OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić"

Transcript

1 OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić Termin za konsultacije: četvrtak u 12h, kabinet 102

2 Referentni smerovi i polariteti 1. Odrediti vrednosti napona V i struje I za element B tako da bude ekvivalentan elementu A (Slika 1.1.)

3 Slika 1.1.

4 2. Strujama i naponima sa slike 2.1. dodeliti smerove, odnosno polaritete tako da element A bude ekvivalentan elementu B. Slika 2.1.

5 Energija i snaga A + i(t) Kolo v(t) - B Konvencija za označavanje polariteta pri izračunavanju snage. Snaga se definiše kao brzina promene energije: dw dw dq p = = = dt dq dt vi

6 Promena energije od trenutka t 1 do trenutka t 2 w = t 2 p dt = t 1 t 2 t 1 vi dt Usklađeni smerovi za struju i napon kao na prethodnoj slici. p(t) > 0, kolo je aktivno (predaje energiju) p(t) < 0, kolo je pasivno (prima energiju).

7 3. Za svaki od elemenata sa slike 3.1. odrediti da li predaju ili primaju energiju, kao i snagu koja se predaje. Slika 3.1.

8 4. Za svaki element sa slike 4.1. odrediti da li predaje ili prima energiju. Ako se primljena energija oslobađa u vidu toplote, odrediti oslobođenu energiju (u J) u toku vremenskog perioda od jednog sata. Slika 4.1.

9 OMOV ZAKON, PRVI I DRUGI KIRHOFOV ZAKON Omov zakon Omov zakon: Napon na otporniku je direktno proporcionalan struji kroz otpornik. V = RI + I V R - Provodnost otpornika G. Jedinica za provodnost je Simens (S).

10 G = 1 R Snaga razvijena na otporniku je proizvod struje i napona: + I V R - P = VI P = RI 2 = V R 2 = GV 2 = 2 I G

11 5. Napisati naponsku jednačinu za kolo sa slike 5.1. Ukoliko su vrednosti napona V 1 = 9V i V 2 = 5V odrediti napone Vbe i Vdb. Slika 5.1.

12 6. Za kola sa slika 6.1. i 6.2. odrediti vrednosti prikazanih napona, ukoliko je poznato da je napon V 1 = 4V (slika 6.1.) Slika 6.1. Slika 6.2.

13 7. Naći parametre kola sa slike 7.2 tako da ono bude ekvivalentno kolu sa slike 7.1. Slika 7.1. Slika 7.2.

14 8. Za kolo sa slike 8.1. odrediti struju I i napone V BE i V FD, kao i snagu apsorbovanu od strane otpornika otpornosti 3Ω, a zatim ponoviti proračun ako je naponski izvor od 12V zamenjen sa izvorom od 72V. Slika 8.1.

15 9. Industrijsko postrojenje je napajano od strane generatora kao na slici 9.2. Linija za prenos dužine 100km poseduje linijsku otpornost 0.1Ω/km. Postrojenje prima snagu od 1.2MW. Odrediti snagu koja se predaje od strane generatora ako je napon V na ulazu u postrojenje a) 12kV, odnosno b) 120kV. Slika 9.1.

16 Razdelnici napona i struje 10. Primer kontrolnog kola za pojačavač kod radio ili TV prijemnika. Slika 10.1.

17 11. Odrediti I i V 0 za kolo sa slike 11.1, odnosno I, V AC, V CB, P 6Ω za kolo sa slike Slika A 4Ω B 2Ω DC 36V DC 72V C 6Ω Slika 11.2.

18 12. Naći parametre kola sa slike 12.2 tako da ono bude ekvivalentno kolu sa slike Slika i E (t) Rp = 1/Gp Vout Slika 12.2.

19 13. Za kolo sa slike odrediti V, I 1, I 2, I 3, P 4Ω, a zatim sve ponoviti za slučaj da je strujni izvor od 2A zamenjen strujnim izvorom struje 20A. Slika 13.1.

