# SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

## Transcript

1 SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi druga od druge? Velemo skuo orazdelitev dveh slučaih sremelivk i, =(x i, )=P(=x i, Y= ) Moži izidi so {ggg,ggc,gcg,cgg,gcc,cgc,ccg,ccc}, zato dobimo x\ 3 Vsota tabele o vrsticah e orazdelitev sremelivke, vsota o stolcih a e orazdelitev sremelivke Y. Diskreta orazdelitev (,Y) z gostoto (x i, ) Zveza orazdelitev (,Y) z gostoto (x,) x\ robi orazdelitv i (x ) x, i ( ) x, i i Y i i robi orazdelitvi x x, d i x, dx (,Y) zvezo orazdelea i x F(x,) (u,v) du dv (x,) F (x,) Y x MATEMATIKA

2 SKUPNE PORAZDELITVE FUNKCIJE VEČ SLUČAJNIH SPREMENLJIVK U f, Y u x, U i f x, u i E U E f, Y u x, f x, x, f x, u i i i i i, E f, Y f x, x, i, i i f x, x, dx d (diskrete) (zveze) Posebe: E Y x x, x x, x, E E Y i i i i i i, i i x i Y E Y E E Y E c c c E c E MATEMATIKA

3 SKUPNE PORAZDELITVE NEODVISNOST SLUČAJNIH SPREMENLJIVK Slučai sremelivki i Y sta eodvisi, če sta dogodka P( x) i P(Y ) eodvisa za vse are x,. Ekvivaleto: P( x, Y )=P( x). P(Y ) ali F(x,)=F (x). F Y () (x,)= (x). Y () ali za oluba x,. x\ i Y ista eodvisa: r.,, Y 8 6 ( x, ) ( x) ( ) E( Y ) x ( x, ) dx d x ( x) dx ( ) d E( ) E( Y ) Y Y - Na bo orazdelea o N(,) i a bo Y=, Y eodvisa E( Y ) E( ) E( Y ) 3 E( Y ) E( ) (ker itegriramo liho fukcio) E( ) E Y (ker e E( ) ) E Y E( ) E Y, čerav sta i Y odvisa MATEMATIKA 3

4 SKUPNE PORAZDELITVE KOVARIANCA D Y E Y E Y E E Y E Y E E Y E Y E Y E Y D D Y E E Y E Y D( Y ) D( ) D( Y ) K, Y,Y sta ekoreliraa, če e K(,Y)= K, Y E E Y E Y E Y E E Y kovariaca sremelivk,y eodvisa,y ekoreliraa D(+Y)=D()+D(Y) i Y x\ orazdelitev Y E(Y) : E() E(Y) 3 8 K(,Y) 7 6 i Y sta koreliraa (i tore tudi odvisa) MATEMATIKA 4

5 SKUPNE PORAZDELITVE r,y K,Y E Y E Y E σ σ Y σ σ Y korelaciski koeficiet x\ od re: E() E(Y) K(,Y) E( ) σ( ) E(Y ) σ( Y) r(,y) E E E E E, σ σ σ σ E stadardizacia sremelivke σ (ima ovreče i stadardi odklo ) E Y E Y D σ σ(y) r,y r,y E Y E Y D r(,y) r(,y) σ σ Y r,y E Y E Y E Y E Y r,y D kost. σ σ(y) σ σ(y) r,y i Y sta liearo odvisa MATEMATIKA 5

6 Igralec zadae v ovreču 7% metov a koš. Ka e bol vereto: da bo v metih zadel -krat ali da bo v metih zadel več kot 8-krat? P zadetkov iz oskusov k več kot 8 zadetkov iz oskusov k k P... k Prva možost e trikrat (!) bol vereta. Zaka e tako? Zako velikih števil: z večaem števila oskusov se zmašue veretost odkloa od ovreča. POMEN STANDARDNEGA ODKLONA Na bo slučaa sremelivka z gostoto (x), ovrečem m=e() i odkloom = (). ( x m) ( x) dx ( x m) ( x) dx k ( x) dx k P x m k x m k x m k P x m k k ocea Čebiševa P( -E() ).5 ocea vela za olubo orazdelitev za rimeravo: ri ormali orazdelitvi e P( -E() ).5 MATEMATIKA 6

