MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15"

Transcript

1 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

2 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15

3 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda m n je izraz koji ima m vrsta i n kolona: a 11 a a 1n a 21 a a 2n a m1 a m2... a mn ili kraće [a ij ] m n, i = 1, 2,..., m, j = 1, 2,..., n.

4 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda m n je izraz koji ima m vrsta i n kolona: a 11 a a 1n a 21 a a 2n a m1 a m2... a mn ili kraće [a ij ] m n, i = 1, 2,..., m, j = 1, 2,..., n. Kvadratna matrica je matrica koja ima isti broj vrsta i kolona: m = n.

5 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda m n je izraz koji ima m vrsta i n kolona: a 11 a a 1n a 21 a a 2n a m1 a m2... a mn ili kraće [a ij ] m n, i = 1, 2,..., m, j = 1, 2,..., n. Kvadratna matrica je matrica koja ima isti broj vrsta i kolona: m = n. Nula matrica je matrica čiji su svi elementi 0.

6 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda m n je izraz koji ima m vrsta i n kolona: a 11 a a 1n a 21 a a 2n a m1 a m2... a mn ili kraće [a ij ] m n, i = 1, 2,..., m, j = 1, 2,..., n. Kvadratna matrica je matrica koja ima isti broj vrsta i kolona: m = n. Nula matrica je matrica čiji su svi elementi 0. Jedinična matrica je kvadratna matrica čiji su elementi na glavnoj dijagonali 1, a svi ostali elementi su 0. Označava se sa I.

7 Operacije sa matricama (Matrice i determinante) 3 / 15

8 (Matrice i determinante) 3 / 15 Operacije sa matricama [a ij ] m n ± [b ij ] m n = [a ij ± b ij ] m n

9 (Matrice i determinante) 3 / 15 Operacije sa matricama [a ij ] m n ± [b ij ] m n = [a ij ± b ij ] m n α [a ij ] m n = [α a ij ] m n

10 (Matrice i determinante) 3 / 15 Operacije sa matricama [a ij ] m n ± [b ij ] m n = [a ij ± b ij ] m n α [a ij ] m n = [α a ij ] m n [a ij ] m n [b ij ] n p = [c ij ] m p, gde je c ij = n k=1 a ikb kj = a i1 b 1j + a i2 b 2j a in b nj

11 (Matrice i determinante) 3 / 15 Operacije sa matricama [a ij ] m n ± [b ij ] m n = [a ij ± b ij ] m n α [a ij ] m n = [α a ij ] m n [a ij ] m n [b ij ] n p = [c ij ] m p, gde je c ij = n k=1 a ikb kj = a i1 b 1j + a i2 b 2j a in b nj Transponovana matrica matrice A = [a ij ] m n je matrica A t = [a ji ] n m (tj. dobija se od matrice A zamenom mesta vrsta i kolona).

12 Zadaci (1) (Matrice i determinante) 4 / 15

13 (Matrice i determinante) 4 / 15 Zadaci (1) Zadatak 14. Izračunati (2a 12 a 43 ) a 31 + a 41 a 22 a 34, ako je matrica A =

14 (Matrice i determinante) 4 / 15 Zadaci (1) Zadatak 14. Izračunati (2a 12 a 43 ) a 31 + a 41 a 22 a 34, ako je matrica A = Zadatak 15. Izračunati C = 2A 2 3A t + 4I ako je A =

15 Zadaci (2) (Matrice i determinante) 5 / 15

16 Zadaci (2) Zadatak 17. Pomnožiti date matrice redosledom koji je moguć: [ ] A =, B = , C = (Matrice i determinante) 5 / 15

17 (Matrice i determinante) 5 / 15 Zadaci (2) Zadatak 17. Pomnožiti date matrice redosledom koji je moguć: [ ] A =, B = , C = Zadatak 21. Date su matrice A = 1 3 1, P = [ ], Q = Izračunati PAQ i A 3PAQ + 2A I.

18 Determinante (Matrice i determinante) 6 / 15

19 (Matrice i determinante) 6 / 15 Determinante Za kvadratnu matricu A = [a ij ] n n definišemo determinantu A (ili det A).

20 (Matrice i determinante) 6 / 15 Determinante Za kvadratnu matricu A = [a ij ] n n definišemo determinantu A (ili det A). Red determinante A jednak je redu matrice A (odnosno broju vrsta (kolona) matrice A).

21 (Matrice i determinante) 6 / 15 Determinante Za kvadratnu matricu A = [a ij ] n n definišemo determinantu A (ili det A). Red determinante A jednak je redu matrice A (odnosno broju vrsta (kolona) matrice A). Determinanta je broj i izračunava se na sledeći način:

22 (Matrice i determinante) 6 / 15 Determinante Za kvadratnu matricu A = [a ij ] n n definišemo determinantu A (ili det A). Red determinante A jednak je redu matrice A (odnosno broju vrsta (kolona) matrice A). Determinanta je broj i izračunava se na sledeći način: reda 2: a b c d = ad bc

23 (Matrice i determinante) 6 / 15 Determinante Za kvadratnu matricu A = [a ij ] n n definišemo determinantu A (ili det A). Red determinante A jednak je redu matrice A (odnosno broju vrsta (kolona) matrice A). Determinanta je broj i izračunava se na sledeći način: reda 2: a b c d = ad bc reda 3 (Sarusovo pravilo): a b c a b d e f d e = aei + bfg + cdh (gec + hfa + idb) g h i g h

24 (Matrice i determinante) 7 / 15 reda n (razvijanje determinante po i-toj vrsti ili j-toj koloni): a 11 a a 1n a 21 a a 2n..... = a. i1 A i1 + a i2 A i a in A in a n1 a n2... a nn ili a 11 a a 1n a 21 a a 2n a n1 a n2... a nn = a 1j A 1j + a 2j A 2j a nj A nj

25 (Matrice i determinante) 7 / 15 reda n (razvijanje determinante po i-toj vrsti ili j-toj koloni): a 11 a a 1n a 21 a a 2n..... = a. i1 A i1 + a i2 A i a in A in a n1 a n2... a nn ili a 11 a a 1n a 21 a a 2n a n1 a n2... a nn Osobine determinanti: = a 1j A 1j + a 2j A 2j a nj A nj αa = α n A AB = A B A t = A

26 Zadaci (3) (Matrice i determinante) 8 / 15

27 (Matrice i determinante) 8 / 15 Zadaci (3) Zadatak. Izračunati

28 (Matrice i determinante) 8 / 15 Zadaci (3) Zadatak. Izračunati Zadatak. Izračunati

29 (Matrice i determinante) 8 / 15 Zadaci (3) Zadatak. Izračunati Zadatak. Izračunati Zadatak 10. Izračunati

30 Inverzna matrica (Matrice i determinante) 9 / 15

31 (Matrice i determinante) 9 / 15 Inverzna matrica Za kvadratnu matricu A = [a ij ] n n dalje definišemo

32 (Matrice i determinante) 9 / 15 Inverzna matrica Za kvadratnu matricu A = [a ij ] n n dalje definišemo glavni minor M ij (determinanta podmatrice matrice A koja se dobija izbacivanjem i-te vrste i j-te kolone iz A)

33 (Matrice i determinante) 9 / 15 Inverzna matrica Za kvadratnu matricu A = [a ij ] n n dalje definišemo glavni minor M ij (determinanta podmatrice matrice A koja se dobija izbacivanjem i-te vrste i j-te kolone iz A) kofaktor A ij elementa a ij matrice A A ij = ( 1) i+j M ij

34 (Matrice i determinante) 9 / 15 Inverzna matrica Za kvadratnu matricu A = [a ij ] n n dalje definišemo glavni minor M ij (determinanta podmatrice matrice A koja se dobija izbacivanjem i-te vrste i j-te kolone iz A) kofaktor A ij elementa a ij matrice A adjungovanu matricu A = [A ij ] t A ij = ( 1) i+j M ij

35 (Matrice i determinante) 9 / 15 Inverzna matrica Za kvadratnu matricu A = [a ij ] n n dalje definišemo glavni minor M ij (determinanta podmatrice matrice A koja se dobija izbacivanjem i-te vrste i j-te kolone iz A) kofaktor A ij elementa a ij matrice A adjungovanu matricu A = [A ij ] t A ij = ( 1) i+j M ij Inverzna matrica kvadratne matrice A je matrica A 1 za koju važi: A A 1 = A 1 A = I

36 (Matrice i determinante) 9 / 15 Inverzna matrica Za kvadratnu matricu A = [a ij ] n n dalje definišemo glavni minor M ij (determinanta podmatrice matrice A koja se dobija izbacivanjem i-te vrste i j-te kolone iz A) kofaktor A ij elementa a ij matrice A adjungovanu matricu A = [A ij ] t A ij = ( 1) i+j M ij Inverzna matrica kvadratne matrice A je matrica A 1 za koju važi: A A 1 = A 1 A = I Potreban i dovoljan uslov za postojanje inverzne matrice je A 0 (u tom slučaju matricu A nazivamo regularnom).

37 (Matrice i determinante) 9 / 15 Inverzna matrica Za kvadratnu matricu A = [a ij ] n n dalje definišemo glavni minor M ij (determinanta podmatrice matrice A koja se dobija izbacivanjem i-te vrste i j-te kolone iz A) kofaktor A ij elementa a ij matrice A adjungovanu matricu A = [A ij ] t A ij = ( 1) i+j M ij Inverzna matrica kvadratne matrice A je matrica A 1 za koju važi: A A 1 = A 1 A = I Potreban i dovoljan uslov za postojanje inverzne matrice je A 0 (u tom slučaju matricu A nazivamo regularnom). Važi: A 1 = 1 A A

38 Zadaci (4) (Matrice i determinante) 10 / 15

39 (Matrice i determinante) 10 / 15 Zadaci (4) Zadatak 23. Izračunati determinantu i inverznu matricu matrice A =

40 (Matrice i determinante) 10 / 15 Zadaci (4) Zadatak 23. Izračunati determinantu i inverznu matricu matrice A = Zadatak 27 (i). Za matricu A 3 3 = naći inverznu matricu A 1 = [a ij ] i,j=1,2,3 i upisati tražene članove. a 12 = a 21 = a 23 = a 32 =

41 Matrične jednačine (Matrice i determinante) 11 / 15

42 (Matrice i determinante) 11 / 15 Matrične jednačine I slučaj A X = B

43 (Matrice i determinante) 11 / 15 Matrične jednačine I slučaj A X = B A 1 / A X = B

44 (Matrice i determinante) 11 / 15 Matrične jednačine I slučaj A X = B A 1 / A X = B X = A 1 B

45 (Matrice i determinante) 11 / 15 Matrične jednačine I slučaj A X = B A 1 / A X = B X = A 1 B II slučaj X A = B

46 (Matrice i determinante) 11 / 15 Matrične jednačine I slučaj A X = B A 1 / A X = B X = A 1 B II slučaj X A = B X A = B / A 1

47 (Matrice i determinante) 11 / 15 Matrične jednačine I slučaj A X = B A 1 / A X = B X = A 1 B II slučaj X A = B X A = B / A 1 X = B A 1

48 (Matrice i determinante) 12 / 15 Zadaci (5) Rešiti matrične jednačine:

49 (Matrice i determinante) 12 / 15 Zadaci (5) Rešiti matrične jednačine: Zadatak 31. AX = B, ako je A = [ ] i B = [ 2 0 ].

50 Zadaci (5) Rešiti matrične jednačine: [ ] 1 2 Zadatak 31. AX = B, ako je A = i B = 6 3 [ 3 5 Zadatak 33. AX 2X = B, ako je A = 1 1 [ 2 0 ]. ] [ i B = ]. (Matrice i determinante) 12 / 15

51 Zadaci (5) Rešiti matrične jednačine: [ ] 1 2 Zadatak 31. AX = B, ako je A = i B = 6 3 [ 3 5 Zadatak 33. AX 2X = B, ako je A = 1 1 Zadatak 34. X 2XA = B, ako je A = [ [ 2 0 ]. ] [ i B = ] [ i B = ]. ]. (Matrice i determinante) 12 / 15

52 Zadaci (5) Rešiti matrične jednačine: [ ] 1 2 Zadatak 31. AX = B, ako je A = i B = 6 3 [ 3 5 Zadatak 33. AX 2X = B, ako je A = 1 1 Zadatak 34. X 2XA = B, ako je A = Zadatak 35. XA = B, ako je A = [ [ 2 0 ]. ] [ i B = ] [ i B = i B = [ ]. ]. ]. (Matrice i determinante) 12 / 15

53 (Matrice i determinante) 13 / 15 Zadaci (6) Koje su od sledećih operacija definisane ako su

54 (Matrice i determinante) 13 / 15 Zadaci (6) Koje su od sledećih operacija definisane ako su [ ] [ ] Z. 40. A =, B =, C = , D = [ 2 1 ] i E = [ 0 1 ]? a) E A b) ED AC c) (EB 1 ) 1 d) B A C e) A t C f) C 2 g) C I h) ED + CA AC

55 (Matrice i determinante) 13 / 15 Zadaci (6) Koje su od sledećih operacija definisane ako su [ ] [ ] Z. 40. A =, B =, C = , D = [ 2 1 ] i E = [ 0 1 ]? a) E A b) ED AC c) (EB 1 ) 1 d) B A C e) A t C f) C 2 g) C I h) ED + CA AC Z. 49. A= E = ,B= [ 1 2 3,C= ] [ 8 3,D= 4 1? a) D C b) (DC)t B c) D 2 d) A B C t e) A t B f) ABCE g) D I h) AB EE t ] i

56 Zadaci (7) (Matrice i determinante) 14 / 15

57 (Matrice i determinante) 14 / 15 Zadaci (7) Zadatak 45. Naći inverznu matricu za matricu A = 1 a a a

58 Zadaci (8) (Matrice i determinante) 15 / 15

59 (Matrice i determinante) 15 / 15 Zadaci (8) Zadatak (SLJ) 50. Dat je sistem: x + y z = 3 2x + y 2z = 1 2x y 3z = 4.

60 (Matrice i determinante) 15 / 15 Zadaci (8) Zadatak (SLJ) 50. Dat je sistem: x + y z = 3 2x + y 2z = 1 2x y 3z = 4. (i) Zapisati sistem u matričnom obliku A x = b.

61 (Matrice i determinante) 15 / 15 Zadaci (8) Zadatak (SLJ) 50. Dat je sistem: x + y z = 3 2x + y 2z = 1 2x y 3z = 4. (i) Zapisati sistem u matričnom obliku A x = b. (ii) Izračunati determinantu matrice A.

62 (Matrice i determinante) 15 / 15 Zadaci (8) Zadatak (SLJ) 50. Dat je sistem: x + y z = 3 2x + y 2z = 1 2x y 3z = 4. (i) Zapisati sistem u matričnom obliku A x = b. (ii) Izračunati determinantu matrice A. (iii) Izračunati inverznu matricu A 1 = [a ij ] i,j=1,2,3.

63 (Matrice i determinante) 15 / 15 Zadaci (8) Zadatak (SLJ) 50. Dat je sistem: x + y z = 3 2x + y 2z = 1 2x y 3z = 4. (i) Zapisati sistem u matričnom obliku A x = b. (ii) Izračunati determinantu matrice A. (iii) Izračunati inverznu matricu A 1 = [a ij ] i,j=1,2,3. (iv) Naći rešenje polaznog sistema.

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Algebarske strukture

Algebarske strukture i operacije Univerzitet u Nišu Prirodno Matematički Fakultet februar 2010 Istraživačka stanica Petnica i operacije Operacije Šta je to algebra i apstraktna algebra? Šta je to algebarska struktura? Cemu

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

Teorija kodiranja. Hamingov kod i njegova definicija

Teorija kodiranja. Hamingov kod i njegova definicija Teorija kodiranja. Hamingov kod i njegova definicija Erna Oklapi Gimnazija Novi Pazar ernaoklapii@yahoo.com Sanela Numanović Gimnazija Kruševac sanelanumanovic@yahoo.com Rezime U ovom radu predstavljen

Διαβάστε περισσότερα

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj Matrična analiza linijskih

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ορίζουσες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Ορίζουσα H Ορίζουσα είναι ένας αριθμός και ορίζεται μόνον για τετραγωνικούς

Διαβάστε περισσότερα

Skupovi, relacije, funkcije

Skupovi, relacije, funkcije Chapter 1 Skupovi, relacije, funkcije 1.1 Skup, torka, multiskup 1.1.1 Skup Pojam skupa ne definišemo eksplicitno. Intuitivno skup prihvatamo kao konačnu ili beskonačnu kolekciju objekata (ili elemenata)u

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET. Marjan M. Matejiæ Lidija V. Stefanoviæ Branislav M. Ranðeloviæ Igor. Milovanoviæ MATEMATIKA

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET. Marjan M. Matejiæ Lidija V. Stefanoviæ Branislav M. Ranðeloviæ Igor. Milovanoviæ MATEMATIKA UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Marjan M. Matejiæ Lidija V. Stefanoviæ Branislav M. Ranðeloviæ Igor. Milovanoviæ MATEMATIKA KOMPLETI ZADATAKA ZA PRIJEMNI ISPIT 011. Edicija: Pomoæni ud benici Marjan

Διαβάστε περισσότερα

RIJEŠENI ZADACI IZ MATEMATIKE

RIJEŠENI ZADACI IZ MATEMATIKE RIJEŠENI ZADACI IZ MATEMATIKE Ovi zadaci namijenjeni su studentima prve godine za pripremu ispitnog gradiva za kolokvije i ispite iz matematike. Pripremljeni su u suradnji i po uputama predmetnog nastavnika

Διαβάστε περισσότερα

9. PREGLED ELEMENTARNIH FUNKCIJA

9. PREGLED ELEMENTARNIH FUNKCIJA 9. PREGLED ELEMENTARNIH FUNKCIJA Pod elementarnim funkcijama najčešće ćemo podrazumijevati realne funkcije realne varijable Detaljnije ćemo u Matematici II analizirati funkcije koje se najčešće koriste

Διαβάστε περισσότερα

ISKAZI. U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne

ISKAZI. U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne ISKAZI U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne ili netačne, tj rečenice koje imaju logičkog smisla.ovakve rečenice se u matematici nazivaju iskazi.dakle,

Διαβάστε περισσότερα

GENIKA MAJHMATIKA. TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c

GENIKA MAJHMATIKA. TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c GENIKA MAJHMATIKA ΓΙΩΡΓΙΟΣ ΚΑΡΑΒΑΣΙΛΗΣ TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c 26 Μαΐου 2011 Συνάρτηση f ονομάζεται κάθε σχέση από ένα σύνολο A (πεδίο ορισμού) σε σύνολο B με την οποία

Διαβάστε περισσότερα

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

!!  &' ':  /.., c #$% & - & ' (),..., * +,.. * ' + * - - * (),...(. ..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, 004. Vladimir Balti Pojam polinoma. Prsten polinoma.. Dati su polinomi P (x) = x + x +, Q(x) = x 4 x +, R(x) = x x +. Proveriti da li za

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj Rešavanje jednačina ravnoteže

Διαβάστε περισσότερα

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

,, #,#, %&'(($#(#)&*& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) !! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

ΚΥΚΛΟΙ ΚΑΤΕΡΓΑΣΙΑΣ. κατά τον άξονα Ζ.

ΚΥΚΛΟΙ ΚΑΤΕΡΓΑΣΙΑΣ. κατά τον άξονα Ζ. ΚΥΚΛΟΙ ΚΑΤΕΡΓΑΣΙΑΣ Οι κύκλοι κατεργασίας χρησιµοποιούνται για ξεχόνδρισµα - φινίρισµα ενός προφίλ χωρίς να απαιτείται να προγραµµατίζουµε εµείς τα διαδοχικά πάσα της κατεργασίας. Έτσι, στο πρόγραµµα περικλείουµε

Διαβάστε περισσότερα

Predstavljanje orijentacije i rotacije u 3D

Predstavljanje orijentacije i rotacije u 3D Predstavljanje orijentacije i rotacije u 3D Orijentacija Još jednom: Orijentacija i pravac - isto ili ne? Pravac je određen vektorom, ali rotacija vektora oko samog sebe nema daljeg uticaja. Orijentacija

Διαβάστε περισσότερα

Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν.

Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν. Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν. Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια : xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ ΑΣΚΗΣΕΙΣ 101-00 Αφιερωμέν σε κάθε μαθητή πυ ασχλείται ή πρόκειται να ασχληθεί με Μαθηματικύς διαγωνισμύς

Διαβάστε περισσότερα

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije.

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije. Svojstva tautologija Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija i formula B. Dokaz: Neka su A i A B tautologije. Pretpostavimo da B nije tautologija. Tada postoji valuacija v

Διαβάστε περισσότερα

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku.

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku. 1. FUNKCIJE, LIMES, NEPREKINUTOST 1.1 Brojevi - slijed, interval, limes Slijed realnih brojeva je postava brojeva na primjer u obliku 1,,3..., nn, + 1... koji na realnoj osi imaju oznaceno mjesto odgovarajucom

Διαβάστε περισσότερα

Funkcije Materijali za nastavu iz Matematike 1

Funkcije Materijali za nastavu iz Matematike 1 Funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 76 Definicija funkcije Funkcija iz skupa X u skup Y je svako pravilo f po kojemu se elementu x X

Διαβάστε περισσότερα

Gradimir V. Milovanović MATEMATIČKA ANALIZA I

Gradimir V. Milovanović MATEMATIČKA ANALIZA I Gradimir V. Milovanović Radosav Ž. D ord ević MATEMATIČKA ANALIZA I Predgovor Ova knjiga predstavlja udžbenik iz predmeta Matematička analiza I koji se, počev od školske 2004/2005. godine, studentima Elektronskog

Διαβάστε περισσότερα

ELEMENTI VISE ˇ MATEMATIKE

ELEMENTI VISE ˇ MATEMATIKE Nada Miličić Miloš Miličić ELEMENTI VISE ˇ MATEMATIKE II deo II izdanje Akademska misao Beograd, 2011 Dr Nada Miličić, redovni profesor Dr Miloš Miličić, redovni profesor ELEMENTI VIŠE MATEMATIKE II DEO

Διαβάστε περισσότερα

Tehnologija bušenja II

Tehnologija bušenja II INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 1. Vežba V - 1 Tehnologija bušenja II Slide 1 of 44 Algebra i trigonometrija V - 1 Tehnologija bušenja II Slide 2 of 44 Jednačine Pitanje: Ako je a = 3b

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

NASTAVA MATEMATIKE NA FAKULTETIMA. Dr orđe Dugoxija SIMPLEKS METODA

NASTAVA MATEMATIKE NA FAKULTETIMA. Dr orđe Dugoxija SIMPLEKS METODA NASTAVA MATEMATIKE NA FAKULTETIMA Dr orđe Dugoxija SIMPLEKS METODA U prethodnim radovima [2] i [3] opisana je teorija linearnog programiranja. U ovom radu prikaza emo jednu od osnovnih metoda za rexavanje

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 7 Πινακες και Γραµµικες Απεικονισεις Στα προηγούµενα

Διαβάστε περισσότερα

Projektovanje informacionih sistema 39

Projektovanje informacionih sistema 39 Projektovanje informacionih sistema 39 Glava 3 3.0 Osnove relacione algebre - uvod Za manipulisanje podacima i tabelama u relacionim bazama podataka potrebna su osnovna znanja iz relacione algebre. Relaciona

Διαβάστε περισσότερα

Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 07/04/2016

Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 07/04/2016 Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 07/04/2016 Άσκηση Φ4.1: Θεωρείστε τις ακόλουθες σχέσεις επί του συνόλου Α={1, 2, 3} 1. R={(1, 1), (1, 2), (1, 3), (3, 3)} 2. S={(1, 1), (1, 2), (2, 1), (2, 2),

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

OSNOVNE NUMERIČKE METODE U HEMIJSKOM INŽENJERSTVU

OSNOVNE NUMERIČKE METODE U HEMIJSKOM INŽENJERSTVU Prof.dr Ratomir Paunović Prof.dr Radovan Omorjan OSNOVNE NUMERIČKE METODE U HEMIJSKOM INŽENJERSTVU Tehnološki fakultet, Univerzitet u Novom Sadu Novi Sad : Recenzenti: Predgovor Kori² enje numeri kih metoda

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ ΛΥΣΕΩΝ: ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΚΠΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕΙ ΣΕΡΡΩΝ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ

ΕΠΙΜΕΛΕΙΑ ΛΥΣΕΩΝ: ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΚΠΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕΙ ΣΕΡΡΩΝ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΙΜΕΛΕΙΑ ΛΥΣΕΩΝ: ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΚΠΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕΙ ΣΕΡΡΩΝ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΤΙΚΕΣ ΠΕΡΙΟΔΟΙ: ΙΑΝΟΥΑΡΙΟΣ 009 & ΙΟΥΛΙΟΣ 013 ΠΙΝΑΚΕΣ ΣΥΣΤΗΜΑΤΑ ΑΝΑΛΥΣΗ ΟΡΙΑ ΛΥΜΕΝΑ

Διαβάστε περισσότερα

ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA

ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA David Brčić ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA Riješeni zadaci DAVID BRČIĆ LOKSODROMSKA PLOVIDBA I. Loksodromski zadatak (kurs i udaljenost): tgk= II. Loksodromski zadatak (relativne koordinate):

Διαβάστε περισσότερα

FUNKCIJE DVIJU VARIJABLI (ZADACI)

FUNKCIJE DVIJU VARIJABLI (ZADACI) FUNKCIJE DVIJU VARIJABLI (ZADACI) Rozarija Jak²i 5. travnja 03. UVOD U FUNKCIJE DVIJU VARIJABLI.. Domena funkcija dviju varijabli Jedno od osnovnih pitanja koje se moºe postaviti za realnu funkciju dvije

Διαβάστε περισσότερα

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1,

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1, I ΠΙΝΑΚΕΣ 11 Σώμα 111 Ορισμός: Ενα σύνολο k εφοδιασμένο με δύο πράξεις + και ονομάζεται σώμα αν ικανοποιούνται οι παρακάτω ιδιότητες: (Α (α (Προσεταιριστική ιδιότητα της πρόσθεσης (a + b + c = a + (b +

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

Komentari se javljaju na radnom listu kad dođemo na polje za koje su vezani ali ne utiču na ponašanje sadržaja u polju.

Komentari se javljaju na radnom listu kad dođemo na polje za koje su vezani ali ne utiču na ponašanje sadržaja u polju. 4.9 Komentar uz polje Komentari se javljaju na radnom listu kad dođemo na polje za koje su vezani ali ne utiču na ponašanje sadržaja u polju. Pritisnemo na polje mišem, desni klik miša, Insert Comment,

Διαβάστε περισσότερα

Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1

Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1 Uvod u numeričku matematiku Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1 1 Odjel za matematiku Sveučilište u Rijeci Numerička integracija O problemima integriranja

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike DERIVACIJA Pojam derivacije Glavne ideje koje su vodile do današnjeg shvaćanja derivacije razvile su se u 7 stoljeću kada i započinje razvoj

Διαβάστε περισσότερα

Vježbe iz matematike 1

Vježbe iz matematike 1 Vježbe iz matematike B. Ivanković N. Kapetanović 8. rujna 005. Uvod Vježbe su tijekom dugog niza održavanja nadopunjavane. Osnovu vježbi napravila je Nataša Kapetanović, ing. matematike, a podebljao ih

Διαβάστε περισσότερα

ΚEΦΑΛΑΙΟ 1. Πίνακες. Από τα παραπάνω γίνεται αντιληπτό ότι κάθε γραµµή και στήλη ενός πίνακα A ορίζει µονοσήµαντα τη θέση κάθε στοιχείου A

ΚEΦΑΛΑΙΟ 1. Πίνακες. Από τα παραπάνω γίνεται αντιληπτό ότι κάθε γραµµή και στήλη ενός πίνακα A ορίζει µονοσήµαντα τη θέση κάθε στοιχείου A ΚEΦΑΛΑΙΟ Πίνακες Εστω και είναι το σώµα των πραγµατικών και των µιγαδικών αριθµών αντιστοίχως Στο εξής όταν γράφουµε F θα εννοούµε είτε το είτε το Ορισµός Eστω F = ή και m, Κάθε ορθογώνια διάταξη m A F

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković Devizno tržište Devizni urs i devizno tržište Devizni urs - cena jedne valute izražena u drugoj valuti Promene deviznog ursa utiču na vrednost ative i pasive oje su izražene u stranoj valuti Devizni urs

Διαβάστε περισσότερα

Πίνακες Ορίζουσες. Πίνακας: ορθογώνια διάταξη αριθμών που αποτελείται από γραμμές και στήλες.

Πίνακες Ορίζουσες. Πίνακας: ορθογώνια διάταξη αριθμών που αποτελείται από γραμμές και στήλες. 1 Πίνακες Ορίζουσες Πίνακας: ορθογώνια διάταξη αριθμών που αποτελείται από γραμμές και στήλες. Παράδειγμα (χορήγηση Βαλασικλοβιρης (αντιυπερτασικό) σε νήπια) Ηλικία (μήνες) Μέσο Cmax (μg/ml) Μέσο βάρος

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

ВИШЕСТЕПЕНИ РЕДУКТОР

ВИШЕСТЕПЕНИ РЕДУКТОР Средња машинска школа РАДОЈЕ ДАКИЋ ВИШЕСТЕПЕНИ РЕДУКТОР Милош Мајсторовић Београд 200 год. 2 2 3 0 02 4 4 9 0 9 Poz. Kol. JM. Dimenzije, broj crteza: Standard: 24 Vijak M Poklopac vratila I Sklop vratila

Διαβάστε περισσότερα

ISBN , 2009

ISBN , 2009 .... 2009 681.3.06(075.3) 32.973.26 721 367.. 367 : -. :.., 2009. 419.:.,. ISBN 978-5-88874-943-2. :. -,.,. (2006 2009),,,,.. 11-, -. matsievsky@newmail.ru. 681.3.06(075.3) 32.973.26 721 ISBN 978-5-88874-943-2..,

Διαβάστε περισσότερα

Univerzitet u Nišu Građevinsko-arhitektonski fakultet. Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić

Univerzitet u Nišu Građevinsko-arhitektonski fakultet. Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić Univerzitet u Nišu Građevinsko-arhitektonski fakultet Informatika 2 Mathematica Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić Mathematica Programski paket Mathematica

Διαβάστε περισσότερα

#&' ()* #+#, 2 )' #$+34 4 )!' 35+,6 5! *,#+#26 37)*! #2#+#42 %8')* #44+#%$,)88) 9 #,6+-55 $)8) -53+2#5 #6) :&' 2#3+23- ##) :* 232+464 #-) ''7 465+436

#&' ()* #+#, 2 )' #$+34 4 )!' 35+,6 5! *,#+#26 37)*! #2#+#42 %8')* #44+#%$,)88) 9 #,6+-55 $)8) -53+2#5 #6) :&' 2#3+23- ##) :* 232+464 #-) ''7 465+436 ! "#$$% #& ()* #+#, -./0*1 2 ) #$+34 4 )! 35+,6 5! *,#+#26 37)*! #2#+#42 %8)* #44+#%$,)88) 9 #,6+-55 $)8) -53+2#5 #6) :& 2#3+23- ##) :* 232+464 #-) 7 465+436 .* &0* 0!*07 ;< =! ))* *0*>!! #6&? @ 8 (? +

Διαβάστε περισσότερα

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικά Συστήματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικό Σύστημα a11x1 + a12x2 + + a1 nxn = b1 a x + a x + +

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ

ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Ι. ΑΡΒΑΝΙΤΙ ΗΣ jarvan@physcs.auth.gr 2310 99 8213 ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ ΠΟΛΩΣΗ ΣΥΜΒΟΛΗ ΠΕΡΙΘΛΑΣΗ

Διαβάστε περισσότερα

Διάλεξη 19: Διαγράμματα Feynman:

Διάλεξη 19: Διαγράμματα Feynman: Διάλεξη 19: Διαγράμματα Feynman: Αλληλεπίδραση Ισχύς Εμβέλεια Φορέας Ισχυρή 1 ~fm g-γλουόνιο Η/Μ 10-2 1/r 2 γ-φωτόνιο Ασθενής 10-9 ~fm W ±,Z μποζόνια Βαρυτική 10-38 1/r 2 Γκραβιτόνιο Είδαμε προηγουμένως

Διαβάστε περισσότερα

Προσοµοίωση Π ρ ο µ ο ί ω Μ η χ α ν ο ί Ε λ έ γ χ ο υ τ ο υ Χ ρ ό ν ο υ Φάσεις σο ση ς ισµ ιδάσκων: Ν ικό λ α ο ς Α µ π α ζ ή ς Φάσεις τ η ς π ρ ο σο µ ο ί ω ση ς i. Κατασκευή το υ µ ο ν τέ λ ο υ π ρ ο

Διαβάστε περισσότερα

1.2 ΑΘΡΟΙΣΜΑ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕ ΚΟΙΝΗ ΑΡΧΗ. ΚΑΝΟΝΑΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ: a a a

1.2 ΑΘΡΟΙΣΜΑ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕ ΚΟΙΝΗ ΑΡΧΗ. ΚΑΝΟΝΑΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ: a a a . ΑΘΡΟΙΣΜΑ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕ ΚΟΙΝΗ ΑΡΧΗ. ΚΑΝΟΝΑΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ: a a a a ΑΘΡΟΙΣΜΑ ΔΙΑΔΟΧΙΚΩΝ ΔΙΑΝΥΣΜΑΤΩΝ:, ( ) 3 4 3 4 a a a a a 3 aaa3a4 a 3 a 4,,,,...,,,.,. .,,,, : () a ( ) () ( ) ( ) ( ) (3) 0 (4) (

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 22 Φεβρουαρίου 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

Dve karakteristike čine relacioni model još uvek najpopularnijim i najšire primenjivanim:

Dve karakteristike čine relacioni model još uvek najpopularnijim i najšire primenjivanim: RELACIONI MODEL RELACIONI MODEL Dve karakteristike čine relacioni model još uvek najpopularnijim i najšire primenjivanim: Struktura modela je veoma jednostavna, prihvatljiva svakom korisniku, jer relaciona

Διαβάστε περισσότερα

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ)

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ) ελτίο της Ελληνικής Γεωλογικής Εταιρίας τοµ. XXXVI, 2004 Πρακτικά 10 ου ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Proceedings of the 10 th

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 212-213 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Να αποδείξετε ότι κάθε σημείο της διχοτόμου μιας γωνίας ισαπέχει

Διαβάστε περισσότερα

Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο. Ασκήσεις

Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο. Ασκήσεις Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο Σηµειώσεις Προετοιµασίας για Μαθηµατικούς ιαγωνισµούς Ασκήσεις Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Νοέµβριος 2012 1 Ασκησεις στη Θεωρια Αριθµων 1 Μαθηµατική

Διαβάστε περισσότερα

SEC 104 ZNANSTVENI KALKULATOR KORISNIČKI PRIRUČNIK.

SEC 104 ZNANSTVENI KALKULATOR KORISNIČKI PRIRUČNIK. SEC 104 ZNANSTVENI KALKULATOR KORISNIČKI PRIRUČNIK www.sencor.eu I. Osnovne funkcije 1. Zaslon s dva reda 2. Osnovne operacije 3. Znanstveni kalkulator 4. Računanje jednadžbi 5. Statističke operacije

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.

Διαβάστε περισσότερα