20 14. Odrediti V, I 1, I 2 i P 6Ω za kolo sa slike Slika 14.1.

21 Redna (serijska) veza otpornika R = R + R + R EKV R N Paralelna veza otpornika 1 R 1 1 = + R R 1 + R EKV R N 1 Transformacija zvezda-trougao

22 15. Odrediti ekvivalentne ulazne otpornosti za kola sa slika Slika Slika Slika 15.3.

23 Rešenje: Slika 15.4.

24 Za slučaj pod 3) transformacijom trougla u zvezdu dobija se Slika 15.5.

25 Rešavanje kola metodom potencijala čvorova Primer kola sa n = 4čvora C Jedan čvor se izabere kao referentni (ima nulti potencijal), a ostalim čvorovima se pridruže potencijali V 1, V 2 i V 3 Napiše se sistem od n 1 = 3 jednačine, sa 3 nepoznate: pri čemu su: G V + G V G V + G V 2 G V + G V 2 C + G 13 + G + G V 3 V V 3 3 = I = I = I ( 1) ( 2) V 1, V 2 i V 3 - potencijali čvorova u kolu; ( 3) G ii (i=1,2,3) zbir provodnosti grana koje se stiču u čvoru i; uvek ima pozitivan predznak; ij ) (i,j=1,2,3) zbir provodnosti grana koje direktno povezuju čvorove i, j; uvek ima negativan predznak; G ( i j ( ) i I - suma struja strujnih generatora koji se stiču u čvoru i (sa pozitivnim predznakom ako je referentni smer struje usmeren ka čvoru, a u suprotnom sa negativnim predznakom), plus suma napona naponskih generatora (čije se grane stiču u čvoru i) podeljenih sa otpornošću redno vezanom za te generatore (sa pozitivnim predznakom ako je + u referentnom smeru naponskog generatora usmeren ka čvoru, a u suprotnom sa negativnim predznakom);

26 16. Za kolo sa slike 16. odrediti napone U 1 i U 2, primenom metode potencijala čvorova. Slika 16.

27 17. Metodom potencijala čvorova odrediti struje u granama u kolu sa slike 17. 1Ω 4A 10A 2Ω 2Ω 2Ω Rešenje: Slika 17. Slika 17.b) 18. Primenom metode potencijala čvorova odrediti sve struje u kolu sa slike 18.

28 Slika 18.

29 19. (Zadatak za vežbu) Primenom metode potencijala čvorova odrediti sve struje u kolu sa slike 19.a), odnosno 19.b) 1Ω 1 2 I1 Ω I3 1Ω I2 1 2 I4 Ω 11A Slika 19.a) Slika 19.b) Rešenje: a) I 1 = 2A, I 2 = 1A, I 3 = 3A, I 4 = 8A b) I 1 = 16A, I 2 = -4A, I 3 = 10A

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

NAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ)

NAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ) NAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ) Trenutna vrednost naizmeničnog napona: u(t) = U max sin(ωt + θ) Trenutna vrednost naizmenične struje:

Διαβάστε περισσότερα

Dr Miodrag Popović. Osnovi elektronike. za studente Odseka za softversko inženjerstvo. Elektrotehnički fakultet Beograd, 2006.

Dr Miodrag Popović. Osnovi elektronike. za studente Odseka za softversko inženjerstvo. Elektrotehnički fakultet Beograd, 2006. Dr Miodrag Popović Osnovi elektronike za studente Odseka za softversko inženjerstvo Elektrotehnički fakultet Beograd, 2006. Sadržaj 1. UOD... 1 1.1 Šta je to elektrotehnika?... 1 1.2 Oblasti elektrotehnike:...

Διαβάστε περισσότερα

OSNOVE ELEKTROTEHNIKE II Vježba 11.

