M M n+ + ne (1) Ox + ne Red (2) i = i Cdl + i F (3) de dt + i F (4) i = C dl. e E Ecorr

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "M M n+ + ne (1) Ox + ne Red (2) i = i Cdl + i F (3) de dt + i F (4) i = C dl. e E Ecorr"

Transcript

1 Επιταχυνόμενες μέθοδοι μελέτης της φθοράς: Μέθοδος Tafel και μέθοδος ηλεκτροχημικής εμπέδησης Αντώνης Καραντώνης, και Δημήτρης Δραγατογιάννης 1 Σκοπός της άσκησης Στην άσκηση αυτή θα μελετηθεί η διάβρωση μετάλλων σε όξινα υδατικά διαλύματα προσδιορίζοντας την αντίσταση στη διάβρωση με τη μέθοδο Tafel και τη μέθοδο της φασματοσκοπίας ηλεκτροχημικής εμπέδησης. 2 Θεωρία μικτού δυναμικού Η διάβρωση των μετάλλων είναι κυρίως μία ηλεκτροχημική διεργασία που περιλαμβάνει την οξείδωση του μετάλλου και ως εκ τούτου τη φθορά της μεταλλικής κατασκευής και την απώλεια του υλικού. Εν γένει, κατά την εμβάπτιση του μετάλλου σε ένα ηλεκτρολυτικό διάλυμα (διαβρωτικό μέσο) συμβαίνουν τα εξής φαινόμενα: Στην διεπιφάνεια μετάλλου/ηλεκτρολύτη συμβαίνει διαχωρισμός φορτίου που έχει ως αποτέλεσμα η διεπιφάνεια να έχει χαρακτηριστικά πυκνωτή χωρητικότητας C dl. Στην επιφάνεια του μετάλλου λαμβάνουν χώρα οξειδοαναγωγικές αντιδράσεις που εξαρτώνται από τη φύση του μετάλλου και τη σύσταση του ηλεκτρολυτικού διαλύματος (διαβρωτικού μέσου). Στην απλούστερη περίπτωση, στην επιφάνεια ενός μετάλλου Μ που βρίσκεται εμβαπτισμένο σε διαβρωτικό περιβάλλον που περιέχει το οξειδωτικό Ox, Λέκτορας Σχολής Χημικών Μηχανικών ΕΜΠ Υποψήφιος Διδάκτορας Σχολής Χημικών Μηχανικών ΕΜΠ 1

2 λαμβάνουν χώρα οι εξής οξειδοαναγωγικές δράσεις, M M n+ + ne (1) Ox + ne Red (2) όπου Red η ανηγμένη μορφή του οξειδωτικού και e τα ηλεκτρόνια που ανταλλάσσονται. Η πρώτη αντίδραση παριστάνει την οξείδωση (ηλεκτροδιάλυση) του μετάλλου και η δεύτερη την αναγωγή του οξειδωτικού Ox (πχ Η +, Ο 2, Η 2 Ο κ.λ.π.). Θα πρέπει να σημειωθεί ότι οι δράσεις αυτές (οξείδωση και αναγωγή) λαμβάνουν χώρα ταυτόχρονα στην επιφάνεια του μετάλλου Μ. Οταν στο μέταλλο εφαρμοσθεί δυναμικό E (ως προς κάποιο ηλεκτρόδιο αναφοράς), τότε από το μέταλλο θα περάσει ηλεκτρικό ρεύμα. Το ηλεκτρικό ρεύμα i θα αποτελείται από δύο συνιστώσες: (α) το χωρητικό ρεύμα που α- παιτείται για την φόρτιση της διεπιφάνειας που έχει χαρακτηριστικά πυκνωτή, i Cdl, και (β) το φαρανταϊκό ρεύμα λόγω των οξειδοαναγωγικών δράσεων, i F, δηλαδή, i = i Cdl + i F (3) Αν η ηλεκτροχημική διεπιφάνεια θεωρηθεί ως ιδανικός πυκνωτής, τότε η Εξ. (3) μπορεί να γραφεί, i = C dl de dt + i F (4) Η εξάρτηση του φαρανταϊκού ρεύματος από το δυναμικό είναι, 1 i F = (e E Ecorr βa e E Ecorr βc ) (5) όπου η πυκνότητα ρεύματος διάβρωσης, E corr το δυναμικό διάβρωσης και β a, β c οι παράγοντες Tafel. Από την Εξ. (5) παρατηρούμε τα εξής: Ο όρος i a = e E E corr βa παριστά το ρεύμα της ηλεκτροδιάλυσης του μετάλλου (ανοδική δράση, θετικό ρεύμα). Ο όρος i c = e E E corr βc παριστά το ρεύμα της αναγωγής των ειδών Ox (καθοδική δράση, αρνητικό ρεύμα). Οταν i F = τότε το δυναμικό του μετάλλου είναι ίσο με το δυναμικό διάβρωσης, E = E corr. Οταν i F = (δηλαδή όταν E = E corr ) τόσο το ρεύμα ηλεκτροδιάλυσης όσο και το ρεύμα της αναγωγής ταυτίζεται με το ρεύμα διάβρωσης, i a = i c = 1 Για την εξάρτηση του ρεύματος από το δυναμικό βλ. άσκηση Ηλεκτροχημικού Θορύβου. 2

3 Στο Σχ. 1(α) και (γ) παρουσιάζεται η εξάρτηση των i, i a και i c ως προς το δυναμικό E και την υπέρταση η corr = E E corr καθώς και οι τιμές που αντιστοιχούν στο E corr και Από τα παραπάνω γίνεται φανερό ότι προκειμένου να μετρηθεί το δυναμικό διάβρωσης E corr αρκεί να εμβαπτιστεί το μέταλλο στο διαβρωτικό μέσο και να μετρηθεί το δυναμικό του ως προς ένα ηλεκτρόδιο αναφοράς με τη βοήθεια ενός ποτενσιομέτρου. Ο ρυθμός (ταχύτητα) της διάβρωσης υπό αυτές τις συνθήκες, δηλαδή όταν E = E corr θα δίνεται από την πυκνότητα ρεύματος διάβρωσης. Ο προσδιορισμός του μπορεί να γίνει πειραματικά με τη μέθοδο Tafel. 3 Μέθοδος Tafel Οταν το εφαρμοζόμενο δυναμικό E μεταβάλλεται πολύ αργά τότε ο όρος de/dt στην Εξ. (4) είναι πολύ μικρός και το χωρητικό ρεύμα i Cdl μπορεί να αγνοηθεί. Στην περίπτωση αυτή, λοιπόν, το ρεύμα που ρέει από το μέταλλο οφείλεται αποκλειστικά στο φαρανταϊκό ρεύμα i = i F. Οταν το εφαρμοζόμενο δυναμικό E είναι πολύ ανοδικότερο (θετικότερο) από το δυναμικό διάβρωσης E corr τότε ο δεύτερος όρος της Εξ. (5) τείνει στο μηδέν, συνεπώς η εξάρτηση του ρεύματος από το δυναμικό γράφεται, i = e η corr βa (6) όπου η corr = E E corr η υπέρταση διάβρωσης, ή αλλιώς, η corr = β a ln + β a ln i (7) Η Εξ. (7) είναι γνωστή ως ανοδική εξίσωση Tafel. Παρατηρούμε ότι η εξάρτηση του λογαρίθμου του ρεύματος ως προς την υπέρταση η corr είναι γραμμική με κλίση β a και τετμημένη επί της αρχής β a ln. Συνεπώς, το ρεύμα διάβρωσης καθώς και ο ανοδικός παράγοντας Tafel β a μπορεί να προσδιορισθεί αν μεταβληθεί το δυναμικό E ανοδικά και καταγραφεί το ρεύμα i, βλ. Σχ. 1(β) και (δ). Οταν το εφαρμοζόμενο δυναμικό E είναι πολύ καθοδικότερο (αρνητικότερο) από το δυναμικό διάβρωσης E corr τότε ο πρώτος όρος της Εξ. (5) τείνει στο μηδέν, συνεπώς η εξάρτηση του ρεύματος από το δυναμικό γράφεται, ή αλλιώς, i = e ηcorr βa (8) η corr = β a ln β a ln i (9) Η Εξ. (9) είναι γνωστή ως καθοδική εξίσωση Tafel. Παρατηρούμε ότι η εξάρτηση του λογαρίθμου του ρεύματος ως προς την υπέρταση η corr είναι γραμμική με 3

4 κλίση β c και τετμημένη επί της αρχής β c ln. Συνεπώς, το ρεύμα διάβρωσης καθώς και ο καθοδικός παράγοντας Tafel β c μπορεί να προσδιορισθεί αν μεταβληθεί το δυναμικό E καθοδικά και καταγραφεί το ρεύμα i, βλ. Σχ. 1(β) και (δ). (α) i (A/cm 2 ) (γ) (A/cm 2 ) ic i a E corr E (V) - ic η corr (V) i a i i (β) -.2 E (V) (δ) η corr (V) E corr i c i a -.8 1e-1 1e i c i a i (A/cm 2 ) 1e-1 1e-5 1 i (A/cm 2 ) i i Σχήμα 1: (α) Εξάρτηση του ανοδικού ρεύματος i a, του καθοδικού ρεύματος i c και του ολικού ρεύματος i από το δυναμικό E, (β) εξάρτηση του λογαρίθμου του ρεύματος από το δυναμικό E (διάγραμμα Evans), (γ) εξάρτηση του ανοδικού ρεύματος i a, του καθοδικού ρεύματος i c και του ολικού ρεύματος i από την υπέρταση η corr, (δ) εξάρτηση του λογαρίθμου του ρεύματος από την υπέρταση η corr (διάγραμμα Evans) Το ημιλογαριθμικό διάγραμμα της εξάρτησης ρεύματος - δυναμικού είναι γνωστό και ως διάγραμμα Evans. Αν και η συνήθης πειραματική διαδικασία γίνεται με επιβολή δυναμικού και μέτρηση του ρεύματος, στη ηλεκτροχημική βιβλιογραφία το διάγραμμα Evans παριστάνεται σχεδόν πάντα ως ο λογάριθμος του ρεύματος στον άξονα-x και το δυναμικό στον άξονα-y. 4 Φασματοσκοπία ηλεκτροχημικής εμπέδησης Ας θεωρήσουμε ότι η εξάρτηση του φαρανταϊκού ρεύματος από το δυναμικό για ένα μέταλλο που βρίσκεται σε διαβρωτικό περιβάλλον δίνεται από μία συνάρτηση 4

5 i F = i F (E) της μορφής της Εξ. (5). Ας θεωρήσουμε επίσης ότι στο μέταλλο αρχικά δεν εφαρμόζεται δυναμικό, οπότε το δυναμικό του μετάλλου είναι E corr και το ρεύμα είναι ίσο με το μηδέν. Εστω ότι στο μέταλλο εφαρμόζουμε μία μικρή διαταραχή του δυναμικού E(t). Η μεταβολή του ρεύματος λόγω της διαταραχής του δυναμικού θα είναι, δi F (t) = i F δe(t) (1) E E=Ecorr όπου δe(t) = E(t) E corr. Ο μετασχηματισμός Laplace της εξίσωσης αυτής είναι, L(δi F ) = i L(δE) (11) E E=Ecorr ή αλλιώς, Z F = L(δE) ( L(δi) = if ) 1 = Rp (12) E όπου εξ ορισμού Z F η φαρανταϊκή εμπέδηση του μετάλλου που στην προκειμένη περίπτωση ταυτίζεται με την αντίσταση πόλωσης R p. Στην περίπτωση αυτή όμως, όπου το δυναμικό μεταβάλλεται με το χρόνο, το χωρητικό ρεύμα i Cdl δεν μπορεί να αγνοηθεί. Η εμπέδηση της ηλεκτροχημικής διεπιφάνειας που έχει τα χαρακτηριστικά πυκνωτή θα προκύψει παίρνοντας το μετασχηματισμό Laplace του χωρητικού ρεύματος, L(δi Cdl ) = jωc dl L(δE) (13) όπου ω η συχνότητα της διαταραχής και j = 1. Συνεπώς, η εμπέδηση της διεπιφάνειας θα είναι, Z Cdl = L(δE) L(δi Cdl ) = 1 (14) jωc dl Το συνολικό, όμως, ρεύμα που περνά από το σύστημα διαρρέει το ηλεκτρολυτικό διάλυμα (μεταξύ του μετάλλου και του ηλεκτροδίου αναφοράς) που έχει αντίσταση. Συνεπώς, η συνολική εμπέδηση του συστήματος αποτελείται από την Z F και την Z Cdl σε παράλληλη σύνδεση και την σε σειρά, Z = + 1 jωc dl R p R p 1 = + (15) jωc dl + R p 1 + jωr p C dl ή χωρίζοντας το πραγματικό από το φανταστικό μέρος του Z η Εξ. (15)γράφεται, R p Z = ω 2 RpC 2 dl 2 ωrpc 2 dl j 1 + ω 2 RpC 2 dl 2 (16) Από τις σχέσεις αυτές παρατηρούμε τα εξής: 5

6 Η εμπέδηση Z του συστήματος είναι ένας μιγαδικός αριθμός, Z(ω) = Z (ω) + jz (ω) που εξαρτάται από τη συχνότητα της διαταραχής ω. Οταν η συχνότητα ω λαμβάνει πολύ μεγάλες τιμές, τότε η τιμή του κλάσματος τείνει στο μηδέν και ισχύει, Z = (17) δηλαδή η εμπέδηση του συστήματος είναι πραγματικός αριθμός (έχει ω- μικά χαρακτηριστικά) και ταυτίζεται με την αντίσταση του διαλύματος. Οταν η συχνότητα ω λαμβάνει πολύ μικρές τιμές, τότε το κλάσμα τείνει στην τιμή R p συνεπώς ισχύει, Z = + R p (18) δηλαδή η εμπέδηση του συστήματος είναι πραγματικός αριθμός (έχει ω- μικά χαρακτηριστικά) και ταυτίζεται με το άθροισμα της αντίστασης του διαλύματος και της αντίστασης πόλωσης. Άρα, η τιμή της αντίστασης πόλωσης, άρα και η αντίσταση στη διάβρωση, μπορεί να προσδιορισθεί με την επιβολή διαταραχής δυναμικού και σάρωση της συχνότητας της διαταραχής, βλ. Σχ. 2. Η απεικόνιση της εμπέδησης Z(ω) στο μιγαδικό επίπεδο Z Z ονομάζεται διάγραμμα Nyquist. Δεδομένου ότι η εμπέδηση είναι μιγαδικός αριθμός μπορεί να γραφεί και με τη μορφή Z(ω) = Z(ω) e iθ(ω) όπου Z(ω) το μέτρο της εμπέδησης και θ(ω) η φάση της εμπέδησης. Οι γραφικές παραστάσεις των εξαρτήσεων του μέτρου και της φάσης της εμπέδησης ως προς τη συχνότητα ονομάζονται διαγράμματα Bode. Η μέθοδος της φασματοσκοπίας ηλεκτροχημικής εμπέδησης μπορεί να χρησιμοποιηθεί και για τον προσδιορισμό της χωρητικότητας της διεπιφάνειας του μετάλλου / ηλεκτρολύτη, C dl. Από τη σχέση Εξ. (16) παρατηρούμε ότι το πραγματικό μέρος της εμπέδησης λαμβάνει την τιμή Z = + R p /2 όταν η συχνότητα ω έχει τιμή, ω max = 1 (19) R p C dl Αλλά η τιμή Z = + R p /2 αντιστοιχεί στο κέντρο του ημικυκλίου της απεικόνισης Z Z, Σχ. 2(α), δηλαδή η συχνότητα ω max είναι η συχνότητα στην οποία αντιστοιχεί το μέγιστο του ημικυκλίου της απεικόνισης Z Z. 6

7 (β) 1 + R p (α) -3 ω max = 1/R p C dl -25 Z (Ω) R p /2-5 + R p Z (Ω) (γ) Z (Ω) θ (rad) ω (Hz) ω (Hz) Σχήμα 2: (α) Απεικόνιση του πραγματικού και φανταστικού μέρους της εμπέδησης (διάγραμμα Nyquist), (β) εξάρτηση του μέτρου της εμπέδησης από τη συχνότητα και (γ) εξάρτηση της φάσης της εμπέδησης από τη συχνότητα (διαγράμματα Bode). = 1, = 5, C dl = Πειραματικό μέρος 5.1 Μέθοδος Tafel Προκειμένου να εφαρμοσθεί η μέθοδος Tafel για τον προσδιορισμό του απαιτείται η χρήση ενός ποτενσιοστάτη και μίας γεννήτριας. Ο ποτενσιοστάτης είναι μία συσκευή που επιτρέπει τη εφαρμογή σταθερού δυναμικού στο ηλεκτρόδιο εργασίας (το προς μελέτη μέταλλο) ως προς ένα ηλεκτρόδιο αναφοράς και την ταυτόχρονη μέτρηση του ρεύματος που ρέει μέσα από το σύστημα. Η γεννήτρια έχει τη δυνατότητα της γραμμικής μεταβολής του δυναμικού με καθορισμένη ταχύτητα (ρυθμό) σάρωσης. Συχνά το σύστημα ποτενσιοστάτηςγεννήτρια είναι ενσωματωμένο στην ίδια συσκευή. Το μέταλλο (ηλεκτρόδιο εργασίας) εμβαπτίζεται στο ηλεκτρολυτικό διάλυμα (διαβρωτικό μέσο). Στο ίδιο διαβρωτικό μέσο εμβαπτίζεται το ηλεκτρόδιο αναφοράς (πχ κκορεσμένο ηλεκτρόδιο καλομέλανα) και ένα αντίθετο (βοηθητικό ηλεκτρόδιο) που θα πρέπει να έχει επιφάνεια μεγαλύτερη από το ηλεκτρόδιο εργασίας (πχ ράβδος άνθρακα). Τα τρία αυτά ηλεκτρόδια συνδέονται με τα 7

8 αντίστοιχα καλώδια του ποτενσιοστάτη. Υπό αυτή τη συνδεσμολογία, ο ποτενσιοστάτης μπορεί να χρησιμοποιηθεί ως ποτενσιόμετρο και να καταγράψει το δυναμικό του μετάλλου ως προς το ηλεκτρόδιο αναφοράς, το οποίο ταυτίζεται με το E corr. Στη συνέχεια, ορίζονται τα όρια της σάρωσης του δυναμικού που θα πρέπει να είναι ±25 mv ως προς το E corr καθώς και η ταχύτητα σάρωσης που θα πρέπει να είναι μικρή, πχ 1 mv/s. Εφόσον ορισθούν οι παραπάνω πειραματικές συνθήκες, μεταβάλλεται το δυναμικό E και καταγράφεται το ρεύμα i. Η εξάρτηση του λογαρίθμου του i από το E θα πρέπει να είναι γραμμική όταν E E corr. Κάνοντας χρήση των σημείων που αποτελούν το γραμμικό μέρος της καμπύλης με εφαρμογή ελαχίστων τετραγώνων προσδιορίζεται το και τα β a, β c, όπως περιγράφηκε στην Παρ Φασματοσκοπία ηλεκτροχημικής εμπέδησης Προκειμένου να εφαρμοσθεί η μέθοδος της φασματοσκοπίας ηλεκτροχημικής εμπέδησης για τον προσδιορισμό του R p απαιτείται η χρήση ενός ποτενσιοστάτη και μίας γεννήτριας. Ο ποτενσιοστάτης είναι μία συσκευή που επιτρέπει τη εφαρμογή σταθερού δυναμικού στο ηλεκτρόδιο εργασίας (το προς μελέτη μέταλλο) ως προς ένα ηλεκτρόδιο αναφοράς και την ταυτόχρονη μέτρηση του ρεύματος που ρέει μέσα από το σύστημα. Η γεννήτρια θα πρέπει να έχει τη δυνατότητα ημιτονοειδούς μεταβολής του δυναμικού μεταβλητής συχνότητας. Συχνά, η γεννήτρια έχει τη δυνατότητα άμεσου υπολογισμού της εμπέδησης του συστήματος. Το μέταλλο (ηλεκτρόδιο εργασίας) εμβαπτίζεται στο ηλεκτρολυτικό διάλυμα (διαβρωτικό μέσο). Στο ίδιο διαβρωτικό μέσο εμβαπτίζεται το ηλεκτρόδιο αναφοράς (πχ κκορεσμένο ηλεκτρόδιο καλομέλανα) και ένα αντίθετο (βοηθητικό ηλεκτρόδιο) που θα πρέπει να έχει επιφάνεια μεγαλύτερη από το ηλεκτρόδιο εργασίας (πχ ράβδος άνθρακα). Τα τρία αυτά ηλεκτρόδια συνδέονται με τα αντίστοιχα καλώδια του ποτενσιοστάτη. Υπό αυτή τη συνδεσμολογία, ο ποτενσιοστάτης μπορεί να χρησιμοποιηθεί ως ποτενσιόμετρο και να καταγράψει το δυναμικό του μετάλλου ως προς το ηλεκτρόδιο αναφοράς, το οποίο ταυτίζεται με το E corr. Στη συνέχεια, ορίζονται τα όρια της σάρωσης της συχνότητας που θα πρέπει να είναι από.1 Hz έως 1 khz. Εφόσον ορισθούν οι παραπάνω πειραματικές συνθήκες, μεταβάλλεται η συχνότητα ω και καταγράφεται ταυτόχρονα το ρεύμα i(t) και το δυναμικό E(t). Η ταυτόχρονη καταγραφή του i(t) και του E(t) για κάθε τιμή του ω επιτρέπει τον αυτόματο προσδιορισμό του Z(ω) από το όργανο. Κάνοντας χρήση του διαγράμματος Z (ω) - Z (ω) προσδιορίζονται οι αντιστάσεις και R p, όπως περιγράφηκε στην Παρ. 4. 8

9 Βιβλιογραφία 1. Ν. Κουλουμπή, Ηλεκτροχημεία, Εκδόσεις Συμεών, A.J. Bard and L.R. Faulkner, Electrochemical Methods, Wiley, D.A. Jones, Principles and prevention of corrosion, Macmillan Publishing Company, Α. Καραντώνης, Ηλεκτροχημική εμπέδηση στη χημική μηχανική. Βασικές αρχές μέσα από τρία παραδείγματα, 29 9

F el = z k e 0 (3) F f = f k v k (4) F tot = z k e 0 x f kv k (5)

F el = z k e 0 (3) F f = f k v k (4) F tot = z k e 0 x f kv k (5) Κίνηση των ιόντων υπό την επίδραση ηλεκτρικού πεδίου Αντώνης Καραντώνης 15 Μαρτίου 2011 1 Σκοπός της άσκησης Σκοπός της άσκησης είναι ο προσδιορισμός της οριακής ταχύτητας των ιόντων υπό την επίδραση ηλεκτρικού

Διαβάστε περισσότερα

[Fe(CN) 6 ] 3 + e [Fe(CN) 6 ] 4

[Fe(CN) 6 ] 3 + e [Fe(CN) 6 ] 4 Μελέτη μίας αντιστρεπτής ηλεκτροχημικής αντίδρασης με την τεχνική της κυκλικής βολταμμετρίας Αντώνης Καραντώνης και Δήμητρα Γεωργιάδου 1 Σκοπός της άσκησης Η κυκλική βολταμμετρία αποτελεί μια ευρέως χρησιμοποιούμενη

Διαβάστε περισσότερα

Π. Χρυσαφίδης, Δ. Καραουλάνης, Α. Καραντώνης Τομέας Επιστήμης και Τεχνικής των Υλικών, Σχολή Χημικών Μηχανικών, ΕΜΠ, 15780 Αθήνα

Π. Χρυσαφίδης, Δ. Καραουλάνης, Α. Καραντώνης Τομέας Επιστήμης και Τεχνικής των Υλικών, Σχολή Χημικών Μηχανικών, ΕΜΠ, 15780 Αθήνα ΗΛΕΚΤΡΟΧΗΜΙΚΟΣ ΣΥΝΤΟΝΙΣΜΟΣ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΔΙΕΠΙΦΑΝΕΙΩΝ ΣΕ ΠΟΤΕΝΣΙΟΣΤΑΤΙΚΕΣ ΚΑΙ ΓΑΛΒΑΝΟΣΤΑΤΙΚΕΣ ΣΥΝΘΗΚΕΣ ΥΠΟ ΤΗΝ ΕΠΙΔΡΑΣΗ ΠΕΡΙΟΔΙΚΩΝ ΚΑΙ ΧΑΟΤΙΚΩΝ ΔΙΑΤΑΡΑΧΩΝ Π. Χρυσαφίδης, Δ. Καραουλάνης, Α. Καραντώνης

Διαβάστε περισσότερα

(1) i mig,k = z 2 kf 2 u k c k (2) i mig = i mig,k = z 2 kf 2 u k c k. k=1. k=1

(1) i mig,k = z 2 kf 2 u k c k (2) i mig = i mig,k = z 2 kf 2 u k c k. k=1. k=1 Αριθμοί μεταφοράς Α. Καραντώνης 1 Σκοπός Σκοπός της άσκησης είναι ο πειραματικός προσδιορισμός των αριθμών μεταφοράς με τη μέθοδο Hittorf. Ειδικότερα, προσδιορίζονται ο αριθμοί μεταφοράς κατιόντων υδρογόνου

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΙΣ ΜΕΣΕΠΙΦΑΝΕΙΕΣ ΔΥΝΑΜΙΚΑ ΑΠΟΣΥΝΘΕΣΕΩΣ ΗΛΕΚΤΡΟΛΥΤΩΝ

ΗΛΕΚΤΡΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΙΣ ΜΕΣΕΠΙΦΑΝΕΙΕΣ ΔΥΝΑΜΙΚΑ ΑΠΟΣΥΝΘΕΣΕΩΣ ΗΛΕΚΤΡΟΛΥΤΩΝ 5-1 ΗΛΕΚΤΡΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΙΣ ΜΕΣΕΠΙΦΑΝΕΙΕΣ ΔΥΝΑΜΙΚΑ ΑΠΟΣΥΝΘΕΣΕΩΣ ΗΛΕΚΤΡΟΛΥΤΩΝ Έννοιες που θα γνωρίσετε: Δομή και δυναμικό ηλεκτρικής διπλής στιβάδας, πολώσιμη και μη πολώσιμη μεσεπιφάνεια, κανονικό και

Διαβάστε περισσότερα

ΠΡΟΣΟΜΕΙΩΣΗ ΤΗΣ ΝΕΥΡΟΦΥΣΙΟΛΟΓΙΚΗΣ ΗΛΕΚΤΡΙΚΗΣ ΣΥΝΑΨΗΣ ΜΕΣΩ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΘΥΣΑΝΟΕΙΔΩΝ ΤΑΛΑΝΤΩΤΩΝ

ΠΡΟΣΟΜΕΙΩΣΗ ΤΗΣ ΝΕΥΡΟΦΥΣΙΟΛΟΓΙΚΗΣ ΗΛΕΚΤΡΙΚΗΣ ΣΥΝΑΨΗΣ ΜΕΣΩ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΘΥΣΑΝΟΕΙΔΩΝ ΤΑΛΑΝΤΩΤΩΝ ΠΡΟΣΟΜΕΙΩΣΗ ΤΗΣ ΝΕΥΡΟΦΥΣΙΟΛΟΓΙΚΗΣ ΗΛΕΚΤΡΙΚΗΣ ΣΥΝΑΨΗΣ ΜΕΣΩ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΘΥΣΑΝΟΕΙΔΩΝ ΤΑΛΑΝΤΩΤΩΝ Α. Καραντώνης, Δ. Κουτσαύτης, Ν. Κουλουμπή Τομέας Επιστήμης και Τεχνικής των Υλικών, Σχολή Χημικών Μηχανικών,

Διαβάστε περισσότερα

F el = z k e 0 (3) F f = f k v k (4) F tot = z k e 0 x f kv k (5)

F el = z k e 0 (3) F f = f k v k (4) F tot = z k e 0 x f kv k (5) Κίνηση των ιόντων υπό την επίδραση ηλεκτρικού πεδίου - Αγωγιμομετρία Α. Καραντώνης, Χ. Καραγιάννη, Κ. Χαριτίδης, Η. Κούμουλος 1 Σκοπός της άσκησης Σκοπός της άσκησης είναι: (α) Ο προσδιορισμός της οριακής

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

W el = q k φ (1) W el = z k e 0 N A φn k = z k F φn k (2)

W el = q k φ (1) W el = z k e 0 N A φn k = z k F φn k (2) Το ηλεκτρολυτικό διάλυμα στην ισορροπία Αντώνης Καραντώνης 19 Απριλίου 211 Σταθερές 1. Σταθερά των αερίων, R = 8.314 J mol 1 K 1 2. Στοιχειώδες φορτίο, e = 1.62 1 19 C 3. Αριθμός Avogadro, N A = 6.23 1

Διαβάστε περισσότερα

ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ II

ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ II 4-1 ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ II Θέμα ασκήσεως: Ποτενσιομετρική τιτλοδότηση, προσδιορισμός κανονικού δυναμικού ηλεκτροδίου, πειραματική επαλήθευση της εξισώσεως Nernst. Αρχή μεθόδου: Μετρείται η ΗΕΔ γαλβανικού

Διαβάστε περισσότερα

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,

Διαβάστε περισσότερα

Περιεχόμενο της άσκησης

Περιεχόμενο της άσκησης Προαπαιτούμενες γνώσεις Επαφή p- Στάθμη Fermi Χαρακτηριστική ρεύματος-τάσης Ορθή και ανάστροφη πόλωση Περιεχόμενο της άσκησης Οι επαφές p- παρουσιάζουν σημαντικό ενδιαφέρον επειδή βρίσκουν εφαρμογή στη

Διαβάστε περισσότερα

Τελεστικοί Ενισχυτές. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

Τελεστικοί Ενισχυτές. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Τελεστικοί Ενισχυτές Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Ο ιδανικός τελεστικός ενισχυτής Είσοδος αντιστροφής Ισοδύναμα Είσοδος μη αντιστροφής A( ) A d 2 1 2 1

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ

ΕΚΠΑΙΔΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΕΚΠΑΙΔΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Διάβρωση, Οξείδωση και Προστασία Μετάλλων/ Τεχνικές Μέτρησης Διάβρωσης Το Τμήμα Μηχανολογίας και Επιστήμης και Μηχανικής Υλικών του Τεχνολογικού Πανεπιστημίου Κύπρου διοργανώνει

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12: ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE

ΕΝΟΤΗΤΑ 12: ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ : ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE Δρ Γιώργος Μαϊστρος, Χημικός Μηχανικός

Διαβάστε περισσότερα

Εργαστηριακός υπολογισμός του πρότυπου δυναμικού ενός οξειδοαναγωγικού ημιστοιχείου.

Εργαστηριακός υπολογισμός του πρότυπου δυναμικού ενός οξειδοαναγωγικού ημιστοιχείου. Εργαστήριο Φυσικής Χηµείας Π. Δ. Γιαννακουδάκης Εργαστηριακός υπολογισμός του πρότυπου δυναμικού ενός οξειδοαναγωγικού ημιστοιχείου. 1. κατηγορίες ημιστοιχείων Ένα ημιστοιχείο αποτελείται πάντα από δύο

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) H 298

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) H 298 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 4-5 (Α. Χημική Θερμοδυναμική) η Άσκηση Από τα δεδομένα του πίνακα που ακολουθεί και δεχόμενοι ότι όλα τα αέρια είναι ιδανικά, να υπολογίσετε: α)

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ

ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ Ε. Μ. Πολυτεχνείο Εργαστήριο Ηλεκτρονικής ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ Γ. ΠΑΠΑΝΑΝΟΣ ΠΑΡΑΡΤΗΜΑ : Συναρτήσεις Δικτύων Βασικοί ορισμοί Ας θεωρήσουμε ένα γραμμικό, χρονικά

Διαβάστε περισσότερα

ΓΑΛΒΑΝΙΚΑ ΚΑΙ ΗΛΕΚΤΡΟΛΥΤΙΚΑ ΚΕΛΙΑ

ΓΑΛΒΑΝΙΚΑ ΚΑΙ ΗΛΕΚΤΡΟΛΥΤΙΚΑ ΚΕΛΙΑ ΓΑΛΒΑΝΙΚΑ ΚΑΙ ΗΛΕΚΤΡΟΛΥΤΙΚΑ ΚΕΛΙΑ Σκοπός Εργαστηριακής Άσκησης Η κατανόηση του μηχανισμού λειτουργίας των γαλβανικών και ηλεκτρολυτικών κελιών καθώς και των εφαρμογών τους. Θεωρητικό Μέρος Όταν φέρουμε

Διαβάστε περισσότερα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ο ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά.. Το μέτρο της

Διαβάστε περισσότερα

Φυσική Χημεία ΙΙ. Ηλεκτροχημικά στοιχεία. Κεφ.4 εξίσωση του Nernst. Σημειώσεις για το μάθημα. Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π.

Φυσική Χημεία ΙΙ. Ηλεκτροχημικά στοιχεία. Κεφ.4 εξίσωση του Nernst. Σημειώσεις για το μάθημα. Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π. Σημειώσεις για το μάθημα Φυσική Χημεία ΙΙ Ηλεκτροχημικά στοιχεία Κεφ.4 εξίσωση του Nernst Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π. Τμήμα Χημείας ΑΠΘ ΚΕΦΑΛΑΙΟ 4 ΕΞΙΣΩΣΗ NERNST 4.1 Εξίσωση Nernst Μια

Διαβάστε περισσότερα

1. Ιδανικό κύκλωμα LC εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή

1. Ιδανικό κύκλωμα LC εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή Εισαγωγικές ασκήσεις στις ηλεκτρικές ταλαντώσεις 1. Ιδανικό κύκλωμα L εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή δίνεται από τη σχέση q = 10 6 συν(10 ) (S.I.). Ο συντελεστής

Διαβάστε περισσότερα

Άσκηση 10 Στοιχεία ηλεκτρονικής τεχνολογίας

Άσκηση 10 Στοιχεία ηλεκτρονικής τεχνολογίας Άσκηση 10 Στοιχεία ηλεκτρονικής τεχνολογίας ΔΙΟΔΟΣ Οι περισσότερες ηλεκτρονικές συσκευές όπως οι τηλεοράσεις, τα στερεοφωνικά συγκροτήματα και οι υπολογιστές χρειάζονται τάση dc για να λειτουργήσουν σωστά.

Διαβάστε περισσότερα

ΟΞΕΙΔΟΑΝΑΓΩΓΗ - ΗΛΕΚΤΡΟΧΗΜΕΙΑ. Χρήστος Παππάς Επίκουρος Καθηγητής

ΟΞΕΙΔΟΑΝΑΓΩΓΗ - ΗΛΕΚΤΡΟΧΗΜΕΙΑ. Χρήστος Παππάς Επίκουρος Καθηγητής - ΗΛΕΚΤΡΟΧΗΜΕΙΑ Χρήστος Παππάς Επίκουρος Καθηγητής 1 Οξείδωση ονομάζεται η αύξηση του αριθμού οξείδωσης. Κατά τη διάρκεια της οξείδωσης αποβάλλονται ηλεκτρόνια. Αναγωγή ονομάζεται η μείωση του αριθμού

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7 ΚΥΚΛΩΜΑ R-L-C: ΣΥΝΔΕΣΗ ΣΕ ΣΕΙΡΑ ΣΥΝΤΟΝΙΣΜΟΣ

ΑΣΚΗΣΗ 7 ΚΥΚΛΩΜΑ R-L-C: ΣΥΝΔΕΣΗ ΣΕ ΣΕΙΡΑ ΣΥΝΤΟΝΙΣΜΟΣ ΑΣΚΗΣΗ 7 ΚΥΚΛΩΜΑ R-L-C: ΣΥΝΔΕΣΗ ΣΕ ΣΕΙΡΑ ΣΥΝΤΟΝΙΣΜΟΣ 1 Σκοπός Στην άσκηση αυτή μελετάται η συμπεριφορά ενός κυκλώματος RLC σε σειρά κατά την εφαρμογή εναλλασσόμενου ρεύματος. Συγκεκριμένα μελετάται η μεταβολή

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 13: Ισχύς σε κυκλώματα ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 13: Ισχύς σε κυκλώματα ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.

Διαβάστε περισσότερα

ΔΙΑΒΡΩΣΗ ΟΡΙΣΜΟΣ ΣΚΟΠΟΣ ΤΗΣ ΜΕΛΕΤΗΣ ΚΑΙ ΕΡΕΥΝΑΣ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΖΗΜΙΕΣ ΑΠΟ ΤΗΝ ΔΙΑΒΡΩΣΗ ΖΗΜΙΕΣ ΣΤΗΝ ΕΛΛΑΔΑ (ΑΙΤΙΑ) ΣΥΜΠΕΡΑΣΜΑΤΑ ΔΙΑΒΡΩΣΗ = ΟΞΕΙΔΩΣΗ

ΔΙΑΒΡΩΣΗ ΟΡΙΣΜΟΣ ΣΚΟΠΟΣ ΤΗΣ ΜΕΛΕΤΗΣ ΚΑΙ ΕΡΕΥΝΑΣ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΖΗΜΙΕΣ ΑΠΟ ΤΗΝ ΔΙΑΒΡΩΣΗ ΖΗΜΙΕΣ ΣΤΗΝ ΕΛΛΑΔΑ (ΑΙΤΙΑ) ΣΥΜΠΕΡΑΣΜΑΤΑ ΔΙΑΒΡΩΣΗ = ΟΞΕΙΔΩΣΗ 1 ΔΙΑΒΡΩΣΗ ΟΡΙΣΜΟΣ ΣΚΟΠΟΣ ΤΗΣ ΜΕΛΕΤΗΣ ΚΑΙ ΕΡΕΥΝΑΣ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΖΗΜΙΕΣ ΑΠΟ ΤΗΝ ΔΙΑΒΡΩΣΗ ΖΗΜΙΕΣ ΣΤΗΝ ΕΛΛΑΔΑ (ΑΙΤΙΑ) ΣΥΜΠΕΡΑΣΜΑΤΑ ΔΙΑΒΡΩΣΗ = ΟΞΕΙΔΩΣΗ 2 ΔΙΑΒΡΩΣΗ ΟΡΙΣΜΟΣ: Κάθε αυθόρμητη ή εκβιασμένη, ηλεκτρομηχανική

Διαβάστε περισσότερα

Στις εξισώσεις σχεδιασμού υπεισέρχεται ο ρυθμός της αντίδρασης. Επομένως, είναι βασικό να γνωρίζουμε την έκφραση που περιγράφει το ρυθμό.

Στις εξισώσεις σχεδιασμού υπεισέρχεται ο ρυθμός της αντίδρασης. Επομένως, είναι βασικό να γνωρίζουμε την έκφραση που περιγράφει το ρυθμό. Βασικές Εξισώσεις Σχεδιασμού (ΣΔΟΥΚΟΣ 2-, 2-) t = n i dn i V n i R και V = n i dn i t n i R Στις εξισώσεις σχεδιασμού υπεισέρχεται ο ρυθμός της αντίδρασης. Επομένως, είναι βασικό να γνωρίζουμε την έκφραση

Διαβάστε περισσότερα

1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος RC σε βηµατική και αρµονική διέγερση

1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος RC σε βηµατική και αρµονική διέγερση Ονοµατεπώνυµο: Αριθµός Μητρώου: Εξάµηνο: Υπογραφή Εργαστήριο Ηλεκτρικών Κυκλωµάτων και Συστηµάτων 1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος σε βηµατική και αρµονική διέγερση Μέρος Α : Απόκριση στο πεδίο

Διαβάστε περισσότερα

Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014. i S (ωt)

Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014. i S (ωt) Θέμα 1 ο Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014 Για το κύκλωμα ΕΡ του διπλανού σχήματος δίνονται τα εξής: v ( ωt 2 230 sin (

Διαβάστε περισσότερα

l R= ρ Σε ηλεκτρικό αγωγό µήκους l και διατοµής A η αντίσταση δίνεται από την εξίσωση: (1)

l R= ρ Σε ηλεκτρικό αγωγό µήκους l και διατοµής A η αντίσταση δίνεται από την εξίσωση: (1) ΑΓΩΓΙΜΟΤΗΤΑ ΗΕΚΤΡΟΥΤΩΝ Θέµα ασκήσεως Μελέτη της µεταβολής της αγωγιµότητας ισχυρού και ασθενούς ηλεκτρολύτη µε την συγκέντρωση, προσδιορισµός της µοριακής αγωγιµότητας σε άπειρη αραίωση ισχυρού οξέος,

Διαβάστε περισσότερα

ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ R-C ΚΥΚΛΩΜΑΤΩΝ. Η θεωρία της άσκησης καλύπτεται από το βιβλίο του Εργαστηρίου. ( j

ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ R-C ΚΥΚΛΩΜΑΤΩΝ. Η θεωρία της άσκησης καλύπτεται από το βιβλίο του Εργαστηρίου. ( j ΑΣΚΗΣΗ 07 ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ - ΚΥΚΛΩΜΑΤΩΝ Αντικείμενο της άσκησης είναι η μελέτη της συνάρτησης μεταφοράς ενός εν σειρά - κυκλώματος συναρτήσει της συχνότητας του σήματος εισόδου. Η θεωρία της άσκησης

Διαβάστε περισσότερα

Κεφάλαιο της φυσικοχημείας που ερευνά τις διεργασίες που. και οι φορείς του ηλεκτρικού ρεύματος (ηλεκτρόνια, ιόντα).

Κεφάλαιο της φυσικοχημείας που ερευνά τις διεργασίες που. και οι φορείς του ηλεκτρικού ρεύματος (ηλεκτρόνια, ιόντα). ΗΛΕΚΤΡΟΧΗΜΕΙΑ Κεφάλαιο της φυσικοχημείας που ερευνά τις διεργασίες που λαμβάνουν χώρα σε διαλύματα ή τήγματα, όπου συμμετέχουν και οι φορείς του ηλεκτρικού ρεύματος (ηλεκτρόνια, ιόντα). Πραγματοποίηση

Διαβάστε περισσότερα

Θέµατα προηγούµενων εξεταστικών περιόδων. 1 ο Θέµα Ιανουαρίου 2005

Θέµατα προηγούµενων εξεταστικών περιόδων. 1 ο Θέµα Ιανουαρίου 2005 Θέµατα προηγούµενων εξεταστικών περιόδων 1 ο Θέµα Ιανουαρίου 2005 Σε ένα επίπεδο ηλεκτρόδιο ενεργού επιφάνειας 2 cm 2, που χρησιµοποιείται ως άνοδος σε µία ηλεκτρολυτική κυψέλη που περιέχει διάλυµα 2*10-3

Διαβάστε περισσότερα

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Ηλεκτρικό ρεύμα Το ρεύμα είναι αποτέλεσμα της κίνησης

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7. Θερµοϊονικό φαινόµενο - ίοδος λυχνία

ΑΣΚΗΣΗ 7. Θερµοϊονικό φαινόµενο - ίοδος λυχνία ΑΣΚΗΣΗ 7 Θερµοϊονικό φαινόµενο - ίοδος λυχνία ΣΥΣΚΕΥΕΣ : Πηγή συνεχούς 0-50 Volts, πηγή 6V/2A, βολτόµετρο συνεχούς, αµπερόµετρο συνεχούς, βολτόµετρο, ροοστάτης. ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ Όταν η θερµοκρασία ενός

Διαβάστε περισσότερα

ΑΠΟΤΥΠΩΣΗ ΜΕΛΕΤΗ ΗΛΕΚΤΡΙΚΩΝ ΠΕΔΙΩΝ

ΑΠΟΤΥΠΩΣΗ ΜΕΛΕΤΗ ΗΛΕΚΤΡΙΚΩΝ ΠΕΔΙΩΝ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΑΠΟΤΥΠΩΣΗ ΜΕΛΕΤΗ ΗΛΕΚΤΡΙΚΩΝ ΠΕΔΙΩΝ Α. ΣΤΟΧΟΙ Η επαφή και εξοικείωση του μαθητή με βασικά όργανα του ηλεκτρισμού και μετρήσεις. Η ικανότητα συναρμολόγησης απλών

Διαβάστε περισσότερα

ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ

ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ Οι γεννήτριες συνεχούς ρεύματος διαχωρίζονται στις ακόλουθες κατηγορίες: Ανεξάρτητης (ξένης) διέγερσης. Παράλληλης διέγερσης. Διέγερσης σειράς. Αθροιστικής σύνθετης διέγερσης.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο

ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο Βασίλης Γαργανουράκης Φυσική ήγ Γυμνασίου Εισαγωγή Στο προηγούμενο κεφάλαιο μελετήσαμε τις αλληλεπιδράσεις των στατικών (ακίνητων) ηλεκτρικών φορτίων. Σε αυτό το κεφάλαιο

Διαβάστε περισσότερα

Ο νόμος της επαγωγής, είναι ο σημαντικότερος νόμος του ηλεκτρομαγνητισμού. Γι αυτόν ισχύουν οι εξής ισοδύναμες διατυπώσεις:

Ο νόμος της επαγωγής, είναι ο σημαντικότερος νόμος του ηλεκτρομαγνητισμού. Γι αυτόν ισχύουν οι εξής ισοδύναμες διατυπώσεις: Άσκηση Η17 Νόμος της επαγωγής Νόμος της επαγωγής ή Δεύτερη εξίσωση MAXWELL Ο νόμος της επαγωγής, είναι ο σημαντικότερος νόμος του ηλεκτρομαγνητισμού. Γι αυτόν ισχύουν οι εξής ισοδύναμες διατυπώσεις: d

Διαβάστε περισσότερα

ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ

ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Τι είναι αυτό που προϋποθέτει την ύπαρξη μιας συνεχούς προσανατολισμένης ροής ηλεκτρονίων; Με την επίδραση διαφοράς δυναμικού ασκείται δύναμη στα ελεύθερα ηλεκτρόνια του μεταλλικού

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 8 Κυκλώματα RLC και Σταθερή Ημιτονοειδής Κατάσταση Λευκωσία, 2010 Εργαστήριο 8

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 208 ΚΥΚΛΩΜΑ ΣΥΝΤΟΝΙΣΜΟΥ ΕΝ ΣΕΙΡΑ U U (3)

ΑΣΚΗΣΗ 208 ΚΥΚΛΩΜΑ ΣΥΝΤΟΝΙΣΜΟΥ ΕΝ ΣΕΙΡΑ U U (3) ΑΣΚΗΣΗ 8 ΚΥΚΛΩΜΑ ΣΥΝΤΟΝΙΣΜΟΥ ΕΝ ΣΕΙΡΑ Αντικείμενο της άσκησης είναι να πραγματοποιήσετε μετρήσεις σε ένα L κύκλωμα σειράς έτσι ώστε α) να σχεδιάσετε την καμπύλη συντονισμού β) να προσδιορίσετε τις χαρακτηριστικές

Διαβάστε περισσότερα

Στοιχεία R, L, C στο AC

Στοιχεία R, L, C στο AC Στοιχεία R, L, C στο AC Εμπέδηση (περιγραφή, υπολογισμός για κάθε στοιχείο) Νόμος OHM στο AC Στόχοι μαθήματος Προηγούμενο Εύρεση phasors αρμονικών συναρτήσεων Πράξεις (Πρόσθεση/αφαίρεση κλπ) ημιτονοειδών

Διαβάστε περισσότερα

Κύκλωμα RLC σε σειρά. 1. Σκοπός. 2. Γενικά. Εργαστήριο Φυσικής IΙ - Κύκλωμα RLC σε σειρά

Κύκλωμα RLC σε σειρά. 1. Σκοπός. 2. Γενικά. Εργαστήριο Φυσικής IΙ - Κύκλωμα RLC σε σειρά Κύκλωμα RLC σε σειρά. Σκοπός Σκοπός της άσκησης είναι η εξοικείωση των σπουδαστών με τη συμπεριφορά ενός κυκλώματος RLC συνδεδεμένο σε σειρά όταν τροφοδοτείται από εναλλασσόμενη τάση. Συγκεκριμένα, επιδιώκεται

Διαβάστε περισσότερα

τα μεταλλικά Μια στρώμα. Για την έννοια πως αν και νανοσωματίδια (με εξάχνωση Al). πρέπει κανείς να τοποθετήσει τα μερικές δεκάδες nm πράγμα

τα μεταλλικά Μια στρώμα. Για την έννοια πως αν και νανοσωματίδια (με εξάχνωση Al). πρέπει κανείς να τοποθετήσει τα μερικές δεκάδες nm πράγμα Φραγή Coulomb σε διατάξεις που περιέχουν νανοσωματίδια. Ι. Φραγή Coulomb σε διατάξεις που περιέχουν μεταλλικά νανοσωματίδια 1. Περιγραφή των διατάξεων Μια διάταξη που περιέχει νανοσωματίδια μπορεί να αναπτυχθεί

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΙΣΑΓΩΓΗ: Όπως θα δούμε και παρακάτω το φίλτρο είναι ένα σύστημα του οποίου η απόκριση συχνότητας παίρνει σημαντικές τιμές μόνο για συγκεκριμένες ζώνες του άξονα συχνοτήτων, δηλαδή «κόβουν» κάποιες ανεπιθύμητες

Διαβάστε περισσότερα

2-1. I I i. ti (3) Q Q i. όπου Q το συνολικό ηλεκτρικό φορτίο που μεταφέρεται και είναι: (4)

2-1. I I i. ti (3) Q Q i. όπου Q το συνολικό ηλεκτρικό φορτίο που μεταφέρεται και είναι: (4) 2-1 ΑΡΙΘΜΟΙ ΜΕΤΑΦΟΡΑΣ ΙΟΝΤΩΝ Θέμα ασκήσεως: Προσδιορισμός αριθμού μεταφοράς ιόντων με την μέθοδο Horf. Θεωρία Κατά την εφαρμογή ηλεκτρικού πεδίου σε ιοντικό διάλυμα, ηλεκτρικό ρεύμα διέρχεται από αυτό

Διαβάστε περισσότερα

Σημειώσεις για το μάθημα. Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π. OFF V/dc. A/ac A/dc V/Ω + γέφυρα άλατος. κίνηση κατιόντων.

Σημειώσεις για το μάθημα. Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π. OFF V/dc. A/ac A/dc V/Ω + γέφυρα άλατος. κίνηση κατιόντων. Σημειώσεις για το μάθημα Φυσική Χημεία ΙΙ Ηλεκτροχημικά στοιχεία Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π. m OFF V/dc V/ac Ω Ω A/ac A/dc V/Ω A com I e e- - I γέφυρα άλατος Cu(s) κίνηση κατιόντων - Zn(s)

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ 1

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ 1 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ ΙΙ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ 00 ΘΕΜΑ Δύο συζευγμένα πραγματικά πηνία συνδέονται εν παραλλήλω, όπως στο Σχ.. Να βρεθούν () οι ενδείξεις των τριών βατομέτρων, () η

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΔΙΑΦΟΡΑΣ ΦΑΣΗΣ ΔΥΟ ΗΜΙΤΟΝΟΕΙΔΩΝ ΣΗΜΑΤΩΝ

ΜΕΤΡΗΣΗ ΔΙΑΦΟΡΑΣ ΦΑΣΗΣ ΔΥΟ ΗΜΙΤΟΝΟΕΙΔΩΝ ΣΗΜΑΤΩΝ ΑΣΚΗΣΗ 05 ΜΕΤΡΗΣΗ ΔΙΑΦΟΡΑΣ ΦΑΣΗΣ ΔΥΟ ΗΜΙΤΟΝΟΕΙΔΩΝ ΣΗΜΑΤΩΝ Αντικείμενο της άσκησης αυτής είναι η μέτρηση της διαφοράς φάσης μεταξύ δύο κυματομορφών τάσης σε ένα κύκλωμα εναλλασσομένου ρεύματος με τη βοήθεια

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων και Συστημάτων Αποφάσεων ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι Σημειώσεις Εργαστηριακών

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ Ηλεκτρικό κύκλωμα ονομάζεται μια διάταξη που αποτελείται από ένα σύνολο ηλεκτρικών στοιχείων στα οποία κυκλοφορεί ηλεκτρικό ρεύμα. Τα βασικά ηλεκτρικά στοιχεία είναι οι γεννήτριες,

Διαβάστε περισσότερα

Φυσική Χημεία ΙΙ. Ηλεκτροχημικά. στοιχεία. Κεφ.6 ηλεκτρολυτικά. στοιχεία. Σημειώσεις για το μάθημα. Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π.

Φυσική Χημεία ΙΙ. Ηλεκτροχημικά. στοιχεία. Κεφ.6 ηλεκτρολυτικά. στοιχεία. Σημειώσεις για το μάθημα. Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π. Σημειώσεις για το μάθημα Φυσική Χημεία ΙΙ Ηλεκτροχημικά στοιχεία Κεφ.6 ηλεκτρολυτικά στοιχεία Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π. Ni 2+ 2 e- Ni 2+ Τμήμα Χημείας ΑΠΘ ΚΕΦΑΛΑΙΟ 6 ΗΛΕΚΤΡΟΛΥΤΙΚΑ ΣΤΟΙΧΕΙΑ

Διαβάστε περισσότερα

Ακαδημαϊκό έτος ΘΕΜΑ 1. Η κινητική εξίσωση της αντίδρασης Α + Β = Γ είναι: r = k[a] α [B] β

Ακαδημαϊκό έτος ΘΕΜΑ 1. Η κινητική εξίσωση της αντίδρασης Α + Β = Γ είναι: r = k[a] α [B] β Ακαδημαϊκό έτος 4-5 ΘΕΜΑ Η κινητική εξίσωση της αντίδρασης Α + Β = Γ είναι: r = [] α [B] β Χρησιμοποιώντας τη μέθοδο των αρχικών ταχυτήτων βρήκαμε ότι η αντίδραση είναι δεύτερης τάξης ως προς Α και πρώτης

Διαβάστε περισσότερα

ΣΥΓΧΡΟΝΕΣ ΓΕΝΝΗΤΡΙΕΣ

ΣΥΓΧΡΟΝΕΣ ΓΕΝΝΗΤΡΙΕΣ ΣΥΓΧΡΟΝΕΣ ΓΕΝΝΗΤΡΙΕΣ Για τη λειτουργία των σύγχρονων γεννητριών (που ονομάζονται και εναλλακτήρες) απαραίτητη προϋπόθεση είναι η τροοδοσία του τυλίγματος του δρομέα με συνεχές ρεύμα Καθώς περιστρέεται

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΥΚΛΩΜΑΤΑ AC-DC ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ Βασικά στοιχεία κυκλωμάτων Ένα ηλεκτρονικό κύκλωμα αποτελείται από: Πηγή ενέργειας (τάσης ή ρεύματος) Αγωγούς Μονωτές

Διαβάστε περισσότερα

Επιχάλκωση μεταλλικού αντικειμένου και συγκεκριμένα ενός μικρού ελάσματος αλουμινίου με τη μέθοδο της γαλβανοπλαστικής επιμετάλλωσης.

Επιχάλκωση μεταλλικού αντικειμένου και συγκεκριμένα ενός μικρού ελάσματος αλουμινίου με τη μέθοδο της γαλβανοπλαστικής επιμετάλλωσης. Σύντομη περιγραφή του πειράματος Επιχάλκωση μεταλλικού αντικειμένου και συγκεκριμένα ενός μικρού ελάσματος αλουμινίου με τη μέθοδο της γαλβανοπλαστικής επιμετάλλωσης. Διδακτικοί στόχοι του πειράματος Στο

Διαβάστε περισσότερα

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας.

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Ο πυκνωτής Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. Η απλούστερη μορφή πυκνωτή είναι ο επίπεδος πυκνωτής, ο οποίος

Διαβάστε περισσότερα

ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ Ι Θέμα ασκήσεως Αρχή μεθόδου Θεωρία

ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ Ι Θέμα ασκήσεως Αρχή μεθόδου Θεωρία 3-1 ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ Ι Θέμα ασκήσεως: Προσδιορισμός κανονικού δυναμικού (Ε) ηλεκτροδίου. Προσδιορισμός του θερμικού συντελεστή ( Ε/ Τ) P. Προσδιορισμός του γινομένου διαλυτότητας του Agl. Αρχή μεθόδου:

Διαβάστε περισσότερα

Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας

Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας Ενότητα: Άσκηση 6: Αντιστάθμιση γραμμών μεταφοράς με σύγχρονους αντισταθμιστές Νικόλαος Βοβός, Γαβριήλ Γιαννακόπουλος, Παναγής Βοβός Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ 1 1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ Θα αρχίσουμε τη σειρά των μαθημάτων της Φυσικοχημείας με τη μελέτη της αέριας κατάστασης της ύλης. Η μελέτη της φύσης των αερίων αποτελεί ένα ιδανικό μέσο για την εισαγωγή

Διαβάστε περισσότερα

2η Εργαστηριακή Άσκηση: ιαγράµµατα Bode και εφαρµογή θεωρήµατος Thevenin

2η Εργαστηριακή Άσκηση: ιαγράµµατα Bode και εφαρµογή θεωρήµατος Thevenin Ονοµατεπώνυµο: Αριθµός Μητρώου: Εξάµηνο: Υπογραφή Εργαστήριο Ηλεκτρικών Κυκλωµάτων και Συστηµάτων 2η Εργαστηριακή Άσκηση: ιαγράµµατα Bode και εφαρµογή θεωρήµατος hevenin Απόκριση στο πεδίο της συχνότητας

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος...13

Περιεχόμενα. Πρόλογος...13 Περιεχόμενα Πρόλογος...3 Κεφάλαιο : Στοιχεία ηλεκτρικών κυκλωμάτων...5. Βασικά ηλεκτρικά μεγέθη...5.. Ηλεκτρικό φορτίο...5.. Ηλεκτρικό ρεύμα...5..3 Τάση...6..4 Ενέργεια...6..5 Ισχύς...6..6 Σύνοψη...7.

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 11: Η ημιτονοειδής διέγερση Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ: 50657177

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 5 η ΓΕΝΝΗΤΡΙΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΞΕΝΗΣ ΔΙΕΓΕΡΣΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΚΑΜΠΥΛΕΣ

ΑΣΚΗΣΗ 5 η ΓΕΝΝΗΤΡΙΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΞΕΝΗΣ ΔΙΕΓΕΡΣΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΚΑΜΠΥΛΕΣ ΑΣΚΗΣΗ 5 η ΓΕΝΝΗΤΡΙΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΞΕΝΗΣ ΔΙΕΓΕΡΣΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΚΑΜΠΥΛΕΣ Σκοπός της Άσκησης: Σκοπός της εργαστηριακής άσκησης είναι α) η κατανόηση της λειτουργίας της γεννήτριας συνεχούς ρεύματος

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΧΗΜΙΚΕΣ ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ

ΗΛΕΚΤΡΟΧΗΜΙΚΕΣ ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΒΙΟΧΗΜΕΙΑΣ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΗΛΕΚΤΡΟΧΗΜΙΚΕΣ ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ ΠΟΤΕΝΣΙΟΜΕΤΡΙΑ ΠΟΤΕΝΣΙΟΜΕΤΡΙΑ Με τον όρο ποτενσιομετρία περιγράφεται ένα σύνολο ηλεκτροχημικών τεχνικών ανάλυσης,

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΚΕΦΑΛΑΙΟ 3ο ΚΡΥΣΤΑΛΛΟΔΙΟΔΟΙ Επαφή ΡΝ Σε ένα κομμάτι κρύσταλλο πυριτίου προσθέτουμε θετικά ιόντα 5σθενούς στοιχείου για τη δημιουργία τμήματος τύπου Ν από τη μια μεριά, ενώ από την

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ. Περιληπτική θεωρητική εισαγωγή

ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ. Περιληπτική θεωρητική εισαγωγή ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ Περιληπτική θεωρητική εισαγωγή α) Τεχνική zchralski Η πιο συχνά χρησιμοποιούμενη τεχνική ανάπτυξης μονοκρυστάλλων πυριτίου (i), αρίστης ποιότητας,

Διαβάστε περισσότερα

Ηλεκτρόλυση νερού ή ηλεκτρόλυση αραιού διαλύματος θειικού οξέος με ηλεκτρόδια λευκοχρύσου και με χρήση της συσκευής Hoffman.

Ηλεκτρόλυση νερού ή ηλεκτρόλυση αραιού διαλύματος θειικού οξέος με ηλεκτρόδια λευκοχρύσου και με χρήση της συσκευής Hoffman. Σύντομη περιγραφή του πειράματος Ηλεκτρόλυση νερού ή ηλεκτρόλυση αραιού διαλύματος θειικού οξέος με ηλεκτρόδια λευκοχρύσου και με χρήση της συσκευής Hoffman. Διδακτικοί στόχοι του πειράματος Στο τέλος

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ. Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την:

ΑΣΚΗΣΗ 1 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ. Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την: Σκοπός της Άσκησης: ΑΣΚΗΣΗ η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την: α. Κατασκευή μετασχηματιστών. β. Αρχή λειτουργίας μετασχηματιστών.

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ Οδηγός Συγγραφής Εργαστηριακών Αναφορών Εξώφυλλο Στην πρώτη σελίδα περιέχονται: το όνομα του εργαστηρίου, ο τίτλος της εργαστηριακής άσκησης, το ονοματεπώνυμο του σπουδαστή

Διαβάστε περισσότερα

ΑΣΚΗΣΗ-2: ΚΥΚΛΩΜΑ RC

ΑΣΚΗΣΗ-2: ΚΥΚΛΩΜΑ RC ΑΣΚΗΣΗ-2: ΚΥΚΛΩΜΑ RC Ημερομηνία:. ΤΜΗΜΑ:.. ΟΜΑΔΑ:. Ονομ/νυμο: Α.Μ. Συνεργάτες Ονομ/νυμο: Α.Μ. Ονομ/νυμο: Α.Μ. ΠΕΡΙΛΗΨΗ ΤΗΣ ΑΣΚΗΣΗΣ (καθένας με δικά του λόγια, σε όλες τις γραμμές) ΒΑΘΜΟΣ#1: ΥΠΟΓΡΑΦΗ: ΣΤΟΧΟΙ

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ Δημήτρης Στεφανάκης Η Μέθοδος των Ελαχίστων Τετραγώνων (ΜΕΤ) χρησιμοποιείται για την κατασκευή της γραφικής παράστασης που περιγράφει ένα φαινόμενο,

Διαβάστε περισσότερα

Μετρήσεις µε παλµογράφο

Μετρήσεις µε παλµογράφο Η6 Μετρήσεις µε παλµογράφο ΜΕΡΟΣ 1 ο ΠΑΛΜΟΓΡΑΦΟΣ Α. Γενικά Κατά την απεικόνιση ενός εναλλασσόµενου µεγέθους (Σχήµα 1), είναι γνωστό ότι στον κατακόρυφο άξονα «Υ» παριστάνεται το πλάτος του µεγέθους, ενώ

Διαβάστε περισσότερα

Μετρήσεις σε ράβδους γραφίτη.

Μετρήσεις σε ράβδους γραφίτη. 13 η ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΚΦΕ ΧΑΛΑΝΔΡΙΟΥ Τοπικός διαγωνισμός στη ΦΥΣΙΚΗ 13 Δεκεμβρίου2014 Σχολείο: Ονόματα μαθητών:1) 2) 3) Μετρήσεις σε ράβδους γραφίτη. Για να γράψουμε χρησιμοποιούμε τα μολύβια,

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΦΑΡΜΑΚΕΥΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΦΑΡΜΑΚΕΥΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ Γραφείο 211 Επίκουρος Καθηγητής: Δ. Τσιπλακίδης Τηλ.: 2310 997766 e mail: dtsiplak@chem.auth.gr url:

Διαβάστε περισσότερα

5.1 ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΓΡΑΜΜΟΙΣΟΔΥΝΑΜΟΥ ΙΟΝΤΟΣ ΟΞΥΓΟΝΟΥ, ΥΔΡΟΓΟΝΟΥ ΚΑΙ ΧΑΛΚΟΥ ΜΕ ΗΛΕΚΤΡΟΛΥΣΗ

5.1 ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΓΡΑΜΜΟΙΣΟΔΥΝΑΜΟΥ ΙΟΝΤΟΣ ΟΞΥΓΟΝΟΥ, ΥΔΡΟΓΟΝΟΥ ΚΑΙ ΧΑΛΚΟΥ ΜΕ ΗΛΕΚΤΡΟΛΥΣΗ 5.1 ΑΣΚΗΣΗ 5 ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΓΡΑΜΜΟΙΣΟΔΥΝΑΜΟΥ ΙΟΝΤΟΣ ΟΞΥΓΟΝΟΥ, ΥΔΡΟΓΟΝΟΥ ΚΑΙ ΧΑΛΚΟΥ ΜΕ ΗΛΕΚΤΡΟΛΥΣΗ Α' ΜΕΡΟΣ: Ηλεκτρόλυση του νερού. ΘΕΜΑ: Εύρεση της μάζας οξυγόνου και υδρογόνου που εκλύονται σε ηλεκτρολυτική

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ: ΤΑΛΑΝΤΩΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ: ΤΑΛΑΝΤΩΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ: ΤΑΛΑΝΤΩΣΕΙΣ ΘEMA 1 Να γράψετε στη κόλλα σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.1 Το αποτέλεσμα της σύνθεσης δύο αρμονικών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Ανάλυση Ηλεκτρικού Σήµατος

ΚΕΦΑΛΑΙΟ 2. Ανάλυση Ηλεκτρικού Σήµατος ΚΕΦΑΛΑΙΟ Ανάλυση Ηλεκτρικού Σήµατος. Εισαγωγή Τα σήµατα εξόδου από µετρητικές διατάξεις έχουν συνήθως τη µορφή ηλεκτρικών σηµάτων. Πριν από την καταγραφή ή περαιτέρω επεξεργασία, ένα σήµα υφίσταται µια

Διαβάστε περισσότερα

πόλος αποφόρτιση (γαλβανικό στοιχ.) φόρτιση (ηλεκτρολυτικό στοιχ.) (αυθόρµητη λειτουργία) (εξαναγκασµένη λειτουργία zfe c = w el (1) 7-1

πόλος αποφόρτιση (γαλβανικό στοιχ.) φόρτιση (ηλεκτρολυτικό στοιχ.) (αυθόρµητη λειτουργία) (εξαναγκασµένη λειτουργία zfe c = w el (1) 7-1 ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ Θέµα ασκήσεως Προσδιορισµός κανονικού δυναµικού (Ε) ηλεκτροδίου (ξίσωση Nernst). Αυθόρµητη αντίδραση στοιχείου. Σύνδεση δυναµικού γαλβανικού στοιχείου µε θερµοδυναµικά µεγέθη (Υπολογισµός

Διαβάστε περισσότερα

( ) = ( ) Ηλεκτρική Ισχύς. p t V I t t. cos cos 1 cos cos 2. p t V I t. το στιγμιαίο ρεύμα: όμως: Άρα θα είναι: Επειδή όμως: θα είναι τελικά:

( ) = ( ) Ηλεκτρική Ισχύς. p t V I t t. cos cos 1 cos cos 2. p t V I t. το στιγμιαίο ρεύμα: όμως: Άρα θα είναι: Επειδή όμως: θα είναι τελικά: Η στιγμιαία ηλεκτρική ισχύς σε οποιοδήποτε σημείο ενός κυκλώματος υπολογίζεται ως το γινόμενο της στιγμιαίας τάσης επί το στιγμιαίο ρεύμα: Σε ένα εναλλασσόμενο σύστημα τάσεων και ρευμάτων θα έχουμε όμως:

Διαβάστε περισσότερα

Ένα σύστημα εκτελεί ελεύθερη ταλάντωση όταν διεγερθεί κατάλληλα και αφεθεί στη συνέχεια ελεύθερο να

Ένα σύστημα εκτελεί ελεύθερη ταλάντωση όταν διεγερθεί κατάλληλα και αφεθεί στη συνέχεια ελεύθερο να ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Α. Εξαναγκασμένες μηχανικές ταλαντώσεις Ελεύθερη - αμείωτη ταλάντωση και ποια η συχνότητα και η περίοδος της. Ένα σύστημα εκτελεί ελεύθερη ταλάντωση όταν διεγερθεί κατάλληλα

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Εικόνα: Επισκευή μιας πλακέτας κυκλωμάτων ενός υπολογιστή. Χρησιμοποιούμε καθημερινά αντικείμενα που περιέχουν ηλεκτρικά κυκλώματα, συμπεριλαμβανομένων και κάποιων με πολύ μικρότερες πλακέτες από την εικονιζόμενη.

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ρεύμα και Αντίσταση Εικόνα: Οι γραμμές ρεύματος μεταφέρουν ενέργεια από την ηλεκτρική εταιρία στα σπίτια και τις επιχειρήσεις μας. Η ενέργεια μεταφέρεται σε πολύ υψηλές τάσεις, πιθανότατα

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΚΥΚΛΩΜΑΤΩΝ ΜΕ ΠΑΛΜΟΓΡΑΦΟ

ΜΕΛΕΤΗ ΚΥΚΛΩΜΑΤΩΝ ΜΕ ΠΑΛΜΟΓΡΑΦΟ 4.1 ΑΣΚΗΣΗ 4 ΜΕΛΕΤΗ ΚΥΚΛΩΜΑΤΩΝ ΜΕ ΠΑΛΜΟΓΡΑΦΟ A. ΣΥΝΘΕΣΗ ΚΑΘΕΤΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΥΡΕΣΗ ΤΗΣ ΔΙΑΦΟΡΑΣ ΦΑΣΕΩΣ ΤΟΥΣ Η σύνθεση δύο καθέτων ταλαντώσεων, x x0 t, y y0 ( t ) του ίδιου πλάτους της ίδιας συχνότητας

Διαβάστε περισσότερα

Εισαγωγή στις Ηλεκτρικές Μετρήσεις

Εισαγωγή στις Ηλεκτρικές Μετρήσεις Εισαγωγή στις Ηλεκτρικές Μετρήσεις Σφάλματα Μετρήσεων Συμβατικά όργανα μετρήσεων Χαρακτηριστικά μεγέθη οργάνων Παλμογράφος Λέκτορας Σοφία Τσεκερίδου 1 Σφάλματα μετρήσεων Επιτυχημένη μέτρηση Σωστή εκλογή

Διαβάστε περισσότερα

Ηλεκτροχημικοί Αισθητήρες & Βιοαισθητήρες

Ηλεκτροχημικοί Αισθητήρες & Βιοαισθητήρες Μάμαντος Προδρομίδης Επίκουρος Καθηγητής Αναλυτικής Χημείας Πανεπιστημίου Ιωαννίνων Ηλεκτροχημικοί Αισθητήρες & Βιοαισθητήρες Ιωάννινα 2010 Εισαγωγικό σημείωμα Το βιβλίο αυτό αποτελεί μια βελτιωμένη έκδοση

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 0/0/03 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά. 1. Η σχέση

Διαβάστε περισσότερα

1. Ρεύμα επιπρόσθετα

1. Ρεύμα επιπρόσθετα 1. Ρεύμα Ρεύμα είναι οποιαδήποτε κίνηση φορτίων μεταξύ δύο περιοχών. Για να διατηρηθεί σταθερή ροή φορτίου σε αγωγό πρέπει να ασκείται μια σταθερή δύναμη στα κινούμενα φορτία. r F r qe Η δύναμη αυτή δημιουργεί

Διαβάστε περισσότερα

ΚΥΨΕΛΕΣ ΚΑΥΣΙΜΟΥ ΚΑΚΑΡΟΥΝΤΑ ΑΡΓΥΡΩ Α.Μ. 277 ΜΗΤΣΑΚΗ ΤΑΤΙΑΝΑ Α.Μ. 309 ΠΑΠΑΖΑΦΕΙΡΑΤΟΥ ΙΦΙΓΕΝΕΙΑ Α.Μ.322

ΚΥΨΕΛΕΣ ΚΑΥΣΙΜΟΥ ΚΑΚΑΡΟΥΝΤΑ ΑΡΓΥΡΩ Α.Μ. 277 ΜΗΤΣΑΚΗ ΤΑΤΙΑΝΑ Α.Μ. 309 ΠΑΠΑΖΑΦΕΙΡΑΤΟΥ ΙΦΙΓΕΝΕΙΑ Α.Μ.322 ΚΥΨΕΛΕΣ ΚΑΥΣΙΜΟΥ ΚΑΚΑΡΟΥΝΤΑ ΑΡΓΥΡΩ Α.Μ. 277 ΜΗΤΣΑΚΗ ΤΑΤΙΑΝΑ Α.Μ. 309 ΠΑΠΑΖΑΦΕΙΡΑΤΟΥ ΙΦΙΓΕΝΕΙΑ Α.Μ.322 ΤΙ ΕΙΝΑΙ ΚΥΨΕΛΕΣ ΚΑΥΣΙΜΟΥ Οι κυψέλες καυσίμου είναι συσκευές οι οποίες μέσω ηλεκτροχημικών αντιδράσεων

Διαβάστε περισσότερα

Ag + (aq) /Ag (s). H ημιαντίδραση αναγωγής και η. Ag (s)

Ag + (aq) /Ag (s). H ημιαντίδραση αναγωγής και η. Ag (s) ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΤOΜΕΑΣ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΠΕΙΡΑΜΑ 4 ΗΛΕΚΤΡΟΧΗΜΕΙΑΣ (HX4) ΜΑΘΗΜΑ: ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΙΙ ΑΚΑΔ. ΕΤΟΣ: 2013-14 ΤΜΗΜAΤΑ TΡΙΤΗΣ ΚΑΙ ΤΕΤΑΡΤΗΣ Τίτλος Πειράματος: ΝΟΜΟΣ ΤΟΥ

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ : ΙΑΒΡΩΣΗ ΜΕΤΑΛΛΩΝ ΣΤΟ Ε ΑΦΟΣ ΚΑΤΣΙΚΗΣ ΓΕΩΡΓΙΟΣ

ΕΡΓΑΣΙΑ : ΙΑΒΡΩΣΗ ΜΕΤΑΛΛΩΝ ΣΤΟ Ε ΑΦΟΣ ΚΑΤΣΙΚΗΣ ΓΕΩΡΓΙΟΣ ΕΡΓΑΣΙΑ : ΙΑΒΡΩΣΗ ΜΕΤΑΛΛΩΝ ΣΤΟ Ε ΑΦΟΣ ΚΑΤΣΙΚΗΣ ΓΕΩΡΓΙΟΣ 1 ΠΕΡΙΛΗΨΗ Στην εργασία αυτή αναλύεται το πολύπλοκο φαινόµενο της διάβρωσης µετάλλων στο έδαφος και παρουσιάζονται τρόποι προστασίας τους. Είναι

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Εργαστήριο 8 Κυκλώµατα RLC και Σταθερή Ηµιτονοειδής Κατάσταση Λευκωσία, 2015 Εργαστήριο 8

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 17 Εισαγωγή στον Μαγνητισμό Μαγνητικό πεδίο ΦΥΣ102 1 Μαγνήτες και μαγνητικά πεδία

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 7 Εκθετικά κύματα και Σύνθετη Αντίσταση Λευκωσία, 2010 Εργαστήριο 7 Εκθετικά κύματα

Διαβάστε περισσότερα