7 Pri eodvisih oovitev ekega oskusa lahko izide gledamo kot zaorede eodvisih i eako orazdeleih slučaih sremelivk,,.... S... ovreče izidov Porazdelitev sremelivke S e zaletea. -krat vržemo kocko, k e število ik ri k-tem metu -krat vržemo žogo a koš, k e število ik zadetkov ( ali ) ri k-tem metu ri metu kocke ima S 5+ izidov, z različimi veretostmi ri metu a koš e S relativa frekveca zadetkov, orazdelitev e biomska Privzemimo, da so,,... ekorelirae i eako orazdelee (kot sremelivka ). E S E... E... E E D(S ) D... D... D() D() Z araščaem števila oskusov ada razršeost ovreča izidov roti. E(S )=E() D S S D MATEMATIKA 7

8 S = ovreče ekoreliraih i eako orazdeleih slučaih sremelivk,,.... ocea Čebiševa: P S E() k k = P S D E() lim P S E() zako velikih števil: z araščaem števila oskusov gre veretost, da se ovreče sremelivk razlikue od ihove ovreče vredosti roti. Poavlamo oskus, ri katerem ima dogodek A (ezao) veretost ; k =, če se ri k-ti oovitvi oskusa A zgodi i k =, če se A e zgodi = število dogodkov A o oovitvah oskusa, S = relativa frekveca dogodkov A o oovitvah oskusa, E(S )= zako velikih števil P S P lim S Pri skora vseh zaoredih oskusov gre relativa frekveca dogodka roti egovi veretosti. Na te ugotovitvi sloi statističa defiicia veretosti! MATEMATIKA 8

9 Ka se zgodi s orazdelitvio vsote , ko gre? k eodvise, orazdelee o... e orazdelea o b, k eodvise, zvezo eakomero orazdelee a itervalu [,] orazdelitev za : k eodvise, zvezo eksoeto orazdelee z gostoto (x)=e - x (x ) orazdelitev za : MATEMATIKA 9

10 Porazdelitve zavzameo zvoasto obliko, vedar ih težko rimeramo ker se remikao. Rešitev: vsoto stadardiziramo.,, 3,... eodvise, eako orazdelee slučae sremelivke s ovrečem a i stadardim odkloom ;... - E... S - a Z σ... σ lim F x F x Z N, Cetrali limiti izrek: stadardiziraa orazdelitev vsote kovergira roti stadardi ormali orazdelitvi Neko količio merimo z metodo, ki ima stadaro aako (t. stadardi odklo od meree vredosti) eako. Oravimo eodvisih meritev i vzamemo ihovo ovreče. Kolikša e veretost, da se to ovreče razlikue od meree količie za več kot /? Posameze meritve gledamo kot slučae sremelivke:,,..., Po zakou velikih števil lahko rivzamemo E( i )=m (merea količia), obeem e ( i )=... Za ovreče meritev S e E S m i S. σ σ Ocea Čebiševa: P S m P S m. Cetrali limiti izrek: σ σ σ S m P S m P S m P Φ (. ). σ P S m Ocea, ki o dobimo iz cetralega limitega izreka e veliko atačeša. MATEMATIKA

### Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

### Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

### Vaja 1: Računanje z napakami

Vaja : Račuaje z apakami Matej Bažec 9. oktober 25 Povzetek Spozali bomo osove račuaja z apakami. Obovili bomo zaje o absolutih i relativih apakah, smiselosti zapisa decimalih mest i pravila račuaja z

Διαβάστε περισσότερα

### Kotne in krožne funkcije

Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

### STATISTIKA 5. predavanje. Doc.dr. Tadeja Kraner Šumenjak

STATISTIKA 5. predavaje Doc.dr. Tadeja Kraer Šumejak PORAZDELITVE VZORČNIH STATISTIK Imejmo vzorec velikosti. Na tem vzorcu ima spremeljivka X vredosti: x 1, x 2,, x. Vzorča statistika je poljuba fukcija

Διαβάστε περισσότερα

### Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

### Bernoullijevo zaporedje neodvisnih poskusov

A. Jurišić in V. Batagelj: Verjetnostni račun in statistika 45 Bernoullijevo zaporedje neodvisnih poskusov O zaporedju neodvisnih poskusov X 1, X 2,, X n, govorimo tedaj, ko so verjetnosti izidov v enem

Διαβάστε περισσότερα

### Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

### Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

### Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenǉivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenǉivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenǉiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

### Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija.