OSNOVE ELEKTROTEHNIKE II Vježba 11. OSNOVE EEKTOTEHNKE Vježba... Za redno rezonantno kolo, prikazano na slici. je poznato E V, =Ω, =Ω, =Ω kao i rezonantna učestanost f =5kHz. zračunati: a) kompleksnu struju u kolu kao i kompleksne napone

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

2. METODE RJEŠAVANJA STRUJNIH KRUGOVA ISTOSMJERNE STRUJE

2. METODE RJEŠAVANJA STRUJNIH KRUGOVA ISTOSMJERNE STRUJE 2. METOE RJEŠVNJ STRUJNH KRUGOV STOSMJERNE STRUJE U svrhu lakšeg snalaženja u analizi složenih strujnih krugova i električnih mreža uvode se nazivi za pojedine dijelove mreže. Onaj dio električne mreže

Διαβάστε περισσότερα

Zadatak 1. U temenima kvadrata stranice a (Sl.1) nalaze se mala tela istoimene količine 11. naelektrisanja Q 4 10

Zadatak 1. U temenima kvadrata stranice a (Sl.1) nalaze se mala tela istoimene količine 11. naelektrisanja Q 4 10 adatak temenima kvadrata stranice a (Sl) nalaze se mala tela istoimene količine naelektrisanja Q 0 C u vakumu Koliku količinu elektriciteta negativnog znaka treba postaviti u tačku preseka dijagonala da

Διαβάστε περισσότερα

Stalne jednosmerne struje

Stalne jednosmerne struje Stalne jednosmerne struje Električna struja Električnom strujom se može nazvati svako ureñeno kretanje električnih naelektrisanja, bez obzira na uzroke ovog kretanja i na vrstu električnih naelektrisanja

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Topologija električnih mreža

Topologija električnih mreža Topologija električnih mreža 16. decembar 215 Već je pomenuto da se električna mreža može matematički opisati korištenjem modela (karakteristika) elemenata i modela njihovih veza. Modeli elemenata i načina

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Snaga naizmenicne i struje

Snaga naizmenicne i struje Snaga naizmenicne i struje Zadatak električne mreže u okviru elektroenergetskog sistema (EES) je prenos i distribucija električne energije od izvora do potrošača, uz zadovoljenje kriterijuma koji se tiču

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

2. Data je žičana otpornička mreža na slici. Odrediti ekvivalentnu otpornost između krajeva

2. Data je žičana otpornička mreža na slici. Odrediti ekvivalentnu otpornost između krajeva 1. U kolu stalne struje sa slike 1 poznato je R1 = 2R = 200 Ω, Rp> R1, E1 =-E2 = 10 V i E3 = E4 = 10 V. izračunati Ig (Ig 0) tako da snage koje razvijaju idealni naponski generator E3 i idealni strujni

Διαβάστε περισσότερα

LINEARNA ELEKTRONIKA VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM

LINEARNA ELEKTRONIKA VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU LINEARNA ELEKTRONIKA LABORATORIJSKE VEŽBE VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM.. IME I PREZIME BR. INDEKSA

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

5. Predavanje. October 25, 2016

5. Predavanje. October 25, 2016 5. Predavanje October 25, 2016 1 Električne struje Za razliku od struja koje su vidljive: morske struje, rečne struje, strujanje vazduha itd., električne struje nisu direktno vidljive, već se celokupno

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

INTEGRISANA KOLA OPERACIONIH POJAČAVAČA

INTEGRISANA KOLA OPERACIONIH POJAČAVAČA NTEGRSN KOL OPERONH POJČVČ 1 UVOD U interisanim kolima ne realizuju se induktivnosti zbo toa što je za to potrebna velika površina čipa. Ukoliko su neophodne u kolu one mou biti vezane na spoljašne priključke

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

='5$9.2 STRUJNI IZVOR

='5$9.2 STRUJNI IZVOR . STJN KGOV MŽ.. Strujni krug... zvori Skup elektrotehničkih elemenata koji su preko električnih vodiča međusobno spojeni naziva se električna mreža ili elektrotehnički sklop. električnoj mreži, kada su

