ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι"

Transcript

1 ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι 5.1 Η έννοια του αλγορίθμου 5.2 Αναπαράσταση αλγορίθμων 5.3 Επινόηση αλγορίθμων 5.4 Δομές επανάληψης 5.5 Αναδρομικές δομές 5.6 Απόδοση και ορθότητα Οι διαφάνειες βασίζονται σε μεγάλο βαθμό σε αυτές που συνοδεύονται με το προτεινόμενο σύγγραμμα, καθώς και στις διαφάνειες προηγούμενων ετών του κ. Κουρκουμπέτη. 1

2 Αλγόριθμος: Ορισμός Ένας αλγόριθμος είναι ένα διατεταγμένο σύνολο, πεπερασμένων, σαφώς ορισμένων, εκτελέσιμων βημάτων, το οποίο ορίζει μία τερματιζόμενη διαδικασία. Έχουμε ήδη δει αλγορίθμους για: μετατροπής δεκαδικής αναπάραστασης αριθμού σε δυαδική Ανίχνευση και διόρθωση σφαλμάτων Έλεγχο πολλών διεργασιών από το λειτουργικό σύστημα Τον κύκλο μηχανής μιας CPU: 2

3 Αλγόριθμος: Ορισμός (2) Διατεταγμένο (ordered) σύνολο βημάτων: που να ξεχωρίζουν Όχι απαραίτητα να εκτελούνται με τη σειρά (π.χ. παράλληλοι αλγόριθμοι για πολλούς επεξεργαστές ή για πολλαπλά threads) Πεπερασμένα (finite): Σαφώς ορισμένα (unambiguous): να μην είναι αόριστα και να προκύπτουν κατά την διαδικασία Eκτελέσιμα βήματα: π.χ. όχι κάτι σαν το οποίο ορίζει μία τερματιζόμενη διαδικασία Αν και ορίζονται και αλγόριθμοι για ατέρμονες διεργασίες, π.χ. Διαίρεση του 1 με το 3 3

4 Αλγόριθμοι, προγράμματα και γλώσσες είσοδος Αλγόριθμος έξοδος αλγόριθμοι που τερματίζουν ή δεν τερματίζουν πως να περιγράψουμε έναν αλγόριθμο; φυσική γλώσσα (ελληνικά, αγγλικά) είναι ασαφής «μαζεύετε τριαντάφυλλα όσο σας επιτρέπεται» Γλώσσα προγραμματισμού: εύκολη και περιεκτική έκφραση αλγορίθμων άμεσα κατανοητή από υπολογιστές και ανθρώπους περιορισμός λαθών 4

5 Αλγόριθμοι : επίπεδα αφαίρεσης Ένα πρόβλημα αποτελεί το κίνητρο για την επινόηση ενός αλγόριθμου. Ο αλγόριθμος είναι μια διαδικασία επίλυσης του προβλήματος αυτού. Συνήθως μία διαδικασία από πολλές πιθανές Η αναπαράσταση είναι η επαρκής περιγραφή ενός αλγορίθμου για τη μετάδοση του στο επιθυμητό κοινό. Πάντα μία περιγραφή από πολλές πιθανές. 5

6 Αλγόριθμοι : επίπεδα αφαίρεσης (2) Πρόγραμμα (program): είναι μια αναπαράσταση ενός αλγορίθμου Η επίσημη αναπαράσταση, γραμμένη για εκτέλεση από υπόλογιστή Διεργασία (process): η διαδικασία εκτέλεσης ενός προγράμματος (και συνεπώς και του αλγορίθμου) 6

7 Αναπαράσταση αλγορίθμων : Κατασκευή πουλιού από ένα τετράγωνο κομμάτι χαρτί 7

8 Αρχέτυπα Αρχέτυπα (primitives): Καλά ορισμένα σύνολα από δομικά μπλοκ από τα οποία μπορεί να κατασκευαστούν αναπαραστάσεις αλγορίθμων Μια συλλογή αρχετύπων μαζί με μια συλλογή κανόνων με το πως αυτά μπορούν να συνδυαστούν για να αναπαραστήσουν περίπλοκες ιδέες συνιστά μια γλώσσα προγραμματισμού Κάθε αρχέτυπο έχει τη δική του σύνταξη (syntax) και σημασιολογία (semantics) Σύνταξη: συμβολική αναπαράσταση Σημασιολογία: Σημασία του αρχέτυπου Τα αρχέτυπα είναι σε πιο υψηλό επίπεδο από αυτό των εντολών της γλώσσας μηχανής (που είδαμε στον Κεφ. 2) 8

9 Αρχέτυπα Origami Αρχέτυπα (primitives): Καλά ορισμένα σύνολα από δομικά μπλοκ από τα οποία μπορεί να κατασκευαστούν αναπαραστάσεις αλγορίθμων 9

10 Αρχέτυπα ψευδοκώδικα Ψευδοκώδικας (pseydo-code): είναι ένα λιγότερο επίσημο (από την γλώσσα προγραμματισμού) σύστημα από συμβολισμούς το οποίο μπορεί να αναπαραστήσει τις ιδέες που διέπουν έναν αλγόριθμο Ανάθεση: όνομα έκφραση name expression Επιλογή συνθήκης: αν (συνθήκη) τότε (ενέργεια 1) αλλιώς (ενέργεια 2) if (συνθήκη) then (ενέργεια 1) else (ενέργεια 2) 10

11 Αρχέτυπα ψευδοκώδικα (2) Επαναλαμβανόμενη εκτέλεση: όσο (συνθήκη) κάνε (ενέργεια) while (συνθήκη) do (ενέργεια) Διαδικασία (procedure): Μπλοκ από εντολές που εκτελούν μια αυτόνομη λειτουργία Λέγεται και: υπο-πρόγραμμα (subprogram) υπορουτίνα (subroutine), διαδικασία (procedure), συνάρτηση (function) διαδικασία όνομα (συγκεκριμένο όνομα της μονάδας) procedure name 11

12 Διαδικασία Η διαδικασία (procedure) πρέπει να είναι γενική και να είναι εφαρμόσιμη σε κάθε περίπτωση Π.χ. H περιγραφή μιας διαδικασία για ταξινόμηση μιας λίστας ονομάτων κατά αλφαβητική σειρά πρέπει να είναι τέτοια ώστε να εφαρμόζεται σε οποιαδήποτε λίστα ονομάτων και όχι σε μια συγκεκριμένη μόνο Παράμετροι (parameters): στην προκειμένη περίπτωση η λίστα προς ταξινόμηση Π.χ. Procedure Sort (List) 12

13 Παραδείγματα στοίχισης Η ανάγνωση ψευδο-κώδικα διευκολύνεται αν κάνουμε καλή στοίχιση και περιγραφή των βρόχων και του τέλος των if, while, 13

14 Βήματα επίλυσης προβλήματος Βήματα κατά τον Polya (1945) 1. Κατανόηση του προβλήματος. 2. Σχηματισμός (στο νου μας) μιας ιδέας για το πώς μπορεί να λυθεί το πρόβλημα από μία αλγοριθμική διαδικασία. 3. Συγκρότηση του αλγορίθμου και αναπαράσταση του ως πρόγραμμα. 4. Αξιολόγηση του προγράμματος όσον αφορά την ακρίβεια του και τη δυνατότητα να χρησιμοποιηθεί ως εργαλείο για την επίλυση άλλων προβλημάτων. Όχι απαραίτητο (και πολλές φορές όχι αποδοτικό) να τηρείται αυστηρή αλληλουχία στα βήματα αυτά 14

15 Τεχνικές για το πρώτο βήμα Επίλυση του προβλήματος προς τα πίσω. Επίλυση ενός πιο εύκολου, σχετικού προβλήματος: «Χαλαρώνει» κάποιους από τους ασφυκτικούς περιορισμούς του προβλήματος. Επιλύει πρώτα κάποια επιμέρους τμήματα του προβλήματος - συνθετική μεθοδολογία. Λέγεται και τεχνική από-κάτω-προς-τα-πάνω (bottom-up) Η βηματική εκλέπτυνση (step-wise refinement) είναι μία αναλυτική μεθοδολογία. Δημοφιλής τεχνική επειδή παράγει τμηματικά προγράμματα Απλοποίηση βήματων σε πολλά απλούστερα Λέγεται και τεχνική από πάνω-προς-τα-κάτω (top-down) 15

16 Βηματική εκλέπτυνση Αλγόριθμος: φτιάξε στιγμιαίο καφέ (1) βράσε νερό (1.1) γέμισε χύτρα (1.1.1) βάλε χύτρα κάτω από βρύση (1.1.2) άνοιξε βρύση (1.2) άναψε το μάτι (1.3) περίμενε να βράσει (1.4) σβήσε το μάτι (1.1.3) περίμενε να γεμίσει η χύτρα (1.1.4) κλείσε βρύση (1.3.1) περίμενε να σφυρίξει η χύτρα (2) βάλε καφέ στο φλιτζάνι (3) πρόσθεσε νερό στο φλιτζάνι (2.1) άνοιξε το δοχείο του καφέ (2.2) πάρε ένα κουταλάκι καφέ (2.3) άδειασε το κουταλάκι στο φλιτζάνι (2.4) κλείσε το δοχείο του καφέ (3.1) βάλε νερό από την χύτρα στο φλιτζάνι μέχρι να γεμίσει (2.1.1) πάρε το δοχείο του καφέ από το ντουλάπι (2.1.2) βγάλε το καπάκι (2.4.1) βάλε το καπάκι στο δοχείο (2.4.2) βαλε το δοχείο στο ντουλάπι 16

17 Ακολουθία βημάτων για αλγόριθμο 1. βάλε την χύτρα κάτω από βρύση 2. άνοιξε την βρύση εάν δεν υπάρχει νερό; 3. περίμενε να γεμίσει η χύτρα 4. κλείσε την βρύση 5. άναψε το μάτι 6. περίμενε να σφυρίξει η χύτρα 7. σβήσε το μάτι 8. πάρε το δοχείο του καφέ από το ντουλάπι 9. βγάλε το καπάκι 10. πάρε ένα κουταλάκι καφέ 11. άδειασε το κουταλάκι στο φλιτζάνι 12. βάλε το καπάκι στο δοχείο 13. βαλε το δοχείο στο ντουλάπι 14. βάλε νερό από την χύτρα στο φλιτζάνι μέχρι να γεμίσει εάν δεν υπάρχει καφές, να δοκιμάσει το επόμενο δοχείο καφέ; εάν υπάρχουν 1000 δοχεία, πολλά από αυτά άδεια, τι να κάνει; 17

18 Υπόδειγμα προβλήματος Το άτομο Α πρέπει να βρει τις ηλικίες των τριών παιδιών του ατόμου Β. Ο Β λέει στον Α ότι το γινόμενο των ηλικιών των παιδιών του είναι 36. Ο Α απαντάει ότι χρειάζεται άλλο ένα στοιχείο Ο Β λέει στον Α το άθροισμα των ηλικιών των παιδιών του. Ο Α απαντάει ξανά ότι χρειάζεται άλλο ένα στοιχείο Ο Β λέει στον Α ότι το μεγαλύτερο παιδί του παίζει πιάνο Ο Α λέει στον Β τις ηλικίες των τριών παιδιών του. Ποιες είναι οι ηλικίες των τριών παιδιών; 18

19 Υπόδειγμα προβλήματος (2) Λύση 19

20 Διαγράμματα ροής Διαγράμματα ροής (flow charts): γραφικός τρόπος περιγραφής δομής αλγορίθμων Ορίζουμε τα βασικά συστατικά διαγραμμάτων ροής -- ακολουθία -- δοκιμή (διάφοροι τύποι) -- επανάληψη (διάφοροι τύποι) ακολουθία βάλε την χύτρα κάτω από βρύση άνοιξε την βρύση περίμενε να γεμίσει η χύτρα κλείσε την βρύση άναψε το μάτι περίμενε να σφυρίξει η χύτρα σβήσε το μάτι πάρε το δοχείο του καφέ από το ντουλάπι δοκιμή (test) συνθήκη = false συνθήκη = false συνθήκη = true 20

21 Σύνθεση βασικών διαγραμμάτων Αλγόριθμος: σύνθεση βασικών διαγραμμάτων ακολουθία δοκιμή (test) false true ακολουθία ακολουθία 21

22 Η δομή ελέγχου επιλογής δοκιμή συνθήκης false if condition then P1 true δοκιμή συνθήκης false P1 P2 true P1 if condition then P1 else P2 if x>3 then z:=1 else y:=8 22

23 Παράδειγμα φωλιασμένων επιλογών δοκιμή συνθήκης false δοκιμή συνθήκης false P2 true true δοκιμή συνθήκης false P1 P1 P2 true P3 P4 if condition then P1 else if condition then P3 else P4 P2 23

24 Δομές Επανάληψης Βρόχος προ-ελέγχου (pro-test loop): όσο (συνθήκη) κάνε (σώμα βρόχου) while (condition) do () Βρόχος μετα-ελέγχου (post-test loop): επανάλαβε (σώμα βρόχου) μέχρι(συνθήκη) repeat (loop body) until(condition) 24

25 Δομές επανάληψης (2) Υποθέτει ότι υπάρχει ένα κέρμα στην τσέπη στην αρχή Δεν υποθέτει ότι υπάρχει ένα κέρμα στην τσέπη στην αρχή (και ελέγχει) 25

26 Η δομή ελέγχου επανάληψης Η δομή βρόχου όσο (while) 26

27 Άλλο παράδειγμα δομής επανάληψης Η δομή βρόχου επανέλαβε (repeat) 27

28 Στοιχεία ελέγχου επανάληψης Χρειάζεται προσοχή με τον έλεγχο και την τροποποίηση! 28

29 Επανάληψη: Αρχέτυπα (εντολές) ψευδοκώδικα Ανάθεση όνομα έκφραση Επιλογή συνθήκης αν (συνθήκη) τότε (ενέργεια) Επαναλαμβανόμενη εκτέλεση όσο (συνθήκη) κάνε (ενέργεια) Διαδικασία διαδικασία όνομα (συγκεκριμένο όνομα της μονάδας) 29

30 Παράδειγμα Διαδικασίας διαδικασία Χαιρετισμός Μετρητής 3; όσο (Μετρητής >0) κάνε (τύπωσε το μήνυμα Γεια χαρά και Μετρητής Μετρητής-1) 30

31 Ο αλγόριθμος της σειριακής αναζήτησης (sequential search) σε ψευδοκώδικα Αρχή: μια λίστα με ονόματα αλφαβητικά ταξινομημένη Στόχος είναι να βρεθεί η ΤιμήΣτόχος (π.χ. Ένα συγκεκριμένο όνομα) στην Λίστα 31

32 Sequential Search 32

33 Αλγόριθμος Αλφαβητικής ταξινόμησης λίστας Αριθμός βημάτων στην χειρότερη περίπτωση για μια λίστα μήκους n ( n 1) = 1 2 n( n 1) = 1 2 ( n 2 n) 33

34 Ο αλγόριθμος ταξινόμησης με εισαγωγή (insertion sort) σε ψευδοκώδικα διαδικασία Ταξινόμηση (Λίστα) Ν 2 όσο (η τιμή του Ν δεν υπερβαίνει το μήκος της Λίστας) κάνε (επίλεξε την Ν-οστή καταχώρηση της Λίστας ως οριακή καταχώρηση. Μετακίνησε την οριακή καταχώριση σε μία προσωρινή θέση, αφήνοντας ένα κενό στη Λίστα. όσο (υπάρχει κάποιο όνομα επάνω από το κενό, και το όνομα αυτό είναι μεγαλύτερο από την οριακή καταχώριση) κάνε (μετακίνησε το όνομα που βρίσκεται επάνω από το κενό προς τα κάτω, αφήνοντας ένα κενό από πάνω του) Τοποθέτησε την οριακή καταχώριση στο κενό της Λίστας. Ν Ν + 1 ) 34

35 Insertion Sort 35

36 Αναδρομή (Recursion) Η εκτέλεση μιας διαδικασίας οδηγεί σε μια ακόμα εκτέλεση της διαδικασίας. Πραγματοποιούνται πολλαπλές ενεργοποιήσεις της διαδικασίας, από τις οποίες όλες εκτός από μία περιμένουν να ολοκληρωθούν οι άλλες ενεργοποιήσεις. 36

37 Αναδρομή (Recursion) (2) Αναδρομικός (recursive) αλγόριθμος: καλεί τον εαυτό του Μεθοδολογία: εκφράζουμε την διαδικασία με βάση ιδίου τύπου διαδικασίες που λειτουργούν σε απλούστερα προβλήματα, γνωρίζουμε την απάντηση για το πλέον απλό πρόβλημα factorial(n) = 1*2*3*... (N-1)*N = N*factorial(N-1) module factorial(n) if N=1 then answer = 1 else answer = N * factorial(n-1) * 2 * 1 37

38 Αναδρομική στρατηγική (Δυαδική Αναζήτηση) για αναζήτηση της καταχώρισης Κώστας σε μια ταξινομημένη λίστα Είσοδος: Μια λίστα που είναι ταξινομημένη αλφαβητικά 38

39 Εφαρμογή της δυαδικής αναζήτησης για την καταχώριση Κώστας σε μία ταξινομημένη λίστα Αριθμός βημάτων χειρότερης περίπτωσης Log 2 n = πόσες φορές διαιρείται το n με το 2 2 logn = n 39

40 Ένα πρώτο προσχέδιο του αλγορίθμου δυαδικής αναζήτησης (Binary Search) Είσοδος: Μια λίστα που είναι ταξινομημένη αλφαβητικά 40

41 Ο αλγόριθμος της δυαδικής αναζήτησης σε ψευδοκώδικα Διαδικασία Αναζήτηση (Λίστα, ΤιμήΣτόχος) αν ( Η Λίστα είναι άδεια) τότε (Ανάφερε ότι η αναζήτηση απέτυχε) αλλιώς [Επίλεξε τη μεσαία καταχώριση της Λίστας ως την ΚαταχώρισηΠροςΈλεγχο. Εκτέλεσε το παρακάτω μπλοκ εντολών που αντιστοιχεί στην κατάλληλη περίπτωση. περίπτωση 1: ΤιμήΣτόχος=ΚαταχώρισηΠροςΈλεγχο (Ανέφερε ότι η αναζήτηση είναι επιτυχής.) περίπτωση 2: ΤιμήΣτόχος<ΚαταχώρισηΠροςΈλεγχο (Εφάρμοσε τη διαδικασία Αναζήτηση για να δεις αν η ΤιμήΣτόχος βρίσκεται στο τμήμα της λίστα που προηγείται της ΚαταχώρισηΠροςΈλεγχο, και ανέφερε το αποτέλεσμα αυτής της αναζήτησης.) περίπτωση3: ΤιμήΣτόχος> ΚαταχώρισηΠροςΈλεγχο (Εφάρμοσε τη διαδικασία Αναζήτηση για να δεις αν η ΤιμήΣτόχος βρίσκεται στο τμήμα της λίστα μετά την ΚαταχώρισηΠροςΈλεγχο, και ανέφερε το αποτέλεσμα αυτής της αναζήτησης.) ] τέλος αν 41

42 Ψευδοκώδικας Δυαδικής Αναζήτησης low = 0; high = N-1; BinarySearch(A[0..N-1], value, low, high) { if (high < low) return -1 // not found mid = (low + high) / 2 if (A[mid] > value) return BinarySearch(A, value, low, mid-1) else if (A[mid] < value) return BinarySearch(A, value, mid+1, high) else return mid // found } 42

43 Ο αλγόριθμος της δυαδικής αναζήτησης Αναζήτηση του Β στην λίστα Α Β Γ Δ Ε Ζ Η 43

44 Ο αλγόριθμος της δυαδικής αναζήτησης (2) Αναζήτηση του Δ στην λίστα Α Γ Ε Ζ Η 44

45 Ο αλγόριθμος της δυαδικής Αναζήτηση του Δ στην λίστα Α Γ Ε Ζ Η αναζήτησης 45

46 Αναδρομικές διαδικασίες Η διαδικασία καλεί τον εαυτό της Κάθε αντίτυπο της διαδικασίας καλεί τον εαυτό της (με διαφορετικές παραμέτρους) Π.χ. Η διαδικασία για το n! (n παραγοντικό) Κάθε κλήση της διαδικασίας λέγεται ενεργοποίηση (activation) Σε μια χρονική στιγμή μόνο ένα αντίτυπο της διαδικασίας εκτελείται, τα υπόλοιπα (που έχουν κληθεί πριν) περιμένουν το αποτέλεσμα αυτού του αντιτύπου Κάθε αναδρομική διεργασία περιέχει συνθήκη τερματισμού (λέγεται περίπτωση βάσης (base case) ή εκφυλισμένη περίπτωση (degenarative case) Αν η συνθήκη δεν ικανοποιείται, καλείται και πάλι η διαδικασία με άλλες παραμέτρους, που πλησιάζουν στην συνθήκη τερματισμού module factorial(n) if N=1 then answer = 1 else answer = N * factorial(n-1) 46

47 Δυαδική Αναζήτηση Αρχικοποίηση με μια ταξινομημένη λίστα Αν βρεθεί η Τιμή-Στόχος ή αν προκύψει άδεια λίστα, ο αλγόριθμος τερματίζει Διαφορετικά, καλείται ένα αντίτυπο της διαδικασίας με το μισό της λίστας (άνω ή κάτω μισό) Σίγουρος τερματισμός: εφόσον η λίστα είναι πεπερασμένη και κάθε φορά η διαδικασία καλείται για το μισό της λίστας της προηγούμενης κλήσης, κάποια στιγμή ο αλγόριθμος θα τελειώσει Θα βρεθεί η Τιμή-Στόχος ή θα προκύψει άδεια λίστα 47

48 Αποδοτικότητα Αλγορίθμων (Παράδειγμα) Λίστα 30,000 ονομάτων φοιτητών Ακολουθιακή (sequential) αναζήτηση: κατά μέσο όρο χρειάζεται να περάσει 15,000 ονόματα 10msec για να ελέγξει ένα όνομα Μέσος χρόνος για έλεγχο: 150 sec Δυαδική (binary) αναζήτηση: χρειάζεται να ελέγξει το πολύ 15 ονόματα Όσες φορές (το πολύ) χρειάζεται να κοπεί μια λίστα 30,000 ονομάτων στην μέση 10msec για να ελέγξει ένα όνομα Μέσος χρόνος για έλεγχο: 0,15 sec 48

49 Αποδοτικότητα Λογισμικού Μετριέται ως πλήθος των εκτελούμενων εντολών του αλγορίθμου Συνήθως θεωρούμε τις πιο σοβαρές (από άποψη υπολογιστικού φόρτου ή αποθηκευτικού χώρου) εντολές Έχει επίδραση στο χρόνο ή στο πόσο αποθηκευτικός χώρος απαιτείται για την εκτέλεση ενός αλγορίθμου Ενδιαφερόμαστε για μια γενική μορφή που να δείχνει την απόδοση για μια λίστα οποιουδήποτε μήκους n Καλύτερη (best-case), χειρότερη (worst-case) και μέση (average-case) περίπτωση. π.χ. Είδαμε την μέση περίπτωση για την ακολουθιακή αναζήτηση: n/2 έλεγχοι για λίστα μήκους n και χειρότερη περίπτωση ln (n) για την δυαδική αναζήτηση για λίστα μήκους n Ο συμβολισμός με Θ προσδιορίζει την αποδοτικότητα των αλγορίθμων Παράδειγμα η ταξινόμηση με εισαγωγή αναπαριστάται με Θ(n 2 ) Θ: σύμβολο Landau 49

50 Ανάλυση αλγορίθμου ταξινόμησης με εισαγωγή Επικεντρωνόμαστε στο πόσες συγκρίσεις χρειάζονται στον αλγόριθμο Επιλογή μιας καταχώρησης σαν οριακή καταχώρηση (pivot): 2,3,...n Σύγκριση του pivot με όλα τα προηγούμενα στοιχεία Καλύτερη περίπτωση: Η λίστα είναι ταξινομημένη ήδη αλφαβητικά Οπότε χρειάζεται σύγκριση του pivot με ένα στοιχείο n-1 συγκρίσεις Χειρότερη περίπτωση: Η λίστα είναι σε ανάποδη αλφαβητική σειρά Χρειάζεται σύγκριση του pivot (που είναι σε μια θέση k) με όλα τα προηγούμενα στοιχεία 1,2,...k-1 Συνολικά (n-1) συγκρίσεις = (1/2)*(n 2 -n) συγκρίσεις Μέση περίπτωση: (1/4)*(n 2 -n) συγκρίσεις 50

51 Σενάριο χειρότερης περίπτωσης για την ταξινόμηση με εισαγωγή Χειρότερη περίπτωση: Η λίστα είναι σε ανάποδη αλφαβητική σειρά Χρειάζεται σύγκριση του pivot (που είναι σε μια θέση k) με όλα τα προηγούμενα στοιχεία 1,2,...k-1 Συνολικά (n-1) συγκρίσεις = (1/2)*(n 2 -n) συγκρίσεις 51

52 f Ορισμός ταχύτητας αύξησης μιας συνάρτησης: Σύμβολα Landau ( n) O( g( n)) : f έχει την g ασυμπτωτικό άνω φράγμα όταν n, f ( n) g( n) k η f αυξάνεται το πολύ σαν την g n 2,5 O(n 3 ), 2n 2 +10n 5 O(n 2 ),2 n + 2n 2 O(2 n ) f ( n) Θ( g( n)) : f έχει την g ασυμπτωτικό άνω και κάτω φράγμα η f αυξάνεται σαν την g, άρα είναι στην οικογένεια Θ(g) όταν n, g( n) k 1 f ( n) g( n) k 2 2n n 5 Θ( n 2 ),2n logn + 10n 5 Θ( nlogn) 52

53 Γράφημα της ανάλυσης χειρότερης περίπτωσης του αλγορίθμου ταξινόμησης με εισαγωγή f(n) = (1/2)*(n 2 -n) n Ο αλγόριθμος ταξινόμησης με εισαγωγή ανήκει στην κλάση αλγορίθμων Θ(n 2 ) 53

54 Γράφημα της ανάλυσης χειρότερης περίπτωσης του αλγορίθμου δυαδικής αναζήτησης f(n) = ln(n) n Ο αλγόριθμος δυαδικής αναζήτησης ανήκει στην κλάση αλγορίθμων O (logn) = O(ln n) 54

55 Επαλήθευση λογισμικού Απόδειξη ορθότητας αλγορίθμου Ισχυρισμοί (assertions) Προσυνθήκες (preconditions): ισχύουν πριν ξεκινήσει ο αλγόριθμος Αμετάβλητοι βρόχοι (loop invariant): ισχυρισμοί που είναι σωστοί κάθε φορά που φτάνουμε σε ένα σημείο του βρόχου Έλεγχοι και συνδυαστικοί έλεγχοι 55

56 Παράδειγμα προβλήματος: Διαχωρισμός αλυσίδας Ένας ταξιδιώτης έχει μία χρυσή αλυσίδα εφτά κρίκων. Πρέπει να μείνει σε ένα απομονωμένο ξενοδοχείο για επτά νύχτες. Το ενοίκιο για κάθε νύχτα είναι ένας κρίκος από την αλυσίδα του. Ποιος είναι ο μικρότερος αριθμός κρίκων που πρέπει να κοπούν ώστε ο ταξιδιώτης να πληρώνει στο ξενοδοχείο έναν κρίκο από την αλυσίδα κάθε πρωί χωρίς να καταβάλει προκαταβολικά τη διαμονή του; 56

57 Λύση 1: Διαχωρισμός της αλυσίδας με τρία μόνο κοψίματα 57

58 Διαχωρισμός της αλυσίδας με μόνο ένα κόψιμο : Καλύτερη λύση 58

ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι. 5.1 Αλγόριθµος: Ορισµός. Αλγόριθµοι : επίπεδα αφαίρεσης

ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι. 5.1 Αλγόριθµος: Ορισµός. Αλγόριθµοι : επίπεδα αφαίρεσης ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι 5.1 Αλγόριθµος: Ορισµός 5.1 Η έννοια του αλγορίθµου 5.2 Αναπαράσταση αλγορίθµων 5.3 Επινόηση αλγορίθµων 5.4 οµές επανάληψης Ένας αλγόριθµος είναι ένα διατεταγµένο σύνολο, σαφώς ορισµένων,

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση

Διαβάστε περισσότερα

ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δρ. Κόννης Γιώργος Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής Προγραμματισμός Στόχοι 1 Να περιγράψουμε τις έννοιες του Υπολογιστικού Προβλήματος και του Προγράμματος/Αλγορίθμου

Διαβάστε περισσότερα

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική και τη συµµετρική ιδιότητα του Θ. Λύση Μεταβατική Ιδιότητα (ορισµός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)). Για

Διαβάστε περισσότερα

Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL)

Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Pascal- Εισαγωγή Η έννοια του προγράμματος Η επίλυση ενός προβλήματος με τον υπολογιστή περιλαμβάνει, όπως έχει ήδη αναφερθεί, τρία εξίσου

Διαβάστε περισσότερα

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5.1 Εισαγωγή στους αλγορίθμους 5.1.1 Εισαγωγή και ορισμοί Αλγόριθμος (algorithm) είναι ένα πεπερασμένο σύνολο εντολών οι οποίες εκτελούν κάποιο ιδιαίτερο έργο. Κάθε αλγόριθμος

Διαβάστε περισσότερα

Προγραµµατισµός Η/Υ. Μέρος2

Προγραµµατισµός Η/Υ. Μέρος2 Προγραµµατισµός Η/Υ Μέρος2 Περιεχόμενα Επανάληψη Βασικών Σύμβολων Διαγραμμάτων Ροής Αλγόριθμος Ψευδοκώδικας Παραδείγματα Αλγορίθμων Γλώσσες προγραμματισμού 2 Επανάληψη Βασικών Σύμβολων Διαγραμμάτων Ροής

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Έλεγχος Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Σχεσιακοί Τελεστές και Ισότητας Ένα πρόγραμμα εκτός από αριθμητικές πράξεις

Διαβάστε περισσότερα

ιδάσκων: ηµήτρης Ζεϊναλιπούρ

ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 1.3-1.4: Εισαγωγή Στον Προγραµµατισµό ( ιάλεξη 2) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Περιεχόµενα Εισαγωγικές Έννοιες - Ορισµοί Ο κύκλος ανάπτυξης προγράµµατος Παραδείγµατα Πότε χρησιµοποιούµε υπολογιστή?

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης ΚΕΦΑΛΑΙΟ 1ο 3ο 1. Συμπληρώστε τα κενά με τη λέξη που λείπει. α. Ένα πρόβλημα το χωρίζουμε σε άλλα απλούστερα, όταν είναι ή όταν έχει τρόπο επίλυσης. β. Η επίλυση ενός προβλήματος προϋποθέτει την του. γ.

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες

Διαβάστε περισσότερα

ΠαράδειγµαΠρογραµµατισµού

ΠαράδειγµαΠρογραµµατισµού Προγραµµατισµός Η/Υ Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Μεθοδολογία Προγραµµατισµού Αφαιρετικότητα Ροή Ελέγχου/ εδοµένων Βιβλίο µαθήµατος: Chapter 1,, Sec. 4-54 ΕΠΛ 131 Αρχές Προγραµµατισµού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β. Καβακλή. Χειμερινό Εξάμηνο 2001

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β. Καβακλή. Χειμερινό Εξάμηνο 2001 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Διδάσκουσα Δρ Β. Καβακλή Χειμερινό Εξάμηνο 2001 1 Ανάλυση προβλήματος Η σωστή αντιμετώπιση

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

5.1. Προσδοκώμενα αποτελέσματα

5.1. Προσδοκώμενα αποτελέσματα 5.1. Προσδοκώμενα αποτελέσματα Όταν θα έχεις ολοκληρώσει τη μελέτη αυτού του κεφαλαίου θα έχεις κατανοήσει τις τεχνικές ανάλυσης των αλγορίθμων, θα μπορείς να μετράς την επίδοση των αλγορίθμων με βάση

Διαβάστε περισσότερα

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 8: Γραμμική Αναζήτηση και Δυαδική Αναζήτηση-Εισαγωγή στα Δέντρα και Δυαδικά Δέντρα-Δυαδικά Δέντρα Αναζήτησης & Υλοποίηση ΔΔΑ με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ

ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, σελ. 55-62 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 5) Δυαδική αναζήτηση

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Μαθησιακές δυσκολίες ΙΙ. Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας

Μαθησιακές δυσκολίες ΙΙ. Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας Μαθησιακές δυσκολίες ΙΙ Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας Μάρτιος 2010 Προηγούμενη διάλεξη Μαθησιακές δυσκολίες Σε όλες

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική Προγραμματισμός-Λειτουργικά

Εισαγωγή στην Πληροφορική Προγραμματισμός-Λειτουργικά Εισαγωγή στην Πληροφορική Προγραμματισμός-Λειτουργικά Ηλ. Γκρίνιας Τ. Ε. Ι. Σερρών Τμήμα Πληροφορικής και Επικοινωνιών Αλγόριθμοι Ορισμός: ο αλγόριθμος είναι μια σειρά από πεπερασμένα βήματα που καθορίζουν

Διαβάστε περισσότερα

Εντολή Δεδομένα Περιεχόμενα μετά την εκτέλεση 1 read(x) 122 x= 2 read(a,b,c) 133 244 355 a= b= c= 3 read(d,e) 166 277 3888

Εντολή Δεδομένα Περιεχόμενα μετά την εκτέλεση 1 read(x) 122 x= 2 read(a,b,c) 133 244 355 a= b= c= 3 read(d,e) 166 277 3888 ΕΡΩΤΗΣΕΙΣ 1. Να αναφέρετε μερικά από τα ιδιαίτερα χαρακτηριστικά της Pascal. 2. Ποιο είναι το αλφάβητο της Pascal; 3. Ποια είναι τα ονόματα-ταυτότητες και σε τι χρησιμεύουν; 4. Σε τι χρησιμεύει το συντακτικό

Διαβάστε περισσότερα

Πληρουορική Γ Γσμμασίοσ

Πληρουορική Γ Γσμμασίοσ Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:

Διαβάστε περισσότερα

ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε Γενική μέθοδος σχεδιασμού αλγορίθμων: ιαίρεση σε ( 2) υποπροβλήματα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 6 ΟΥ ΚΕΦΑΛΑΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ 6.1 Τι ονοµάζουµε πρόγραµµα υπολογιστή; Ένα πρόγραµµα

Διαβάστε περισσότερα

Διάλεξη 15: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 15: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 15: Αναδρομή (Recursion) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η έννοια της αναδρομής Μη αναδρομικός / Αναδρομικός Ορισμός Συναρτήσεων Παραδείγματα Ανάδρομης Αφαίρεση της Αναδρομής

Διαβάστε περισσότερα

Διάλεξη 1. Πράξεις Τελεστές Έλεγχος Ροής

Διάλεξη 1. Πράξεις Τελεστές Έλεγχος Ροής Διάλεξη 1 Πράξεις Τελεστές Έλεγχος Ροής Διοργάνωση : ΚΕΛ ΣΑΤΜ Διαφάνειες: Skaros, MadAGu Παρουσίαση: MadAGu Άδεια: Creative Commons 3.0 Αριθμητικοί Τελεστές- Αριθμητικές Πράξεις 2 Internal use only Αριθμητικοί

Διαβάστε περισσότερα

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client ΕΣΔ 516 Τεχνολογίες Διαδικτύου Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client Περιεχόμενα Περιεχόμενα Javascript και HTML Βασική σύνταξη Μεταβλητές Τελεστές Συναρτήσεις

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Οργάνωση Υπολογιστών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Οργάνωση Υπολογιστών Οργάνωση Υπολογιστών Υπολογιστικό Σύστημα Λειτουργικό Σύστημα Αποτελεί τη διασύνδεση μεταξύ του υλικού ενός υπολογιστή και του χρήστη (προγραμμάτων ή ανθρώπων). Είναι ένα πρόγραμμα (ή ένα σύνολο προγραμμάτων)

Διαβάστε περισσότερα

Τμήμα Πληροφορικής & Επικοινωνιών Δρ. Θεόδωρος Γ. Λάντζος http://www.teiser.gr/icd/staff/lantzos lantzos@teiser.gr

Τμήμα Πληροφορικής & Επικοινωνιών Δρ. Θεόδωρος Γ. Λάντζος http://www.teiser.gr/icd/staff/lantzos lantzos@teiser.gr Τμήμα Πληροφορικής & Επικοινωνιών Δρ. Θεόδωρος Γ. Λάντζος http://www.teiser.gr/icd/staff/lantzos lantzos@teiser.gr 1 Βρόχοι Επανάληψη (Loop) Η επανάληψη ενός συνόλου εντολών για όσες φορές επιθυμούμε ή

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

Μάντεψε τον Αριθμό. Έχω Ένα Μυστικό. Το Βρήκα;

Μάντεψε τον Αριθμό. Έχω Ένα Μυστικό. Το Βρήκα; Μάντεψε τον Αριθμό Ένα από τα πρώτα προγράμματα που συνηθίζεται να φτιάχνουν οι μαθητευόμενοι προγραμματιστές είναι ένα παιχνίδι στο οποίο ο παίκτης προσπαθεί να μαντέψει τον μυστικό αριθμό που έχει σκεφτεί

Διαβάστε περισσότερα

Παράλληλη Επεξεργασία Κεφάλαιο 2 Παραλληλισμός Δεδομένων

Παράλληλη Επεξεργασία Κεφάλαιο 2 Παραλληλισμός Δεδομένων Παράλληλη Επεξεργασία Κεφάλαιο 2 Παραλληλισμός Δεδομένων Κωνσταντίνος Μαργαρίτης Καθηγητής Τμήμα Εφαρμοσμένης Πληροφορικής Πανεπιστήμιο Μακεδονίας kmarg@uom.gr http://eos.uom.gr/~kmarg Αρετή Καπτάν Υποψήφια

Διαβάστε περισσότερα

ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ

ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ Η ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΟ ΛΥΚΕΙΟ Εισαγωγή Η μεγάλη ανάπτυξη και ο ρόλος που

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. H διαδικασία ανεύρεσης λογικών λαθών περιλαμβάνει : β- Σωστό. Διαπίστωση του είδους του λάθους γ- Σωστό δ- Λάθος

ΑΠΑΝΤΗΣΕΙΣ. H διαδικασία ανεύρεσης λογικών λαθών περιλαμβάνει : β- Σωστό. Διαπίστωση του είδους του λάθους γ- Σωστό δ- Λάθος ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 08/04/2015 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΚΤΩ (8) ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α1. Α2. α-

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Η Μέθοδος «Διαίρει & Βασίλευε» Η Μέθοδος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Τύποι δεδομένων και εμφάνιση στοιχείων...33

ΚΕΦΑΛΑΙΟ 2: Τύποι δεδομένων και εμφάνιση στοιχείων...33 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος του συγγραφέα... 13 Πρόλογος του καθηγητή Τιμολέοντα Σελλή... 15 ΚΕΦΑΛΑΙΟ 1: Εργαλεία γλωσσών προγραμματισμού...17 1.1 Γλώσσες προγραμματισμού τρίτης γεννεάς... 18 τι είναι η γλώσσα

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Διαβάστε περισσότερα

Διάλεξη 5η: Εντολές Επανάληψης

Διάλεξη 5η: Εντολές Επανάληψης Διάλεξη 5η: Εντολές Επανάληψης Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Βασίζεται σε διαφάνειες του Κ Παναγιωτάκη Πρατικάκης (CSD) Εντολές Επανάληψης CS100, 2015-2016

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών

ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών 1 Συναρτήσεις και ο υπολογισµός τους 2 Μηχανές Turing 3 Καθολικές γλώσσες προγραµµατισµού 4 Μια µη υπολογίσιµη συνάρτηση 5 Πολυπλοκότητα προβληµάτων 1 Συναρτήσεις Μία συνάρτηση

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

Ελαφρύτερος και βαρύτερος Αλγόριθμοι ταξινόμησης

Ελαφρύτερος και βαρύτερος Αλγόριθμοι ταξινόμησης 7η Δραστηριότητα Ελαφρύτερος και βαρύτερος Αλγόριθμοι ταξινόμησης Περίληψη Οι υπολογιστές χρησιμοποιούνται συχνά για την ταξινόμηση καταλόγων, όπως για παράδειγμα, ονόματα σε αλφαβητική σειρά, ραντεβού

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος Εισαγωγή στους Αλγόριθµους Αλγόριθµοι Τι είναι αλγόριθµος; Τι µπορεί να υπολογίσει ένας αλγόριθµος; Πως αξιολογείται ένας αλγόριθµος; Παύλος Εφραιµίδης pefraimi@ee.duth.gr Αλγόριθµοι Εισαγωγικές Έννοιες

Διαβάστε περισσότερα

Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1. Τι είναι δυναµική δοµή δεδοµένων; Μονάδες 3 2. Τι είναι στατική δοµή δεδοµένων;

Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1. Τι είναι δυναµική δοµή δεδοµένων; Μονάδες 3 2. Τι είναι στατική δοµή δεδοµένων; ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ 01/03/2015 Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1.

Διαβάστε περισσότερα

Προγραμματισμός Ι (ΗΥ120)

Προγραμματισμός Ι (ΗΥ120) Προγραμματισμός Ι (ΗΥ120) Διάλεξη 1: Εισαγωγή Ποιος είμαι εγώ! Ναύπλιο, 4/1976-9/1993 Williamsburg, VA, USA, 7/2004-7/2006 2 Πάτρα, 9/1993-6/2004 Μυτιλήνη, 10/2006-2/2007 Βόλος, 2/2007 - Ο Υπεύθυνος των

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Α ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 2 ΙΟΥΝΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΟΜΗΜΕΝΟΣ

Διαβάστε περισσότερα

Ανάλυση Αλγορίθµων. Σύντοµη επανάληψη (ΕΠΛ 035).

Ανάλυση Αλγορίθµων. Σύντοµη επανάληψη (ΕΠΛ 035). Ανάλυση Αλγορίθµων Σύντοµη επανάληψη (ΕΠΛ 035). Περίληψη Ανάλυση αλγορίθµων Ο, Θ, Ω Ανάλυση µη αναδροµικών αλγόριθµων Ανάλυση αναδροµικών αλγόριθµων Εµπειρική Ανάλυση Visualization Απόδοση Αλγορίθµων Απόδοση

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός Ασυμπτωτικός Συμβολισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθμου Α: Ποσότητα

Διαβάστε περισσότερα

εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και

εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και Παύλος Εφραιμίδης 1 περιεχόμενα ενθετική ταξινόμηση ανάλυση αλγορίθμων σχεδίαση αλγορίθμων 2 ενθετική ταξινόμηση 3 ενθετική ταξινόμηση Βασική αρχή: Επιλέγει ένα-έναταστοιχείατηςμηταξινομημένης ακολουθίας

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ 1 (Εργαστήριο)

Προγραμματισμός Η/Υ 1 (Εργαστήριο) Προγραμματισμός Η/Υ 1 (Εργαστήριο) Ενότητα 1: Εισαγωγή στη C - Αλγόριθμοι Καθηγήτρια Εφαρμογών: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Τρίτη Διάλεξη Εντολές Επιλογής και Επανάληψης Εντολές επιλογής Εντολή if Η πιο απλή μορφή της if συντάσσεται ως εξής: if ( συνθήκη ) Οι εντολές μέσα στα άγκιστρα αποτελούν

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013 ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Τελικές εξετάσεις 3 Ιανουαρίου 27 Διάρκεια εξέτασης: 3 ώρες (2:-5:) ΘΕΜΑ ο

Διαβάστε περισσότερα

ΠΡΟΣ: Τηλέφωνο: 210-3443422 Ινστιτούτο Εκπαιδευτικής Πολιτικής ΚΟΙΝ.:

ΠΡΟΣ: Τηλέφωνο: 210-3443422 Ινστιτούτο Εκπαιδευτικής Πολιτικής ΚΟΙΝ.: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ,

Διαβάστε περισσότερα

III. Πως μετατρέπεται το πηγαίο πρόγραμμα σε εκτελέσιμο πρόγραμμα;

III. Πως μετατρέπεται το πηγαίο πρόγραμμα σε εκτελέσιμο πρόγραμμα; ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Θέμα 1ο I. Τι πρέπει να ικανοποιεί ένα κομμάτι κώδικα ώστε να χαρακτηριστεί ως υποπρόγραμμα; Τα υποπρογράμματα πρέπει

Διαβάστε περισσότερα

Διδακτική της Πληροφορικής ΙΙ

Διδακτική της Πληροφορικής ΙΙ Διδακτική της Πληροφορικής ΙΙ Ομάδα Γ Βότσης Ευστάθιος Γιαζιτσής Παντελής Σπαής Αλέξανδρος Τάτσης Γεώργιος Προβλήματα που αντιμετωπίζουν οι αρχάριοι προγραμματιστές Εισαγωγή Προβλήματα Δυσκολίες Διδακτικό

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα

Δομές Δεδομένων. Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Μονάδες 12 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

Μονάδες 12 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 5 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

Εισαγωγή στην C. Μορφή Προγράµµατος σε γλώσσα C

Εισαγωγή στην C. Μορφή Προγράµµατος σε γλώσσα C Εισαγωγή στην C Μορφή Προγράµµατος σε γλώσσα C Τµήµα Α Με την εντολή include συµπεριλαµβάνω στο πρόγραµµα τα πρότυπα των συναρτήσεων εισόδου/εξόδου της C.Το αρχείο κεφαλίδας stdio.h είναι ένας κατάλογος

Διαβάστε περισσότερα

9. Συστολικές Συστοιχίες Επεξεργαστών

9. Συστολικές Συστοιχίες Επεξεργαστών Κεφάλαιο 9: Συστολικές συστοιχίες επεξεργαστών 208 9. Συστολικές Συστοιχίες Επεξεργαστών Οι συστολικές συστοιχίες επεξεργαστών είναι επεξεργαστές ειδικού σκοπού οι οποίοι είναι συνήθως προσκολλημένοι σε

Διαβάστε περισσότερα

ΕΠΛ 034: Εισαγωγήστον ΠρογραµµατισµόγιαΗΜΥ

ΕΠΛ 034: Εισαγωγήστον ΠρογραµµατισµόγιαΗΜΥ ΕΠΛ 034: Εισαγωγήστον ΠρογραµµατισµόγιαΗΜΥ Αχιλλέας Αχιλλέως, Τµήµα Πληροφορικής, Πανεπιστήµιο Κύπρου Email: achilleas@cs.ucy.ac.cy Κεφάλαιο 2 ΠρογραµµατισµόςΗ/Υ Θέµατα ιάλεξης οµή Προγράµµατος C Μεθοδολογία

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Πανεπιστήμιο Δυτικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εισαγωγή Κώστας Στεργίου Τι είναι ο Η/Υ; Ένας ηλεκτρονικός υπολογιστής (Η/Υ) είναι

Διαβάστε περισσότερα

Διάλεξη 2η: Αλγόριθμοι και Προγράμματα

Διάλεξη 2η: Αλγόριθμοι και Προγράμματα Διάλεξη 2η: Αλγόριθμοι και Προγράμματα Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Βασίζεται σε διαφάνειες του Κ Παναγιωτάκη Πρατικάκης (CSD) Αλγόριθμοι και Προγράμματα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α A1. Να γράψετε στο τετράδιό σας τους

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #10: Αλγόριθμοι Διαίρει & Βασίλευε: Master Theorem, Αλγόριθμοι Ταξινόμησης, Πιθανοτικός

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ. Δρ. Ιωάννης Λυχναρόπουλος 2014-2015. Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ. Δρ. Ιωάννης Λυχναρόπουλος 2014-2015. Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ Δρ. Ιωάννης Λυχναρόπουλος 2014-2015 Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Τι είναι τα υποπρογράμματα Αυτόνομες μονάδες κώδικα Γραμμένα από τον χρήστη Η δομή

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος Εισαγωγή στον προγραµµατισµό Η έννοια του προγράµµατος Ο προγραµµατισµός ασχολείται µε τη δηµιουργία του προγράµµατος, δηλαδή του συνόλου εντολών που πρέπει να δοθούν στον υπολογιστή ώστε να υλοποιηθεί

Διαβάστε περισσότερα

Εργαστήριο 2: Πίνακες

Εργαστήριο 2: Πίνακες Εργαστήριο 2: Πίνακες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Επεξεργασία Πινάκων - Υλοποίηση της Δυαδικής Αναζήτησης σε πίνακες - Υλοποίηση της Ταξινόμησης με Επιλογής σε πίνακες ΕΠΛ035

Διαβάστε περισσότερα

ΑΡΧΗ 2ΗΣ ΣΕΛΙΔΑΣ Γ Α... Β

ΑΡΧΗ 2ΗΣ ΣΕΛΙΔΑΣ Γ Α... Β ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΑΠΡΙΛΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

Β.1. i. Να εξηγήσετε τι εννοούμε με τον όρο μεταφερσιμότητα των προγραμμάτων. Μονάδες 3

Β.1. i. Να εξηγήσετε τι εννοούμε με τον όρο μεταφερσιμότητα των προγραμμάτων. Μονάδες 3 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1 ο ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 31 MAΪΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Γραφήματα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Γραφήματα Κατευθυνόμενο Γράφημα Ένα κατευθυνόμενο γράφημα G είναι ένα ζευγάρι (V, E) όπου V είναι ένα

Διαβάστε περισσότερα

Αλγόριθμοι Τυφλής Αναζήτησης

Αλγόριθμοι Τυφλής Αναζήτησης Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

Περιεχόμενα. Περιεχόμενα

Περιεχόμενα. Περιεχόμενα Περιεχόμενα xv Περιεχόμενα 1 Αρχές της Java... 1 1.1 Προκαταρκτικά: Κλάσεις, Τύποι και Αντικείμενα... 2 1.1.1 Βασικοί Τύποι... 5 1.1.2 Αντικείμενα... 7 1.1.3 Τύποι Enum... 14 1.2 Μέθοδοι... 15 1.3 Εκφράσεις...

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ

ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ Περίγραµµα Εισαγωγή Στοιχεία Πολυπλοκότητας Ηλίας Κ. Σάββας Επίκουρος Καθηγητής Τμήμα: Τεχνολογίας Πληροφορικής & Τηλεπικοινωνιών Email: savvas@teilar teilar.gr Αλγόριθµοι

Διαβάστε περισσότερα

Φρ. Κουτελιέρης. Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΠΛΗΡΟΦΟΡΙΚΗ Ι

Φρ. Κουτελιέρης. Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΠΛΗΡΟΦΟΡΙΚΗ Ι Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΠΛΗΡΟΦΟΡΙΚΗ Ι Πληροφορική Ι Ακαδ. Έτος 2008-9 1/30 ΚΕΦΑΛΑΙΟ 2 Πληροφορική Ι Ακαδ. Έτος 2008-9 2/30 1. Εισαγωγή 3. Ανάπτυξη αλγορίθµου 4. οµηµένος

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

β. Δομημένα 3. Ο τρόπος λύσης τους μπορεί να επιλεγεί από πλήθος δυνατών λύςεων. γ. Άλυτα

β. Δομημένα 3. Ο τρόπος λύσης τους μπορεί να επιλεγεί από πλήθος δυνατών λύςεων. γ. Άλυτα ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 Α. Να γράψετε στο τετράδιό σας τον αριθμό κάθε πρότασης και δίπλα το γράμμα «Σ», αν είναι σωστή, ή το γράμμα «Λ», αν είναι λανθασμένη.

Διαβάστε περισσότερα

Υλοποίηση ενός προγραμματιστικού κελύφους εργασίας

Υλοποίηση ενός προγραμματιστικού κελύφους εργασίας Τ.Ε.Ι ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ & ΔΙΟΙΚΗΣΗΣ Υλοποίηση ενός προγραμματιστικού κελύφους εργασίας Πτυχιακή εργασία του φοιτητή Γιαννακίδη Αποστόλη Επιβλέπων καθηγητής Τσούλος

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 ο Γ ΛΥΚΕΙΟΥ-ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 1ο ΔΙΑΓΩΝΙΣΜΑ Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές ή λάθος: 1. Ο δομημένος προγραμματισμός στηρίζεται

Διαβάστε περισσότερα

53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η

53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η 53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η ΠΑΓΚΡΑΤΙ: Φιλολάου & Εκφαντίδου 26 : 210/76.01.470 210/76.00.179 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ 1. Τι καλείται ψευδοκώδικας; 2. Τι καλείται λογικό διάγραμμα; 3. Για ποιο λόγο είναι απαραίτητη η τυποποίηση του αλγόριθμου; 4. Ποιες είναι οι βασικές αλγοριθμικές δομές; 5. Να περιγράψετε τις

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Α. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό,

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί

Διαβάστε περισσότερα

Παράδειγμα 2. Λύση & Επεξηγήσεις. Τέλος_επανάληψης Εμφάνισε "Ναι" Τέλος Α2

Παράδειγμα 2. Λύση & Επεξηγήσεις. Τέλος_επανάληψης Εμφάνισε Ναι Τέλος Α2 Διδακτική πρόταση ΕΝΟΤΗΤΑ 2η, Θέματα Θεωρητικής Επιστήμης των Υπολογιστών Κεφάλαιο 2.2. Παράγραφος 2.2.7.4 Εντολές Όσο επανάλαβε και Μέχρις_ότου Η διαπραγμάτευση των εντολών επανάληψης είναι σημαντικό

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 5 Δομές Ελέγχου Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Δομές Ελέγχου Οι Boehm και Jacopini απέδειξαν ότι οποιοσδήποτε αλγόριθμος

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ii ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. Εντολές εκχώρησης (αντικατάστασης)....1 1.1 Εισαγωγή...4 1.1.1 Χρήση ΛΣ και IDE της Turbo Pascal....4 1.1.2 Αίνιγμα...6 1.2 Με REAL...7 1.2.1 Ερώτηση...9 1.2.2 Επίλυση δευτεροβάθμιας

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { D το D είναι ένα DFA το οποίο αποδέχεται όλες τις λέξεις στο Σ * } (α) Για να διαγνώσουμε το πρόβλημα μπορούμε

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ Β κ Θέµα ο A. Να γράψετε τον αριθµό καθεµιάς από τις παρακάτω προτάσεις και δίπλα το γράµµα Σ αν είναι σωστή ή το γράµµα Λ αν είναι λανθασµένη.. Ο αλγόριθµος είναι

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

Αλγόριθµοι Οπισθοδρόµησης

Αλγόριθµοι Οπισθοδρόµησης Αλγόριθµοι Οπισθοδρόµησης Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Η οπισθοδρόµηση στο σχεδιασµό αλγορίθµων Το πρόβληµα των σταθερών γάµων και ο αλγόριθµος των Gale-Shapley Το πρόβληµα

Διαβάστε περισσότερα

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012

Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 3 5 1 Ταξινόμηση - Sorting Πίνακας Α 1 3 5 5 3 1 Ταξινόμηση (Φθίνουσα) Χωρίς Ταξινόμηση Ταξινόμηση

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Προπτυχιακό Πρόγραμμα Σπουδών Πληροφορική - ΠΛΗ 11-2005 - 06 ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 8 ΙΟΥΛΙΟΥ 2006 ΜΕΡΟΣ Α'. ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ [ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 45 ] Σε κάθε ερώτηση απαντάτε επιλέγοντας

Διαβάστε περισσότερα