1 / 46 Univerza v Ljubljani, FE Potenčna Korenska Melita Hajdinjak Matematika I (VS) Kotne 013/14 / 46 Potenčna Potenčna Funkcijo oblike f() = n, kjer je n Z, imenujemo potenčna. Število n imenujemo eksponent.

Διαβάστε περισσότερα

### IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

### PODATKI, FREKVENČNE PORAZDELITVE IN NJIHOV OPIS: MERE SREDNJE VREDNOSTI IN RAZPRŠENOSTI

PODATKI, FREKVENČNE PORAZDELITVE IN NJIHOV OPIS: MERE SREDNJE VREDNOSTI IN RAZPRŠENOSTI. KAKO NAREDIMO FREKVENČNO PORAZDELITEV Recimo, da so am a razpolago podatki (pr. število prijateljev, s katerimi

Διαβάστε περισσότερα

### Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,

Διαβάστε περισσότερα

### 1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

### NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

### Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

### www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

### 1.3 Vsota diskretnih slučajnih spremenljivk

.3 Vsota diskretnih slučajnih spremenljivk Naj bosta X in Y neodvisni Bernoullijevo porazdeljeni spremenljivki, B(p). Kako je porazdeljena njuna vsota? Označimo Z = X + Y. Verjetnost, da je P (Z = z) za

Διαβάστε περισσότερα

### Nekateri primeri sklopov izpitnih vprašanj pri predmetu Naključni pojavi

Nekateri primeri sklopov izpitnih vprašanj pri predmetu Naključni pojavi 1. Izpeljite Binomsko porazdelitev in pokažite kako pridemo iz nje do Poissonove porazdelitve? 2. Kako opišemo naključne lastnosti

Διαβάστε περισσότερα

### Reševanje sistema linearnih

Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

### IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

### VAJE IZ VERJETNOSTI IN STATISTIKE. Martin Raič

VAJE IZ VERJETNOSTI IN STATISTIKE Martin Raič Datum zadnje spremembe: 0 februar 207 Kazalo Osnove kombinatorike 3 2 Elementarna verjetnost 5 3 Pogojna verjetnost 0 4 Slučajne spremenljivke 7 5 Slučajni

Διαβάστε περισσότερα

### Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija

Matematika 1 3. vaja B. Jurčič Zlobec 1 1 Univerza v Ljubljani, Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika FE, Ljubljana, Slovenija 2011 Določi stekališča zaporedja a

Διαβάστε περισσότερα

### Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads.

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Η μυκηναϊκή Γραμμική Β γραφή ονομάστηκε έτσι από τον

Διαβάστε περισσότερα

### Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

### Realne funkcije. Elementarne funkcije. Polinomi in racionalne funkcije. Eksponentna funkcija a x : R R + FKKT Matematika 1

Realne funkcije Funkcija f denirana simetri nem intervalu D = ( a, a) ali D = [ a, a] (i) je soda, e velja f(x) = f( x), x D; (ii) je liha, e velja f(x) = f( x), x D. Naj bo f denirana D f in x 1, x 2

Διαβάστε περισσότερα

### !"#\$ % &# &%#'()(! \$ * +

,!"#\$ % &# &%#'()(! \$ * + ,!"#\$ % &# &%#'()(! \$ * + 6 7 57 : - - / :!", # \$ % & :'!(), 5 ( -, * + :! ",, # \$ %, ) #, '(#,!# \$\$,',#-, 4 "- /,#-," -\$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

### Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

### ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

### Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak

Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA Polona Oblak Ljubljana, 04 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 5(075.8)(0.034.) OBLAK,

Διαβάστε περισσότερα

### ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

Διαβάστε περισσότερα

### CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

### Funkcije dveh in več spremenljivk

Poglavje 3 Funkcije dveh in več spremenljivk 3.1 Osnovni pojmi Definicija 3.1.1. Funkcija dveh spremenljivk je preslikava, ki vsaki točki (x, y) ravninske množice D priredi realno število z = f(x, y),

Διαβάστε περισσότερα

### Multivariabilna logistična regresija s ponovitvijo linearne regresije

Multivariabila logističa regresija s oovitvijo lieare regresije doc. dr. Mitja Kos, mag. farm. Katedra za socialo farmacijo Uiverza v Ljubljai- Fakulteta za farmacijo Aaliza ovezaosti Regresija: Statističa

Διαβάστε περισσότερα

### Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1 Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 21. april 2008 102 Poglavje 4 Odvod 4.1 Definicija odvoda Naj bo funkcija f definirana na intervalu (a, b) in x 0 točka s tega intervala. Vzemimo

Διαβάστε περισσότερα

### 1. Določitev vsebine in namena statističnega proučevanja; opredelitev predmeta opazovanja (enote in populacije) in vsebine opazovanja (spremenljivk)

STATISTIKA je veda, ki proučuje ožiče pojave i se ukvarja z zbiraje, predstavitvijo, aalizo i iterpretacijo podatkov. EOTA je posaezi proučevai eleet (redi študet a Uiverzi v Lj v študijske letu 994/95)

Διαβάστε περισσότερα

### ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

(Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 εκεµβρίου 29 5.1. Στο τυχαίο πείραµα της ϱίψης δύο διακεκριµένων κύβων έστω X η ένδειξη του πρώτου κύβου και Y η µεγαλύτερη από τις δύο ενδείξεις. Να προσδιορισθούν

Διαβάστε περισσότερα

### Meren virsi Eino Leino

œ_ œ _ q = 72 Meren virsi Eino Leino Toivo Kuua o. 11/2 (1909) c c F c Kun ne F iu L? c œ J J J J œ_ œ_ nœ_ Min ne rien nät, vie ri vä vir ta? Kun ne c c F c Kun ne F iu L? c œ J J J J œ_ œ_ nœ_ Min ne

Διαβάστε περισσότερα

18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

### MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

### Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

### Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

### Granične vrednosti realnih nizova

Graiče vredosti realih izova Fukcija f : N R, gde je N skup prirodih brojeva a R skup realih brojeva, zove se iz realih brojeva ili reala iz. Opšti čla iza f je f(), N, i običo se obeležava sa f, dok se

Διαβάστε περισσότερα

### 3.1 Granična vrednost funkcije u tački

3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

### 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα

### Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

. Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

### Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti

Poglavje VII Linearne preslikave V tem poglavju bomo vektorske prostore označevali z U,V,W,... Vsi vektorski prostori bodo končnorazsežni. Zaradi enostavnosti bomo privzeli, da je pripadajoči obseg realnih

Διαβάστε περισσότερα

### Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik

Univerza v Ljubljani Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Peter Škvorc Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik DIPLOMSKO DELO UNIVERZITETNI

Διαβάστε περισσότερα

### Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

### Teor imov r. ta matem. statist. Vip. 94, 2016, stor

eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process

Διαβάστε περισσότερα

### Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

### 2.7 Primjene odredenih integrala

. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

### cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.

TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij

Διαβάστε περισσότερα

### OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

### 11.5 Metoda karakteristik za hiperbolične PDE

11.5 Metoda karakteristik za hiperbolične PDE Hiperbolična kvazi linearna PDE ima obliko au xx + bu xy + cu yy = f, (1) kjer so a, b, c, f funkcije x, y, u, u x in u y, ter velja b 2 4ac > 0. Če predpostavimo,

Διαβάστε περισσότερα

### 8. Posplošeni problem lastnih vrednosti

8. Posplošeni problem lastnih vrednosti Bor Plestenjak NLA 13. april 2010 Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april 2010 1 / 15 Matrični šop Dani sta kvadratni n n matriki

Διαβάστε περισσότερα

### Ne vron ske mre že vs. re gre sij ski mo de li na po ve do va nje pov pra še va nja na treh vr stah do brin

Ne vron ske mre že vs. re gre sij mo de li na po ve do va nje pov pra še va nja na treh vr stah do brin An ton Zi dar 1, Ro ber to Bi lo sla vo 2 1 Bo bo vo 3.a, 3240 Šmar je pri Jel šah, Slo ve ni ja,

Διαβάστε περισσότερα

### MATEMATIKA ZA BIOLOGE

MATEMATIKA ZA BIOLOGE Zapiski predavanj Milan Hladnik Fakulteta za matematiko in fiziko Ljubljana 2006 KAZALO I. DISKRETNA MATEMATIKA 3 1. Množice, relacije, funkcije 3 2. Kombinatorika in verjetnost 9