Διαβάστε περισσότερα

POJAČAVAČI VELIKIH SIGNALA (drugi deo)

POJAČAVAČI VELIKIH SIGNALA (drugi deo) OJAČAAČI ELIKIH SIGNALA (drugi deo) Obrtači faze 0. decembar 0. ojačavači velikih signala 0. decembar 0. ojačavači velikih signala Obrtači faze Diferencijalni pojačavač sa nesimetričnim ulazom. Rc Rb Rb

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

Elektronske komponente

Elektronske komponente Elektronske komponente Z. Prijić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2014. Sadržaj 1 Kalem Sadržaj Kalem 1 Kalem - definicije Kalem Kalem je pasivna elektronska komponenta koja

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Električna struja Generatori električne struje elektrohemijske akumulatori galvanski elementi dinamomašine termoelemente fotoelemente

Električna struja Generatori električne struje elektrohemijske akumulatori galvanski elementi dinamomašine termoelemente fotoelemente ELEKTRIČNE STRUJE ELEKTRIČNE STRUJE Električna struja predstavlja usmereno kretanje elektrona ili jona u provodniku, koji može biti metal (legura), elektrolit ili jonizovan gas. Takvo usmereno kretanje

Διαβάστε περισσότερα

Osnove mikroelektronike

Osnove mikroelektronike Osnove mikroelektronike Z. Prijić T. Pešić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2006. Sadržaj Bipolarni tranzistor 1 Bipolarni tranzistor 2 Ebers-Molov model Strujno-naponske

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I . Otnik tnsti = 00, kalem induktivnsti = mh i kndenzat kaacitivnsti = 00 nf vezani su aaleln, a između njihvih kajeva je usstavljen steidični nan efektivne vednsti = 8 V, kužne učestansti = 0 5 s i četne

Διαβάστε περισσότερα

PRAKTIKUM ZA LABORATORIJSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) Aneta Prijić Miloš Marjanović

PRAKTIKUM ZA LABORATORIJSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) Aneta Prijić Miloš Marjanović Univerzitet u Nišu Elektronski fakultet PRAKTIKUM ZA LABORATORIJSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) Aneta Prijić Miloš Marjanović SPISAK VEŽBI 1. Ispravljačka diodna

Διαβάστε περισσότερα

ELEK 3. ISTOSMJERNA ELEKTRIČNA STRUJA I STRUJNI KRUGOVI ELEKTROTEHNIKA. Doc. dr. sc. Vitomir Komen, dipl. ing. el. 1/77. Komen

ELEK 3. ISTOSMJERNA ELEKTRIČNA STRUJA I STRUJNI KRUGOVI ELEKTROTEHNIKA. Doc. dr. sc. Vitomir Komen, dipl. ing. el. 1/77. Komen ELEKTOTEHNIKA 3. ISTOSMJENA ELEKTIČNA STUJA I STUJNI KUGOVI Doc. dr. sc. Vitomir Komen, dipl. ing. el. /77 SADŽAJ: 3. Nastajanje električne struje 3. Električni strujni krug istosmjerne struje 3.3 Električni

Διαβάστε περισσότερα

Zadatke trebate rjesiti potpuno samostalno. Tek ako nesto "zapne" odnosno za kontrolu rezultata koristite ove upute.

Zadatke trebate rjesiti potpuno samostalno. Tek ako nesto zapne odnosno za kontrolu rezultata koristite ove upute. 1 OE 11/12 Zadaci za pripremu III. ciklusa laboratorijskih vjezbi PTA ZA RJESAVANJE Zadatke trebate rjesiti potpuno samostalno. Tek ako nesto "zapne" odnosno za kontrolu rezultata koristite ove upute.

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

Sistemi linearnih jednačina

Sistemi linearnih jednačina Sistemi linearnih jednačina Sistem od n linearnih jednačina sa n nepoznatih (x 1, x 2,..., x n ) je a 11 x 1 + a 12 x 2 + + a 1n x n = b 1, a 21 x 1 + a 22 x 2 + + a 2n x n = b 2, a n1 x 1 + a n2 x 2 +

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi

Elektronički Elementi i Sklopovi Sadržaj predavanja: 1. Strujna zrcala pomoću BJT tranzistora 2. Strujni izvori sa BJT tranzistorima 3. Tranzistor kao sklopka 4. Stabilizacija radne točke 5. Praktični sklopovi s tranzistorima Strujno

Διαβάστε περισσότερα

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a

Διαβάστε περισσότερα

Lijeva strana prethodnog izraza predstavlja diferencijalnu formu rada rezultantne sile

Lijeva strana prethodnog izraza predstavlja diferencijalnu formu rada rezultantne sile RAD SILE Sila se može tokom kretanja opisati kao zavisnost od vremena t ili od trenutnog vektora položaja r. U poglavlju o impulsu sile i količini kretanja je pokazano na koji način se može povezati kretanje

Διαβάστε περισσότερα

POJAM TROFAZNIH SISTEMA

POJAM TROFAZNIH SISTEMA OJAM OFANH EMA Naizmenična struja dobija se obrtanjem jednog pravougaonog namotaja u magnetnom poju. Neka se stranom u magnetnom poju naaze dva pravougaona namotaja na jednoj osi, tako da međusobno zakapaju

Διαβάστε περισσότερα

Snimanje karakteristika dioda

Snimanje karakteristika dioda FIZIČKA ELEKTRONIKA Laboratorijske vežbe Snimanje karakteristika dioda VAŽNA NAPOMENA: ZA VREME POSTAVLJANJA VEŽBE (SASTAVLJANJA ELEKTRIČNE ŠEME) I PRIKLJUČIVANJA MERNIH INSTRUMENATA MAKETA MORA BITI ODVOJENA

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

1 RАVANSKE REŠETKE (1.2)

1 RАVANSKE REŠETKE (1.2) 1 RАVNSKE REŠETKE Rešetkasti nosači predstavljaju sistem sačinjen od lakih krutih štapova međusobno zglobno vezanih svojim krajevima. Zglobne veze krajeva štapova se nazivaju čvorovi. Rešetke su opterećene

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika

NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika 1 Da bude jasno na samom početku : Tesla nije izmislio struju jer je ona bila poznata ljudima pre nogo što je Tesla ušao u svet nauke. Njegov doprinos

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

Otvorene mreže. Zadatak 1

Otvorene mreže. Zadatak 1 Otvorene mreže Zadatak Na slici je data otvorena mreža u kojoj je rocesor centralni server. Prosečan intenzitet ulaznog toka rocesa u sistem iznosi X rocesa/sec. Posle rocesorske obrade, roces u % slučajeva

Διαβάστε περισσότερα

Proračun štapova na zatezanje i pritisak. Osnova za proračun je zadovoljenje nejednačine σ σ, σ d

Proračun štapova na zatezanje i pritisak. Osnova za proračun je zadovoljenje nejednačine σ σ, σ d Proračun štapova na zatezanje i pritisak Osnova za proračun je zadovojenje nejednačine, max d gde je max maksimum apsoutne vrednosti normanog napona štapa a d je dozvojeni normani napon Ovakva nejednakost

Διαβάστε περισσότερα

Matematički modeli sistema

Matematički modeli sistema Matematički modeli sistema U analizi i sintezi SAU se koriste kvantitativni matematički modeli koji opisuju fiziku sistema. Generalno, dinamika sistema je opisana običnim diferencijalnim jednačinama. lasa

Διαβάστε περισσότερα

GRAFOVI. Ljubo Nedović. 21. februar Osnovni pojmovi 2. 2 Bipartitni grafovi 8. 3 Stabla 9. 4 Binarna stabla Planarni grafovi 12

