EQUASS the European Quality in Social Services. Osnove obvladovanja kakovosti modeli in standardi kakovosti. Mojca Sajko
|
|
- Λευκοθέα Κασιδιάρης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 EQUASS the European Quality in Social Services Osnove obvladovanja kakovosti modeli in standardi kakovosti Mojca Sajko
2 Agenda: Kdaj je kuhinja pospravljena? Definicija kakovosti Specifične lastnosti storitev Zakaj vlagati v kakovost? Metode in modeli kakovosti v Sloveniji Skupne lastnosti večine modelov
3 KDAJ JE VAŠA KUHINJA POSPRAVLJENA?
4 Smo to, kar ponavljamo. Odličnost torej ni dejanje, ampak navada. (Aristotel) Četudi ste na pravi poti, vas bodo povozili, če boste le sedeli na njej. (Will Rogers)
5 Proizvodno usmerjena definicija: usklajenost z zahtevami standardov. Storitveno usmerjena definicija: kakovost določa uporabnik! oz. storitev opravi tisto, za kar je predvidena in se odziva na potrebe uporabnika.
6 SPECIFIČNE LASTNOSTI STORITEV: ni opredmetenih izdelkov, storitev ni mogoče delati na zalogo, uporabnik storitve je običajno prisoten v procesu izvrševanja storitve, pri izvrševanju storitev je običajno pomembna pravočasnost, hitrost in pravilen potek procesa, želje naročnika in njegova merila kakovosti je težje določiti kot v materialni proizvodnji, merila uporabnika glede kakovosti opravljenih storitev so odraz osebnih kriterijev posameznika.
7
8 Zakaj vlagati v kakovost? Kaj želimo: dobre ali odlične rezultate? Kaj lahko storimo, če so rezultati slabi? Kaj jih povzroča? Kaj počnejo tisti, ki so boljši od nas?
9
10 Problem: stroške, povezane s kakovostjo, je dokaj enostavno izračunati. Kaj pa izračun koristi?
11 Koristi so težko merljive. Kako izmeriti: Zvestobo, priporočila uporabnikov, dobro ime izvajalca, diferenciacijo storitve (osnova za višjo ceno, razpisi itd.)...
12 V principu se vlaganje v kakovost splača vedno, kadar so stroški zaradi kakovosti nižji od koristi. Ker pa je koristi, za razliko od stroškov, pogosto težko ustrezno ovrednotiti, se pogosto dogaja, da podjetja premalo vlagajo v kakovost.
13 Kdo ima koristi od uvedbe standardov kakovosti? 1. uporabnik, 2. osebje, ki izvaja storitev (izvajalec), 3. lastniki ali investitorji, 4. poslovni partnerji, 5. družba.
14 Pet dimenzij kakovosti storitev: Fizična podpora, Zanesljivost v izvedbi, Pripravljenost osebja na sprotno izvajanje, Strokovnost osebja in njihova sposobnost razvijanja občutka varnosti in zaupanja, Epmatičnost osebja.
15 Kdaj je uvajanje sistema kakovosti smiselno? Če dosežene rezultate merimo, ker: če ne merimo rezultatov, ne moremo razlikovati uspeha od neuspeha, če ne znamo prepoznati dosežkov, jih ne moremo nagrajevati, če ne zmoremo nagrajevati dosežkov, potem verjetno nagrajujemo neuspehe oziroma slabo delo,
16 Kdaj je uvajanje sistema kakovosti smiselno? če ne znamo prepoznati dosežkov, se iz njih ne moremo učiti, če ne znamo prepoznati slabega dela, ga ne moremo popraviti, če znamo rezultate prikazati, lažje dosegamo podporo javnosti.
17 Sistemi kakovosti: ISO v SLO in EU, EQUASS Excellence v Sloveniji od leta 2007 E-Qalin vseevropski model za upravljanje kakovosti v domovih za starejše, VDC-jih, socialno varstvenih zavodih za usposabljanje, izvajalcih pomoči na domu, CSD.
18 Ideja E-Qalin -a: Cilj naše družbe mora biti dvig kakovosti življenja vseh, ki potrebujejo storitve socialno varstvenih ustanov. E-Qalin odgovarja na ta izziv in razvija dinamični model vodenja kakovosti v ustanovi. Omogoča dvig kakovosti nege in oskrbe za stanovalce in krepi zadovoljstvo pri delavcih. Storitve in njihova kakovost postanejo pregledne in primerljive.
19 Metode in modeli poslovne odličnosti: TQM, CQAF-poklicno izobraževanje in usposabljanje, EFQM, CAF-prilagojen model EFQM javni upravi, 6σ, BSC (balanced score card)-uravnotežen sistem kazalnikov, Benchmarking.
