Μεταβατική Ανάλυση - Φάσορες. Κατάστρωση διαφορικών εξισώσεων. Μεταβατική απόκριση. Γενικό μοντέλο. ,, ( ) είναι γνωστές ποσότητες (σταθερές)
|
|
- Μνημοσύνη Κοσμόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Μεταβατική Ανάλυση - Φάσορες Πρόσθετες διαφάνειες διαλέξεων Αλέξανδρος Πίνο Δεκέμβριος 2017 Γενικό μοντέλο Απόκριση κυκλώματος πρώτης τάξης, δηλαδή με ένα μόνο στοιχείο C ή L 3 Μεταβατική απόκριση Ξαφνική εμφάνιση ενός δυναμικού (DC στο a και AC στο b) στα άκρα ενός φορτίου τη χρονική στιγμή t=0,2s. 3 περιοχές: Σταθερή κατάσταση για 0 t 0,2s Μετάβαση για 0,2s t 2s Νέα σταθερή κατάσταση για t 2s Κατάστρωση διαφορικών εξισώσεων () + 1 () = 1 () Ανεξάρτητη μεταβλητή το () () + 1 () = 1 () Ανεξάρτητη μεταβλητή το (),, () είναι γνωστές ποσότητες (σταθερές) 2 4
2 Παράδειγμα 4.1 Κατάστρωση της διαφορικής εξίσωσης ενός κυκλώματος RL Γνωστές ποσότητες: =10Ω, = 5Ω, = 0,4H Να βρεθεί: Η διαφορική εξίσωση ως προς το (). Υποθέσεις: Καμία. Λύση μόνιμης κατάστασης DC σε κυκλώματα με πηνία και πυκνωτές Σταθερές ή μόνιμες καταστάσεις ονομάζονται αυτές που ισχύουν πριν ή πολύ μετά από το άνοιγμα (ή κλείσιμο) του διακόπτη (ή από την αλλαγή της διέγερσης) Οι τιμές των ρευμάτων και των τάσεων στις σταθερές καταστάσεις ονομάζονται αρχικές (για το πριν) και τελικές (για το πολύ μετά) συνθήκες Στη μόνιμη-κατάσταση DC όλοι οι πυκνωτές συμπεριφέρονται ως ανοικτά κυκλώματα και όλα τα πηνία ως βραχυκυκλώματα. Δύο μόνιμες καταστάσεις: Αρχική συνθήκη 0 Τελική συνθήκη ( ) 5 7 Συνήθης γραμμική διαφορική εξίσωση πρώτης-τάξης + = + = b α + = = σταθερά χρόνου, = απολαβή DC Αρχή της συνέχειας του ρεύματος πηνίου και της τάσης πυκνωτή Η τιμή του ρεύματος ενός πηνίου ή της τάσης ενός πυκνωτή αμέσως πριν το κλείσιμο (ή το άνοιγμα) ενός διακόπτη είναι ίση με την αντίστοιχη τιμή αμέσως μετά το κλείσιμο (ή το άνοιγμα) του διακόπτη. 0 = 0 0 = 0 0 : αμέσως μετά το =0 0 : ακριβώς πριν το =0 6 8
3 Γενική λύση κυκλωμάτων πρώτης-τάξης + = Για μεταβάσεις DC η συνάρτηση εξαναγκασμού () έχει τη μορφή μιας συνάρτησης βήματος, δηλαδή ίση με 0 για <0 και ίση με μια σταθερή τιμή για 0: + = 0 με αρχική τιμή =0 =(0) Φυσική απόκριση Θέτουμε τη συνάρτηση εξαναγκασμού ίση με το 0 + = 0 = τ Λύση γνωστή: εκθετική μορφή = / 9 11 Θεωρία επίλυσης διαφορικών εξισώσεων Η λύση αποτελείται από 2 μέρη: Φυσική απόκριση ή λύση της ομογενούς Εξαναγκασμένη απόκριση ή ειδική λύση Η πλήρης απόκριση είναι είναι το άθροισμα της φυσικής και της εξαναγκασμένης απόκρισης Αφού βρεθεί η μορφή της πλήρους απόκρισης τότε μπορεί να εφαρμοστεί η αρχική συνθήκη για τον προσδιορισμό της τελικής λύσης Εξαναγκασμένη απόκριση Λύνουμε για την ειδική περίπτωση =0 (όπου είναι σταθερά) + = = είναι η λύση της μόνιμης κατάστασης DC που είχαμε ήδη βρει = = 10 12
4 Πλήρης απόκριση = + = / + = / + t 0 Για να προσδιορίσουμε την άγνωστη σταθερά, εφαρμόζουμε την αρχική συνθήκη =0 =(0): οπότε =0 = 0 = / + = 0 = [ ] / + Απόκριση μόνιμης κατάστασης = 12V Μεταβατική απόκριση = 5 12 /, Παράδειγμα 4.7 Να βρεθεί μια έκφραση για την τάση του πυκνωτή στο σχήμα Γνωστές ποσότητες: =0 = 5V, = 1kΩ, = 470μF, = 12V Να βρεθεί: H τάση του πυκνωτή () ως συνάρτηση του χρόνου για όλες τις χρονικές στιγμές. Υποθέσεις: Καμία. Φυσική απόκριση (εκφόρτιση) = 5 /, Εξαναγκασμένη απόκριση (φόρτιση) = 12 1 /, 14 16
5 Αποθήκευση ενέργειας σε πυκνωτή () = 1 2 () Εκθετική απομείωση της τάσης του πυκνωτή = / 17 Τάση του πυκνωτή, V Χρόνος (s) Αποθήκευση ενέργειας σε πηνίο = 1 2 () Εκθετική απομείωση του ρεύματος του πηνίου = / 18 Ρεύμα του πηνίου, Α Εξαναγκασμένη απόκριση κυκλωμάτων που διεγείρονται από ημιτονοειδείς πηγές () + 1 () = 1 () = cos Σε γραμμικό κύκλωμα που διεγείρεται από ημιτονοειδές σήμα όλες οι τάσεις και τα ρεύματα στους κλάδους έχουν ημιτονοειδή μορφή με την ίδια συχνότητα όπως και το σήμα διέγερσης 19 Χρόνος (s) Λύση κυκλωμάτων με ημιτονοειδή διέγερση με τη μέθοδο των παραστατικών μιγαδικών αριθμών (φασόρων) Οποιοδήποτε ημιτονοειδές σήμα παριστάνεται στα μαθηματικά με έναν από τους δύο τρόπους: στη μορφή της περιοχής-χρόνου: = cos( + ) και στη μορφή περιοχής-συχνοτήτων ή φασόρων = = Το στο συμβολισμό του εκφράζει την εξάρτηση του φάσορα από το 20
6 Φάσορες Ο φάσορας είναι ένας μιγαδικός αριθμός γραμμένος σε πολική μορφή που έχει μέγεθος ίσο με το πλάτος κορυφής του ημιτονοειδούς σήματος και γωνία φάσης ίση με τη μετατόπιση φάσης του σήματος που αναφέρεται σε σήμα συνημίτονου Όταν χρησιμοποιούμε συμβολισμό φασόρων είναι σημαντικό να θυμόμαστε τη συγκεκριμένη κυκλική συχνότητα του ημιτονοειδούς σήματος, καθόσον δεν εμφανίζεται σαφώς στην έκφραση του φάσορα Φάσορας cos + = Re e Εκφράζουμε ένα ημιτονοειδές σήμα ως το πραγματικό μέρος ενός μιγαδικού διανύσματος που το όρισμά του, ή η γωνία, δίνεται από την + και το μήκος του, ή μέγεθος, ισούται με το πλάτος κορυφής του σήματος Ο μιγαδικός φάσορας που αντιστοιχεί στο σήμα cos + ορίζεται ως ο μιγαδικός αριθμός = + = Re e =Re( ) Πρόκειται περί ορισμού. Η αρχική έκφραση απλουστεύεται με την αφαίρεση του τελεστή Re και την παραγοντοποίηση και διαγραφή του όρου Ταυτότητα του Euler Ορίζει το μιγαδικό εκθετικό σαν ένα σημείο του μιγαδικού επιπέδου, διαχωρίζοντάς το σε πραγματικές και φανταστικές συνιστώσες: = + =1 γιατί cos + sin = cos +sin =1 = cos + sin = Εμπέδηση (σύνθετη/μιγαδική αντίσταση) Έστω = cos ή = =
7 Εμπέδηση του αντιστάτη Νόμος του Ohm: = = = cos = 0 = 0 = () = Εμπέδηση του πυκνωτή = = = cos = sin = cos( + 2 ) = 1 = = cos = 0 = 2 = () = 1 2 = = Εμπέδηση του πηνίου = = = cos = 1 ( ) = = 1 cos = sin = cos( 2 ) = 0 = 2 = () = 2 = Σύνθετες αντιστάσεις R, L, C στο μιγαδικό επίπεδο Γενική μορφή: = + AC αντίσταση Άεργη αντίσταση Επαγωγική άεργη αντίσταση: πάντα θετική Χωρητική άεργη αντίσταση: πάντα αρνητική 26 28
8 Φίλτρο διέλευσης χαμηλών συχνοτήτων RC Συνάρτηση μεταφοράς τάσης ή Απόκριση Συχνότητας του φίλτρου: = = Από την αρχή του διαιρέτη τάσης: = 1/ +1/ = = = Φίλτρο διέλευσης υψηλών συχνοτήτων RC Χαρακτηριστικές μεταφοράς πλάτους και φάσης φίλτρου διέλευσης χαμηλών συχνοτήτων RC e 1 = = 1+ 1 = 1+ / = arctan = arctan συχνότητα αποκοπής = Η τιμή της στη συχνότητα αποκοπής είναι = 0,707 30
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 11: Η ημιτονοειδής διέγερση Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ: 50657177
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 8: Βηματική απόκριση κυκλωμάτων RL και R Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:
1. Χρονικά Εξαρτημένες Πηγές 2. Φάσορες 3. Σύνθετη Αντίσταση 4. Ανάλυση Δικτύων AC
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πανεπιστήμιο Ιωαννίνων ΑΝΑΛΥΣΗ ΔΙΚΤΥΟΥ 3 ο Κεφάλαιο Γ. Τσιατούχας Τμήμα Μηχανικών Η/Υ και Πληροφορικής ιάρθρωση. Χρονικά Εξαρτημένες Πηγές. Φάσορες 3. Σύνθετη Αντίσταση 4. Ανάλυση
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 12: Ανάλυση κυκλωμάτων ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 7: Μεταβατική απόκριση κυκλωμάτων RL και RC Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:
Εναλλασσόμενο και μιγαδικοί
(olts) Εναλλασσόμενο και μιγαδικοί Γενικά Σε κυκλώματα DC, οι ηλεκτρικές μεγέθη εξαρτώνται αποκλειστικά από τις ωμικές αντιστάσεις, φυσικά μετά την ολοκλήρωση πιθανών μεταβατικών φαινομένων λόγω παρουσίας
Στοιχεία R, L, C στο AC
Στοιχεία R, L, C στο AC Εμπέδηση (περιγραφή, υπολογισμός για κάθε στοιχείο) Νόμος OHM στο AC Στόχοι μαθήματος Προηγούμενο Εύρεση phasors αρμονικών συναρτήσεων Πράξεις (Πρόσθεση/αφαίρεση κλπ) ημιτονοειδών
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 11: Η ημιτονοειδής διέγερση Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 16: Απόκριση συχνότητας Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 13: Ισχύς σε κυκλώματα ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.
Κυκλώματα με ημιτονοειδή διέγερση
Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω
ΚΕΦΑΛΑΙΟ 3 Ο : ΙΣΧΥΣ ΚΥΚΛΩΜΑΤΩΝ ΣΤΟ ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ
ΚΕΦΑΛΑΙΟ 3 Ο : ΙΣΧΥΣ ΚΥΚΛΩΜΑΤΩΝ ΣΤΟ ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ 1 Ως ισχύς ορίζεται ο ρυθμός παροχής ή κατανάλωσης ενέργειας. Η ηλεκτρική ισχύς ορίζεται ως το γινόμενο της τάσης επί το ρεύμα: p u i Ιδανικό πηνίο
ΚΕΦΑΛΑΙΟ 2 Ο : ΣΥΝΘΕΤΗ ΜΙΓΑΔΙΚΗ ΑΝΤΙΣΤΑΣΗ
ΚΕΦΑΛΑΙΟ Ο : ΣΥΝΘΕΤΗ ΜΙΓΑΔΙΚΗ ΑΝΤΙΣΤΑΣΗ Ο νόμος του Ohm σε κυκλώματα με στοιχεία R, L και C στο εναλλασσόμενο συνοψίζεται στον πιο κάτω πίνακα: Στοιχείο Νόμος του Ohm Παρατηρήσεις Ωμική αντίσταση (R) Επαγωγική
1. Μεταβατικά φαινόμενα Κύκλωμα RC
. Μεταβατικά φαινόμενα.. Κύκλωμα RC Το κύκλωμα του Σχήματος είναι το απλούστερο κύκλωμα Α τάξης και αποτελείται από μια πηγή συνεχούς τάσης, που είναι η διέγερσή του, εν σειρά με μια αντίσταση και έναν
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 8: Βηματική απόκριση κυκλωμάτων RL και RC Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 7: Μεταβατική απόκριση κυκλωμάτων RL και RC Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:
HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων
HMY Ανάλυση Ηλεκτρικών Κυκλωμάτων Μέρος Α Ωμικά Κυκλώματα (Διαλέξεις 6 Δρ. Σταύρος Ιεζεκιήλ ezekel@ucy.ac.cy Gree Park, Γραφείο Τηλ. 899 Διάλεξη Εισαγωγή στην ημιτονοειδή ανάλυση στην σταθερή κατάσταση
Πόλωση των Τρανζίστορ
Πόλωση των Τρανζίστορ Πόλωση λέμε την κατάλληλη συνεχή τάση που πρέπει να εφαρμόσουμε στο κύκλωμα που περιλαμβάνει κάποιο ηλεκτρονικό στοιχείο (π.χ τρανζίστορ), έτσι ώστε να εξασφαλίσουμε την ομαλή λειτουργία
Εργαστήριο Κυκλωμάτων και Συστημάτων Ενότητα 3: Κυκλώματα με στοιχεία αποθήκευσης ενέργειας
Εργαστήριο Κυκλωμάτων και Συστημάτων Ενότητα 3: Κυκλώματα με στοιχεία αποθήκευσης ενέργειας Αραπογιάννη Αγγελική Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα 1. Σκοποί ενότητας... 3 2. Περιεχόμενα
ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ
ΜΕΤΡΗΣΗ ΔΙΑΦΟΡΑΣ ΦΑΣΗΣ ΔΥΟ ΗΜΙΤΟΝΟΕΙΔΩΝ ΣΗΜΑΤΩΝ
ΑΣΚΗΣΗ 05 ΜΕΤΡΗΣΗ ΔΙΑΦΟΡΑΣ ΦΑΣΗΣ ΔΥΟ ΗΜΙΤΟΝΟΕΙΔΩΝ ΣΗΜΑΤΩΝ Αντικείμενο της άσκησης αυτής είναι η μέτρηση της διαφοράς φάσης μεταξύ δύο κυματομορφών τάσης σε ένα κύκλωμα εναλλασσομένου ρεύματος με τη βοήθεια
Κυκλώµατα εναλλασσόµενης τάσης
Κυκλώµατα εναλλασσόµενης τάσης Στόχος αυτής της ενότητας του µαθήµατος είναι η µελέτη των ηλεκτρικών κυκλωµάτων στα οποία η ηλεκτροκινητήρια δύναµη παρέχεται από πηγή εναλλασσόµενης τάσης Σε αυτή την ενότητα
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 04/02/2011 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ
ΘΕΜΑ 1 ο ( μονάδες) Για τον ενισχυτή του παρακάτω σχήματος δίνονται: 1, 0.7, 00 kω, 4 kω, h e. kω και β h 100. (α) Να προσδιορίσετε τις τιμές των αντιστάσεων και ώστε το σημείο λειτουργίας Q (, ) του τρανζίστορ
ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 2. ΣΤΟΙΧΕΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 1.1 Εισαγωγή 1.1 1.2 Συμβολισμοί και μονάδες 1.3 1.3 Φορτίο, τάση και ενέργεια 1.5 Φορτίο και ρεύμα 1.5 Τάση 1.6 Ισχύς και Ενέργεια 1.6 1.4 Γραμμικότητα 1.7 Πρόσθεση
ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ
ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΔΙΟΔΟΣ (Μάθημα 4 ο 5 ο 6 ο 7 ο ) 1/12 4 o εργαστήριο Ιδανική δίοδος n Συμβολισμός της διόδου n 2/12 4 o εργαστήριο Στατική χαρακτηριστική διόδου Άνοδος (+) Κάθοδος () Αν στην ιδανική
1. Χρονικά Εξαρτημένες Πηγές 2. Φάσορες 3. Σύνθετη Αντίσταση 4. Ανάλυση Δικτύων AC
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πανεπιστήμιο Ιωαννίνων ΑΝΑΛΥΣΗ ΔΙΚΤΥΟΥ 3 ο Κεφάλαιο Γ. Τσιατούχας Τμήμα Μηχανικών Η/Υ και Πληροφορικής ιάρρωση. Χρονικά Εξαρτημένες Πηγές. Φάσορες 3. Σύνετη Αντίσταση 4. Ανάλυση
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι
ΚΕΦΑΛΑΙΟ 5 Ο : ΣΥΝΤΟΝΙΣΜΟΣ ΑΠΛΩΝ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΚΕΦΑΛΑΙΟ 5 Ο : ΣΥΝΤΟΝΙΣΜΟΣ ΑΠΛΩΝ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ 1 Ο συντονισμός είναι μια κατάσταση κατά την οποία το φανταστικό μέρος της σύνθετης αντίστασης ενός κυκλώματος RCL μηδενίζεται. Αυτό συμβαίνει γιατί
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 13: Ισχύς σε κυκλώματα ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.
ΑΠΟΚΡΙΣΗ ΚΥΚΛΩΜΑΤΩΝ ΣΕ HMITONIKH ΔΙΕΓΕΡΣH (HMITONIKH ANAΛYΣΗ)
ΑΠΟΚΡΙΣΗ ΚΥΚΛΩΜΑΤΩΝ ΣΕ HMITONIKH ΔΙΕΓΕΡΣH (HMITONIKH ANAΛYΣΗ) ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ 1/5 Τι περιλαμβάνει Εκθετική διέγερση Φάσορας Επίλυση κυκλώματος μετασχηματισμός των στοιχείων Εμπέδηση Ισχύς
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 6: Παθητικά στοιχεία αποθήκευσης ενέργειας Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ.
Η ΗΜΙΤΟΝΟΕΙΔΗΣ ΣΥΝΑΡΤΗΣΗ Αcos(ωt + φ) ΚΑΙ Η ΦΑΣΟΡΙΚΗ ΤΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ
Η ΗΜΙΤΟΝΟΕΙΔΗΣ ΣΥΝΑΡΤΗΣΗ Αco(ωt + φ) ΚΑΙ Η ΦΑΣΟΡΙΚΗ ΤΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ Η ημιτονοειδής συνάρτηση δίνεται από τον τύπο f(t) = Αco(ωt + φ) όπου Α είναι το πλάτος, φ είναι η φάση και ω είναι η γωνιακή συχνότητα.
Περιεχόμενα. Πρόλογος...13
Περιεχόμενα Πρόλογος...3 Κεφάλαιο : Στοιχεία ηλεκτρικών κυκλωμάτων...5. Βασικά ηλεκτρικά μεγέθη...5.. Ηλεκτρικό φορτίο...5.. Ηλεκτρικό ρεύμα...5..3 Τάση...6..4 Ενέργεια...6..5 Ισχύς...6..6 Σύνοψη...7.
ΚΕΦΑΛΑΙΟ 1 Ο : ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ
ΚΕΦΑΛΑΙΟ 1 Ο : ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ 1 Μια μαθηματική συνάρτηση f(t) χαρακτηρίζεται ως εναλλασσόμενη όταν: Όταν η τιμή παίρνεις θετικές και αρνητικές τιμές (εναλλάσσεται) σε σχέση με το χρόνο. Όταν η εναλλαγή
2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί.
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία
ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18)
ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) Άσκηση 1. Α) Στο κύκλωμα του παρακάτω σχήματος την χρονική στιγμή t=0 sec ο διακόπτης κλείνει. Βρείτε τα v c και i c. Οι πυκνωτές είναι αρχικά αφόρτιστοι. Β)
ΑΝΑΛΥΣΗ ΤΟ ΓΕΝΙΚΟ ΠΛΑΝΟ 2019Κ7-1
ΑΝΑΛΥΣΗ ΤΟ ΓΕΝΙΚΟ ΠΛΑΝΟ 19Κ7-1 ΤΟ ΜΑΥΡΟ ΚΟΥΤΙ Είσοδος ΜΑΥΡΟ ΚΟΥΤΙ Έξοδος 1. Το περιεχόμενο του μαύρου κουτιού (απλά ηλεκτρικά στοιχεία). Είσοδος: σήματα (κυματομορφές) διέγερσης 3. Έξοδος: απόκριση i.
Περιεχόμενα. Πρόλογος...13
Περιεχόμενα Πρόλογος...3 Κεφάλαιο : Στοιχεία ηλεκτρικών κυκλωμάτων...5. Βασικά ηλεκτρικά μεγέθη...5.. Ηλεκτρικό φορτίο...5.. Ηλεκτρικό ρεύμα...5..3 Τάση...6..4 Ενέργεια...6..5 Ισχύς...6..6 Σύνοψη...7.
i C + i R i C + i R = 0 C du dt + u R = 0 du dt + u RC = 0 0 RC dt ln u = t du u = 1 RC dt i C = i R = u R = U 0 t > 0.
Α. Δροσόπουλος 6 Ιανουαρίου 2010 Περιεχόμενα 1 Κυκλώματα πρώτης τάξης 2 1.1 Εκφόρτιση κυκλωμάτων RC πρώτης τάξης.................................. 2 1.2 Εκφόρτιση κυκλωμάτων RL πρώτης τάξης...................................
Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014. i S (ωt)
Θέμα 1 ο Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014 Για το κύκλωμα ΕΡ του διπλανού σχήματος δίνονται τα εξής: v ( ωt 2 230 sin (
Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ)
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ) Ενότητα 5: Εναλλασσόμενα κυκλώματα μόνιμης κατάστασης Δ.Ν. Παγώνης Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο
Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Στοιχειώδη Σήματα Συνεχούς Χρόνου 1. Μοναδιαία Βηματική Συνάρτηση 2. Κρουστική Συνάρτηση ή
Τµήµα Βιοµηχανικής Πληροφορικής Σηµειώσεις Ηλεκτρονικών Ισχύος Παράρτηµα
ΠΑΡΑΡΤΗΜΑ Ηµιτονοειδές Ρεύµα και Τάση Τριφασικά Εναλλασσόµενα ρεύµατα Ισχύς και Ενέργεια Ενεργός τιµή περιοδικών µη ηµιτονικών κυµατοµορφών 1. Ηµιτονοειδές Ρεύµα και Τάση Οταν οι νόµοι του Kirchoff εφαρµόζονται
m e j ω t } ja m sinωt A m cosωt
ΕΝΟΤΗΤΑ IV ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ 26 Στρεόµενα διανύσµατα Σε κυκλώµατα όπου η διέγερση είναι περιοδική και ηµιτονοειδής οι τάσεις και τα ρεύµατα αναπαρίστανται µε µιγαδικούς αριθµούς, ή όπως συνήθως λέµε
Κυκλώματα εναλλασσόμενου ρεύματος (ΕΡ)
Κυκλώματα εναλλασσόμενου ρεύματος (ΕΡ) Οι ηλεκτρικές συσκευές των κατοικιών χρησιμοποιούν κυκλώματα εναλλασσόμενου ρεύματος (ΕΡ). Κάθε κύκλωμα ΕΡ αποτελείται από επιμέρους ηλεκτρικά στοιχεία (αντιστάτες,
ΑΣΚΗΣΗ-3: Διαφορά φάσης
ΑΣΚΗΣΗ-3: Διαφορά φάσης Ημερομηνία:. ΤΜΗΜΑ:.. ΟΜΑΔΑ:. Ονομ/νυμο: Α.Μ. Συνεργάτες Ονομ/νυμο: Α.Μ. Ονομ/νυμο: Α.Μ. ΠΕΡΙΛΗΨΗ ΤΗΣ ΑΣΚΗΣΗΣ (καθένας με δικά του λόγια, σε όλες τις γραμμές) ΒΑΘΜΟΣ#1: ΥΠΟΓΡΑΦΗ:
Κεφάλαιο 2. Ηλεκτρικά Κυκλώματα
Κεφάλαιο Ηλεκτρικά Κυκλώματα. Μεταβατικά φαινόμενα.. Κύκλωμα C Το κύκλωμα του Σχήματος. είναι το απλούστερο κύκλωμα Α τάξης και αποτελείται από μια πηγή συνεχούς τάσης V, που είναι η διέγερσή του, εν σειρά
ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΕΙΣΑΓΩΓΙΚΑ Ι Από το πραγματικό κύκλωμα στο μοντέλο Μαθηματική μοντελοποίηση Η θεωρία κυκλωμάτων είναι
ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι V 86
ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 86 ΑΣΚΗΣΗ. Ένα κύκλωµα RC αποτελείται από µια αντίσταση R 5Ω και έναν πυκνωτή χωρητικότητας C σε σειρά. Αν το ρεύµα προηγείται της τάσης κατά 6 ο και η κυκλική συχνότητα της πηγής είναι
Πρόλογος... i ΑΝΑΦΟΡΕΣ ΓΙΑ ΠΕΡΑΙΤΕΡΩ ΜΕΛΕΤΗ... 77
Περιεχόµενα Πρόλογος............................................ i 1 ΕΙΣΑΓΩΓΗ 1 1.1 Επισκόπηση του κειµένου............................... 2 1.2 Η σχέση ανάµεσα στην ανάλυση κυκλωµάτων και στην µηχανολογία........
ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ
ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ Ένα ρεύµα ονοµάζεται εναλλασσόµενο όταν το πλάτος του χαρακτηρίζεται από µια συνάρτηση του χρόνου, η οποία εµφανίζει κάποια περιοδικότητα. Το συνολικό ρεύµα που διέρχεται από µια
HΛEKTΡOTEXNIA ΙΙ ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ
HΛEKTΡOTEXNIA ΙΙ 3/0/09 ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ ΘΕΜΑ ο ) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή
ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ-ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ Ι, ΦΕΒΡΟΥΑΡΙΟΣ i 1 i 2
ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ Ι, 007008 ΦΕΒΡΟΥΑΡΙΟΣ 008 ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ ΜΕ ΑΥΤΟ ΤΟ ΧΡΩΜΑ ΘΕΜΑ. [0%] Για το κύκλωμα δεξιά, ένα λογισμικό ανάλυσης κυκλωμάτων έδωσε τα παρακάτω αποτελέσματα:
HMY 102 Ανασκόπηση της μεταβατικής ανάλυσης Πρωτοτάξια κυκλώματα (RL και RC)
Ths mag canno currnly b dsplayd. Τρία είναι τα βασικά παθητικά στοιχεία στη θεωρία γραμμικών κυκλωμάτων:, και HMY 12 Ανασκόπηση της μεταβατικής ανάλυσης Πρωτοτάξια κυκλώματα ( και ) απορροφά ενέργεια και
Γραμμικά Κυκλώματα β τάξης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Γραμμικά Κυκλώματα β τάξης Διδακτικές σημειώσεις για το μάθημα Εισαγωγή στα Κυκλώματα του ου εξαμήνου Ιάκωβος Στ. Βενιέρης
Κεφάλαιο 26 DC Circuits-Συνεχή Ρεύματα. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο 26 DC Circuits-Συνεχή Ρεύματα Περιεχόμενα Κεφαλαίου 26 Ηλεκτρεγερτική Δύναμη (ΗΕΔ) Αντιστάσεις σε σειρά και Παράλληλες Νόμοι του Kirchhoff Κυκλώματα σε Σειρά και Παράλληλα EMF-Φόρτιση Μπαταρίας
ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ. Τμήμα Μηχανικών Πληροφορικής
ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Μηχανικών Πληροφορικής ΕΡΓΑΣΤΗΡΙΟ «ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ» ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2018-2019 Διδάσκων: Δρ. Παντελής Σ. Αποστολόπουλος (Επίκουρος
0 f(t)e st dt. L[f(t)] = F (s) =
Α. Δροσόπουλος 3 Ιανουαρίου 29 Περιεχόμενα Μετασχηματισμοί Laplace 2 Αντιστάσεις, πυκνωτές και πηνία 2 3 Διέγερση βαθμίδας σε L κυκλώματα 5 3. Φόρτιση.....................................................
Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου Τα στοιχεία του Πυκνωτή και του Πηνίου
Το στοιχείο του πυκνωτή (1/2) Αποτελείται από δύο αγώγιμα σώματα (οπλισμοί)ηλεκτρικά μονωμένα μεταξύ τους μέσω κατάλληλου μονωτικού υλικού (διηλεκτρικό υλικό) Η ικανότητα του πυκνωτή να αποθηκεύει ενέργεια
3. Κεφάλαιο Μετασχηματισμός Fourier
3 Κεφάλαιο 3 Ορισμοί Ο μετασχηματισμός Fourir αποτελεί την επέκταση των σειρών Fourir στη γενική κατηγορία των συναρτήσεων (περιοδικών και μη) Όπως και στις σειρές οι συναρτήσεις θα εκφράζονται με τη βοήθεια
ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ R-C ΚΥΚΛΩΜΑΤΩΝ. Η θεωρία της άσκησης καλύπτεται από το βιβλίο του Εργαστηρίου. ( j
ΑΣΚΗΣΗ 07 ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ - ΚΥΚΛΩΜΑΤΩΝ Αντικείμενο της άσκησης είναι η μελέτη της συνάρτησης μεταφοράς ενός εν σειρά - κυκλώματος συναρτήσει της συχνότητας του σήματος εισόδου. Η θεωρία της άσκησης
ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Διδάσκων : Δημήτρης Τσιπιανίτης Γεώργιος Μανδέλλος
ΘΕΜΑ 1 ο (3 μονάδες):
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 9/0/00 ΘΕΜΑ ο ( μονάδες): Για τον ενισχυτή του παρακάτω σχήματος δίνονται: 0, 0.7, kω, 0 kω, Ε kω, L kω, β fe 00, e kω. (α) Να προσδιορίσετε τις τιμές των αντιστάσεων,
2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί.
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία
4. Χρονική και συχνοτική ανάλυση της λειτουργίας κυκλωμάτων
4. Χρονική και συχνοτική ανάλυση της λειτουργίας κυκλωμάτων 4. Εισαγωγή Στο προηγούμενο Κεφάλαιο παρουσιάστηκαν οι βασικές τεχνικές ανάλυσης και επίλυσης κυκλωμάτων με την εφαρμογή των κανόνων του Kirchhoff
Εναλλασσόμενο ρεύμα και ταλάντωση.
Εναλλασσόμο ρεύμα και ταλάντωση. Δίνεται το κύκλωμα του διπλανού σχήματος, όπου το ιδανικό πηνίο έχει συντελεστή αυτεπαγωγής 8mΗ, ο πυκνωτής χωρητικότητα 0μF, η αντίσταση R του αντιστάτη R30Ω, ώ η τάση
ΑΝΑΛΥΣΗ ΚΥΚΛΩΜΑΤΟΣ ΚΟΙΝΟΥ ΕΚΠΟΜΠΟΥ ΜΕΛΕΤΗ DC ΣΥΜΠΕΡΙΦΟΡΑΣ Στο σχήμα φαίνεται ένα κύκλωμα κοινού εκπομπού από το βρόχο εισόδου Β-Ε ο νόμος του Kirchhoff δίνει: Τελικά έχουμε: I I BB B B E E BE B BB E IE
Εργαστηριακές Ασκήσεις ΑΝΑΛΟΓΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ Εργαστηριακές Ασκήσεις ΑΝΑΛΟΓΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ (μέσω προσομοίωσης) Γιάννης
ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 8: Συντονισμός Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
v(t) = Ri(t). (1) website:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση και Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 10 Μαρτίου 2017 1 Βασικά μεγέθη ηλεκτρικών
Εργαστήριο Κυκλωμάτων και Μετρήσεων
ΗΜΥ203 Εργαστήριο Κυκλωμάτων και Μετρήσεων Εκθετικά κύματα και Σύνθετη Αντίσταση Κυκλώματα RLC Σειράς, Συχνότητα Συντονισμούκαι Διόρθωση Συντελεστή Ισχύος Διδάσκων: Δρ. Γιώργος Ζάγγουλος Πανεπιστήμιο Κύπρου
ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ» ΗΜΕΡΟΜΗΝΙΑ: 26/01/2017
ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΔΙΔΑΣΚΩΝ: Λ ΜΠΙΣΔΟΥΝΗΣ ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ» ΗΜΕΡΟΜΗΝΙΑ: 6/0/07 ΘΕΜΑ ο ( μονάδες) Για τον ενισχυτή του παρακάτω σχήματος δίνονται:
ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ-ΗΛΕΚΤΡΟΛΟΓΙΑ Γ ΛΥΚΕΙΟΥ- ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ
Π.Π.Λ. ΕΥΑΓΓΕΛΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Σελ. 1 Επιμέλεια Π.Π.Λ. ΕΥΑΓΓΕΛΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Σελ. 2 Επιμέλεια Π.Π.Λ. ΕΥΑΓΓΕΛΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Σελ. 3 Επιμέλεια Π.Π.Λ. ΕΥΑΓΓΕΛΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Σελ. 4 Επιμέλεια
ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Διδάσκων : Δημήτρης Τσιπιανίτης Γεώργιος Μανδέλλος
περιεχομενα Πρόλογος vii
Πρόλογος vii περιεχομενα ΜΕΡΟΣ ΠΡΩΤΟ: Κυκλώματα Συνεχούς Ρεύματος... 2 ΚΕΦΑΛΑΙΟ 1: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ... 3 1.1 Εισαγωγή...4 1.2 Συστήματα και Μονάδες...5 1.3 Φορτίο και Ρεύμα...6 1.4 Δυναμικό...9 1.5 Ισχύς
ΑΠΑΝΤΗΣΕΙΣ. Α2. Η σχέση που συνδέει την πραγματική ισχύ P,την άεργη ισχύ Q και την φαινόμενη ισχύ S είναι:
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 03//03 Σελίδα από 6 ΑΠΑΝΤΗΣΕΙΣ A ΟΜΑΔΑ Οδηγία: Να γράψετε στο τετράδιο σας τον αριθμό κάθε μιας από τις παρακάτω
Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων
Κεφάλαιο 4 Μετασχηματισμός aplace 4. Μετασχηματισμός aplace της εκθετικής συνάρτησης e Είναι Άρα a a a u( a ( a ( a ( aj F( e e d e d [ e ] [ e ] ( a e (c ji, με a (4.9 a a a [ e u( ] a, με a (4.3 Η σχέση
ΗΛΕΚΤΡΟΤΕΧΝΙΑ ΙΙ Γ ΕΠΑΛ 15 / 04 / 2018
Γ ΕΠΑΛ 5 / 04 / 08 ΗΛΕΚΤΡΟΤΕΧΝΙΑ ΙΙ ΘΕΜΑ ο. Σε τρίγωνο ισχύος με =5KVA και Ρ=4KW η άεργη ισχύς θα ισούται με: α. KVar β. 3KVar γ. 4KVar δ. 5KVar β. 3KVar. Σε κύκλωμα RC σε σειρά με Uεν = 500V, URεν = 300V
ΧΡΟΝΙΚΗ ΚΑΙ ΑΡΜΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΤΩΝ ΚΥΚΛΩΜΑΤΩΝ. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής
ΧΡΟΝΙΚΗ ΚΑΙ ΑΡΜΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΤΩΝ ΚΥΚΛΩΜΑΤΩΝ Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΤΩΝ ΚΥΚΛΩΜΑΤΩΝ Τα κυκλώματα που θεωρούμε εδώ είναι γραμμικά
Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Σχεδίαση Ηλεκτρονικών Κυκλωμάτων F Ενότητα: Φίλτρα και Επαναληπτικές Ασκήσεις Στυλιανός Μυτιληναίος Τμήμα Ηλεκτρονικής, Σχολή
ΑΠΑΝΤΗΣΗ Εφόσον το κύκλωμα λειτουργεί για πολύ χρόνο, έχει περάσει στη μόνιμη κατάσταση και πρέπει να υπολογίσουμε την κατάστασή του αμέσως πριν το
13 2019Κ1Φ-2 RC Το κύκλωμα λειτουργεί για πολύ χρόνο Στο t = 0 η πηγή τάσης αντιστρέφει την πολικότητά της και η πηγή ρεύματος πέφτει στα 2 ma Να υπολογιστεί η τάση v o (t) για t 0 2019Κ1Φ-3 RC ΑΠΑΝΤΗΣΗ
ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ 1
ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ ΙΙ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ 00 ΘΕΜΑ Δύο συζευγμένα πραγματικά πηνία συνδέονται εν παραλλήλω, όπως στο Σχ.. Να βρεθούν () οι ενδείξεις των τριών βατομέτρων, () η
Έστω μια ΓΜ η οποία περιγράφεται από ένα δίθυρο κύκλωμα με γενικευμένες παραμέτρους ABCD, όπως φαίνεται στο Σχήμα 5.1. Οι σταθερές ABCD είναι:
5 Κεφάλαιο ΗΛΕΚΤΡΙΚΑ ΜΕΓΕΘΗ ΓΡΑΜΜΩΝ ΜΕΤΑΦΟΡΑΣ 5.1 Εισαγωγή Στο κεφάλαιο αυτό παρουσιάζονται οι βασικές σχέσεις για τον υπολογισμό της ενεργού και άεργου ισχύς στα δύο άκρα μιας γραμμής μεταφοράς (ΓΜ),
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΚΑΙ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΟΜΑ Α
Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Ανάλυση Κυκλωμάτων Σήματα Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Εισαγωγή Για την ανάλυση των ηλεκτρικών κυκλωμάτων μαζί με την μαθηματική περιγραφή των
Υπολογίζουμε εύκολα τον αντίστροφο Μετασχηματισμό Fourier μιας συνάρτησης χωρίς να καταφεύγουμε στην εξίσωση ανάλυσης.
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Υπολογίζουμε εύκολα τον αντίστροφο Μετασχηματισμό Fourir μιας συνάρτησης χωρίς να καταφεύγουμε στην εξίσωση ανάλυσης. Υπολογίζουμε εύκολα την απόκριση
Να σχεδιαστεί ένας ενισχυτής κοινού εκπομπού (σχ.1) με τα εξής χαρακτηριστικά: R 2.3 k,
Να σχεδιαστεί ένας ενισχυτής κοινού εκπομπού (σχ) με τα εξής χαρακτηριστικά: 3 k, 50, k, S k και V 5 α) Nα υπολογιστούν οι τιμές των αντιστάσεων β) Να επιλεγούν οι χωρητικότητες C, CC έτσι ώστε ο ενισχυτής
2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί.
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Το ιδανικό κύκλωμα LC του σχήματος εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις, με περίοδο
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Ιδανικό κύκλωμα LC εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις. Να αποδείξετε ότι η στιγμιαία τιμή i της έντασης του ρεύματος στο κύκλωμα δίνεται σε συνάρτηση με το στιγμιαίο
ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ (A.C)
ΚΥΚΛΩΜΑΤΑ AC-DC ΚΕΦΑΛΑΙΟ 4ο ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ (A.C) Εναλλασσόμενο ρεύμα Ονομάζεται το ρεύμα του οποίου η φορά και η τιμή (ένταση) μεταβάλλονται περιοδικά με το χρόνο. Φάση: φ=ω*t Κυκλική συχν: ω=2*π*f
ΑΣΚΗΣΗ 7 ΚΥΚΛΩΜΑ R-L-C: ΣΥΝΔΕΣΗ ΣΕ ΣΕΙΡΑ ΣΥΝΤΟΝΙΣΜΟΣ
ΑΣΚΗΣΗ 7 ΚΥΚΛΩΜΑ R-L-C: ΣΥΝΔΕΣΗ ΣΕ ΣΕΙΡΑ ΣΥΝΤΟΝΙΣΜΟΣ 1 Σκοπός Στην άσκηση αυτή μελετάται η συμπεριφορά ενός κυκλώματος RLC σε σειρά κατά την εφαρμογή εναλλασσόμενου ρεύματος. Συγκεκριμένα μελετάται η μεταβολή
Φυσικά μεγέθη στα 3 ανάλογα συστήματα
Φυσικά μεγέθη στα 3 ανάλογα συστήματα ΦΥΣΙΚΑ ΜΕΓΕΘΗ ΗΛΕΚΤΡΙΚΟ ΜΗΧΑΝΙΚΟ ΑΚΟΥΣΤΙΚΟ ΚΙΝΗΤΗΡΙΑ ΔΥΝΑΜΗ V, ηλ. ΤΑΣΗ (=ηλεκτρεγερτική δύναμη) F, μηχ. ΔΥΝΑΜΗ p, ακ. ΠΙΕΣΗ ΡΟΗ I, ηλ. ρεύμα v, μηχ. ταχύτητα Uακ.,
HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων
HMY Ανάλυση Ηλεκτρικών Κυκλωμάτων Παράρτημα Α Μιγαδικοί Αριμοί Οι μιγαδικοί αριμοί είναι μια από τις πιο σημαντικές έννοιες στον τομέα της ηλεκτρολογίας. Τι είναι οι μιγαδικοί αριμοί (compl numbrs; Ξέρουμε
R eq = R 1 + R 2 + R 3 = 2Ω + 1Ω + 5Ω = 8Ω. E R eq. I s = = 20V V 1 = IR 1 = (2.5A)(2Ω) = 5V V 3 = IR 3 = (2.5A)(5Ω) = 12.5V
Πανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Απαντήσεις στο 1 0 Homework στην Ανάλυση Κυκλωμάτων Χειμερινό Εξάμηνο 2014-2015 Πλέσσας Φώτης 1 Πρόβλημα 1 Βρείτε τη συνολική αντίσταση
1.5 1 Ο νόμος των ρευμάτων του Kirchhoff 11 1.5 2 Ο νόμος των τάσεων του Kirchhoff 12 1.5 3 Το θεώρημα του Tellegen 13
Μέρος Α 1. Εισαγωγικές Έννοιες 3 1.1 Το αντικείμενο της θεωρίας των ηλεκτρικών κυκλωμάτων 4 1.2 Φυσικά και μαθηματικά μοντέλα 5 1.3 Συγκεντρωμένα και κατανεμημένα κυκλώματα 6 1.4 Ορισμοί Φορές αναφοράς
Πανεπιστήμιο Θεσσαλίας
Πανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Εργαστηριακές Ασκήσεις Εργαστήριο 5 Κυκλώματα RC (φόρτιση/εκφόρτιση πυκνωτή, σύνθετη αντίσταση) Φ. Πλέσσας
Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα
Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο
ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής
ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΗΛΕΚΤΡΙΚΑ ΣΤΟΙΧΕΙΑ ΚΑΙ ΚΥΚΛΩΜΑΤΑ Ένα ηλεκτρικό κύκλωμα αποτελείται από ένα σύνολο
Ενότητα 4 η. «Ηλεκτροτεχνία Ηλεκτρικές Εγκαταστάσεις»,Τμήμα Μηχανολόγων Π.Θ., Γ. Περαντζάκης
- - Ενότητα 4 η (Συστηματική μελέτη και ανάλυση κυκλωμάτων με τις μεθόδους των βρόχων και κόμβων. Θεωρήματα κυκλωμάτωνthevenin, Norton, επαλληλίας, μέγιστης μεταφοράς ισχύος) Στην παρούσα ενότητα παρουσιάζονται