ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι. 5.1 Αλγόριθµος: Ορισµός. Αλγόριθµοι : επίπεδα αφαίρεσης

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι. 5.1 Αλγόριθµος: Ορισµός. Αλγόριθµοι : επίπεδα αφαίρεσης"

Transcript

1 ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι 5.1 Αλγόριθµος: Ορισµός 5.1 Η έννοια του αλγορίθµου 5.2 Αναπαράσταση αλγορίθµων 5.3 Επινόηση αλγορίθµων 5.4 οµές επανάληψης Ένας αλγόριθµος είναι ένα διατεταγµένο σύνολο, σαφώς ορισµένων, εκτελέσιµων βηµάτων, το οποίο ορίζει µία τερµατιζόµενη διαδικασία. 5.5 Αναδροµικές δοµές 5.6 Αποδοτικότητα και ορθότητα 1 2 Αλγόριθµοι, προγράµµατα και γλώσσες Αλγόριθµοι : επίπεδα αφαίρεσης είσοδος Αλγόριθµος έξοδος αλγόριθµοι τερµατίζουν ή δεν τερµατίζουν πως να περιγράψουµε έναν αλγόριθµο; φυσική γλώσσα (ελληνικά, αγγλικά) είναι ασαφής «µαζεύετε τριαντάφυλλα όσο σας επιτρέπεται» γλώσσα προγραµµατισµού: εύκολη και περιεκτική έκφραση αλγορίθµων άµεσα κατανοητή από υπολογιστές και ανθρώπους περιορισµός λαθών Ένα πρόβληµα αποτελεί το κίνητρο για την επινόηση ενός αλγόριθµου. Ο αλγόριθµος είναι µια διαδικασία επίλυσης του προβλήµατος αυτού. Συνήθως µία διαδικασία από πολλές πιθανές Η αναπαράσταση είναι η επαρκής περιγραφή ενός αλγορίθµου για τη µετάδοση του στο επιθυµητό κοινό. Πάντα µία περιγραφή από πολλές πιθανές. 3 4

2 Κατασκευή πουλιού από ένα τετράγωνο κοµµάτι χαρτί (Σχήµα 5.2) Αρχέτυπα οριγκάµι (Σχήµα 5.4) Αρχέτυπα ψευδοκώδικα Ανάθεση όνοµα έκφραση Επιλογή συνθήκης αν (συνθήκη) τότε (ενέργεια) Επαναλαµβανόµενη εκτέλεση όσο (συνθήκη) κάνε (ενέργεια) ιαδικασία διαδικασία όνοµα (συγκεκριµένο όνοµα τηςµονάδας) Ηδιαδικασία Χαιρετισµός σε ψευδοκώδικα (Σχήµα 5.4) διαδικασία Χαιρετισµός Μετρητής 3; όσο (Μετρητής >0) κάνε (τύπωσε το µήνυµα Γεια χαρά και Μετρητής Μετρητής-1) 7 8

3 5.3 Βήµατα επίλυσης προβλήµατος Υπόδειγµα προβλήµατος 1. Κατανόηση του προβλήµατος. 2. Σχηµατισµός (στο νου µας) µιας ιδέας για το πώς µπορεί να λυθεί το πρόβληµα από µία αλγοριθµική διαδικασία. 3. Συγκρότηση του αλγορίθµου και αναπαράσταση του ως πρόγραµµα. 4. Αξιολόγηση του προγράµµατος όσον αφορά την ακρίβεια του και τη δυνατότητα να χρησιµοποιηθεί ως εργαλείο για την επίλυση άλλων προβληµάτων. Το άτοµο Α πρέπει να βρει τις ηλικίες των τριών παιδιών του ατόµου Β. Ο Β λέει στον Α ότι το γινόµενο των ηλικιών των παιδιών του είναι 36. Ο Α απαντάει ότι χρειάζεται άλλο ένα στοιχείο Ο Β λέει στον Α το άθροισµα των ηλικιών των παιδιών του. Ο Α απαντάει ξανά ότι χρειάζεται άλλο ένα στοιχείο Ο Β λέει στον Α ότι το µεγαλύτερο παιδί του παίζει πιάνο Ο Α λέει στον Β τις ηλικίες των τριών παιδιών του. Ποιες είναι οι ηλικίες των τριών παιδιών; 9 10 Υπόδειγµα προβλήµατος (Σχήµα 5.5) Τεχνικές για το πρώτο βήµα Επίλυση του προβλήµατος προς τα πίσω. Επίλυση ενός πιο εύκολου, σχετικού προβλήµατος: «Χαλαρώνει» κάποιους από τους ασφυκτικούς περιορισµούς του προβλήµατος. Επιλύει πρώτα κάποια επιµέρους τµήµατα του προβλήµατος - συνθετική µεθοδολογία. Η βηµατική εκλέπτυνση είναι µία αναλυτική µεθοδολογία. ηµοφιλής τεχνική επειδή παράγει τµηµατικά προγράµµατα