20 TQM-Celovito obvladovanje kakovosti Temelji na načelih in tehnikah, ki omogočajo nenehne izboljšave procesov od najnižjih do najvišjih nivojih. Cilj je v celoti zadovoljiti stranko s kakovostno storitvijo, organizacijo, procesi, zaposlenimi. Je način ravnanja z ljudmi, ki si prizadeva za čim večje zadovoljstvo odjemalcev ob čedalje nižjih stroških.
21 TQM- temeljna načela: Osredotočenost na odjemalce, Nenehna izboljšava, Celovito sodelovanje zaposlenih v timu.
22 8 ključnih elementov TQM Etika, celovitost, zaupanje, izobraževanje, timsko delo, vodstvo, priznanje, komunikacija.
23 EFQM-model poslovne odličnosti je orodje TQM. Organizacijam pomaga vzpostaviti sistem merjenja, kako daleč so prišle k poti odličnosti, pomaga jim razumeti, kje so vrzeli in jim nakaže rešitve. Temelji na: Dejavnikih-pokrivajo delovanje organizacije. Rezultatih-pokrivajo dosežke organizacije.
24 Dejavniki in rezultati EFQM vzrok posledica DEJAVNIKI REZULTATI 1 Voditeljstvo Politika 2 in strategija 3 Zaposleni Rezultati 7 - zaposleni 5 6 Procesi Rezultati Ključni 9 rezultati - odjemalci delovanja 4 in viri Partnerstva Rezultati 8 - družba Slika 3: Model odličnosti EFQM procesni pogled
25 Model odličnosti EFQM je analitično managersko orodje, ki: omogoča realnejšo oceno, kako dobri smo v resnici, daje celovit okvir za razvoj sistema vodenja, določa področja izboljšav in kaže njihovo pomembnost, povezuje različne pobude v enoten okvir, spodbuja izmenjavo dobrih praks izven in znotraj podjetja, omogoča objektivno prepoznavanje, priznavanje in nagrajevanje dosežkov.
26 6σ six sigma Osnovna ideja: manj napak, manj odpada manj stroškov, manj popravkov zadovoljnejši kupci; konkurenčnost.
27 Značilnosti: Stremi po popolni kakovosti. Zasnovana je na statistiki. Je mešanica statističnih kontrol kakovosti, enostavnih in kompleksnih metod za analizo podatkov ter sistematičnega izobraževanja kadrov- izvajalcev procesnih aktivnosti. Z obdelavo zbranih podatkov skuša odkriti njihove splošne zakonitosti in nato pridobljena spoznanja izkoristiti za oblikovanje ustreznih napovedi oziroma odločitev.
28
29 Uravnotežen sistem kazalnikov (BSC) je vsestranski managerski sistem kontrole, ki tradicionalne finančne kazalce uravnoteži z operativnimi kazalci, povezanimi s kritičnimi faktorji uspeha podjetja. Sistem vsebuje štiri glavne vidike: finančni vidik, vidik poslovanja s strankami, vidik učenja in rasti ter vidik notranjih poslovnih procesov.
30
31 KAJ OMOGOČA BSC? Celosten pogled na uspešnost podjetja (finančni in nefinančni vidiki). Preverjanje ustreznosti strateških ciljev (ne omogoča izbire strategije!). Vpogled v vzroke in posledice med cilji in rezultati. Uravnoteženo merjenje kazalnikov poslovne uspešnosti. Merjenje poslovnih uspešnosti samostojnih poslovnih enot. Diagnozo ugotoviti, kje smo delali napake. Kombinirano uporabo več kazalnikov uspešnosti poslovanja.
32
33 Primerjanje značilnosti (Benchmarking) Je metoda oz. managersko orodje, s katerim preučujemo podjetja z najboljšo prakso, da bi tako izboljšali tudi svoje lastnosti. Osredotočen je na učenje na podlagi tujih izkušenj, namesto da bi lastni proces bil edini način zbiranja izkušenj. Sam bencmarking ne daje nobenih rezultatov niti ne rešuje vseh težav v podjetju, omogoča pa neprestano učenje iz tujih; tako dobrih kot tudi slabih izkušenj.
34 Benchmarking je: Dolgoročen, nepretrgan raziskovalen proces, katerega cilj je nenehno izboljševanje (kaizen), primerjava s podjetji, ki so boljša od nas, ugotoviti odmike in jih odpraviti.
35 Benchmarking temelji na naslednjih korakih: izbira izdelka, storitve ali procesa, ki ga bomo primerjali, določiti detajle primerjanja, izbrati podjetje, organizacijo oz. sfero, s katero se bomo primerjali, zbrati podatke o delovanju konkurenta, analizirati podatke in ugotoviti načine in priložnosti za izboljšanje, prevzeti in začeti uvajati boljšo prakso, cilje, vidike in načine doseganja primerjane kakovosti v vsej razsežnosti organizacije.
36 Kaj imajo vsi sistemi skupno? Izboljšujejo konkurenčnost podjetja, Temeljijo na odgovornosti vodstva, Osredotočenost na odjemalce, Jasno postavljeni cilji, Procesni pristop (opredelitev in dokumentacija), Aktivno udeležbo zaposlenih, Nenehno izboljševanje.
37 Viri: P. Podkonjak, Mojdenar, B. Kuhelj, Ugotavljanje in zagotavljanje kakovosti, Berau Veritas, itd...
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Vaje iz predmeta UPRAVLJANJE IN RAVNANJE PODJETJA. 5. vaje 1
Vaje iz predmeta UPRAVLJANJE IN RAVNANJE PODJETJA 5. vaje 1 5. Vaje: Planiranje in vloga analize poslovanja 5. vaje 2 1. Podjetje upravljajo. lastniki Kaj že vemo? 2. Ker je vir moči, lastnina imajo managerji
NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE
NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,
ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ
GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE
Proizvajalna funkcija
Proizvajalna funkcija in računovodske informacije za odločanje o proizvajanju učinkov mag. Darjana Vidic Vsebina predavanja 1. Opredelitev proizvajalne funkcije 2. Računovodske informacije za odločanje
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
p 1 ENTROPIJSKI ZAKON
ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:
CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25
1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ
TVORBA AORISTA: Grški aorist (dovršnik) izraža dovršno dejanje; v indikativu izraža poleg dovršnosti tudi preteklost. Za razliko od prezenta ima aorist posebne aktivne, medialne in pasivne oblike. Pri
13. Jacobijeva metoda za računanje singularnega razcepa
13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
IZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev
IZZIVI DRUŽINSKE MEDICINE Uno gradivo zbornik seminarjev študentov Medicinske fakultete Univerze v Mariboru 4. letnik 2008/2009 Uredniki: Alenka Bizjak, Viktorija Janar, Maša Krajnc, Jasmina Rehar, Mateja
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...
ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči
Direktorica mag. Brigita Šen Kreže
Elaborat o oblikovanju cen storitev obvezne občinske gospodarske javne službe varstva okolja V OBČINI VRHNIKA Direktorica mag. Brigita Šen Kreže Vrhnika, januar 2016 KAZALO: 1 UVOD... 4 1.1 Pravne podlage
Varjenje polimerov s polprevodniškim laserjem
Laboratorijska vaja št. 5: Varjenje polimerov s polprevodniškim laserjem Laserski sistemi - Laboratorijske vaje 1 Namen vaje Spoznati polprevodniške laserje visokih moči Osvojiti osnove laserskega varjenja
STATISTIČNO OBVLADOVANJE PROCESA. Mateja Koblar
STATISTIČNO OBVLADOVANJE PROCESA Mateja Koblar mateja.koblar@gmail.com Pogoj za uspešno poslovanje podjetja je vzpostavitev, dokumentiranje, izvajanje in trajno vzdrževanje sistema zagotavljanja kakovosti,
matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
KAZALO UVOD...4 I. PREDLOG FINANČNEGA NAČRTA ZA LETO 2017 VSEBUJE...5 II. OBRAZLOŽITEV FINANČNEGA NAČRTA ZA LETO
2 KAZALO UVOD...4 I. PREDLOG FINANČNEGA NAČRTA ZA LETO 2017 VSEBUJE...5 II. OBRAZLOŽITEV FINANČNEGA NAČRTA ZA LETO 2017...6 1. OSNOVNI PODATKI O ZAVODU...6 2. ZAKONSKE PODLAGE...7 3. OSNOVNA IZHODIŠČA
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
S programom SPSS se, glede na število ur, ne bomo ukvarjali. Na izpitu so zastavljena neka vprašanja, zraven pa dobimo računalniški izpis izračunov. T
2. predavanje RVM Kvantitativne metode Borut Kodrič, Koper 21.5.2010 Ključ za dostop do e-učilnice: RMD2009 Tekom srečanj bodo zadeve osvežene v smislu, da bodo okleščene. Morda bo dodan še kak rešen primer.
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Zanesljivost psihološkega merjenja. Osnovni model, koeficient α in KR-21
Zanesljivost psihološkega merjenja Osnovni model, koeficient α in KR- Osnovni model in KTT V kolikšni meri na testne dosežke vplivajo slučajne napake? oziroma, kako natančno smo izmerili neko lastnost.
PROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
MePIS Energy. Obvladovanje energije, ki zagotavlja rezultate. MePIS Energy je informacijski sistem za podporo energetskemu in okoljskemu managementu
MePIS Energy Obvladovanje energije, ki zagotavlja rezultate MePIS Energy je informacijski sistem za podporo energetskemu in okoljskemu managementu π Omogoča takojšnje prihranke π Omogoča prihranke, ki
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
KAZALO. LETNO POROČILO 2012 Univerzitetni Klinični center Ljubljana, Zaloška cesta 2, 1000 Ljubljana
LETNO POROČILO 2012 KAZALO 1. UVOD 7 1.1 POROČILO PREDSEDNICE SVETA UKC LJUBLJANA 9 2. PREDSTAVITEV ZAVODA 12 LETNO POROČILO 2012 Univerzitetni Klinični center Ljubljana, Zaloška cesta 2, 1000 Ljubljana
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
MePIS Energy. Obvladovanje energije, ki zagotavlja rezultate. MePIS Energy je informacijski sistem za podporo energetskemu in okoljskemu managementu
MePIS Energy Obvladovanje energije, ki zagotavlja rezultate MePIS Energy je informacijski sistem za podporo energetskemu in okoljskemu managementu Omogoča takojšnje prihranke in trajno obvladovanje stroškov
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
moj swatycomet št.1 - junij 2010 LETO I Poštnina plačana pri pošti 2ooo Maribor
moj swatycomet št.1 - junij 2010 LETO I GLASILO POSLOVNEGA Poštnina plačana pri pošti 2ooo Maribor SISTEMA SWATYCOMET Iz vsebine: Str. 4 in 5 SWATYCOMET - MOJE PODJETJE Str. 7 Ciljno vodenje Str. 8 in
INDIVIDUALNA ANALIZA ZADOVOLJSTVA OA 2016
6 MERJENJE ZADOVOLJSTVA INDIVIDUALNA ANALIZA ZADOVOLJSTVA OA 6 Skupina FABRIKA d.o.o. Prešernova 8 SI 9 Ljutomer info@skupina-fabrika.com www.skupina-fabrika.com / 97 9 9 DOM UPOKOJENCEV SEŽANA ZADOVOLJSTVO
Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1
Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
1. POJEM, POMEN IN VRSTE ORGANIZACIJ
1. POJEM, POMEN IN VRSTE ORGANIZACIJ 1. Različna pojmovanja organizacije. Organizacija je relativno mlada veda. Pojem organizacije še vedno ni enosmiselno opredeljen. Vzrok, zakaj so pojmovanja organizacije
MATEMATIČNI IZRAZI V MAFIRA WIKIJU
I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH
Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
ADS sistemi digitalnega snemanja ADS-DVR-4100D4
ADS-DVR-4100D4 Glavne značilnosti: kompresija, idealna za samostojni sistem digitalnega snemanja štirje video vhodi, snemanje 100 slik/sek v D1 ločljivosti pentaplex funkcija (hkratno delovanje petih procesov):
- Geodetske točke in geodetske mreže
- Geodetske točke in geodetske mreže 15 Geodetske točke in geodetske mreže Materializacija koordinatnih sistemov 2 Geodetske točke Geodetska točka je točka, označena na fizični površini Zemlje z izbrano
ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ & ΑΣΦΑΛΙΣΤΙΚΗΣ
ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ & ΑΣΦΑΛΙΣΤΙΚΗΣ «ΚΟΙΝΟ ΠΛΑΙΣΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΩΣ ΕΡΓΑΛΕΙΟ ΓΙΑ ΤΗ ΔΗΜΟΣΙΑ ΔΙΟΙΚΗΣΗ» ΕΥΑΓΓΕΛΙΑ Σ. ΚΑΤΣΑΝΗ Α.Μ. 72 Επιβλέπων : Καθηγητής κ. Σταμάτιος
A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N
I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i
2. RAČUNOVODSKE KATEGORIJE IN METODE
2. RAČUNOVODSKE KATEGORIJE IN METODE 1. Ekonomske kategorije in odločanje -dinamične -statične Te kategorije vplivajo na finančni in poslovni izid. Nekatere kategorije so bolj pomembne, nekatere manj.
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
RUDA. 130 let premogovništva v Šaleški dolini. Zavrtajmo v prihodnost. Razvojni načrt jasna vizija za prihodnjih 10 let. Kdo je zadovoljen s plačo?
RUDA ČASOPIS POSLOVNEGA SISTEMA PREMOGOVNIK VELENJE j unij 2006, številka 5, leto XXXIX r 130 let premogovništva v Šaleški dolini foto Hans Zavrtajmo v prihodnost Razvojni načrt jasna vizija za prihodnjih
Splošno o interpolaciji
Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo
SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov
Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W
Dragi polinom, kje so tvoje ničle?
1 Dragi polinom, kje so tvoje ničle? Vito Vitrih FAMNIT - Izlet v matematično vesolje 17. december 2010 Polinomi: 2 Polinom stopnje n je funkcija p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, a i R.
novice ELEKTRO IZ VSEBINE Interno glasilo Elektra Ljubljana d. d. Leto XI poletje 2011, πtevilka 2
novice ELEKTRO Interno glasilo Elektra Ljubljana d. d. Leto XI poletje 2011, πtevilka 2 IZ VSEBINE Kje smo in kam gremo? Aktualni intervju - izëlenitev tržnega dela iz matiënega podjetja 10 let delovanja
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik
Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva
Križna elastičnost: relativna sprememba povpraševane količine dobrine X, do katere pride zaradi relativne spremembe
2. POGLAVJE φ Elastičnost povpraševanja: E x, Px = % Q x / % P x % Q x > % sprememba Q % P x > % sprememba P Ex, Px = ( Q x / Q x ) / ( P x /P x ) = (P x / Q x ) * ( Q x / P x ) Linearna funkcija povpraševanja:
Gradniki TK sistemov
Gradniki TK sistemov renos signalov v višji rekvenčni legi Vsebina Modulacija in demodulacija Vrste analognih modulacij AM M FM rimerjava spektrov analognih moduliranih signalov Mešalniki Kdaj uporabimo
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Projektiranje notranje razsvetljave
Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo 2. letnik Aplikativna elektrotehnika - 64627 Električne inštalacije in razsvetljava Projektiranje notranje razsvetljave
AMENDMENTS XM United in diversity XM. European Parliament 2016/2151(DEC) Draft opinion Marian Harkin (PE592.
European Parliament 2014-2019 Committee on Employment and Social Affairs 2016/2151(DEC) 14.12.2016 AMENDMENTS 1-21 Marian Harkin (PE592.088v01-00) Discharge 2015: General budget of the EU - European Commission
SRIP - Obrazec 9 Akcijski načrt
SRIP - Obrazec 9 Akcijski načrt Priprava Akcijskega načrta temelji na Strategiji pametne specializacije S4 in zavezah SIS EGIZ kot prijavitelja, ki je združil interese partnerjev v verigah vredosti ob
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.
1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
Metoda končnih elementov III
Metoa končnih elementov I Metoo končnih elementov (MKE uporabljamo pri praktičnem inženirskem in pri znanstvenoraziskovalnem elu najpogosteje. Spaa me variacijske metoe in jo je nekoliko težje razumeti
Tema 1 Osnove navadnih diferencialnih enačb (NDE)
Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer
Reševanje sistema linearnih
Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje
Zgodba vaše hiše
1022 1040 Zgodba vaše hiše B-panel strani 8-11 Osnovni enobarvni 3020 3021 3023 paneli 3040 3041 Zasteklitve C-panel strani 12-22 S-panel strani 28-35 1012 1010 1013 2090 2091 1022 1023 1021 1020 1040
novice ELEKTRO POUDARKI IZ VSEBINE Interno glasilo Elektra Ljubljana d. d. Leto XI december 2011, πtevilka 4
novice ELEKTRO Interno glasilo Elektra Ljubljana d. d. Leto XI december 2011, πtevilka 4 POUDARKI IZ VSEBINE Organizacijske enote v letu 2011 v znamenju izëlenitve Sprejeti strateški poslovni naërt, srednjeroëni
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
Osnove sklepne statistike
Univerza v Ljubljani Fakulteta za farmacijo Osnove sklepne statistike doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo e-pošta: mitja.kos@ffa.uni-lj.si Intervalna ocena oz. interval zaupanja
Merjenje temperature v orodju na brizgalno/pihalnem stroju
Merjenje temperature v orodju na brizgalno/pihalnem stroju Krištof Debeljak V seminarski nalogi je opisan problem izdelave plastičnih vsebnikov z brizganjem in pihanjem. Predstavljen je tudi proizvodno
STANDARD1 EN EN EN
PRILOGA RADIJSKE 9,000-20,05 khz naprave kratkega dosega: induktivne aplikacije 315 600 khz naprave kratkega dosega: aktivni medicinski vsadki ultra nizkih moči 4516 khz naprave kratkega dosega: železniške
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,