Διαβάστε περισσότερα

### ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΤΙΚΗ

Φουσκάκης- Ασκήσεις στην Εκτιµητική ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΤΙΚΗ ) Έστω Χ,, Χ και Υ,,Υ ανεξάρτητα τµ από πληθυσµούς µε µέση τιµή θ και γνωστές διασπορές σ και σ είξτε ότι για c [0,] η U = c X +(-c) Y είναι

Διαβάστε περισσότερα

### DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

### Βαθιές Θεµελιώσεις Πάσσαλοι υπό Οριζόντια Φόρτιση

Απόκριση Θεµελιώσεων µε Πασσάλους υπό Οριζόντια Φόρτιση Απόκριση Πασσάλων υπό Οριζόντια Φόρτιση Μενονωµένος Πάσσαλος Οµάδα Πασσάλων Φέρουσα Ικανότητα Μέθοδος Broms Υπολογισµός Καµπύλης Απόκρισης Μέθοδος

Διαβάστε περισσότερα

### HMY 220: Σήματα και Συστήματα Ι

HMY : Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμοί Σημάτων Ενέργεια και Ισχύς Σήματος Βασικές κατηγορίες σημάτων Περιοδικά σήματα Άρτια και περιττά σήματα Εκθετικά σήματα Μετασχηματισμοί σημάτων (signal

Διαβάστε περισσότερα

### Spoznajmo sedaj definicijo in nekaj osnovnih primerov zaporedij števil.

Zaporedja števil V matematiki in fiziki pogosto operiramo s približnimi vrednostmi neke količine. Pri numeričnemu računanju lahko npr. število π aproksimiramo s števili, ki imajo samo končno mnogo neničelnih

Διαβάστε περισσότερα

### Kunci, jabolka in zlatnina

Kunci, jabolka in zlatnina Marko Razpet, PeF UL Kunci Matematik Fibonacci ali Leonardo iz Pise (r okoli 70, u okoli 240) je znan po svojih delih Liber Abaci, Practica Geometriae, Flos in Liber Quadratorum

Διαβάστε περισσότερα

### Izpit sestavlja 4-5 vprašanj. Vsako ima več podvprašanj.

PRIMERI IZPITNIH VPRAŠANJ IZ MATEMATIKE JAKA CIMPRIČ, OKTOBER 2004 Izpit sestavlja 4-5 vprašanj. Vsako ima več podvprašanj. 1. Kombinatorika 1.1. Množice in relacije. (1) (Množice) (a) Kako si množice

Διαβάστε περισσότερα

### Matematika 1. Jaka Cimprič

Matematika 1 Jaka Cimprič Predgovor Pričujoči učbenik je namenjen študentom tistih univerzitetnih programov, ki vključujejo samo eno leto matematike. Nastala je na podlagi izkušenj, ki jih imam s poučevanjem

Διαβάστε περισσότερα

### Zavrxni ispit iz Matematiqke analize 1

Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

### Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

### Odvode odvisnih spremenljivk po neodvisni spremenljivki bomo označevali s piko: Sistem navadnih diferencialnih enačb prvega reda ima obliko:

4 Sisemi diferencialnih enačb V prakičnih primerih večkra naleimo na več diferencialnih enačb, ki opisujejo določen pojav in so medsebojno povezane edaj govorimo o sisemih diferencialnih enačb V eh enačbah

Διαβάστε περισσότερα

1951 {0, 1} N = N \ {0} n m M n, m N F x i = (x i 1,..., xi m) x j = (x 1 j,..., xn j ) i j M M i j x i j m n M M M M T f : F m F f(m) f M (f(x 1 1,..., x1 m),..., f(x n 1,..., xn m)) T R F M R M R x

Διαβάστε περισσότερα

### Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

### II. LIMITA IN ZVEZNOST FUNKCIJ

II. LIMITA IN ZVEZNOST FUNKCIJ. Preslikave med množicami Funkcija ali preslikava med dvema množicama A in B je predpis f, ki vsakemu elementu x množice A priredi natanko določen element y množice B. Važno

Διαβάστε περισσότερα

### b proj a b είναι κάθετο στο

ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ. Βρείτε όλα τα σηµεία P τέτοια ώστε η απόσταση του P από το A(, 5, 3) είναι διπλάσια από την απόσταση του P από το B(6, 2, 2). είξτε ότι το σύνολο όλων αυτών των σηµείων είναι σφαίρα.