4 Κατά βήµατα ανάλυση Ακολουθία Αλγόριθµος: (1) βράσε νερό (2) βάλε καφέ στο φλιτζάνι (3) πρόσθεσε νερό στο φλιτζάνι φτιάξε στιγµιαίο καφέ (1.1) γέµισε χύτρα (1.1.1) βάλε χύτρα κάτω από βρύση (1.1.2) άνοιξε βρύση (1.1.3) περίµενε να γεµίσει η χύτρα (1.2) άναψε το µάτι (1.1.4) κλείσε βρύση (1.3) περίµενε να βράσει (1.4) σβήσε το µάτι (1.3.1) περίµενε να σφυρίξει η χύτρα (2.1) άνοιξε το δοχείο του καφέ (2.2) πάρε ένα κουταλάκι καφέ (2.3) άδειασε το κουταλάκι στο φλιτζάνι (2.4) κλείσε το δοχείο του καφέ (3.1) βάλε νερό από την χύτρα στο φλιτζάνι µέχρι να γεµίσει (2.1.1) πάρε το δοχείο του καφέ από το ντουλάπι (2.1.2) βγάλε το καπάκι (2.4.1) βάλε το καπάκι στο δοχείο (2.4.2) βαλε το δοχείο στο ντουλάπι βάλε την χύτρα κάτω από βρύση 2. άνοιξε την βρύση εάν δεν υπάρχει νερό; 3. περίµενε να γεµίσει η χύτρα 4. κλείσε την βρύση 5. άναψε το µάτι 6. περίµενε να σφυρίξει η χύτρα 7. σβήσε το µάτι 8. πάρε το δοχείο του καφέ από το ντουλάπι 9. βγάλε το καπάκι 10. πάρε ένα κουταλάκι καφέ 11. άδειασε το κουταλάκι στο φλιτζάνι 12. βάλε το καπάκι στο δοχείο 13. βαλε το δοχείο στο ντουλάπι 14. βάλε νερό από την χύτρα στο φλιτζάνι µέχρι να γεµίσει εάν δεν υπάρχει καφές, να δοκιµάσει το επόµενο δοχείο καφέ; εάν υπάρχουν 1000 δοχεία, πολλά από αυτά άδεια, τι να κάνει; Στοιχεία ελέγχου επανάληψης (Σχήµα 5.7) Απόδοση αρχικής τιµής: ηµιουργία µιας αρχικής κατάστασης η οποία θα τροποποιείται προς την κατεύθυνση της συνθήκης τερµατισµού. Έλεγχος: Τροποποίηση: Σύγκριση της τρέχουσας κατάστασης µε τη συνθήκη τερµατισµού και τερµατισµός της επανάληψης αν είναι ίσες. Αλλαγή της κατάστασης µε τέτοιον τρόπο ώστε να µετακινείται προς τη συνθήκη τερµατισµού. Ο αλγόριθµος της σειριακής αναζήτησης σε ψευδοκώδικα (Σχήµα 5.6) διαδικασία Αναζήτηση (Λίστα, ΤιµήΣτόχος) αν (Λίστα άδεια) τότε ( ήλωσε την αναζήτηση ως ανεπιτυχή) αλλιώς (Επίλεξε την πρώτη καταχώριση της Λίστας ως ΚαταχώρισηΠροςΈλεγχο. όσο (ΤιµήΣτόχος > ΚαταχώρισηΠροςΈλεγχο και υπάρχουν καταχωρίσεις προς σύγκριση) κάνε (επίλεξε την επόµενη καταχώριση της Λίστας ως ΚαταχώρισηΠροςΈλεγχο). αν (ΤιµήΣτόχος > ΚαταχώρισηΠροςΈλεγχο) τότε ( ήλωσε την αναζήτηση ως επιτυχή.) αλλιώς ( ήλωσε την αναζήτηση ως ανεπιτυχή.) ) τέλος αν 15 16

5 Ηδοµή βρόχου όσο (while) (Σχήµα 5.8) Η δοµή βρόχου επανέλαβε (repeat) (Σχήµα 5.9) Αλφαβητική ταξινόµηση της λίστας Fred, Alex, Diana, Byron, Carol (Σχήµα 5.10) Ο αλγόριθµος ταξινόµησης παρεµβολής σε ψευδοκώδικα (Σχήµα 5.11) διαδικασία Ταξινόµηση (Λίστα) Ν 2 όσο (η τιµή του Ν δεν υπερβαίνει το µήκος της Λίστας) κάνε (επίλεξε την Ν-οστή καταχώρηση της Λίστας ως οριακή καταχώρηση. Μετακίνησε την οριακή καταχώριση σε µία προσωρινή θέση, αφήνοντας ένα κενό στη Λίστα. όσο (υπάρχει κάποιο όνοµα επάνω από το κενό, και το όνοµα αυτό είναι µεγαλύτερο από την οριακή καταχώριση) κάνε (µετακίνησε το όνοµα που βρίσκεται επάνω από το κενό προς τα κάτω, αφήνοντας ένα κενό από πάνω του) Τοποθέτησε την οριακή καταχώριση στο κενό της Λίστας. Ν Ν + 1 ) 19 20

6 5.5 Αναδροµή Παράδειγµα: οι πύργοι του Hanoi Αναδροµικός αλγόριθµος: καλεί τον εαυτό του Μεθοδολογία: εκφράζουµε την διαδικασία µε βάση ιδίου τύπου διαδικασίες που λειτουργούν σε απλούστερα προβλήµατα, γνωρίζουµε την απάντηση για το πλέον απλό πρόβληµα factorial(n) = 1*2*3*...(N-1)*N = N*factorial(N-1) module factorial(n) if N=1 then answer = 1 else answer = N * factorial(n-1) 3 3 * * 1 Πρόβληµα: να µεταφέρουµε όλους τους δίσκους σε έναν άλλο πάσσαλο κουνώντας ένα δίσκο τη φορά, χωρίς ποτέ ένας δίσκος να τοποθετηθεί πάνω από µικρότερους δίσκους. 64 δίσκοι a b c Ψάχνουµε για αναδροµική σχέση: Πρόβληµα Α: µετάφερε 64 δίσκους από το a στο b Πρόβληµα Β: µετάφερε 63 δίσκους από το a στο c, µετάφερε τον τελευταίο δίσκο από το a στο b, µετάφερε 63 δίσκους από το c στο b Παράδειγµα: οι πύργοι του Hanoi (2) Παράδειγµα: οι πύργοι του Hanoi (3) 64 δίσκοι a b c πηγή προορισµός βοηθητικός module µεταφορά_πύργου (Ν, πηγή, προορισµός, βοηθητικός) if N=1 then µετακίνησε τον δίσκο από πηγή σε προορισµό else { µεταφορά_πύργου (Ν-1, πηγή, βοηθητικός, προορισµός); µετακίνησε 1 δίσκο από πηγή σε προορισµό; µεταφορά_πύργου (Ν-1, βοηθητικός, προορισµός, πηγή) } d1 d2 d3 module µεταφορά_πύργου (Ν, πηγή, προορισµός, βοηθητικός) if N=1 then µετακίνησε τον δίσκο από πηγή σε προορισµό else { µεταφορά_πύργου (Ν-1, πηγή, βοηθητικός, προορισµός); µετακίνησε 1 δίσκο από πηγή σε προορισµό; µεταφορά_πύργου (Ν-1, βοηθητικός, προορισµός, πηγή) } µ_π (3, a, b, c) µ_π (2, a, c, b) d2,a,c d3,a,b µ_π (2, c,b,a) d2,c,b µ_π (1, a, b, c) d1,a,b µ_π (1, b, c, a) d1,b,c µ_π (1, c,a,b) d1,c,a µ_π (1, a,b,c) d1,a,b 23 24

7 Ένα πρώτο προσχέδιο του αλγορίθµου της δυαδικής αναζήτησης (Σχήµα 5.13) Εφαρµογή της στρατηγικής µας για την αναζήτηση της καταχώρισης Κώστας σε µία λίστα (Σχήµα 5.12) αν ( Η Λίστα είναι άδεια) τότε (Ανάφερε ότι η αναζήτηση απέτυχε) αλλιώς [Επίλεξε τη µεσαία καταχώριση της Λίστας ως την ΚαταχώρισηΠροςΈλεγχο. Εκτέλεσε το παρακάτω µπλοκ εντολών που αντιστοιχεί στην κατάλληλη περίπτωση. περίπτωση 1: ΤιµήΣτόχος=ΚαταχώρισηΠροςΈλεγχο (Ανέφερε ότι η αναζήτηση είναι επιτυχής.) περίπτωση 2: ΤιµήΣτόχος<ΚαταχώρισηΠροςΈλεγχο (Ψάξε για την ΤιµήΣτόχο στο τµήµα της λίστας που προηγείται της ΚαταχώρισηΠροςΈλεγχο, και ανέφερε το αποτέλεσµα αυτής της αναζήτησης.) περίπτωση3: ΤιµήΣτόχος> ΚαταχώρισηΠροςΈλεγχο (Ψάξε για την ΤιµήΣτόχο στο τµήµα της λίστας µετά την ΚαταχώρισηΠροςΈλεγχο και ανάφερε το αποτέλεσµα αυτής της αναζήτησης.) ] τέλος αν Ο αλγόριθµος της δυαδικής αναζήτησης σε ψευδοκώδικα (Σχήµα 5.14) Ο αλγόριθµος της δυαδικής αναζήτησης (Σχήµα 5.15) ιαδικασία Αναζήτηση (Λίστα, ΤιµήΣτόχος) αν ( Η Λίστα είναι άδεια) τότε (Ανάφερε ότι η αναζήτηση απέτυχε) αλλιώς [Επίλεξε τη µεσαία καταχώριση της Λίστας ως την ΚαταχώρισηΠροςΈλεγχο. Εκτέλεσε το παρακάτω µπλοκ εντολών που αντιστοιχεί στην κατάλληλη περίπτωση. περίπτωση 1: ΤιµήΣτόχος=ΚαταχώρισηΠροςΈλεγχο (Ανέφερε ότι η αναζήτηση είναι επιτυχής.) περίπτωση 2: ΤιµήΣτόχος<ΚαταχώρισηΠροςΈλεγχο (Εφάρµοσε τη διαδικασία Αναζήτηση για να δεις αν η ΤιµήΣτόχος βρίσκεται στο τµήµα της λίστα που προηγείται της ΚαταχώρισηΠροςΈλεγχο, και ανέφερε το αποτέλεσµα αυτής της αναζήτησης.) περίπτωση3: ΤιµήΣτόχος> ΚαταχώρισηΠροςΈλεγχο (Εφάρµοσε τη διαδικασία Αναζήτηση για να δεις αν η ΤιµήΣτόχος βρίσκεται στο τµήµα της λίστα µετά την ΚαταχώρισηΠροςΈλεγχο, και ανέφερε το αποτέλεσµα αυτής της αναζήτησης.) ] τέλος αν 27 28

8 Ο αλγόριθµος της δυαδικής αναζήτησης (Σχήµα 5.16) Ο αλγόριθµος της δυαδικής αναζήτησης (Σχήµα 5.17) Αποδοτικότητα Λογισµικού Εφαρµογή της ταξινόµησης παρεµβολής σε ένα σενάριο χειρότερης περίπτωσης (Σχήµα 5.18) Μετριέται ως το πλήθος των εκτελούµενων εντολών. Ο συµβολισµός µε Θ προσδιορίζει την αποδοτικότητα των αλγορίθµων Παράδειγµα η ταξινόµηση παρεµβολής αναπαριστάται µε Θ(n 2 ) Καλύτερη, χειρότερη και µέση περίπτωση

9 Γράφηµα της ανάλυσης χειρότερης περίπτωσης του αλγορίθµου ταξινόµησης παρεµβολής (Σχήµα 5.19) Γράφηµα της ανάλυσης χειρότερης περίπτωσης του αλγορίθµου δυαδικής αναζήτησης (Σχήµα 5.20) Επαλήθευση λογισµικού Παράδειγµα προβλήµατος: ιαχωρισµός αλυσίδας Απόδειξη ορθότητας. Ισχυρισµοί. Προσυνθήκες. Αµετάβλητοι βρόχοι. Έλεγχοι. Ένας ταξιδιώτης έχει µία χρυσή αλυσίδα εφτά κρίκων. Πρέπει να µείνει σε ένα αποµονωµένο ξενοδοχείο για επτά νύχτες. Το ενοίκιο για κάθε νύχτα είναι ένας κρίκος από την αλυσίδα του. Ποιος είναι ο µικρότερος αριθµός κρίκων που πρέπει να κοπούν ώστε ο ταξιδιώτης να πληρώνει στο ξενοδοχείο έναν κρίκο από την αλυσίδα κάθε πρωί χωρίς να καταβάλει προκαταβολικά τη διαµονή του; 35 36

10 ιαχωρισµός της αλυσίδας µε τρία µόνο κοψίµατα (Σχήµα 5.21) ιαχωρισµός της αλυσίδας µε µόνο ένα κόψιµο (Σχήµα 5.23) Οι ισχυρισµοί που σχετίζονται µε µία τυπική δοµή όσο (while) (Σχήµα 5.23) 39

ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι

ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι 5.1 Η έννοια του αλγορίθµου 5.2 Αναπαράσταση αλγορίθµων 5.3 Επινόηση αλγορίθµων 5.4 Δοµές επανάληψης 5.5 Αναδροµικές δοµές 1 Αλγόριθµος: Ορισµός Ένας αλγόριθµος είναι ένα διατεταγµένο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι

ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι 5.1 Η έννοια του αλγορίθμου 5.2 Αναπαράσταση αλγορίθμων 5.3 Επινόηση αλγορίθμων 5.4 Δομές επανάληψης 5.5 Αναδρομικές δομές 5.6 Απόδοση και ορθότητα Οι διαφάνειες βασίζονται σε μεγάλο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι

ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι 5.1 Η έννοια του αλγορίθμου 5.2 Αναπαράσταση αλγορίθμων 5.3 Επινόηση αλγορίθμων 5.4 Δομές επανάληψης 5.5 Αναδρομικές δομές 5.6 Απόδοση και ορθότητα Οι διαφάνειες βασίζονται σε μεγάλο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι

ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι Αρχικές έννοιες Αναπαράσταση αλγορίθμων Διαγράμματα ροής και δομές επανάληψης Αλγόριθμος σειριακής αναζήτησης Αλγόριθμος αλφαβητικής ταξινόμησης Αναδρομικοί αλγόριθμοι Αλγόριθμος

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Εισαγωγή στην πληροφορική Ενότητα 5: ΑΛΓΟΡΙΘΜΟΙ Πασχαλίδης Δημοσθένης Τμήμα Διαχείρισης Εκκλησιαστικών Κειμηλίων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση

Διαβάστε περισσότερα

ιδάσκων: ηµήτρης Ζεϊναλιπούρ

ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 1.3-1.4: Εισαγωγή Στον Προγραµµατισµό ( ιάλεξη 2) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Περιεχόµενα Εισαγωγικές Έννοιες - Ορισµοί Ο κύκλος ανάπτυξης προγράµµατος Παραδείγµατα Πότε χρησιµοποιούµε υπολογιστή?

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

Αναδρομικοί Αλγόριθμοι

Αναδρομικοί Αλγόριθμοι Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 5

Λύσεις Σειράς Ασκήσεων 5 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 5 Να υπολογίσετε τις ασθενέστερες προσυνθήκες έτσι ώστε οι πιο κάτω προδιαγραφές να είναι ορθές σύμφωνα (i) με την έννοια της μερικής ορθότητας και (ii) με την έννοια της

Διαβάστε περισσότερα

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5.1 Εισαγωγή στους αλγορίθμους 5.1.1 Εισαγωγή και ορισμοί Αλγόριθμος (algorithm) είναι ένα πεπερασμένο σύνολο εντολών οι οποίες εκτελούν κάποιο ιδιαίτερο έργο. Κάθε αλγόριθμος

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου;

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 5.1 Επίδοση αλγορίθμων Μέχρι τώρα έχουμε γνωρίσει διάφορους αλγόριθμους (αναζήτησης, ταξινόμησης, κ.α.). Στο σημείο αυτό θα παρουσιάσουμε ένα τρόπο εκτίμησης της επίδοσης (performance) η της αποδοτικότητας

Διαβάστε περισσότερα

3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ. n! = 1*2*3*..(n-1)*n. n! = 1 αν n = 0, = n*(n-1)! αν n > ΑΝΑ ΡΟΜΗ Εισαγωγή

3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ. n! = 1*2*3*..(n-1)*n. n! = 1 αν n = 0, = n*(n-1)! αν n > ΑΝΑ ΡΟΜΗ Εισαγωγή 3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ 3.1 ΑΝΑ ΡΟΜΗ 3.1.1 Εισαγωγή ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Αναδροµή είναι η µέθοδος κατά την οποία, σε µία γλώσσα προγραµµατισµού, µία διαδικασία ή συνάρτηση έχει την δυνατότητα

Διαβάστε περισσότερα

11/23/2014. Στόχοι. Λογισμικό Υπολογιστή

11/23/2014. Στόχοι. Λογισμικό Υπολογιστή ονάδα Δικτύων και Επικοινωνιών ΗΥ Τομέας Πληροφορικής, αθηματικών και Στατιστικής ΓΕΩΠΟΙΚΟ ΠΑΕΠΙΣΤΗΙΟ ΑΘΗΩ Εισαγωγή στην Επιστήμη των ΗΥ άθημα-4 url: http://openeclass.aua.gr (AOA0) Λογισμικό Υπολογιστή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β. Καβακλή. Χειμερινό Εξάμηνο 2001

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β. Καβακλή. Χειμερινό Εξάμηνο 2001 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Διδάσκουσα Δρ Β. Καβακλή Χειμερινό Εξάμηνο 2001 1 Ανάλυση προβλήματος Η σωστή αντιμετώπιση

Διαβάστε περισσότερα

Αναδροµή. Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής

Αναδροµή. Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής Αναδροµή Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής 1 Αναδροµή Βασική έννοια στα Μαθηµατικά και στην Πληροφορική.

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος Εισαγωγή στους Αλγόριθµους Αλγόριθµοι Τι είναι αλγόριθµος; Τι µπορεί να υπολογίσει ένας αλγόριθµος; Πως αξιολογείται ένας αλγόριθµος; Παύλος Εφραιµίδης pefraimi@ee.duth.gr Αλγόριθµοι Εισαγωγικές Έννοιες

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη Μάθηµα 2 ο. Αλγόριθµοι και Αφηρηµένοι Τύποι εδοµένων. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη Μάθηµα 2 ο. Αλγόριθµοι και Αφηρηµένοι Τύποι εδοµένων. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 2 ο Αλγόριθµοι και Αφηρηµένοι Τύποι εδοµένων Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Αλγόριθµοι Ορισµός Παράδειγµα Ασυµπτωτική

Διαβάστε περισσότερα

ÔÏÕËÁ ÓÁÑÑÇ ÊÏÌÏÔÇÍÇ

ÔÏÕËÁ ÓÁÑÑÇ ÊÏÌÏÔÇÍÇ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Παρασκευή 25 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Διαβάστε περισσότερα

Προγραµµατισµός Η/Υ. Μέρος2

Προγραµµατισµός Η/Υ. Μέρος2 Προγραµµατισµός Η/Υ Μέρος2 Περιεχόμενα Επανάληψη Βασικών Σύμβολων Διαγραμμάτων Ροής Αλγόριθμος Ψευδοκώδικας Παραδείγματα Αλγορίθμων Γλώσσες προγραμματισμού 2 Επανάληψη Βασικών Σύμβολων Διαγραμμάτων Ροής

Διαβάστε περισσότερα

ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δρ. Κόννης Γιώργος Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής Προγραμματισμός Στόχοι 1 Να περιγράψουμε τις έννοιες του Υπολογιστικού Προβλήματος και του Προγράμματος/Αλγορίθμου

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόµων Τοπογράφων Μηχανικών Εισαγωγή στην πληροφορική Βασίλειος Βεσκούκης ρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Η γλώσσα προγραµµατισµού

Διαβάστε περισσότερα

Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Αναζήτηση. Σειριακή αναζήτηση. Δυαδική Αναζήτηση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Παραδοχή Στη συνέχεια των διαφανειών (διαλέξεων) η ασυμπτωτική έκφραση (συμβολισμός Ο, Ω, Θ) του χρόνου

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων

ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Σχετικές έννοιες 8.3 Υλοποίηση δοµών δεδοµένων 8.4 Μια σύντοµη µελέτη περίπτωσης 8.5 Προσαρµοσµένοι τύποι δεδοµένων 1 Βασικές δοµές

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 3: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ν!=1*2*3* *(N-1) * N => N! = (Ν-1)! * N έτσι 55! = 54! * 55

Ν!=1*2*3* *(N-1) * N => N! = (Ν-1)! * N έτσι 55! = 54! * 55 ΑΝΑ ΡΟΜΗ- ΑΣΚΗΣΕΙΣ Μια µέθοδος είναι αναδροµική όταν καλεί τον εαυτό της και έχει µια συνθήκη τερµατισµού π.χ. το παραγοντικό ενός αριθµού Ν, µπορεί να καλεί το παραγοντικό του αριθµού Ν-1 το παραγοντικό

Διαβάστε περισσότερα

ΕΠΛ 034: Εισαγωγήστον ΠρογραµµατισµόγιαΗΜΥ

ΕΠΛ 034: Εισαγωγήστον ΠρογραµµατισµόγιαΗΜΥ ΕΠΛ 034: Εισαγωγήστον ΠρογραµµατισµόγιαΗΜΥ Αχιλλέας Αχιλλέως, Τµήµα Πληροφορικής, Πανεπιστήµιο Κύπρου Email: achilleas@cs.ucy.ac.cy Κεφάλαιο 2 ΠρογραµµατισµόςΗ/Υ Θέµατα ιάλεξης οµή Προγράµµατος C Μεθοδολογία

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2. Ε. Μαρκάκης Επικ. Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2. Ε. Μαρκάκης Επικ. Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2 Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Εµπειρική ανάλυση αλγορίθµων Μαθηµατική ανάλυση αλγορίθµων Αύξηση συναρτήσεων Συµβολισµός µεγάλου όµικρον Παραδείγµατα

Διαβάστε περισσότερα

Περιεχόµενα. Ανασκόπηση - Ορισµοί. Ο κύκλος ανάπτυξης προγράµµατος. Γλώσσες Προγραµµατισµού Ασκήσεις

Περιεχόµενα. Ανασκόπηση - Ορισµοί. Ο κύκλος ανάπτυξης προγράµµατος. Γλώσσες Προγραµµατισµού Ασκήσεις Προγραµµατισµός Η/Υ Ανασκόπηση - Ορισµοί Περιεχόµενα Ο κύκλος ανάπτυξης προγράµµατος Περιγραφή προβλήµατος Ανάλυση προβλήµατος Λογικό ιάγραµµα Ψευδοκώδικας Κωδικοποίηση Συντήρηση Γλώσσες Προγραµµατισµού

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)

Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης ΚΕΦΑΛΑΙΟ 1ο 3ο 1. Συμπληρώστε τα κενά με τη λέξη που λείπει. α. Ένα πρόβλημα το χωρίζουμε σε άλλα απλούστερα, όταν είναι ή όταν έχει τρόπο επίλυσης. β. Η επίλυση ενός προβλήματος προϋποθέτει την του. γ.

Διαβάστε περισσότερα

Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL)

Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Pascal- Εισαγωγή Η έννοια του προγράμματος Η επίλυση ενός προβλήματος με τον υπολογιστή περιλαμβάνει, όπως έχει ήδη αναφερθεί, τρία εξίσου

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος Ερωτήσεις Σωστό - Λάθος 1. Ο αλγόριθµος πρέπει να τερµατίζεται µετά από εκτέλεση πεπερασµένου αριθµού εντολών. 2. Η είσοδος σε έναν αλγόριθµο µπορεί να είναι έξοδος σε έναν άλλο αλγόριθµο. 3. Ένας αλγόριθµος

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 6α: Αναζήτηση Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα

Ψευδοκώδικας. November 7, 2011

Ψευδοκώδικας. November 7, 2011 Ψευδοκώδικας November 7, 2011 Οι γλώσσες τύπου ψευδοκώδικα είναι ένας τρόπος περιγραφής αλγορίθμων. Δεν υπάρχει κανένας τυπικός ορισμός της έννοιας του ψευδοκώδικα όμως είναι κοινός τόπος ότι οποιαδήποτε

Διαβάστε περισσότερα

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Προγραμματιστικές Τεχνικές

Προγραμματιστικές Τεχνικές Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Προγραμματιστικές Τεχνικές Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ Επικ. Καθηγητής ΕΜΠ v.vescoukis@cs.ntua.gr

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήµη των Η/Υ

Εισαγωγή στην Επιστήµη των Η/Υ Εισαγωγή στην Επιστήµη των Η/Υ Εισαγωγή στην Επιστήµη των Η/Υ Εισαγωγή Καθ. Κ. Κουρκουµπέτης Σηµείωση: Οι διαφάνειες βασίζονται σε µεγάλο βαθµό σε αυτές που συνοδεύονται µε το προτεινόµενο σύγγραµµα. 1

Διαβάστε περισσότερα

ΠαράδειγµαΠρογραµµατισµού

ΠαράδειγµαΠρογραµµατισµού Προγραµµατισµός Η/Υ Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Μεθοδολογία Προγραµµατισµού Αφαιρετικότητα Ροή Ελέγχου/ εδοµένων Βιβλίο µαθήµατος: Chapter 1,, Sec. 4-54 ΕΠΛ 131 Αρχές Προγραµµατισµού

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ Β κ Θέµα ο A. Να γράψετε τον αριθµό καθεµιάς από τις παρακάτω προτάσεις και δίπλα το γράµµα Σ αν είναι σωστή ή το γράµµα Λ αν είναι λανθασµένη.. Ο αλγόριθµος είναι

Διαβάστε περισσότερα

for for for for( . */

for for for for( . */ Εισαγωγή Στον Προγραµµατισµό «C» Βρόχοι Επανάληψης Πανεπιστήµιο Πελοποννήσου Τµήµα Πληροφορικής & Τηλεπικοινωνιών Νικόλαος Δ. Τσελίκας Νικόλαος Προγραµµατισµός Δ. Τσελίκας Ι Ο βρόχος for Η εντολή for χρησιµοποιείται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΒΙΟΜΗΧΑΝΙΚΗΣ ΙΟΙΚΗΣΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΒΙΟΜΗΧΑΝΙΚΗΣ ΙΟΙΚΗΣΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΒΙΟΜΗΧΑΝΙΚΗΣ ΙΟΙΚΗΣΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΙΑΧΕΙΡΙΣΗ Ε ΟΜΕΝΩΝ ΚΑΙ ΓΛΩΣΣΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ (Β ΕΞΑΜΗΝΟ) ιδάσκων: Επ. Καθηγητής Γρηγόρης Χονδροκούκης ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ Η ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 9: Αναδρομή

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 9: Αναδρομή ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 9: Αναδρομή Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Αναδροµή 24 Αναδροµή Πληροφορική Ι Μ. ρακόπουλος 24 Αναδροµικές µέθοδοι Μια µέθοδος καλεί τον εαυτό της

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα ιοικητικής Επιστήµης & Τεχνολογίας ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Κεφάλαιο 8 Προχωρηµένα Θέµατα Προγραµµατισµού C Γιώργος Γιαγλής Περίληψη Κεφαλαίου 8 Προχωρηµένα

Διαβάστε περισσότερα

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/courses/algorithms/ auth 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο του προβλήματος

Διαβάστε περισσότερα

Ανάπτυξη εφαρµογών σε προγραµµατιστικό περιβάλλον (στοιχεία θεωρίας)

Ανάπτυξη εφαρµογών σε προγραµµατιστικό περιβάλλον (στοιχεία θεωρίας) Ανάπτυξη εφαρµογών σε προγραµµατιστικό περιβάλλον (στοιχεία θεωρίας) Εισαγωγή 1. Τι είναι αυτό που κρατάς στα χέρια σου. Αυτό το κείµενο είναι µια προσπάθεια να αποτυπωθεί όλη η θεωρία του σχολικού µε

Διαβάστε περισσότερα

Αναδρομή Ανάλυση Αλγορίθμων

Αναδρομή Ανάλυση Αλγορίθμων Αναδρομή Ανάλυση Αλγορίθμων Παράδειγμα: Υπολογισμός του παραγοντικού Ορισμός του n! n! = n x (n - 1) x x 2 x 1 Ο παραπάνω ορισμός μπορεί να γραφεί ως n! = 1 αν n = 0 n x (n -1)! αλλιώς Παράδειγμα (συνέχ).

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΛΟΓΙΣΜΙΚΟΥ Η γλώσσα προγραμματισμού C ΕΡΓΑΣΤΗΡΙΟ 2: Εκφράσεις, πίνακες και βρόχοι 14 Απριλίου 2016 Το σημερινό εργαστήριο

Διαβάστε περισσότερα

5.1. Προσδοκώμενα αποτελέσματα

5.1. Προσδοκώμενα αποτελέσματα 5.1. Προσδοκώμενα αποτελέσματα Όταν θα έχεις ολοκληρώσει τη μελέτη αυτού του κεφαλαίου θα έχεις κατανοήσει τις τεχνικές ανάλυσης των αλγορίθμων, θα μπορείς να μετράς την επίδοση των αλγορίθμων με βάση

Διαβάστε περισσότερα

Ενότητα: Δυαδική Αναζήτηση Σχέδιο Δραστηριότητας: Παιχνίδι: Βρες τον αριθμό

Ενότητα: Δυαδική Αναζήτηση Σχέδιο Δραστηριότητας: Παιχνίδι: Βρες τον αριθμό Ενότητα: Δυαδική Αναζήτηση Σχέδιο Δραστηριότητας: Παιχνίδι: Βρες τον αριθμό 1 Εισαγωγή Σκεφτείτε έναν αριθμό από το 1 έως το 1000 και απαντήστε στην ερώτηση: Ο αριθμός που σκεφτήκατε είναι μεγαλύτερος

Διαβάστε περισσότερα

εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και

εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και Παύλος Εφραιμίδης 1 περιεχόμενα ενθετική ταξινόμηση ανάλυση αλγορίθμων σχεδίαση αλγορίθμων 2 ενθετική ταξινόμηση 3 ενθετική ταξινόμηση Βασική αρχή: Επιλέγει ένα-έναταστοιχείατηςμηταξινομημένης ακολουθίας

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόµων Τοπογράφων Μηχανικών Εισαγωγή στην πληροφορική Βασίλειος Βεσκούκης ρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Αλγόριθµοι, στοιχεία

Διαβάστε περισσότερα

Αλγόριθμοι Αναζήτησης

Αλγόριθμοι Αναζήτησης Αλγόριθμοι Αναζήτησης ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Μαθησιακές δυσκολίες ΙΙ. Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας

Μαθησιακές δυσκολίες ΙΙ. Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας Μαθησιακές δυσκολίες ΙΙ Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας Μάρτιος 2010 Προηγούμενη διάλεξη Μαθησιακές δυσκολίες Σε όλες

Διαβάστε περισσότερα

Κεφάλαια Εντολές επανάληψης. Τρεις εντολές επανάληψης. Επιλογή εντολής επανάληψης ΟΣΟ...ΕΠΑΝΑΛΑΒΕ. Σύνταξη στη ΓΛΩΣΣΑ

Κεφάλαια Εντολές επανάληψης. Τρεις εντολές επανάληψης. Επιλογή εντολής επανάληψης ΟΣΟ...ΕΠΑΝΑΛΑΒΕ. Σύνταξη στη ΓΛΩΣΣΑ Εντολές επανάληψης Κεφάλαια 02-08 οµές Επανάληψης Επιτρέπουν την εκτέλεση εντολών περισσότερες από µία φορά Οι επαναλήψεις ελέγχονται πάντοτε από κάποια συνθήκη η οποία καθορίζει την έξοδο από το βρόχο

Διαβάστε περισσότερα

Χαρακτηριστικά αναδροµής

Χαρακτηριστικά αναδροµής Χαρακτηριστικά αναδροµής base case : συνθήκη τερµατισµού της αναδροµής Όταν το πρόβληµα είναι αρκετά µικρό ή απλό ώστε η λύση να είναι άµεση αναδροµικό βήµα : κλήση της ίδιας συνάρτησης για µικρότερη ή

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική II. Ενότητα 2 : Αλγόριθμοι. Δρ. Γκόγκος Χρήστος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική II. Ενότητα 2 : Αλγόριθμοι. Δρ. Γκόγκος Χρήστος 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική II Ενότητα 2 : Αλγόριθμοι Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής & Ελεγκτικής

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Α2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών Α3. Ο αλγόριθμος

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ερωτήσεις επανάληψης

ΕΙΣΑΓΩΓΗ ΣΤΑ ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ερωτήσεις επανάληψης ΕΙΣΑΓΩΓΗ ΣΤΑ ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Τι είναι το λειτουργικό σύστημα; Λειτουργικό Σύστημα είναι ένα σύνολο προγραμμάτων που ελέγχει τη λειτουργία του υπολογιστή και προσφέρει υπηρεσίες στους χρήστες.

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 4η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Ευσταθές Ταίριασμα Πρόβλημα Ευσταθούς Ταιριάσματος

Διαβάστε περισσότερα

ΕΠΑΛΗΘΕΥΣΗ ΠΡΟΓΡΑΜΜΑΤΩΝ Ι

ΕΠΑΛΗΘΕΥΣΗ ΠΡΟΓΡΑΜΜΑΤΩΝ Ι ΕΠΑΛΗΘΕΥΣΗ ΠΡΟΓΡΑΜΜΑΤΩΝ Ι Η τυπική επαλήθευση βάση μοντέλου είναι κατάλληλη για συστήματα επικοινωνούντων διεργασιών (π.χ. κατανεμημένα συστήματα) όπου το βασικό πρόβλημα είναι ο έλεγχος αλλά γενικά δεν

Διαβάστε περισσότερα

ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΕΙΣ

ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΕΙΣ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΕΙΣ. ΚΑΤΕΥΘΥΝΣΗ ΔΙΟΙΚΗΣΗΣ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ Πληροφορική I "Προγραμματισμός" B. Φερεντίνος

Διαβάστε περισσότερα

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική

Διαβάστε περισσότερα

Απλοποιεί τα γεγονότα έτσι ώστε να περιγράφει τι έχει γίνει και όχι πως έχει γίνει.

Απλοποιεί τα γεγονότα έτσι ώστε να περιγράφει τι έχει γίνει και όχι πως έχει γίνει. οµηµένες τεχνικές Ο στόχος των δοµηµένων τεχνικών είναι: Υψηλής ποιότητας προγράµµατα Εύκολη τροποποίηση προγραµµάτων Απλοποιηµένα προγράµµατα Μείωση κόστους και χρόνου ανάπτυξης. Οι βασικές αρχές τους

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 6η Διάλεξη Αναδροµικές Εξισώσεις και Αφηρηµένοι Τύποι Δεδοµένων. Ε. Μαρκάκης

Δοµές Δεδοµένων. 6η Διάλεξη Αναδροµικές Εξισώσεις και Αφηρηµένοι Τύποι Δεδοµένων. Ε. Μαρκάκης Δοµές Δεδοµένων 6η Διάλεξη Αναδροµικές Εξισώσεις και Αφηρηµένοι Τύποι Δεδοµένων Ε. Μαρκάκης Περίληψη Χρήση αναδροµικών εξισώσεων στην ανάλυση αλγορίθµων Αφηρηµένοι τύποι δεδοµένων Συλλογές στοιχείων Στοίβα

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 10 ΟΥ ΚΕΦΑΛΑΙΟΥ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ 1. Πως ορίζεται ο τμηματικός προγραμματισμός; Τμηματικός προγραμματισμός

Διαβάστε περισσότερα

Εισαγωγή στην C. Μορφή Προγράµµατος σε γλώσσα C

Εισαγωγή στην C. Μορφή Προγράµµατος σε γλώσσα C Εισαγωγή στην C Μορφή Προγράµµατος σε γλώσσα C Τµήµα Α Με την εντολή include συµπεριλαµβάνω στο πρόγραµµα τα πρότυπα των συναρτήσεων εισόδου/εξόδου της C.Το αρχείο κεφαλίδας stdio.h είναι ένας κατάλογος

Διαβάστε περισσότερα

Προγραµµατισµός στην Basic

Προγραµµατισµός στην Basic Προγραµµατισµός στην Basic 1. εντολή εισόδου Χρησιµοποιείται η εντολή INPUT, η οποία µπορεί να συνταχθεί : α. INPUT X, αν το δεδοµένο που ζητάει είναι αριθµητικό ή β. INPUT X$, αν το δεδοµένο που ζητάει

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήµη των Η/Υ

Εισαγωγή στην Επιστήµη των Η/Υ Εισαγωγή στην Επιστήµη των Η/Υ Καθ. Κ. Κουρκουµπέτης Οι διαφάνειες βασίζονται σε µεγάλο βαθµό σε αυτές που συνοδεύονται µε το προτεινόµενο σύγγραµµα. 1 Εισαγωγή στην Επιστήµη των Η/Υ Εισαγωγή 2 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, Εφαρµογές στοιβών Στην ενότητα αυτή θα µελετηθεί η χρήση στοιβών στις εξής εφαρµογές: Αναδροµικές συναρτήσεις Ισοζυγισµός Παρενθέσεων Αντίστροφος Πολωνικός Συµβολισµός ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Αλγόριθμοι. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος

Προγραμματισμός Η/Υ. Αλγόριθμοι. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Προγραμματισμός Η/Υ Αλγόριθμοι ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Ανάπτυξη Λογισμικού Η διαδικασία ανάπτυξης λογισμικού μπορεί να παρομοιαστεί

Διαβάστε περισσότερα

Δομές Δεδομένων Ενότητα 2

Δομές Δεδομένων Ενότητα 2 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Θέματα Απόδοσης Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη Επιλογή και επανάληψη Η ύλη που αναπτύσσεται σε αυτό το κεφάλαιο είναι συναφής µε την ύλη που αναπτύσσεται στο 2 ο κεφάλαιο. Όπου υπάρχουν διαφορές αναφέρονται ρητά. Προσέξτε ιδιαίτερα, πάντως, ότι στο

Διαβάστε περισσότερα

Ανάλυση Αλγορίθµων. Σύντοµη επανάληψη (ΕΠΛ 035).

Ανάλυση Αλγορίθµων. Σύντοµη επανάληψη (ΕΠΛ 035). Ανάλυση Αλγορίθµων Σύντοµη επανάληψη (ΕΠΛ 035). Περίληψη Ανάλυση αλγορίθµων Ο, Θ, Ω Ανάλυση µη αναδροµικών αλγόριθµων Ανάλυση αναδροµικών αλγόριθµων Εµπειρική Ανάλυση Visualization Απόδοση Αλγορίθµων Απόδοση

Διαβάστε περισσότερα

ΛΟΓΙΚΑ ΔΙΑΓΡΑΜΜΑΤΑ. Γ Λυκείου Κατεύθυνσης Mike Trimos

ΛΟΓΙΚΑ ΔΙΑΓΡΑΜΜΑΤΑ. Γ Λυκείου Κατεύθυνσης Mike Trimos ΛΟΓΙΚΑ ΔΙΑΓΡΑΜΜΑΤΑ Γ Λυκείου Κατεύθυνσης Mike Trimos Βήματα Ανάπτυξης ενός Συστήματος 1.Ορισμός και κατανόηση του προβλήματος 2.Ανάλυση του προβλήματος 3.Σχεδιασμός Αλγοριθμικής Λύσης 4.Κωδικοποίηση 5.Διόρθωση

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2007 ΕΚΦΩΝΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2007 ΕΚΦΩΝΗΣΕΙΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2007 ΘΕΜΑ 1ο ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις

Διαβάστε περισσότερα

Αλγόριθμοι. Χαρίκλεια Τσαλαπάτα 29/2/2012

Αλγόριθμοι. Χαρίκλεια Τσαλαπάτα 29/2/2012 Αλγόριθμοι Χαρίκλεια Τσαλαπάτα 29/2/2012 Αλγόριθμος Θεμελιώδης έννοια της πληροφορικής Είναι πεπερασμένη σειρά βημάτων για την επίλυση δεδομένου προβλήματος Αλγοριθμική σκέψη: η διαδικασία ανάπτυξης αλγορίθμων

Διαβάστε περισσότερα

1 Πρότυπο Πειραματικό Λύκειο Θεσσαλονίκης «Μανόλης Ανδρόνικος» Διαγωνισμός Γρίφων Μάιος 2012

1 Πρότυπο Πειραματικό Λύκειο Θεσσαλονίκης «Μανόλης Ανδρόνικος» Διαγωνισμός Γρίφων Μάιος 2012 ο 1 Πρότυπο Πειραματικό Λύκειο Θεσσαλονίκης «Μανόλης Ανδρόνικος» Διαγωνισμός Γρίφων Μάιος 2012 Γρίφος 1 ος Ένας έχει μια νταμιτζάνα με 20 λίτρα κρασί και θέλει να δώσει σε φίλο του 1 λίτρο. Πώς μπορεί

Διαβάστε περισσότερα

Πατώντας την επιλογή αυτή, ανοίγει ένα παράθυρο που έχει την ίδια μορφή με αυτό που εμφανίζεται όταν δημιουργούμε μία μεταβλητή.

Πατώντας την επιλογή αυτή, ανοίγει ένα παράθυρο που έχει την ίδια μορφή με αυτό που εμφανίζεται όταν δημιουργούμε μία μεταβλητή. Λίστες Τι είναι οι λίστες; Πολλές φορές στην καθημερινή μας ζωή, χωρίς να το συνειδητοποιούμε, χρησιμοποιούμε λίστες. Τέτοια παραδείγματα είναι η λίστα του super market η οποία είναι ένας κατάλογος αντικειμένων

Διαβάστε περισσότερα

Δεδομένα Ζητούμενο Επίλυση Κατανόηση «περιβάλλον»

Δεδομένα Ζητούμενο Επίλυση Κατανόηση «περιβάλλον» Η έννοια του προβλήματος Γενικά ως πρόβλημα θεωρούμε κάθε ζήτημα που τίθεται προς επίλυση, κάθε κατάσταση που μας απασχολεί και πρέπει να αντιμετωπιστεί. Τα προβλήματα που καλούμαστε να επιλύσουμε στο

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Αναζήτηση και ταξινόμηση

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Αναζήτηση και ταξινόμηση ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Αναζήτηση και ταξινόμηση Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Αναζήτηση και ταξινόµηση 7 Αναζήτηση (search) Πρόβληµα: αναζήτηση της καταχώρησης key στη

Διαβάστε περισσότερα

Chapter 6. Problem Solving and Algorithm Design. Στόχοι Ενότητας. Επίλυση προβληµάτων. Εισαγωγή. Nell Dale John Lewis

Chapter 6. Problem Solving and Algorithm Design. Στόχοι Ενότητας. Επίλυση προβληµάτων. Εισαγωγή. Nell Dale John Lewis Στόχοι Ενότητας Chapter 6 Problem Solving and Algorithm Design Nell Dale John Lewis Αναγνώριση αν ένα πρόβληµα µπορεί να επιλυθεί µε τη χρήση υπολογιστή Περιγραφή της διαδικασίας επίλυσης προβληµάτων και

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα ιοικητικής Επιστήµης & Τεχνολογίας ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Κεφάλαιο 6 ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Γιώργος Γιαγλής Το σηµερινό µάθηµα Ταξινόµηση γλωσσών

Διαβάστε περισσότερα

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind

Διαβάστε περισσότερα

Πανεπιστήµιο Αθηνών. Τµήµα Πληροφορικής και Τηλεπικοινωνιών. Παραλληλία. Κ. Χαλάτσης, Εισαγωγή στην Επιστήµη της Πληροφορικής και των Τηλεπικοινωνιών

Πανεπιστήµιο Αθηνών. Τµήµα Πληροφορικής και Τηλεπικοινωνιών. Παραλληλία. Κ. Χαλάτσης, Εισαγωγή στην Επιστήµη της Πληροφορικής και των Τηλεπικοινωνιών Αλγόριθµοι-Προγραµµατισµός /2 Παραλληλία οµές εδοµένων Παραλληλία (Parallelism) Παραλληλία, ταυτοχρονισµός Παράλληλος αλγόριθµος - σειριακός αλγόριθµος Παράδειγµα : υπολογισµός κέρδους module σειριακό_κέρδος(λ_α,

Διαβάστε περισσότερα

Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον

Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον Λύσεις µε κατάλληλο σχολιασµό και παρατηρήσεις σε θέµατα από παλαιότερες πανελλαδικές εξετάσεις. Γενικές οδηγίες και παρατηρήσεις κατά την αντιµετώπιση

Διαβάστε περισσότερα

Περι-γράφοντας... βρόχους

Περι-γράφοντας... βρόχους Όνομα(τα): Όνομα Η/Υ: Σ Τμήμα: Ημερομηνία: Περι-γράφοντας... βρόχους Ξεκινήστε το Χώρο Δραστηριοτήτων, επιλέξτε τη θεματική ενότητα: ΘΕ05: Επανάληψη και επιλέξτε την πρώτη δραστηριότητα (Περι-γράφοντας...

Διαβάστε περισσότερα

ΕΠΛ 001: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. Προγραμματισμός

ΕΠΛ 001: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. Προγραμματισμός ΕΠΛ 001: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Προγραμματισμός Στόχοι 1 Να περιγράψουμε τις έννοιες του υπολογιστικού προβλήματος και του αλγορίθμου. Να περιγράψουμε την πορεία από ένα υπολογιστικό πρόβλημα

Διαβάστε περισσότερα

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων Κατ οίκον Εργασία 2 Σκελετοί Λύσεων 1. (α) Αλγόριθµος: ηµιούργησε το σύνολο P που αποτελείται από τα άκρα όλων των ευθυγράµµων τµηµάτων. Βρες το κυρτό περίβληµα του P µε τον αλγόριθµο του Graham. Ορθότητα:

Διαβάστε περισσότερα

Ορισµοί κεφαλαίου. Σηµαντικά σηµεία κεφαλαίου

Ορισµοί κεφαλαίου. Σηµαντικά σηµεία κεφαλαίου Ορισµοί κεφαλαίου Αλγόριθµος είναι µια πεπερασµένη σειρά ενεργειών, αυστηρά καθορισµένων και εκτελέσιµων σε πεπερασµένο χρόνο, που στοχεύουν στην επίλυση ενός προβλήµατος. Σηµαντικά σηµεία κεφαλαίου Κριτήρια

Διαβάστε περισσότερα

Δοµές Δεδοµένων και Αλγόριθµοι - Εισαγωγή

Δοµές Δεδοµένων και Αλγόριθµοι - Εισαγωγή Δοµές Δεδοµένων και Αλγόριθµοι - Εισαγωγή Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Εισαγωγή στις έννοιες Αλγόριθµοι και Πολυπλοκότητα, Οργάνωση Δεδοµένων και Δοµές Δεδοµένων Χρήσιµοι µαθηµατικοί

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης ΕΠ.1 Να αναπτυχθεί αλγόριθμος που θα εκτυπώνει τους διψήφιους άρτιους ακέραιους. Η άσκηση στην ουσία θα πρέπει να εκτυπώσει του αριθμούς 10, 12, 14,.,96, 98. Μεμιαπρώτηματιάθαμπορούσαμενατηνλύσουμεμετοναπροσπελάσουμετιςτιμές

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #3

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #3 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #3 «Προγραμματισμός Η/Υ» - Τετράδιο Εργαστηρίου #3 2 Γενικά Στο Τετράδιο #3 του Εργαστηρίου θα εξοικειωθούμε με τη χρήση της εντολής πολλαπλής

Διαβάστε περισσότερα

Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ

Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ Περιεχόμενα Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23 Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ 1. Επαναληπτικοί αλγόριθμοι: Μέτρα προόδου και αναλλοίωτες συνθήκες.....................................................29

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα