čstog (trsc) oluvodča:.3.

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Ovisnost ustaljenih stanja uzlaznog pretvarača 16V/0,16A o sklopnoj frekvenciji

Ovisnost ustaljenih stanja uzlaznog pretvarača 16V/0,16A o sklopnoj frekvenciji Ovisnost ustaljenih stanja uzlaznog pretvarača 16V/0,16A o sklopnoj frekvenciji Električna shema temeljnog spoja Električna shema fizički realiziranog uzlaznog pretvarača +E L E p V 2 P 2 3 4 6 2 1 1 10

Διαβάστε περισσότερα

Algoritmi zadaci za kontrolni

Algoritmi zadaci za kontrolni Algoritmi zadaci za kontrolni 1. Nacrtati algoritam za sabiranje ulaznih brojeva a i b Strana 1 . Nacrtati algoritam za izračunavanje sledeće funkcije: x y x 1 1 x x ako ako je : je : x x 1 x x 1 Strana

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

3. OSNOVNI POKAZATELJI TLA

3. OSNOVNI POKAZATELJI TLA MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Mehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora. Sadržaj predavanja: 1. Operacijsko pojačalo

Mehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora. Sadržaj predavanja: 1. Operacijsko pojačalo Mehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora Sadržaj predavanja: 1. Operacijsko pojačalo Operacijsko Pojačalo Kod operacijsko pojačala izlazni napon je proporcionalan diferencijalu

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Identitet filter banke i transformacije transformacije sa preklapanjem

Identitet filter banke i transformacije transformacije sa preklapanjem OASDSP: asoacije i ile bae asoacije disei sigala File bae Ideie ile bae i asoacije asoacije sa elaaje Uslov eee eosucije ovi Sad 6 saa OASDSP: asoacije i ile bae ovi Sad 6 saa DF: vadaa asoacija DF IF

Διαβάστε περισσότερα

L E M I L I C E LEMILICA WELLER WHS40. LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm Tip: LEMILICA WELLER. Tip: LEMILICA WELLER

L E M I L I C E LEMILICA WELLER WHS40. LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm Tip: LEMILICA WELLER. Tip: LEMILICA WELLER L E M I L I C E LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm LEMILICA WELLER SP40 220V 40W Karakteristike: 220V, 40W, VRH 6,3 mm LEMILICA WELLER SP80 220V 80W Karakteristike: 220V,

Διαβάστε περισσότερα

KUPA I ZARUBLJENA KUPA

KUPA I ZARUBLJENA KUPA KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p

Διαβάστε περισσότερα

Priveznice W re r R e o R p o e p S e l S ing n s

Priveznice W re r R e o R p o e p S e l S ing n s Priveznice Wire Rope Slings PRIVEZNICE OD ČEIČNO UŽEA (RAE) jenosruke SINE WIRE ROPE SINS Sanar EN P P P P P P P P P P P P ozvoljeno operećenje kg elemeni priveznice prekina jenokrako vešanje ) ouvaanje

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

1 B0 C00. nly Difo. r II. on III t o. ly II II. Di XR. Di un 5.8. Di Dinly. Di F/ / Dint. mou. on.3 3 D. 3.5 ird Thi. oun F/2. s m F/3 /3.

1 B0 C00. nly Difo. r II. on III t o. ly II II. Di XR. Di un 5.8. Di Dinly. Di F/ / Dint. mou. on.3 3 D. 3.5 ird Thi. oun F/2. s m F/3 /3. . F/ /3 3. I F/ 7 7 0 0 Mo ode del 0 00 0 00 A 6 A C00 00 0 S 0 C 0 008 06 007 07 09 A 0 00 0 00 0 009 09 A 7 I 7 7 0 0 F/.. 6 6 8 8 0 00 0 F/3 /3. fo I t o nt un D ou s ds 3. ird F/ /3 Thi ur T ou 0 Fo

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Problemas resueltos del teorema de Bolzano

Problemas resueltos del teorema de Bolzano Problemas resueltos del teorema de Bolzano 1 S e a la fun ción: S e puede af irm a r que f (x) está acotada en el interva lo [1, 4 ]? P or no se r c ont i nua f (x ) e n x = 1, la f unció n no e s c ont

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ 11 Μαρτίου 2004

ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ 11 Μαρτίου 2004 Επώνυµο Όνοµα Α.Μ Α ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Μαρτίου 004 Θέµατα βαθµολογικά ισοδύναµα ιάρκεια εξέτασης 0 Θέµα ο Α) Κρύσταλλος S περιέχει προσµίξεις δότη µε συγκέντρωση Ν D 0 5 cm - ενώ, στη θερµοκρασία δωµατίου

Διαβάστε περισσότερα

BIPOLARNI TRANZISTOR Auditorne vježbe

BIPOLARNI TRANZISTOR Auditorne vježbe BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

Ερωτήσεις στην ενότητα: Γενικά Ηλεκτρονικά

Ερωτήσεις στην ενότητα: Γενικά Ηλεκτρονικά Ερωτήσεις στην ενότητα: Γενικά Ηλεκτρονικά -1- Η τιμή της dc παραμέτρου β ενός npn transistor έχει τιμή ίση με 100. Το transistor λειτουργεί στην ενεργή περιοχή με ρεύμα συλλέκτη 1mA. Το ρεύμα βάσης έχει

Διαβάστε περισσότερα

Glava 3 INSTRUMENTACIONI POJAČAVAČI

Glava 3 INSTRUMENTACIONI POJAČAVAČI ioje Đurić - Osnoi analogne elektronike Glaa 3 NSTUMENTACON POJAČAVAČ ETF u eogru - Osek za elektroniku 3 nstrumentacioni pojačaači 33 X G Slika 3 A 3 Na ulaz instrumentacionog pojačaača sa slike 3 ooi

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

MAGNETNO SPREGNUTA KOLA

MAGNETNO SPREGNUTA KOLA MAGNETNO SPEGNTA KOA Zadatak broj. Parametri mreže predstavljene na slici su otpornost otpornika, induktivitet zavojnica, te koeficijent manetne spree zavojnica k. Ako je na krajeve mreže -' priključen

Διαβάστε περισσότερα

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ »»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()

Διαβάστε περισσότερα