Διαβάστε περισσότερα

### ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

**** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

### ( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

### Statistika 2 z računalniško analizo podatkov. Multipla regresija in polinomski regresijski model

Statistika z računalniško analizo podatkov Multipla regresija in polinomski regresijski model 1 Multipli regresijski model Pogosto so vrednosti odvisne spremenljivke linearno odvisne od več kot ene neodvisne

Διαβάστε περισσότερα

### a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

### FORD KA KA_202054_V2_2013_Cover.indd 1-4 15/06/2012 09:51

Διαβάστε περισσότερα

Polgrupe i grupe (1) Razišči strukturo asledjih grupoidov: (a) S = R za operacijo x y = x + y + xy, { [ ] 1 x (b) S = 0 1 x R za operacijo možeje matrik, (c) S = R 3 za operacijo vektorski produkt, (d)

Διαβάστε περισσότερα

### Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi neko število f (x) R.

II. FUNKCIJE 1. Osnovni pojmi 2. Sestavljanje funkcij 3. Pregled elementarnih funkcij 4. Zveznost Kaj je funkcija? Definicija Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi

Διαβάστε περισσότερα

### ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

### ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ

Δ.Φουσκάκης- Πολυδιάστατες Τυχαίες Μεταβλητές 1 ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Συνάρτηση Κατανομής: Έστω Χ=(Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ.

Διαβάστε περισσότερα

### Εφαρμοσμένα Μαθηματικά ΙΙ

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διπλά Ολοκληρώματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Ορθογώνια Χωρία Ορισμός n f( x, y) da lim f( x, y ) = Α Α 0 k

Διαβάστε περισσότερα

### Matematika. Funkcije in enačbe

Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana

Διαβάστε περισσότερα

### Matematka 1 Zadaci za drugi kolokvijum

Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

### (P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

### 5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

### VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

### pismeni br.4 4.2: Izračunati yds, gdje je K luk parabole y 2 = 2 px od ishodišta to točke

Prakkm Maemaka III Prredo DJočć smen br : Raz Forero red nkc eroda dan ormom za < za < : Izračna ds gde e k araboe od shodša o očke M : Izračna koordnae ežsa homogenog ka ckode a sn a ; : Izračna I e [

Διαβάστε περισσότερα

### Απόδειξη. Η ιδιότητα(vi) του ορισμού δεν ισχύει στην πράξη αυτή. Πράγματι, έχουμε. 1 (x, y, z) =(1 x, 1 y, 2 1 z) =(x, y, 2z)

1 ιανυσματικοί χώροι Άσκηση 1.1 Στο σύνολο R 3 όλων των διατεταγμένων τριάδων διατηρούμε την πρόσθεση, που ορίσαμε στο αντίστοιχο παράδειγμα, και ορίζουμε εξωτερικό πολλαπλασιασμό με τη σχέση λ(a 1,a 2,a

Διαβάστε περισσότερα

### P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)

Πιθανότητες και Αρχές Στατιστικής (4η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα

Διαβάστε περισσότερα

### PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

### - pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

### UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA III

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 215 ii Kazalo Diferencialni račun vektorskih funkcij 1 1.1 Skalarne funkcije...........................

Διαβάστε περισσότερα

### ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012

ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Έστω r rx, y, z, I a, b συνάρτηση C τάξης και r r r x y z Nα αποδείξετε ότι: d dr r (α) r r, I r r r d dr d r (β) r r, I dr (γ) Αν r 0, για κάθε I κάθε I d (δ)

Διαβάστε περισσότερα

### ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ (ΣΥΝΕΧΕΙΑ)

(ΣΥΝΕΧΕΙΑ) Χαράλαµπος Α. Χαραλαµπίδης 9 εκεµβρίου 2009 Η ηµαντικότερη κατανοµή πιθανότητας της Θεωρίας Πιθανοτήτων και της Στατιτικής, µε µεγάλο πεδίο εφαρµογών, είναι η κανονική κατανοµή. Η κατανοµή αυτή

Διαβάστε περισσότερα

### UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

### ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ (5) ΑΘΗΝΑ ΜΑΡΤΙΟΣ 2013 1 ΕΠΕΞΗΓΗΣΗ ΤΥΠΩΝ ΚΑΙ ΣΥΜΒΟΛΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΤΑΝΟΜΕΣ Τυχαία μεταβλητή είναι μία συνάρτηση η οποία να αντιστοιχεί

Διαβάστε περισσότερα

### SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα