Probing into the Upper Mantle Using Surface Waves: Beyond the Geometrical Ray Theory
|
|
- Κλυταιμνήστρα Φιλιππίδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 2 57 (2005) Probing into the Upper Mantle Using Surface Waves: Beyond the Geometrical Ray Theory Kazunori YDH=>O6L6 Division of Earth and Planetary Sciences, Graduate School of Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo , Japan (Received January 6, 2004; Accepted July 21, 2004) Avariety of methods of surface wave inversion, which enables us to investigate detailed images of the upper mantle on a regional scale, are reviewed. The study of surface wave tomography beginning in the 1980 s has brought us with a significant jump in our understanding of the Earth s interior, particularly the upper mantle. Most of the studies of surface wave tomography have been based upon a geometrical ray theory, working with either dispersion curves or waveforms of surface waves. Such a simple representation of surface wave propagation has allowed us to treat a greater number of data sets, which are indispensable for obtaining high resolution tomography models. However, the ray theory, which is relying upon the high-frequency approximation, is no longer valid when the scale-length of heterogeneity is comparable to the wavelength of waves to be considered. The e#ects of finite frequency are particularly important for the higher-frequency surface waves, which mainly sample the crust and uppermost mantle where very strong lateral heterogeneity is likely to exist. Recent development of the 3-D sensitivity kernels allows us to treat the e#ects of finite frequency in the tomographic inversions. The use of such finite frequency theory will further advance the methods of surface wave tomography. Key words : Surface waves, Upper mantle, Ray theory, Finite frequency, Tomography Lamb (1904) Rayleigh Rayleigh (1885) Dahlen and Tromp (1998), 1.5 Lamb Lamb (1904)
2 394 Lamb (1904) 80 Woodhouse and Dziewonski (1984) Nakanishi and Anderson (1982, 1983, 1984) [Masters et al. (1982)] [Tanimoto and Anderson (1985)] WKBJ Tromp and Dahlen (1992a, b), Dahlen and Tromp (1998) 16 Debayle and Kennett (2000) [Spetzler et al. (2001), Kennett and Yoshizawa (2002)] 90 [Yomogida (1992), Woodward (1992), Li and Tanimoto (1993), Vasco et al. (1995), Li and Romanowicz (1995, 1996), Marquering and Snieder (1995), Marquering et al. (1998, 1999)] 2 3 [Dahlen et al. (2000), Hung et al. (2000), Zhao et al. (2000), Spetzler et al. (2002), Yoshizawa and Kennett (2002b, 2004b), Zhou et al. (2004)] Neighbourhood Algorithm S 3 S (i) (ii) S (i) [Trampert and Woodhouse (1995), Laske and Masters (1996), Ekström et al. (1997), Ritzwoller and Levshin (1998) Larson and Ekström (2002)] [Laske and Masters (1996), Yoshizawa et al. (1999)] 3 S [Nataf et al. (1986)] 3 3 Fig. 1(b)
3 395 Fig. 1. Schematic illustrations of multi-stage processes for surface wave tomography: (a) 2-stage approach and (b) 3-stage approach. [Nakanishi and Anderson (1984)] [van Heijst and Woodhouse (1997, 1999)] (ii) Woodhouse and Dziewonski (1984) 3 S [Tanimoto (1987, 1988)] Nolet [1990] 3 1 S 3 Partitioned Waveform Inversion (PWI) 1 3 Fig. 1(a) PWI Nolet (1990) PWI 3 S [Zielhuis and Nolet (1994), Debayle and Leveque (1997), Lebedev et al. (1997), van der Lee and Nolet (1997), Simons et al. (1999), Debayle and Kennett (2000), Lebedev and Nolet (2003)] Woodhouse and Dziewonski (1984) Nolet (1990) 1 S Nolet (1990) PWI 3 S PWI 1 (Fig. 1b) S (Fig. 1a)
4 396 [Yomogida and Aki (1987), Snieder (1988), Tanimoto (1990), Meier et al. (1997)] [Yoshizawa (2002), Kennett and Yoshizawa (2002)] 3 [Yoshizawa and Kennett (2004a)] Fig. 1(b) 3 4 PWI 1 S J u(d, w) R j (w) exp[i k0(w) dk j j (w) D] S j (w) (2) j R j (w) S j (w) dk j (w) R 0(w) R j j (w), S0(w) R j j (w) (2) Q P S dk j R (w) K a(w, j r)da(r) da(r) K b(w, j r)db(r) 0 K r(w, j r)dr(r) dr(r) dr (3) 3. 1 S [Nolet et al. (1986)] [Cara and Lévêque (1987)] 1 S WKBJ [Woodhouse (1974), Tromp and Dahlen (1992a, b)] J u 0 (D, w) R0(w) j exp[ik0(w)d]s j 0(w) j (1) j w j D R0(w) j S0(w) j k0(w) w/c j j 0 c j 0 j Fig D sensitivity kernels K a (k(w)/(a(r), K b (k(w)/(b(r), and K r (k(w)/(r(r) forthe fundamental-mode and the first higher modes of Rayleigh waves at (a, c) 50 s and (b, d) 100 s.
5 397 r da(r), db(r), dr(r) P S K a (k j j (w)/(a(r), K b (k j j (w)/(b(r), K r (k j j (w)/ (r(r) k j P S [Takeuchi and Saito, 1972, Dahlen and Tromp, 1998], 1 j Fig. 2 1 S P S S P S 1 1 S [Sen and Sto#a (1995)] 3.2 PWI [Nolet et al. (1986)] Fig. 3 Hiyoshi (2001) 10 km km 250 km Fig. 3. An example of a synthetic test of waveform inversion for retrieving a 1-D shear wave speed profile based on a linearized inversion scheme of Nolet (1986). (a) 1-D shear wave speed models. A starting model (black solid line) has 3 faster shear wave speed in the mantle than the reference model (dashed line). (b) Initial waveform fit and (c) final fit for a retrieved model [modified from Hiyoshi (2001)]. 1 S Montagner and Jobert (1981) Fig [Debayle (1999), Lebedev (2000)] Neighbourhood Algorithm Neighbourhood Algorithm (NA) [Sambridge, 1999]
6 398 Fig. 4. An example of fully non-linear waveform inversion using the Neighbourhood Algorithm of Sambridge (1999) for an event in Sumba, Indonesia, recorded at CAN station. (a) Density plots of all the models created by the NA, ranked in order of increasing misfit. The initial model is shown in a dashed line and the best-fit model is in solid black line. (b) Initial waveform fit and (c) final fit. (d) Phase speed perturbations for the first three modes, estimated from the best-fit 1-D shear velocity profile. A gray solid line (top panel) is a dispersion curve for the fundamental mode Rayleigh wave which is measured directly from the observed waveform [after Yoshizawa and Kennett (2002a)]. [Yoshizawa and Kennett (2002a)] NA Yoshizawa and Kennett (2002a) (3) (2) WKBJ NA Fig km CAN Fig. 4 3, , km 3.3 Yoshizawa and Kennett (2002a) Fig. 4 1 (3) 1 S 1 1 [Yoshizawa and Kennett (2002a)] Fig. 4(d) 1 2 PREM [Dziewonski and Anderson (1981)]
7 S 1 [Yoshizawa and Kennett (2002a)] p Kennett and Yoshizawa (2002) 1 3 S 3-stage inversion (Fig. 1(b)) 3 [Yoshizawa and Kennett (2004a)] 4. 0 WKBJ [Woodhouse (1974), Yomogida (1985), Tromp and Dahlen, (1992)] wavefront healing [Nolet and Dahlen (2000)] [Laske and Masters (1996), Yoshizawa et al. (1999), Spetzler et al. (2001), Yoshizawa and Kennett (2002b)] 2 Marquering et al. (1998, 1999), Dahlen et al. (2000), Hung et al. (2000), Zhao et al. (2000) 4.1 dy dc [Woodhouse and Wong (1986)] dy(w) k(w) dc(s w) ds c (4) s Fig. 5(a) (Fig. 5(b)) 1 Fig. 5. A schematic view of (a) a geometrical ray and (b) a finite-width ray. Actual surface waves will have some sensitivity to a region around the path.
8 400 2 (4) dy(w) K 2D dc(q, f w) c (q, f w) dq df (5) c K 2D c (q, f w) Fig. 6. The influence zone kernel for a Rayleigh wave at 80 s for a path between an event near Irian Jaya and NWAO station in south-eastern Australia [after Yoshizawa and Kennett (2004a)]. [Yoshizawa and Kennett (2002b)] 2 [Yoshizawa & Kennett (2002b)] 2 80 Rayleigh Fig. 6 1 Yoshizawa and Kennett (2002b) 3,000 km km km 40 Fig. 6 3 [Yoshizawa (2002), Yoshizawa and Kennett (2004a)] 5 PC
9 Yoshizawa and Kennett (2004a) Fig. 7 (4) (Fig. 7(b)) (5) Fig. 7(a) (4) Fig. 7. Realistic resolution tests using the ray theory and influence-zone theory. (a) Ray paths, (b) input checker board model with 5-degree cells, (c) retrieved model based on ray theory and (d) retrieved model which is updated from (c) working with both ray tracing and the influence zone [after Yoshizawa and Kennett (2004a)].
10 402 Fig. 7(c) (Fig. 7 (c)) (5) Fig. 7(d) Fig. 7(c) (d) (Fig. 7b) (Fig. 7c) 0.48 (Fig. 7d) 0.54 Fig. 7(c) variance reduction 10 [Yoshizawa and Kennett (2004a)] Yoshizawa (2002) Yoshizawa and Kennett (2004b) Born/Rytov [Tanimoto (1990), Tromp and Dahlen (1992)] u R ru(r)c R k 1 R V(r) 1 c R :Rayleigh wave (6) u L k 1 L W(r)( r 1)c L:Love wave (7) U, V, W r 1 k R k L Rayleigh Love k w/c, c c R c L Rayleigh Love [ 1 k 2 (x, w)]c(x, w x s ) 0 (8) c A exp(iy) A y Rayleigh Love dc dc Born Born and Wolf (1999) 13 dc 2k 2 G(x, w x )c 0 (x, w x s ) dc c d2 x K Born c (x, x, x s, w) dc c d2 x (9) x (q, f) 2 c 0 (x, w x s ) x s x G(x, w x ) K Born c (x, x, x s, w) 2 c 0 G [Tromp and Dahlen (1992b, 1993)] Born Rytov [Yomogida and Aki (1987)]. Rytov F ln c ln A iy Born df df 2k 2 G(x, w x )c 0(x, w x s ) c 0 (x, w x s ) dc c d2 x K Rytov F (x, x, x s, w) dc c d2 x (10) dy Im K Rytov F dc c d2 x (11)
11 403 Fig. 8. Two-dimensional sensitivity kernels for Rayleigh waves at (a) 100 s and (b) 50 s, derived from the Rytov approximation. Representation of imaginary parts of the sensitivity kernels (top), and the cross-path profile of both real and imaginary parts of the kernels at the center of the path (bottom). d ln A Re K Rytov F dc c d2 x (12) (9) (10) K Rytov F (x, x, x s, w) K Born c (x, x, x s, w)/c 0 (x, w x s ) 30 Rayleigh Im K Rytov F Fig. 8 (11) Im K Rytov F PREM Fig. 8 3 [Marquering et al. (1999), Hung et al. (2000)] 2 (11) p/4 [Spetzler et al. (2002)] S [Yoshizawa and Kennett (2004 b)] Born (9) (7) du Rayleigh du K Born u (x w) du(w) K Born u (x w) dc(x w) d c 2 x (13) 1 K 1D b (r w) x (q, f) dc S db dc(x, w) c K 1D db(x, r) b (r w) dr (14) b
12 404 Fig. 9. Representation of time-dependent 3-D sensitivity kernels for a vertical component of Rayleigh waveform in a frequency range between 0.01 and 0.03 Hz. Instantaneous sensitivity kernels at (a) 850 s, (b) 870 s, (c) 890 s and (d) 950 s. Corresponding waveforms for a fundamental-mode Rayleigh wave (top), horizontal slices of the kernel at 90 km depth (middle panels), and cross-path slices at the center of the path (bottom panels). r (14) (13) 3 K 3D b (r, q, f t) 3 S du(t) K 3D db(r, q, f) b (r, q, f t) dr dq df (15) b Fig. 9 PREM 3 90 km Fig. 8 Fig. 9 Rayleigh 850 (Fig. 9a) (Fig. 9b, c). Rayleigh 950 (Fig. 9d) (15) 3 3 S 3 (15) 6. 90
13 [Snieder (1988), Kennett and Nolet (1990)] [Yoshizawa (2002), Ritzwoller et al. (2002), Friederich (2003), Yoshizawa and Kennett (2004a)] Born [Kennett and Nolet (1990), Marquering and Snieder (1995)] 3 Lamb (1904) Brian Kennett, Eric Debayle, Malcolm Sambridge, Sergei Lebedev, Tony Dahlen, Barbara Romanowicz, Jeannot Trampert Born, M. and E. Wolf, 1999, Principle of Optics, 7th ed., Cambridge University Press, 952 pp. Cara, M. and J. J. Lévêque, 1987, Waveform inversion using secondary observables, Geophys. Res. Lett., 14, Dahlen, F. A. and J. Tromp, 1998, Theoretical Global Seismology, Princeton University Press, 1025 pp. Dahlen, F. A., S.-H. Hung and G. Nolet, 2000, Frechet kernels for finite-frequency travel times-i. Theory, Geophys. J. Int., 141, Debayle, E., 1999, SV-wave azimuthal anisotropy in the Australian upper mantle: preliminary results from automated Rayleigh waveform inversion, Geophys. J. Int., 137, Debayle, E. and J. J. Lévêque, 1997, Upper mantle heterogeneity in the Indian Ocean from waveform inversion, Geophys. Res. Lett., 24, Debayle, E. and B. L. N. Kennett, 2000, The Australian continental upper mantle: structure and deformation inferred from surface waves, J. Geophys Res., 105, Dziewonski, A. M. and D. L. Anderson, 1981, Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, Ekström, G., J. Tromp and E. W. F. Larson, 1997, Measurements and global models of surface wave propagation, J. Geophys Res., 102, Friedrich, W., 2003, The S-velocity structure of the
14 406 East Asian mantle from inversion of shear and surface waveform, Geophys. J. Int., 153, Hiyoshi, Y., 2001, Regional surface waveform inversion for Australian Paths, Ph. D. Thesis, Australian National University, Canberra, 185 pp. Hung, S.-H., F. A. Dahlen and G. Nolet, 2000, Frechet kernels for finite-frequency travel times-ii. Examples, Geophys. J. Int., 141, Kennett, B. L. N. and G. Nolet, 1990, The interaction of the S-wavefield with upper mantle heterogeneity, Geophys. J. Int., 101, Kennett, B. L. N. and K. Yoshizawa, 2002, A reappraisal of regional surface wave tomography, Geophys. J. Int., 150, Lamb, H., 1904, On the propagation of tremors over the surface of an elastic solid, Phil. Trans. Roy. Soc. London, A, 203, Larson, E. W. F. and G. Ekström, 2001, Global models of surface wave group velocity, Pure Appl. Geophys., 158, Laske, G. and G. Masters, 1996, Constraints on global phase velocity maps from long-period polarization data, J. Geophys. Res., 101, Lebedev, S., 2000, The upper mantle beneath the western Pacific and southeast Asia, PhD thesis, Princeton University, Princeton, NJ, 181 pp. Lebedev, S. and G. Nolet, 2003, Upper mantle beneath southeast Asia from S velocity tomography, J. Geophys. Res., 108, 2048, /2000JB Lebedev, S., G. Nolet and R. D. van der Hilst, 1997, The upper mantle beneath the Philippine Sea region from waveform inversion, Geophys. Res. Lett., 24, Li, X.-D. and T. Tanimoto, 1993, Waveforms of longperiod body waves in a slightly aspherical Earth model, Geophys. J. Int., 112, Li, X.-D. and B. Romanowicz, 1995, Comparisons of global waveform inversions with and without considering cross-branch modal coupling, Geophys. J. Int., 121, Li, X.-D. and B. Romanowicz, 1996, Global mantle shear velocity model developed using nonlinear asymptotic coupling theory, J. Geophys. Res., 101, Marquering, H. and R. Snieder, 1995, Surface-wave mode coupling for e#icient forward modeling and inversion of body-wave phases, Geophys. J. Int., 120, Marquering, H., G. Nolet and F. A. Dahlen, 1998, Three-dimensional waveform sensitivity kernels, Geophys. J. Int., 132, Marquering, H., F. A. Dahlen, and G. Nolet, 1999, Three-dimensional sensitivity kernels for finitefrequency travel times: the banana-doughnut paradox, Geophys. J. Int., 137, Masters, G., T. H. Jordan, P. G. Silver and F. Gilbert, 1982, Aspherical Earth structure from fundamental spheroidal mode data, Nature, 298, Meier, T., S. Lebedev, G. Nolet and F. A. Dahlen, 1997, Di#raction tomography using multimode surface waves, J. Geophys. Res., 102, Montagner, J. P. and N. Jobert, 1981, Investigation of upper mantle structure under young regions of the southeast Pacific using long-period Rayleigh waves, Phys. Earth Planet. Inter., 27, Nakanishi, I. and D. L. Anderson, 1982, World-wide distribution of group velocity of mantle Rayleigh waves as determined by spherical harmonic inversion, Bull. Seism. Soc. Am., 72, Nakanishi, I. and D. L. Anderson, 1983, Measurements of mantle wave velocities and inversion for lateral heterogeneity and anisotropy, 1. Analysis of great circle phase velocities, J. Geophys. Res., 88, Nakanishi, I. and D. L. Anderson, 1984, Measurements of mantle wave velocities and inversion for lateral heterogeneity and anisotropy, 2. Analysis by the single-station method, Geophys. J. Roy. Astr. Soc., 78, Nataf, H. C., I. Nakanishi and D. L. Anderson, 1986, Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy, 3, Inversion, J. Geophys. Res., 91, Nolet, G., 1990, Partitioned waveform inversion and two-dimensional structure under the network of autonomously recording seismographs, J. Geophys. Res., 95, Nolet G. and F. A. Dahlen, 2000, Wavefront healing and the evolution of seismic delay times, J. Geophys. Res., 105, Nolet G., J. van Trier and R. Huisman, 1986, A formalism for nonlinear inversion of seismic surface waves, Geophys. Res. Lett., 13, Rayleigh, J. W. S, 1885, On waves propagated along the plane surface of an elastic solid, Proc. London Math. Soc., 17, Ritzwoller, M. H. and A. L. Levshin, 1998, Eurasian surface wave tomography: Group velocities, J. Geophys. Res., 103, Ritzwoller M. H., N. M. Shapiro, M. P. Barmin and A. L. Levshin, 2002, Global surface wave di#raction tomography, J. Geophys. Res., 107, 2335, / 2002JB Sambridge, M., 1999, Geophysical inversion with a neighbourhood algorithm I. Searching a parameter space, Geophys. J. Int., 138, Sen, M. and P. L. Sto#a, 1995, Global optimization methods in geophysical inversion, Elsevier, Amsterdam, 281 pp. Simons, F. J., A. Zielhuis and R. D. van der Hilst, 1999, The deep structure of the Australian continent from surface wave tomography, Lithos, 48, Snieder, R., 1988, Large-scale waveform inversions of surface waves for lateral heterogeneity 1. Theory
15 407 and numerical examples, J. Geophys. Res., 93, Spetzler, J., J. Trampert and R. Snieder, 2001, Are we exceeding the limits of the great circle approximation in global surface wave tomography?, Geophys. Res. Lett., 28, Spetzler, J., J. Trampert and R. Snieder, 2002, The e#ect of scattering in surface wave tomography, Geophys. J. Int., 149, Takeuchi, H. and M. Saito, 1972, Seismic surface waves, in Seismology: Surface Waves and Free Oscillations, Methods in Computational Physics, vol. 11, pp , ed., Bolt, B. A., Academic Press, New York, 309 pp. Tanimoto, T., 1987, The three-dimensional shear wave structure in the mantle by overtone waveform inversion, I., Radial seismogram inversion, Geophys. J. Roy. Astr. Soc., 89, Tanimoto, T., 1988, The 3-D shear wave structure in the mantle by overtone waveform inversion, II, inversion of X waves, R waves and G waves, Geophys. J., 93, Tanimoto, T., 1990, Modelling curved surface wave paths: membrane surface wave synthetics, Geophys. J. Int., 102, Tanimoto, T. and D. L. Anderson, 1985, Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves s, J. Geophys. Res., 90, Trampert, J. and J. H. Woodhouse, 1995, Global phase velocity maps of Love and Rayleigh waves between 40 and 150 seconds, Geophys. J. Int., 122, Tromp, J., and F. A. Dahlen, 1992a, Variational principles for surface wave propagation on a laterally heterogeneous Earth-I. Time-domain JWKB theory, Geophys. J. Int., 109, Tromp, J., and F. A. Dahlen, 1992b, Variational principles for surface wave propagation on a laterally heterogeneous Earth-II. Frequency-domain JWKB theory, Geophys. J. Int., 109, Tromp, J., and F. A. Dahlen, 1993, Variational principles for surface wave propagation on a laterally heterogeneous Earth-III. Potential representation, Geophys. J. Int., 112, van der Lee, S. and G. Nolet, 1997, Upper mantle S velocity structure of north America, J. Geophys. Res., 102, van Heijst, H. J. and J. H. Woodhouse, 1997, Measuring surface-wave overtone phase velocities using a mode-branch stripping technique, Geophys. J. Int., 131, van Heijst, H. J. and J. H. Woodhouse, 1999, Global high-resolution phase velocity distributions of overtone and fundamental-mode surface waves determined by mode branch stripping, Geophys. J. Int., 137, Vasco, D. W., J. E. Peterson and E. L. Majer, 1995, Beyond ray tomography: Wavepath and Fresnel volumes, Geophysics, 60, Woodhouse, J. H., 1974, Surface waves in a laterally varying layered structure, Geophys. J. Roy. Astr. Soc., 37, Woodhouse, J. H. and A. M. Dziewonski, 1984, Mapping the upper mantle: Three-dimensional modeling of Earth structure by inversion of seismic waveforms, J. Geophys. Res., 89, Woodhouse, J. H. and Y. K. Wong, 1986, Amplitude, phase and path anomalies of mantle waves, Geophys. J. Roy. Astr. Soc., 87, Woodward, M. J., 1992, Wave-equation tomography, Geophysics, 57, Yomogida, K., 1985, Gaussian beams for surface waves in laterally slowly-varying media, Geophys. J. Roy. Astr. Soc., 82, Yomogida, K., 1992, Fresnel zone inversion for lateral heterogeneities in the Earth, Pure Appl. Geophys., 138, Yomogida, K. and K. Aki, 1987, Amplitude and phase data inversion for phase velocity anomalies in the Pacific Ocean basin, Geophys. J. Roy. Astr. Soc., 88, Yoshizawa, K., 2002, Development and application of new techniques for surface wave tomography, Ph. D. thesis, Australian National University, Canberra, 204 pp. Yoshizawa, K., 2004, 3-D sensitivity kernels for differential waveforms of surface waves, Geophys. Res. Lett., to be submitted. Yoshizawa, K. and B. L. N. Kennett, 2002a, Non-linear waveform inversion for surface waves with a neighbourhood algorithm-application to multimode dispersion measurements, Geophys. J. Int., 149, Yoshizawa, K. and B. L. N. Kennett, 2002b, Determination of the influence zone for surface wave paths, Geophys. J. Int., 149, Yoshizawa, K. and B. L. N. Kennett, 2004a, Multimode surface wave tomography for the Australian region using a three-stage approach incorporating finite frequency e#ects, J. Geophys. Res., 109, B 02310, doi: /2002JB Yoshizawa, K. and B. L. N. Kennett, 2004b, Sensitivity kernels for finite frequency surface waves, Geophys. J. Int. submitted. Yoshizawa, K., K. Yomogida and S. Tsuboi, 1999, Resolving power of surface wave polarization data for higher-order heterogeneities, Geophys. J. Int., 138, Zhao, L., Jordan, T. H. and Chapman, C. H., 2000, Three-dimensional Frechet di#erential kernels for seismic delay times, Geophys. J. Int., 141, Zhou, Y., F. A. Dahlen and G. Nolet, 2004, Three-
16 408 dimensional sensitivity kernels for surface wave observables, Geophys. J. Int., 158, Zielhuis, A. and G. Nolet, 1994, Shear-wave velocity variations in the upper mantle beneath central Europe, Geophys. J. Int., 117,
Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices
No. 3 + 1,**- Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 3, pp. + 1,,**-. MT * ** *** Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by
Distribution of the Metropolitan Seismic Observation network
Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2.,**3 pp. /103 * Distribution of the Metropolitan Seismic Observation network Shin ichi Sakai* and Naoshi Hirata Earthquake Research Institute, the University
Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan
3 2015 12 GLOBAL GEOLOGY Vol. 3 No. Dec. 2015 100 5589 2015 0 1106 07 L BFGS Q 130026 Q 2D L BFGS Marmousi Q L BFGS P631. 3 A doi 10. 3969 /j. issn. 1005589. 2015. 0. 02 Method of Q through full waveform
Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo
Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2.,**3 pp.,,3,.* * +, -. +, -. Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo Kunihiko Shimazaki *, Tsuyoshi Haraguchi, Takeo Ishibe +, -.
Graded Refractive-Index
Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for
2.1
181 8588 2 21 1 e-mail: sekig@th.nao.ac.jp 1. G ab kt ab, (1) k 8pGc 4, G c 2. 1 2.1 308 2009 5 3 1 2) ( ab ) (g ab ) (K ab ) 1 2.2 3 1 (g ab, K ab ) 1 t a S n a a b a 2.3 a b i (t a ) 2 1 2.4 1 g ab ab
What happens when two or more waves overlap in a certain region of space at the same time?
Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields
Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.
φ φ φ φ Figure 1 Resampling of a rock-physics model from velocity-porosity to lithology-porosity space. C i are model results for various clay contents. φ ρ ρ δ Figure 2 Bulk modulus constraint cube in
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Recent Crustal Movement Inferred from GPS Observation of Mt. Tateyama, Northern Alps, Central Japan
Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2-,**2 pp. +3-,*+ GPS * +, - +, + + - GPS : Recent Crustal Movement Inferred from GPS Observation of Mt. Tateyama, Northern Alps, Central Japan Ryosuke Doke *,
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Focal Mechanism Solutions of Micro- and Small Earthquakes Occurred in the Western Kanagawa Area Situated in the Izu Collision Zone
Bull Earthq Res Inst Univ Tokyo Vol 2,**3 pp,33-*/ * +, + + + + +, + + Focal Mechanism Solutions of Micro- and Small Earthquakes Occurred in the Western Kanagawa Area Situated in the Izu Collision Zone
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
Hydrologic Process in Wetland
J. Jpn. Soc. Soil Phys. No. +*-, p.1+12,**0 * Hydrologic Process in Wetland Characteristics of a Mire in a Snowy Region Makoto NAKATSUGAWA** ** Toyohashi O$ce of River Works, Chubu Regional Development
ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΕΙΟ Τμήμα Μηχανικών Μεταλλείων-Μεταλλουργών ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Κιτσάκη Μαρίνα
Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media
28 1 2009 3 Vol128 No11 GLOBAL GEOLOGY Mar1 2009 : 1004 5589 (2009) 01 0098 05 P 1, 1, 2, 1 1., 130026; 2., 100027 :,,,, 1%,,, 12187%,, : ; ; ; : P63114 : A Abstract: Error ana lysis of P2wave non2hyperbolic
Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements
5 5 2012 10 Chinese Optics Vol. 5 No. 5 Oct. 2012 1674-2915 2012 05-0525-06 - * 100190-14 - - 14. 51 μm 81. 4 μm - 1. 64 μm / O436. 1 TH703 A doi 10. 3788 /CO. 20120505. 0525 Correction of chromatic aberration
Dense Seismic Array Observations Along the Hanno- Misaka Line, Kanto Mountains, Central Japan
Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2.,**3 pp.,+1,,1 * +, + +, + Dense Seismic Array Observations Along the Hanno- Misaka Line, Kanto Mountains, Central Japan Eiji Kurashimo *, Hiroshi Sato, Susumu
Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog
J. Jpn. Soc. Soil Phys. No. +*-, p.-3.1,**0 ** * *** Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog Toshiki FUJIMOTO*, Ippei IIYAMA*, Mai SAKAI*, Osamu
X g 1990 g PSRB
e-mail: shibata@provence.c.u-tokyo.ac.jp 2005 1. 40 % 1 4 1) 1 PSRB1913 16 30 2) 3) X g 1990 g 4) g g 2 g 2. 1990 2000 3) 10 1 Page 1 5) % 1 g g 3. 1 3 1 6) 3 S S S n m (1/a, b k /a) a b k 1 1 3 S n m,
Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil
J. Jpn. Soc. Soil Phys. No. +*0, p.- +*,**1 Eh * ** Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil Daisuke MURAKAMI* and Tatsuaki KASUBUCHI** * The United Graduate
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ιπλωµατική Εργασία του φοιτητή του τµήµατος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών
ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ
ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΧΝΕΙΟ ΣΜΗΜΑ ΑΓΡΟΝΟΜΩΝ-ΣΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΣΟΜΕΑ ΣΟΠΟΓΡΑΦΙΑ ΕΡΓΑΣΗΡΙΟ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
for fracture orientation and fracture density on physical model data
AVAZ inversion for fracture orientation and fracture density on physical model data Faranak Mahmoudian Gary Margrave CREWES Tech talk, February 0 th, 0 Objective Inversion of prestack PP amplitudes (different
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΜΖΜΑ
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)
J. Comput. Chem. Jpn., Vol. 5, No. 1, pp. 29 38 (2006) Microsoft Excel, 184-8588 2-24-16 e-mail: yosimura@cc.tuat.ac.jp (Received: July 28, 2005; Accepted for publication: October 24, 2005; Published on
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
A Software Package Development for Estimating Atmospheric Path Delay based on Numerical Weather Prediction Model
1D A Software Package Development for Estimating Atmospheric Path Delay based on Numerical Weather Prediction Model Ryuichi ICHIKAWA, Mamoru SEKIDO, and Yasuhiro KOYAMA (KASHIMA SPACE RESEARCH CENTER,
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα
ΣΔΥΝΟΛΟΓΙΚΟ ΔΚΠΑΙΓΔΤΣΙΚΟ ΙΓΡΤΜΑ ΘΔΑΛΟΝΙΚΗ ΥΟΛΗ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ & ΓΙΑΣΡΟΦΗ ΣΜΗΜΑ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή Αζαλαζηάδνπ Βαξβάξα
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Three coupled amplitudes for the πη, K K and πη channels without data
Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
ΠΕΡΙΕΧΟΜΕΝΑ. Μάρκετινγκ Αθλητικών Τουριστικών Προορισμών 1
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «Σχεδιασμός, Διοίκηση και Πολιτική του Τουρισμού» ΜΑΡΚΕΤΙΝΓΚ ΑΘΛΗΤΙΚΩΝ ΤΟΥΡΙΣΤΙΚΩΝ
katoh@kuraka.co.jp okaken@kuraka.co.jp mineot@fukuoka-u.ac.jp 4 35 3 Normalized stress σ/g 25 2 15 1 5 Breaking test Theory 1 2 Shear tests Failure tests Compressive tests 1 2 3 4 5 6 Fig.1. Relation between
Lecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
Monolithic Crystal Filters (M.C.F.)
Monolithic Crystal Filters (M.C.F.) MCF (MONOLITHIC CRYSTAL FILTER) features high quality quartz resonators such as sharp cutoff characteristics, low loss, good inter-modulation and high stability over
Development of a Seismic Data Analysis System for a Short-term Training for Researchers from Developing Countries
No. 2 3+/,**, Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 2, pp.3+/,,**,. * * Development of a Seismic Data Analysis System for a Short-term Training for Researchers
Global energy use: Decoupling or convergence?
Crawford School of Public Policy Centre for Climate Economics & Policy Global energy use: Decoupling or convergence? CCEP Working Paper 1419 December 2014 Zsuzsanna Csereklyei Geschwister Scholl Institute
Deep Seismic Refraction/Wide-angle Reflection Profiling in Central Japan
Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2-,**2 pp. 11 +*+ Deep Seismic Refraction/Wide-angle Reflection Profiling in Central Japan The Research Group for Seismic Expedition in Central Japan Abstract
* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***
J. Jpn. Soc. Soil Phys. No. +*2, p. +3,2,**2 * ** *** *** Influence Area of Stem Flow on a Soil of Deciduous Forest Floor by Electric Resistivity Survey and the Evaluation of Groundwater Recharge through
ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:
4 Πρόλογος Η παρούσα διπλωµατική εργασία µε τίτλο «ιερεύνηση χωρικής κατανοµής µετεωρολογικών µεταβλητών. Εφαρµογή στον ελληνικό χώρο», ανατέθηκε από το ιεπιστηµονικό ιατµηµατικό Πρόγραµµα Μεταπτυχιακών
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
Evolution of Novel Studies on Thermofluid Dynamics with Combustion
MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 42, No. 1, 2008 * Evolution of Novel Studies on Thermofluid Dynamics with Combustion Hiroyuki SATO* This paper mentions the recent development of combustion
Toward the Quantitative Study of Hydrothermal Systems An Approach to Understand Hydrothermal Systems
J. Hot Spring Sci. 0*,0+,1+,*+* + Toward the Quantitative Study of Hydrothermal Systems An Approach to Understand Hydrothermal Systems Sachio E + HARA Abstract The quantitative understanding of hydrothermal
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
Part 4 RAYLEIGH AND LAMB WAVES
Part 4 RAYLEIGH AND LAMB WAVES Rayleigh Surfae Wave x x 1 x 3 urfae wave x 1 x 3 Partial Wave Deompoition Diplaement potential: u = ϕ + ψ Wave equation: 1 ϕ 1 ψ ϕ = = k ϕ an ψ = = k t t ψ Wave veloitie:
; +302 ; +313; +320,.
1.,,*+, - +./ +/2 +, -. ; +, - +* cm : Key words: snow-water content, surface soil, snow type, water permeability, water retention +,**. +,,**/.. +30- +302 ; +302 ; +313; +320,. + *+, *2// + -.*, **. **+.,
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
GS3. A liner offset equation of the volumetric water content that capacitance type GS3 soil moisture sensor measured
J. Jpn. Soc. Soil Phys. No. 130, p.19 25 (2015) GS3 1 2 A liner offset equation of the volumetric water content that capacitance type GS3 soil moisture sensor measured Shoichi MITSUISHI 1 and Masaru MIZOGUCHI
ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES
1 ο Συνέδριο Χωρικής Ανάλυσης: Πρακτικά, Αθήνα, 013, Σ. Καλογήρου (Επ.) ISBN: 978-960-86818-6-6 ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ Μαριάνθη Στάμου 1*, Άγγελος Μιμής και
GREECE BULGARIA 6 th JOINT MONITORING
GREECE BULGARIA 6 th JOINT MONITORING COMMITTEE BANSKO 26-5-2015 «GREECE BULGARIA» Timeline 02 Future actions of the new GR-BG 20 Programme June 2015: Re - submission of the modified d Programme according
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ ΣΥΜΒΟΛΗ ΣΤΗ ΜΕΛΕΤΗ TΩΝ ΚΑΘΟ ΙΚΩΝ ΑΛΕΞΙΚΕΡΑΥΝΩΝ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ Χρήστος
Neutralization E#ects of Acidity of Rain by Cover Plants on Slope Land
J. Jpn. Soc. Soil Phys. No. 33, p.2/ 3.,**/ * * * ** Neutralization E#ects of Acidity of Rain by Cover Plants on Slope Land Tadashi ADACHI*, Yoko OKI*, Akihiro NAGAI* and Shogo NAKATSUKASA** * Faculty
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ. του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών και. Σεχνολογίασ Τπολογιςτών τησ Πολυτεχνικήσ χολήσ του. Πανεπιςτημίου Πατρών
ΠΑΝΕΠΙΣΗΜΙΟ ΠΑΣΡΩΝ ΣΜΗΜΑ ΗΛΕΚΣΡΟΛΟΓΩΝ ΜΗΦΑΝΙΚΩΝ ΚΑΙ ΣΕΦΝΟΛΟΓΙΑ ΤΠΟΛΟΓΙΣΩΝ ΣΟΜΕΑ: ΗΛΕΚΣΡΟΝΙΚΗ ΚΑΙ ΤΠΟΛΟΓΙΣΩΝ ΕΡΓΑΣΗΡΙΟ ΗΛΕΚΣΡΟΝΙΚΩΝ ΤΠΟΛΟΓΙΣΩΝ ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας άλ ιάλεξη :
Presentation Structure
Improvement of wave height forecast in deep and intermediate waters with the use of stochastic methods Zoe Theocharis, Constantine Memos, Demetris Koutsoyiannis National Technical University of Athens
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling
1th AIAA/CEAS Aeroacoustics Conference, May 006 interactions Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Interaction M. Glesser 1, A. Billon 1, V. Valeau, and A. Sakout 1 mglesser@univ-lr.fr
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
4.4 Superposition of Linear Plane Progressive Waves
.0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive
Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler
EΘΝΙΚΟ ΜΕΤΣΟΒΕΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler Συντάκτης: ΜΑΡΗΣ
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
ADVANCED STRUCTURAL MECHANICS
VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils
J. Jpn. Soc. Soil Phys. No. 3+, p..3 /1,**, * ** ** E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils Kaoru UENO*, Tadashi ADACHI** and Hajime NARIOKA** * The Graduate School
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
Shallow P-wave Velocity Structure of Shirane Pyroclastic Cone, Kusatsu-Shirane Volcano Derived from a Controlled Seismic Experiment
/* (,**/) + 3 +0 P,**. 1,+,**. +, +* Shallow P-wave Velocity Structure of Shirane Pyroclastic Cone, Kusatsu-Shirane Volcano Derived from a Controlled Seismic Experiment Shin ya ONIZAWA, Takehiko MORI,
HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332
,**1 The Japanese Society for AIDS Research The Journal of AIDS Research +,, +,, +,, + -. / 0 1 +, -. / 0 1 : :,**- +,**. 1..+ - : +** 22 HIV AIDS HIV HIV AIDS : HIV AIDS HIV :HIV AIDS 3 :.1 /-,**1 HIV
1.8 Paul Mother Wavelet Real Part Imaginary Part Magnitude.6.4 Amplitude.2.2.4.6.8 1 8 6 4 2 2 4 6 8 1 t .8.6 Real Part of Three Scaled Wavelets a = 1 a = 5 a = 1 1.2 1 Imaginary Part of Three Scaled Wavelets
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
Motion analysis and simulation of a stratospheric airship
32 11 Vol 32 11 2011 11 Journal of Harbin Engineering University Nov 2011 doi 10 3969 /j issn 1006-7043 2011 11 019 410073 3 2 V274 A 1006-7043 2011 11-1501-08 Motion analysis and simulation of a stratospheric
CLIMATE CHANGE IMPACTS ON THE WATER BALANCE OF SMALL SCALE WATER BASINS
. 1,. 2. 3 1,3,,,, 54 124 2,,,,54 124 E-mails: 1 hatzi1@civil.auth.gr, 2 diatol@geo.auth.gr, 3 niktheod@civil.auth.gr H. -. - -,,., -, -., -,. :,,. CLIMATE CHANGE IMPACTS ON THE WATER BALANCE OF SMALL
Research on Economics and Management
36 5 2015 5 Research on Economics and Management Vol. 36 No. 5 May 2015 490 490 F323. 9 A DOI:10.13502/j.cnki.issn1000-7636.2015.05.007 1000-7636 2015 05-0052 - 10 2008 836 70% 1. 2 2010 1 2 3 2015-03
of the methanol-dimethylamine complex
Electronic Supplementary Information for: Fundamental and overtone virational spectroscopy, enthalpy of hydrogen ond formation and equilirium constant determination of the methanol-dimethylamine complex
Χρηματοοικονομική Ανάπτυξη, Θεσμοί και
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ, ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Τομέας Ανάπτυξης και Προγραμματισμού Χρηματοοικονομική Ανάπτυξη, Θεσμοί και Οικονομική
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Aluminum Electrolytic Capacitors (Large Can Type)
Aluminum Electrolytic Capacitors (Large Can Type) Snap-In, 85 C TS-U ECE-S (U) Series: TS-U Features General purpose Wide CV value range (33 ~ 47,000 µf/16 4V) Various case sizes Top vent construction
Biostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
Μετρήσεις ηλιοφάνειας στην Κύπρο
Πτυχιακή εργασία Μετρήσεις ηλιοφάνειας στην Κύπρο Ιωσήφ Μικαίος Λεμεσός, Μάιος 2018 1 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ
GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet
JFE No. 4 20045 p 82 Composite Material for Automotive Headliners Expandable Stampable Sheet with Light Weight and High Stiffness A JFE SUZU JFE HA KP 50 mass 30 UL 800 g/m 2 7.2 N/mm Abstract: KP-Sheet
1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
Επεξεργασία πειραματικών αποτελεσμάτων
ΠΥΘΑΓΟΡΑΣ: ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ / ΠΡΟΓΡΑΜΜΑ ΠΡΟΣΤΑΣΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Τίτλος Υποέργου: «Εργαστηριακή προσομοίωση περιβαλλοντικών
Improvement of wave height forecast in deep and intermediate waters with the use of stochastic methods
Improvement of wave height forecast in deep and intermediate waters with the use of stochastic methods Zoe Theocharis, Constantine Memos, Demetris Koutsoyiannis National Technical University of Athens