BOTANICA. -Citologie -Histologie -Organografie. Autor: Prep.Drd.Ing. Trifan Daniela

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "BOTANICA. -Citologie -Histologie -Organografie. Autor: Prep.Drd.Ing. Trifan Daniela"

Transcript

1 BOTANICA -Citologie -Histologie -Organografie Autor: Prep.Drd.Ing. Trifan Daniela

2 Celula vegetala Definitie: Celula vegetala este unitatea morfologica, structurala, functionala si genetica de baza a plantei.

3 Peretele celular Prin depunerea centripeta de lignina pe suprafata peretelui celular primar se formeaza peretele celular secundar, care contine: 41 45% celuloza, 30% hemiceluloze si in unele cazuri 22 28% lignine.

4 Membranele plasmatice sunt reprezentate de plasmalema, care limiteaza la exterior citoplasma si tonoplast, care separa vacuola de citoplasma. (acizi grasi)

5 Structura unei plasmodesme

6 Citoplasma reprezinta o masa coloidala, translucida, hialina, invelita la exterior de plasmalema si in care se gasesc organitele celulare si una sau mai multe vacuole. Citoplasma este alcatuita dintr-o retea fina de lanturi polipeptidice, in ochiurile careia se afla o solutie apoasa de glucide solubile, substante minerale, aminoacizi etc. Functiile fiziologice ale citoplasmei sunt: asigura deplasarea organitelor celulare in interiorul celulei si a substantelor de la un organit la altul prin intermediul curentilor citoplasmatici. este mediul in care au loc procesele de: 2. Biosinteza si biodegradare a glucozei, fructozei si zaharozei; 3. Interconversia aminoacizilor, biodegradarea aminoacizilor si biosinteza substantelor proteice; 4. Biosinteza vitaminelor, a substantelor volatile care confera aroma, precum si a unor substante secundare.

7 Organitele celulare Rol: Nucleul este centrul kinetic al celulelor, procesul de diviziune celular`, care se poate realiza pe cale: amitotic` (strangularea direct` a nucleului ]i a con\inutului celular), mitotic` (cariokinez`, adic` [mp`r\irea [n mod egal a cromatinei [ntre celulele fiice) ]i meiotic` (reducerea la jum`tate a cromatinei din celulele fiice, prin trecerea de la starea diploid` la cea haploid`). Nucleul

8 Plastidele (plastidomul celular)

9 Cloroplastul

10 Mitocondriile Definitie: Mitocondriile sunt organite celulare de forma ovala, delimitate la exterior de o membrana dubla si care au capacitatea de a se inmulti prin diviziune. Rol: -ciclul respirator Krebs (etapa finala a procesului de biodegradare a substantelor de rezerva, cu obtinere de energie, dioxid de carbon si apa); -biosinteza proteinelor mitocondriale ; -biosinteza acizilor organici ; -fotorespiratia; -biodegradarea acizilor grasi; -gluconeogeneza. Structura unei mitocondrii

11 Reticulul endoplasmatic Definitie : Reticulul endoplasmatic este un organit celular alcatuit din canalicule, vezicule si cisterne ultramicroscopice, invelite de o membrana simpla, licoproteica, strabatuta de numerosi pori. Este un organit dinamic, care isi modifica in permanenta forma. Rol: -biosinteza unor proteine, glicoproteine, acizi gra]i ]i lipide; -interconversia acizilor gra]i; -formarea veziculelor primare ale lizozomilor, a complexului Golgi, sferozomilor, lizozomilor si plasmalemei.

12 Complexul Golgi Definitie: Complexul Golgi este un organit celular alcatuit din cisterne turtite, tubuli si vezicule, acoperite de o memebrana simpla. Rol: -secre\ia proteinelor; -construirea peretelui celular celulozic celular ; -formarea de lizozomi ] i de vezicule proteice din veziculele apar\in@nd complexului Golgi transportul substantelor care intra in structura lamelei mediane ai peretilor celulari.

13 Peroxizomii Definitie: Peroxizomii sunt organite celulare sferice sau elipsoidale, acoperite la exterior de o membrana simpla, iar la interior cuprinzand matricea fin granulara, care contine incluziuni cristalizate si numeroase enzime. Rol: -biodegradarea apei oxigenate rezultate din procesele metabolice celulare (fotorespira\ie, fotosintez` etc.), [n prezen\a unor compu]i fenolici ]i a peroxidazelor; -se desf`]oar` etapa a doua a procesului de fotorespira\ie; -biodegradarea acizilor gra]i prin βoxidare, proces din care rezult` acetil CoA.

14 Lizozomii Definitie: Lizozomii sunt formatiuni sferice, delimitate la exterior de o membrana trilamelara, iar in interior contin granule ce constituie suportul enzimelor. Rol: prin activitatea hidrolazelor din interiorul lor, lizozomii participa la procesele de digestie intracelulara, precum si la procesele de aparare a celulelor impotriva agentilor patogeni.

15 Ribozomii (granulele lui Palade) Ribozomii sunt organite sferice de natura ribonucleoproteica, aflate libere in citoplasma sau asociate cu reticulul endoplasmatic rugos, in cloroplaste sau in mitocondrii Rol: -sinteza proteinelor de structur` (poliribozomii neata]a\i de RE); -sinteza enzimelor, hormonilor etc. (ribozomii ata]a\i de RE).

16 Vacuomul celular = totalitatea vacuolelor care se gasesc dispersate in citoplasma, la maturitate acestea ocupand aproape 95% din volumul celulei. Rol: -acumularea substantelor osmotic active: ioni, glucide solubile, acizi organici etc. -acumularea si depozitarea substantelor secundare (glucide reducatoare, pigmenti flavonici, acizi organici, alcaloizi, glicozizi, chinone, saponine, prolina etc.); -acumularea de substante osmotic active (glycerol, manitol, prolina etc.) care determina cresterea presiunii osmotice si asigura posibilitatea de absorbtie a apei din sol de catre plante ; -contin enzime care catalizeaza unele reactii biochimice.

17 Diviziunea celulara

18 TESUTURILE VEGETALE Definitie: Prin tesut se intelege o grupare de celule de aceeasi forma si structura si care indeplinesc aceleasi functii. Clasificare: 1) Tesuturi meristematice (generatoare, de origine, formative) meristeme primordiale sau promeristeme meristeme primare (protederma, procambiul, meristemul fundamental, caliptrogenul) meristeme secundare (cambiul si felogenul). 2) Tesuturi protectoare (de aparare, acoperitoare) primare formate de protoderma = epiderma, caliptra si rizoderma si secundare = suberul (generat de felogen), ritidomul. 3) Tesuturi parenchimatice (fundamentale, trofice) parenchimurile de absorbtie, de asimilatie si de depozitare (substante de rezerva = parenchimuri de rezerva; apa = parenchimuri acvifere; aer = parenchimuri aerifere). 4) Tesuturi conducatoare = vase lemnoase (xilemul) transporta seva bruta (traheide si trahee); vase liberiene (floemul) transporta seva elaborata (vase ciuruite). 5) Tesuturile de sustinere (mecanice) = colenchimul (format din celule vii cu peretii celulozici ingrosati inegal) si sclerenchimul (format din celule moarte cu peretii lignificati uniform = sclerenchim fibros si sclerenchim scleros) 6) Tesuturile secretoare = cu secretie externa (papile, peri, solzi, glande digestive si nectarifere, hidatode), cu secretie intercelulara (buzunare sau canale secretoare) sau cu secretie intracelulara (laticifere).

19 Metode de sectionare a tesuturilor vegetale

20 Tesuturi parenchimatice Parenchim aerifer Parenchim palisadic Parenchim acvifer

21 Sclerenchim Tesut meristematic apical

22 Radacina adacina reprezinta organul vegetativ care are rolul de a absorbi apa si sarurile minerale asigurand nutritia plantei, precum si rolul de fixare a plantelor care au radacina in pamant. Pe langa aceste doua functii de baza, radacina poate avea si alte functii complementare, ca de exemplu: sinteza unor substante organice; depozitarea substantelor de rezerva; regenerarea plantei; Cortex intretinerea unor relatii simbiotice cu unele microorganisme etc. Floem Endoderma Metaxilem Protoxilem

23 Radacini pivotante radacina principala este mult mai dezvoltata decat ramificatiile ei, numite radicele (morcov, patrunjel, rapita, floarea soarelui etc.) Tipuri morfologice ramuroasa fasciculata Radacini fasciculate in locul radacinii embrionare se formeaza numeroase radacini adventive subtiri (orz, grau, ceapa etc.) Radacini ramuroase radacina principala si ramificatiile ei sunt mai putine numeric si mai groase (arbori) Radacinile tuberizate- sunt radacini modificate cu scopul realizarii functiei de depozitare a substantelor de rezerva (axa principala la morcov). Radacini metamorfozate Radacinile aeriene sunt radacini modificate cu rolul de fixare (ex. lianele care se fixeaza de arbori) Radacini cu muguri apar la unele specii erbacee (palamida, susai) precum si la specii lemnoase (tei, salcam), mugurii adventivi formeaza tulpini aeriene, numite drajoni. Radacini contractile sunt radacini cu insusirea de a se scurta, fixand mai bine plantele sau adancind in sol tuberculii sau bulbii. Radacini simbiotice ramificatiile radiculare traiesc in simbioza cu bacterii fixatoare de azot, care formeaza nodozitati cu bacterii (= bacteriorize - la leguminoase) sau cu ciuperci (= micorize - tei, alun, stejar). Micorizele pot fi endotrofe (cand patrund in celulele scoartei radacinii) sau ectotrofe (cand ciupercile inconjoara radacinile si nu patrund in scoarta). Haustorii sunt un tip special de radacini simbiotice, care n-au structura unor radacini, dar patrund in organele plantelor gazda si le sug seva bruta (in cazul semiparazitelor) sau seva elaborata (in cazul celor parazite). adventive

24 STRUCTURA RĂDĂCINII LA MONOCOTILEDONATE ŞI DICOTILEDONATE

25 Tulpina Tulpina este un organ vegetativ articulat, cu crestere negativ-geotropica, cu rolul de a conduce apa cu sarurile minerale, cat si substantele sintetizate, de a genera si sustine frunzele si organele de reproducere.

26 Diferite tipuri de tulpini aeriene

27 Frunza Frunza este un organ cu simetrie dorso-ventrala, adaptat in primul rand pentru fotosinteza, care se gaseste inserat la nodurile lastarilor. In functie de momentul aparitiei, frunzele sunt: -cotiledoane = frunzele embrionare; -nomofile = frunzele propriu-zise ale plantelor (alcatuite din teaca, petiol si limb); -catafile = frunzele care invelesc mugurii sau nodurile tulpinilor subpamantene; - hipsofile = frunzele dispuse la baza florilor sau inflorescentelor (foliole involucrale, spata sau glumele).

28 Structura interna a frunzei

29

30

31 Organele de reproducere Floarea este organul care s-a format din axe tulpinale care au suferit numeroase modificari, adaptandu-se la producerea gametilor.

32

33 Diagrama florală reprezintă proiecţia elementelor florale pe un plan perpendicular pe axul florii. Formula florală are rolul de a exprima printr-o scriere simbolică alcătuirea unei flori. Pentru aceasta se folosesc semne convenţionale. Convolvulus sp.

34 Un exemplu de formulă florală este cea pentru genul Ranunculus: Literele care se folosesc sunt inţialele termenilor din limba latină ai ciclurilor florale: K kalix (caliciu) C - corolla (corolă) P - perigonnum (perigon) A - androceum (androceu) G - gineceum - (gineceu) Lângă fiecare literă în dreapta este localizată o cifră sau mai multe. Acestea reflectă numărul elementelor florale, care intră în componenţa verticilului respectiv. Pe lângă cifre sunt folosite şi simboluri cu rolul de a indica anumite caractere ale florii respective. Simbolurile folosite sunt: lipsă simbol - pentru florile hermafrodite; - pentru florile masculine; - pentru florile feminine; * - simetrie actinomorfa; - simetrie zigomorfă; ๑ - dispoziţie spirociclică; 0 - absenţa unui verticil; ( ) - concreşterea elementelor florale dintr-un ciclu. Se exprimă prin închiderea simbolurilor acestora în paranteze mici. [ ] - concreşterea elementelor din verticilii diferite care se marchează prin închderea simbolurilor acestora în paranteze mari; - (linie orizontală) - prezintă poziţia ovarului. În cazul când este pusă deasupra numărului de carpele, indică poziţia inferioară a ovarului, iar când este pusă dedesubt indică prezenţa unui ovar superior iar când simbolul se aşează în dreptul numărului de carpele indică un ovar semiinferior. - indică prezenţa într-un verticil a unui număr nedeterminat de elemente.

35 spic corimb Spadice spadice cima umbela calatidiu umbela compusa Tipuri de inflorescente racem panicul

36 Polenizare alogama Polenizare autogama TIPURI DE POLENIZARI

37

38

39 Fructul reprezinta ovarul care s-a transformat dupa fecundatie, fiind alcatuit din pericarp (cu 3 straturi distincte: epicarp, mezocarp si endocarp) La inceputul fructificarii, peretele ovarului mai are cloroplasti si este verde, dar, pe masura ce se maturizeaza, cloroplastii dispar si se dezvolta alti pigmenti, care dau culorile specifice fructelor. Inainte de coacere, fructele contin acizi organici si tanin, care dau gustul acru si astringent. La coacerea fructelor carnoase se acumuleaza amidonul, care apoi se transforma in glucoza, fructoza si zaharoza, acestea dand gustul dulce al fructelor.

40 Fructe carnoase indehiscente: indehiscente - baca Vitis vinifera (struguri), Lycopersicum esculentum (tomate) - melonida Citrullus lanatus (pepene) - hesperida Citrulus aurantium (portocal) - drupa Prunus avium (cires), Prunus domestica (prun) Fructe carnoase dehiscente: dehiscente -nuca Juglans regia (nuc), Aesculus hippocastanum (castan), Ecballium elaterium (plesnitoare) -Fructe false (pe langa ovar, mai participa si alte parti ale florii la formarea fructului) -poama Pyrus domestica (par); Malus pumila (mar) -Fructe multiple: multiple (totalitatea fructelor provenind din carpelele libere ale unei flori) - polidrupa Rubus ideus (mur); - polinucula Fragaria moschata (capsun); Rosa canina (maces) -Fructe compuse: (fructe care se dezvolta dintr-o intreaga inflorescenta): - soroza Morus nigra (dud negru); - sicona Ficus carica (Smochin); - stiulete Zea mays (porumb)

41 Samanta se formeaza din ovul, dupa fecundatie. Integumentele ovulului se transforma in tegumentul semintei, din celula secundara se dezvolta endospermul care reprezinta un tesut de substante de rezerva necesare pentru hrana embrionului. Tipuri de seminte: - sferice: mazare (Pisum sativum) -reniforme: fasole (Phaseolus vulgaris) - cordate: trifoiul alb (Trifolium repens) -lenticulare : linte (Lens culinaris) - ovoide: bostan (Cucurbita pepo) - seminte mari castanul porcesc (Aesculus hippocastanum); nuc (Juglans regia) -seminte foarte mici petunia (Petunia hybrida) -seminte cu peri bumbac (Gossypium hirsutum); plop (Populus nigra).

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

REACŢII DE ADIŢIE NUCLEOFILĂ (AN-REACŢII) (ALDEHIDE ŞI CETONE)

REACŢII DE ADIŢIE NUCLEOFILĂ (AN-REACŢII) (ALDEHIDE ŞI CETONE) EAŢII DE ADIŢIE NULEFILĂ (AN-EAŢII) (ALDEIDE ŞI ETNE) ompușii organici care conțin grupa carbonil se numesc compuși carbonilici și se clasifică în: Aldehide etone ALDEIDE: Formula generală: 3 Metanal(formaldehida

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare.

I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Capitolul 3 COMPUŞI ORGANICI MONOFUNCŢIONALI 3.2.ACIZI CARBOXILICI TEST 3.2.3. I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Reacţia dintre

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.5.ARENE

Capitolul 2 - HIDROCARBURI 2.5.ARENE Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.2 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Radicalul C 6 H 5 - se numeşte fenil. ( fenil/

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Cuprins Celula Diversitatea lumii vii

Cuprins Celula Diversitatea lumii vii Cuprins Celula... 1 28 Celula procariotă... 1 2 Celula eucariotă... 2 12 Componentele protoplasmatice... 2 9 Constituenţi neprotoplasmatici... 9 12 Acizii nucleici... 10 11 Acidul dezoxiribonucleic...10

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.3.ALCHINE

Capitolul 2 - HIDROCARBURI 2.3.ALCHINE Capitolul 2 - HIDROCARBURI 2.3.ALCHINE TEST 2.3.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Acetilena poate participa la reacţii de

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon ursul.3. Mării şi unităţi de ăsură Unitatea atoică de asă (u.a..) = a -a parte din asa izotopului de carbon u. a.., 0 7 kg Masa atoică () = o ărie adiensională (un nuăr) care ne arată de câte ori este

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

COMPARTIMENTALIZAREA CELULEI EUCARIOTE

COMPARTIMENTALIZAREA CELULEI EUCARIOTE 4 COMPARTIMENTALIZAREA CELULEI EUCARIOTE Celulele eucariote conţin membrane interne care separă diferite medii fermentative, formând organite membranare, care ocupă aproximativ o jumătate din volumul total

Διαβάστε περισσότερα

IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI

IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele

Διαβάστε περισσότερα

CELULA, UNITATEA STRUCTURALĂ ŞI FUNCŢIONALĂ A VIEŢII

CELULA, UNITATEA STRUCTURALĂ ŞI FUNCŢIONALĂ A VIEŢII CELULA, UNITATEA STRUCTURALĂ ŞI FUNCŢIONALĂ A VIEŢII Cuprins: Citoplasma Organitele celulare Nucleul Ciclul celular Diviziunea celulara : mitoza şi meioza CITOPLASMA Nucleu Se găseşte între membrana celulară

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.5.ARENE

Capitolul 2 - HIDROCARBURI 2.5.ARENE Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Sulfonarea benzenului este o reacţie ireversibilă.

Διαβάστε περισσότερα

2. CONDENSATOARE 2.1. GENERALITĂŢI PRIVIND CONDENSATOARELE DEFINIŢIE UNITĂŢI DE MĂSURĂ PARAMETRII ELECTRICI SPECIFICI CONDENSATOARELOR SIMBOLURILE

2. CONDENSATOARE 2.1. GENERALITĂŢI PRIVIND CONDENSATOARELE DEFINIŢIE UNITĂŢI DE MĂSURĂ PARAMETRII ELECTRICI SPECIFICI CONDENSATOARELOR SIMBOLURILE 2. CONDENSATOARE 2.1. GENERALITĂŢI PRIVIND CONDENSATOARELE DEFINIŢIE UNITĂŢI DE MĂSURĂ PARAMETRII ELECTRICI SPECIFICI CONDENSATOARELOR SIMBOLURILE CONDENSATOARELOR 2.2. MARCAREA CONDENSATOARELOR MARCARE

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Exerciţii şi probleme E.P.2.4. 1. Scrie formulele de structură ale următoarele hidrocarburi şi precizează care dintre ele sunt izomeri: Rezolvare: a) 1,2-butadiena;

Διαβάστε περισσότερα

Fiziologia fibrei miocardice

Fiziologia fibrei miocardice Fiziologia fibrei miocardice CELULA MIOCARDICĂ = celulă excitabilă având ca şi proprietate specifică contractilitatea Fenomene electrice ale celulei miocardice Fenomene mecanice ale celulei miocardice

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

2. Circuite logice 2.2. Diagrame Karnaugh. Copyright Paul GASNER 1

2. Circuite logice 2.2. Diagrame Karnaugh. Copyright Paul GASNER 1 2. Circuite logice 2.2. Diagrame Karnaugh Copyright Paul GASNER Diagrame Karnaugh Tehnică de simplificare a unei expresii în sumă minimă de produse (minimal sum of products MSP): Există un număr minim

Διαβάστε περισσότερα

BIOELECTROGENEZA DEFINIŢIEIE CAUZE: 1) DIFUZIA IONILOR PRIN MEMBRANĂ 2) FUNCŢIONAREA ELECTROGENICĂ A POMPEI DE Na + /K + 3) PREZENŢA ÎN CITOPLASMĂ A U

BIOELECTROGENEZA DEFINIŢIEIE CAUZE: 1) DIFUZIA IONILOR PRIN MEMBRANĂ 2) FUNCŢIONAREA ELECTROGENICĂ A POMPEI DE Na + /K + 3) PREZENŢA ÎN CITOPLASMĂ A U PROPRIETĂŢI ELECTRICE ALE MEMBRANEI CELULARE BIOELECTROGENEZA DEFINIŢIEIE CAUZE: 1) DIFUZIA IONILOR PRIN MEMBRANĂ 2) FUNCŢIONAREA ELECTROGENICĂ A POMPEI DE Na + /K + 3) PREZENŢA ÎN CITOPLASMĂ A UNOR MACROIONI

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

Algebra si Geometrie Seminar 9

Algebra si Geometrie Seminar 9 Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

* * * 57, SE 6TM, SE 7TM, SE 8TM, SE 9TM, SC , SC , SC 15007, SC 15014, SC 15015, SC , SC

* * * 57, SE 6TM, SE 7TM, SE 8TM, SE 9TM, SC , SC , SC 15007, SC 15014, SC 15015, SC , SC Console pentru LEA MT Cerinte Constructive Consolele sunt executate in conformitate cu proiectele S.C. Electrica S.A. * orice modificare se va face cu acordul S.C. Electrica S.A. * consolele au fost astfel

Διαβάστε περισσότερα

Studiu privind soluţii de climatizare eficiente energetic

Studiu privind soluţii de climatizare eficiente energetic Studiu privind soluţii de climatizare eficiente energetic Varianta iniţială O schemă constructivă posibilă, a unei centrale de tratare a aerului, este prezentată în figura alăturată. Baterie încălzire/răcire

Διαβάστε περισσότερα

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru

Διαβάστε περισσότερα

OSMOZA. Dispozitiv experimental, definiţie

OSMOZA. Dispozitiv experimental, definiţie FENOMENE DE TRANSPORT OSMOZA Dispozitiv experimental, definiţie 1877 WILHELM PFEFFER 1845-1920 DEFINIŢIE: TRANSPORTUL MOLECULELOR DE SOLVENT PRINTR-O MEMBRANĂ SEMIPERMEABILĂ DINTR-O SOLUŢIE MAI DILUATĂ

Διαβάστε περισσότερα

Capitolul COTAREA DESENELOR TEHNICE LECŢIA 21

Capitolul COTAREA DESENELOR TEHNICE LECŢIA 21 Capitolul COTAREA DESENELOR TEHNICE LECŢIA 21! 21.1. Generalităţi.! 21.2. Elementele cotării.! 21.3. Aplicaţii.! 21.1. Generalităţi! Dimensiunea este o caracteristică geometrică liniară sau unghiulară,care

Διαβάστε περισσότερα

STELA-GABRIELA JELEA MARIAN JELEA CITOLOGIE HISTOLOGIE EMBRIOLOGIE

STELA-GABRIELA JELEA MARIAN JELEA CITOLOGIE HISTOLOGIE EMBRIOLOGIE STELA-GABRIELA JELEA MARIAN JELEA CITOLOGIE HISTOLOGIE EMBRIOLOGIE EDITURA UNIVERSITĂŢII DE NORD Baia Mare, 2007 Editura Universităţii de Nord este acreditată CNCSIS ( Consiliul Naţional al Cercetării

Διαβάστε περισσότερα

2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER

2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER 2. Circuite logice 2.4. Decodoare. Multiplexoare Copyright Paul GASNER Definiţii Un decodor pe n bits are n intrări şi 2 n ieşiri; cele n intrări reprezintă un număr binar care determină în mod unic care

Διαβάστε περισσότερα

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1 FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile

Διαβάστε περισσότερα

Acizi carboxilici heterofuncționali.

Acizi carboxilici heterofuncționali. Acizi carboxilici heterofuncționali. 1. Acizi carboxilici halogenați. R R 2 l l R 2 R l Acizi α-halogenați Acizi β-halogenați l R 2 2 l Acizi γ-halogenați Metode de obținere. 1. alogenarea directă a acizilor

Διαβάστε περισσότερα

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice 4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.

Διαβάστε περισσότερα

Activitatea A5. Introducerea unor module specifice de pregătire a studenților în vederea asigurării de șanse egale

Activitatea A5. Introducerea unor module specifice de pregătire a studenților în vederea asigurării de șanse egale Investește în oameni! FONDUL SOCIAL EUROPEAN Programul Operațional Sectorial pentru Dezvoltarea Resurselor Umane 2007 2013 Axa prioritară nr. 1 Educația și formarea profesională în sprijinul creșterii

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

Capitolul 4-COMPUŞI ORGANICI CU ACŢIUNE BIOLOGICĂ-

Capitolul 4-COMPUŞI ORGANICI CU ACŢIUNE BIOLOGICĂ- Capitolul 4 COMPUŞI ORGANICI CU ACŢIUNE BIOLOGICĂ 4.1.ZAHARIDE.PROTEINE. TEST 4.1.2. I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

11.2 CIRCUITE PENTRU FORMAREA IMPULSURILOR Metoda formării impulsurilor se bazează pe obţinerea unei succesiuni periodice de impulsuri, plecând de la semnale periodice de altă formă, de obicei sinusoidale.

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

Curs 1 histologie (Curs introductiv), anul I, sem. 1, 2017/2018

Curs 1 histologie (Curs introductiv), anul I, sem. 1, 2017/2018 pag. 1 OBIECTIVE Obiective generale Cursul introductiv în histologie își propune să familiarizeze studenții cu noțiunile de biologie celulară, să răspundă la întrebările fundamentale Sunt toate celulele

Διαβάστε περισσότερα

ADMITERE LA STUDIILE DE MASTER

ADMITERE LA STUDIILE DE MASTER ADMITERE LA STUDIILE DE MASTER Proba orală / interviul de la examenul de admitere la programul de studii de master Ingineria și Managementul Procesării și Păstrării Produselor Agroalimentare Tehnologii

Διαβάστε περισσότερα

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g.

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g. II. 5. Problee. Care ete concentraţia procentuală a unei oluţii obţinute prin izolvarea a: a) 0 g zahăr în 70 g apă; b) 0 g oă cautică în 70 g apă; c) 50 g are e bucătărie în 50 g apă; ) 5 g aci citric

Διαβάστε περισσότερα

Transformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte.

Transformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte. Problema Tranformaa Radon Reconrucia unei imaini bidimenionale cu auorul roieciilor rezulae de-a lunul unor dree. Domeniul de uilizare: Prelucrarea imainilor din domeniul medical Prelucrarea imainilor

Διαβάστε περισσότερα

Capitolul 1 SISTEME BIOLOGICE

Capitolul 1 SISTEME BIOLOGICE 6 1 SISTEME BIOLOGICE Sistemul biologic la nivel molecular reprezintă un complex de biopolimeri (acizi nucleici, proteine, lipide, glucide) ce interacţionează între ei, asigurând fluxul permanent de informaţie,

Διαβάστε περισσότερα

TRANSFORMATOARE MONOFAZATE DE SIGURANŢĂ ŞI ÎN CARCASĂ

TRANSFORMATOARE MONOFAZATE DE SIGURANŢĂ ŞI ÎN CARCASĂ TRANSFORMATOARE MONOFAZATE DE SIGURANŢĂ ŞI ÎN CARCASĂ Transformatoare de siguranţă Este un transformator destinat să alimenteze un circuit la maximum 50V (asigură siguranţă de funcţionare la tensiune foarte

Διαβάστε περισσότερα

Capitolul 14. Asamblari prin pene

Capitolul 14. Asamblari prin pene Capitolul 14 Asamblari prin pene T.14.1. Momentul de torsiune este transmis de la arbore la butuc prin intermediul unei pene paralele (figura 14.1). De care din cotele indicate depinde tensiunea superficiala

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

Capitolul 30. Transmisii prin lant

Capitolul 30. Transmisii prin lant Capitolul 30 Transmisii prin lant T.30.1. Sa se precizeze domeniile de utilizare a transmisiilor prin lant. T.30.2. Sa se precizeze avantajele si dezavantajele transmisiilor prin lant. T.30.3. Realizati

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

BARDAJE - Panouri sandwich

BARDAJE - Panouri sandwich Panourile sunt montate vertical: De jos în sus, îmbinarea este de tip nut-feder. Sensul de montaj al panourilor trebuie să fie contrar sensului dominant al vântului. Montaj panouri GAMA ALLIANCE Montaj

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

I X A B e ic rm te e m te is S

I X A B e ic rm te e m te is S Sisteme termice BAXI Modele: De ce? Deoarece reprezinta o solutie completa care usureaza realizarea instalatiei si ofera garantia utilizarii unor echipamente de top. Adaptabilitate la nevoile clientilor

Διαβάστε περισσότερα

11.3 CIRCUITE PENTRU GENERAREA IMPULSURILOR CIRCUITE BASCULANTE Circuitele basculante sunt circuite electronice prevăzute cu o buclă de reacţie pozitivă, folosite la generarea impulsurilor. Aceste circuite

Διαβάστε περισσότερα

III. Reprezentarea informaţiei în sistemele de calcul

III. Reprezentarea informaţiei în sistemele de calcul Metode Numerice Curs 3 III. Reprezentarea informaţiei în sistemele de calcul III.1. Reprezentarea internă a numerelor întregi III. 1.1. Reprezentarea internă a numerelor întregi fără semn (pozitive) Reprezentarea

Διαβάστε περισσότερα

CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE. MMIC Monolithic Microwave Integrated Circuit

CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE. MMIC Monolithic Microwave Integrated Circuit CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE MMIC Monolithic Microwave Integrated Circuit CUPRINS 1. Avantajele si limitarile MMIC 2. Modelarea dispozitivelor active 3. Calculul timpului de viata al MMIC

Διαβάστε περισσότερα

ŞTIINŢA ŞI INGINERIA. conf.dr.ing. Liana Balteş curs 7

ŞTIINŢA ŞI INGINERIA. conf.dr.ing. Liana Balteş curs 7 ŞTIINŢA ŞI INGINERIA MATERIALELOR conf.dr.ing. Liana Balteş baltes@unitbv.ro curs 7 DIAGRAMA Fe-Fe 3 C Utilizarea oţelului în rândul majorităţii aplicaţiilor a determinat studiul intens al sistemului metalic

Διαβάστε περισσότερα