GRAFOVI. Ljubo Nedović. 21. februar Osnovni pojmovi 2. 2 Bipartitni grafovi 8. 3 Stabla 9. 4 Binarna stabla Planarni grafovi 12 GRAFOVI Ljubo Nedović 21. februar 2013 Sadržaj 1 Osnovni pojmovi 2 2 Bipartitni grafovi 8 3 Stabla 9 4 Binarna stabla 11 5 Planarni grafovi 12 6 Zadaci 13 1 2 1 Osnovni pojmovi Iz Vikipedije, slobodne

Διαβάστε περισσότερα

PRAKTIKUM ZA LABORATORIJSKE VJEŽBE IZ ELEKTRONIKE

PRAKTIKUM ZA LABORATORIJSKE VJEŽBE IZ ELEKTRONIKE TEHNIČKI ŠKOLSKI CENTAR ZVORNIK PRAKTIKUM ZA LABORATORIJSKE VJEŽBE IZ ELEKTRONIKE II RAZRED Zanimanje: Tehničar računarstva MODUL 3 (1 čas nedeljno, 36 sedmica) PREDMETNI PROFESOR: Biljana Vidaković 0

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

POJAČAVAČI. Sadržaj. Sadržaj. Uvod. 13. decembar Pojačavači velikih signala decembar decembar Pojačavači velikih signala

POJAČAVAČI. Sadržaj. Sadržaj. Uvod. 13. decembar Pojačavači velikih signala decembar decembar Pojačavači velikih signala POJAČAVAČ VELKH SGNALA 3. decembar 0. Pojačavači velikih signala. Uvod Namena Sadržaj Oblast sigurnog rada tranzistora Bila ilans snage (t (stepen ik iskorišćenja) išć Klir faktor Klasifikacija ij pojačavača

Διαβάστε περισσότερα

Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V?

Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V? Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V? a) b) c) d) e) Odgovor: a), c), d) Objašnjenje: [1] Ohmov zakon: U R =I R; ako je U R 0 (za neki realni, ne ekstremno

Διαβάστε περισσότερα

Zadatak Vul[V] Vul[V]

Zadatak Vul[V] Vul[V] Zadatak 11.1. a) Projektovati kolo A/D konvertora sa paralelnim komparatorima koji ulazni napon u opsegu 0 8V kovertuje u 3 bitni binarni broj prema karakteristici sa Slike 11.1.1. a). U slučaju kada je

Διαβάστε περισσότερα

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu:

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu: Refleksija S φ u odnosu na pravu kroz koordinatni početak Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu: ( ) ( ) ( ) x cos 2φ

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

ENERGETSKA ELEKTRONIKA TROFAZNI ISPRAVLJAČ

ENERGETSKA ELEKTRONIKA TROFAZNI ISPRAVLJAČ ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU ENERGETSKA ELEKTRONIKA LABORATORIJSKE VEŽBE VEŽBA BROJ 6: TROFAZNI ISPRAVLJAČ Autori: Predrag Pejović i Vladan Božović A. OPIS VEŽBE Vežba obuhvata

Διαβάστε περισσότερα

PROSTA GREDA (PROSTO OSLONJENA GREDA)

PROSTA GREDA (PROSTO OSLONJENA GREDA) ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje

Διαβάστε περισσότερα

Rjesenja dodatnog popravnog ispitnog roka iz EK1 odrzanog god. VarijantaA Zadatak broj 2

Rjesenja dodatnog popravnog ispitnog roka iz EK1 odrzanog god. VarijantaA Zadatak broj 2 jesenja dodatnog popravnog ispitnog roka iz EK odrzanog 009008god VarijantaA Zadatak broj električnom krugu prikazanom na slici postignuta je strujna rezonancija Poznati su slijedeći podaci: (A), (A),

Διαβάστε περισσότερα

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A Psmen spt z OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga ABC se oslanja pomoću dvje špke BD CE kao na slc desno. Špka BD, dužne 0.5 m, zrađena je od čelka (E AB 10 GPa) ma poprečn presjek od 500 mm.

Διαβάστε περισσότερα

ENERGETSKA POSTROJENJA

ENERGETSKA POSTROJENJA (Parne turbine) List: 1 PARNE TURBINE Parne turbine su toplinski strojevi u kojima se toplinska energija, sadržana u pari, pretvara najprije u kinetičku energiju, a nakon toga u mehanički rad. Podjela

Διαβάστε περισσότερα

SLUČAJ GDE NE VAŽI NJUTNOV ZAKON AKCIJE I REAKCIJE U MAGNETNOM POLJU I MOGUĆNOST DOBIJANJA VIŠKA ENERGIJE U ELEKTRO GENERATORU

SLUČAJ GDE NE VAŽI NJUTNOV ZAKON AKCIJE I REAKCIJE U MAGNETNOM POLJU I MOGUĆNOST DOBIJANJA VIŠKA ENERGIJE U ELEKTRO GENERATORU SLUČAJ GDE NE VAŽI NJUTNOV ZAKON AKCIJE I REAKCIJE U MAGNETNOM POLJU I MOGUĆNOST DOBIJANJA VIŠKA ENERGIJE U ELEKTRO GENERATORU Jovan Marjanović, dipl. inženjer elektrotehnike e-mail: jmarjanovic@hotmail.com

Διαβάστε περισσότερα

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije:

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: min f(x) (1.1) pri čemu nema dodatnih ograničenja na X = (x 1,..., x n ) R n. Probleme bezuslovne optimizacije

Διαβάστε περισσότερα

Glava 1. Vektori. Definicija 1.1. Dva vektora su jednaka ako su im jednaki pravac, smer i intenzitet.

Glava 1. Vektori. Definicija 1.1. Dva vektora su jednaka ako su im jednaki pravac, smer i intenzitet. Glava 1 Vektori U mnogim naukama proučavaju se vektorske i skalarne veličine. Skalarna veličina je odred ena svojom brojnom vrednošću u izabranom sistemu jedinica. Takve veličine su temperatura, težina

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I

4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I 4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I Čisto pravo savijanje Pod čistim savijanjem grede podrazumeva se naprezanje pri kome su sve komponente unutrašnjih sila jednake nuli, osim momenta

Διαβάστε περισσότερα

JEDNOSMJERNI IZVORI NAPONA

JEDNOSMJERNI IZVORI NAPONA JEDNOSMJERNI IZVORI NAPONA Jednosmjerni izvori koji se napajaju iz gradske mreze naizmjenicnog napona sastoje se iz transformatora,usmjerackih diode I mreznog filtra. Transformator, osim sto sluzi za podesavanje

Διαβάστε περισσότερα

Sveučilište u Zagrebu. Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave. Elektronika 1R

Sveučilište u Zagrebu. Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave. Elektronika 1R Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave Elektronika 1R Ž. Butković, J. Divković Pukšec, A. Barić 5. Unipolarni

Διαβάστε περισσότερα

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj Matrična analiza linijskih

Διαβάστε περισσότερα

Vežba 8 Osciloskop 2. Uvod

Vežba 8 Osciloskop 2. Uvod Vežba 8 Osciloskop Uvod U prvom delu vežbe ispituju se karakteristike realnih pasivnih i aktivnih filtara. U drugom delu vežbe demonstrira se mogućnost osciloskopa da radi kao jednostavan akvizicioni sistem.

Διαβάστε περισσότερα

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova. Pojam skupa U matematici se pojam skup ne definiše eksplicitno. On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

Διαβάστε περισσότερα

Osnovne veličine, jedinice i izračunavanja u hemiji

Osnovne veličine, jedinice i izračunavanja u hemiji Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice

Διαβάστε περισσότερα

OPERACIONI POJAČAVAČI. Doc. dr. Neđeljko Lekić

OPERACIONI POJAČAVAČI. Doc. dr. Neđeljko Lekić OPERACIONI POJAČAVAČI Doc. dr. Neđeljko Lekić ŠTO JE OPERACIONI POJAČAVAČ? Pojačavač visokog pojačanja Ima diferencijalne ulaze Obično ima jedan izlaz Visoka ulazna i mala izlazna otpornost Negativnom

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE

AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE MJEŠOVITA SREDNJA TEHNIČKA ŠKOLA TRAVNIK AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE Električna kola Profesor: mr. Selmir Gajip, dipl. ing. el. Travnik, februar 2014. Osnovni pojmovi- naizmjenična

Διαβάστε περισσότερα

Rad, snaga i energija. Dinamika. 12. dio

Rad, snaga i energija. Dinamika. 12. dio Rad, snaga i energija Dinaika 1. dio Veliine u ehanici 1. Skalari. Vektori 3. Tenzori II. reda 4. Tenzori IV. reda 1. Skalari: 3 0 1 podatak + jerna jedinica (tenzori nultog reda). Vektori: 3 1 3 podatka

Διαβάστε περισσότερα

MERENJE VREMENA REAKCIJE NA VIZUELNU POBUDU

MERENJE VREMENA REAKCIJE NA VIZUELNU POBUDU EŽBA BOJ 7 Uputstvo za laboratorijske vežbe iz Električnih merenja MEENJE EMENA EAKCIJE NA IZUELNU POBUDU ZADATAK: Odrediti vreme reakcije na vizuelnu pobudu. Izvršiti elementarnu statističku obradu dobijenih

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

Fazne i linijske veličine Trokut i zvijezda spoj Snaga trofaznog sustava

Fazne i linijske veličine Trokut i zvijezda spoj Snaga trofaznog sustava 7 TROFAZNI SUSTA Fazne i linijske veličine Trokut i zvijezda soj Snaga troaznog sustava Fourierova analiza 7.1. Troazni sustav Elektrorivredne tvrtke koriste troazne krugove za generiranje, rijenos i razdiobu

Διαβάστε περισσότερα

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija 18.1200 Prvi razred A kategorija Neka je K sredixte teжixne duжi CC 1 trougla ABC ineka je AK BC = {M}. Na i odnos CM : MB. Na i sve proste brojeve p, q i r, kao i sve prirodne brojeve n, takve da vaжi

Διαβάστε περισσότερα

Tehnologija bušenja II

Tehnologija bušenja II INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 1. Vežba V - 1 Tehnologija bušenja II Slide 1 of 44 Algebra i trigonometrija V - 1 Tehnologija bušenja II Slide 2 of 44 Jednačine Pitanje: Ako je a = 3b

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE UVODNA LABORATORIJSKA VEŽBA

OSNOVI ELEKTRONIKE UVODNA LABORATORIJSKA VEŽBA ELEKTROTEHNIČKI FAKULTET U BEOGRADU ODSEK ZA ELEKTRONIKU OSNOVI ELEKTRONIKE LABORATORIJSKE VEŽBE UVODNA LABORATORIJSKA VEŽBA Autori: Radivoje Đurić i Milan Ponjavić 1. 2. IME I PREZIME BR. INDEKSA GRUPA

Διαβάστε περισσότερα

OTPORNICI. Tanak sloj grafita ili metala nanešen na izolatorsko telo. Smeša grafita i izolatorskog praha

OTPORNICI. Tanak sloj grafita ili metala nanešen na izolatorsko telo. Smeša grafita i izolatorskog praha OTPORNICI Osobinu materijala da se suprotstavljaju proticanju električne struje nazivamo električni otpor. Eksperimentima je utvrđeno da otpor zavisi od dužine žice, njenog poprečnog preseka i vrste materijala.

Διαβάστε περισσότερα

1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26

Διαβάστε περισσότερα

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30

Διαβάστε περισσότερα