Supporting Information. for

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Supporting Information. for"

Transcript

1 Supporting Information for Enantioselective Synthesis of -(Hetero)aryl Piperidines Through Asymmetric Hydrogenation of Pyridinium Salts and Its Mechanistic Insights Bo Qu,* Hari P. R. Mangunuru, Sergei Tcyrulnikov, Daniel Rivalti, Olga V. Zatolochnaya, Dmitry Kurouski, Suttipol Radomkit, Soumik Biswas, Shuklendu Karyakarte, Keith R. Fandrick, Joshua D. Sieber, Sonia Rodriguez, Jean-Nicolas Desrosiers, Nizar Haddad, Keith McKellop, Scott Pennino, Heewon Lee, Nathan K. Yee, Jinhua J. Song, Marisa C. Kozlowski* and Chris H. Senanayake Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc. 900 Ridgebury Road, Ridgefield, CT USA Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA Table of Contents 1 General Information S2 2 General Procedure for the Syntheses of Pyridinium Salts S3 3 General Procedure for the Asymmetric Hydrogenation of Pyridinium Salts S12 4 NMR Spectra S21 5 Chiral HPLC Data S65 6 Proposed Generation of the Ir-H Species S84 7 DFT calculation Data S85 S1

2 General Information All reactions for the preparation of substrates and catalysts were performed in standard, dry glassware under an inert atmosphere of nitrogen or argon unless otherwise described. All starting materials and reagents were purchased from commercial sources and used as received unless otherwise noted. 2-(4-methyl-3-thienyl)pyridine, 2-(2,5-dimethyl-3-thienyl)pyridine, 2-(2- bromophenyl)pyridine, 2-(2,4-difluorophenyl)pyridine, 2-(2-(trifluoromethyl)phenyl)pyridine, 2- (2,4-dimethylphenyl)pyridine were purchased and used as received. Palladium catalysts and [Ir(COD)Cl] 2 were purchased from Aldrich or Strem and used as received. Ligand (S,S)- BoQPhos 1 and pyridinium salts 1h 2 and 1r 2 were prepared according to the reported procedures. 1 H and 13 C NMR ra were recorded using 400 or 500 MHz rometers. Chemical shifts (δ) are given in ppm, and coupling constants (J) are given in Hz. The 7.26 resonance of residual CHCl 3 (or 0 ppm of TMS) for proton ra and the ppm resonance of CDCl 3 for carbon ra were used as internal references. Chiral HPLC analyses (normal phase) were conducted on Waters Aquity C system or Agilent C system. UPLC-MS analyses were conducted on a Waters Acquity Ultra Performance LC system. Flash chromatography was performed on a Combi-Flash automated system with D mesh silica gel columns. High resolution mass rometric data were obtained on an Agilent 6210 time-of-flight HPLC/MS rometer (ESI-TOF). 1 B. Qu, L. P. Samankumara, J. Savoie, D. R. Fandrick, N. Haddad, X. Wei, S. Ma, H. Lee, S. Rodriguez, C. A. Busacca, N. K. Yee, J. J. Song, C. H. Senanayake, J. Org. Chem. 2014, 79, M. Chang, Y. Huang, S. Liu, Y. Chen, S. W. Krska, I. W. Davies, X. Zhang, Angew. Chem., Int. Ed. 2014, 53, S2

3 General procedure for the synthesis of pyridinium salts (except compounds 1f and 1s) To a three-neck-flak under N 2 charge phenoxathiin-4-ylboronic acid (2.92 g, 12.0 mmol, 1.2 equiv), n- BuOH (15.0 ml) and 2-bromopyridine (1.58 g, 10.0 mmol). The mixture was sparged with Ar for 15 min; then degassed sodium hydroxide aqueous solution (5 ml, 4 M, 2.0 equiv) was slowly added. To this mixture add Pd(OAc) 2 (46 mg, 0.2 mmol) and tri-tert-butylphosphonium tetrafluoroborate (62 mg, 0.25 mmol). The resulting reaction mixture was stirred at room temperature for h. The reaction progress was monitored by UPLC. Upon completion, the reaction was stopped with addition of water (10 ml). Crude mixture was extracted with ethyl acetate, dried over sodium sulfate, filtered, and concentrated. The crude mixture was submitted to silica gel chromatography (eluent: 20% ethyl acetate in hexanes) to afford the product 2-(phenoxathiin-4-yl)pyridine as pale yellow oil (2.72 g, 9.8 mmol, 98% yield). 1 H NMR (500 MHz, CDCl 3 ) δ 8.73 (d, J = 4.6 Hz, ), (m, ), 7.78 (dt, J = 7.7 Hz, 1.8 Hz, ), 7.61 (dd, J = 7.6 Hz, 1.6 Hz, ), (m, ), (m, 4H), (m, ), 6.91 (dd, J = 8.1 Hz, 0.8 Hz, ); 13 C NMR (125 MHz, CDCl 3 ) δ 154.8, 152.4, 149.8, 149.7, 135.7, 130.2, 129.7, 127.7, 127.4, 126.9, 125.3, 124.8, 124.5, 122.2, 121.5, 121.2, To a solution of 2-(phenoxathiin-4-yl)pyridine (1.25 g, 4.5 mmol) in toluene (4.5 ml) was added benzyl bromide (765 mg, 4.5 mmol) in one portion, and the resulting mixture was heated at 100 C for 14 h. Toluene was removed under reduced pressure, the product was purified by silica gel chromatography (eluent: DCM to 10% MeOH in DCM) to afford the product 1a as pale brown solid (1.65 g, 3.46 mmol, 77% yield). 1 H NMR (500 MHz, DMSO-D 6 ) δ 9.53 (d, J = 6.1 Hz, ), 8.81 (t, J = 7.7 Hz, ), 8.38 (t, J = 6.6 Hz, ), 8.25 (d, J = 7.7 Hz, ), 7.53 (d, J = 7.8 Hz, ), 7.46 (dd, J = 7.7 Hz, 0.9 Hz, ), 7.3 (d, J = 7.3 Hz, ), 7.23 (dd, J = 7.1 Hz, 2.1 Hz, ), (m, 5H), 6.88 (d, J = 7.2 Hz, 2H), (m, ), 5.81 (q, J = 13.3 Hz, 2H); 13 C NMR (125 MHz, DMSO-D 6 ) δ 151.0, 150.3, 148.4, 147.7, 146.9, S3

4 133.5, 132.2, 130.5, 129.1, , , 128.7, 128.5, 128.2, 127.3, 126.1, 125.6, 121.5, 121.1, 118.4, 118.3, HRMS (ESI) [M] + m/z calcd for [C 24 H 18 NOS] + is , found (benzo[b]thiophen-3-yl)pyridine: colorless oil, 2.06 g, 9.8 mmol, 98% yield (starting from 10.0 mmol 2-bromopyridine); 1 H NMR (400 MHz, CDCl 3 ) δ 8.74 (d, J = 4.6 Hz, ), 8.45 (d, J = 8.0 Hz, ), 7.90 (d, J = 7.5 Hz, ), (m, 2H), 7.67 (d, J = 8.0 Hz, ), (m, 2H), (m, ); 13 C NMR (100 Hz, CDCl 3 ) δ 154.6, 149.7, 140.9, 137.3, 136.7, 136.6, 126.4, 124.7, 124.6, 124.1, 122.7, 122.6, HRMS (ESI) [M+H] + m/z calcd for [C 13 H 10 NS] + is , found (benzo[b]thiophen-3-yl)-1-benzylpyridinium bromide (1b) White solid, 1.12 g, 2.93 mmol, 64% yield (starting from 4.5 mmol 2- (benzo[b]thiophen-3-yl)pyridine); 1 H NMR (400 MHz, CDCl 3 ) δ 9.90 (d, J = 6.3 Hz, ), (m, ), (m, 2H), 7.95 (d, J = 8.1 Hz, ), (m, 3H), (m, 3H), (m, 2H), 6.25 (br s, ), 5.97 (br s, ); 13 C NMR (100 MHz, CDCl 3 ) δ 150.4, 148.1, 145.9, 139.7, 136.7, 132.8, 132.5, 131.1, 129.3, 129.2, 128.5, 127.9, 126.0, 125.9, 123.1, 121.5, HRMS (ESI) [M] + m/z calcd for [C 20 H 16 NS] + is , found (dibenzo[b,d]thiophen-4-yl)pyridine: yellow solid, 1.93 mg, 7.4 mmol, 74% yield (starting from 10.0 mmol 2-bromopyridine); 1 H NMR (500 MHz, CDCl 3 ) δ 8.87 (d, J = 4.7 Hz, ), 8.25 (dd, J = 7.8, 1.1 Hz, ), (m, ), 8.00 (d, J = 7.6 Hz, ), 7.97 (d, J = 8.3 Hz, ), (m, ), 7.82 (dt, J = 7.6, 1.5 Hz, ), 7.59 (t, J = 7.7 Hz, ), (m, 2H),7.30 (ddd, J = 4.9, 1.1 Hz, ); 13 C NMR (125 MHz, CDCl 3 ) δ 156.4, 148.7, 142.2, 137.9, 137.5, 134.9, 133.6, 129.9, 125.2, 124.8, 124.3, 122.7, 122.4, 122.3, 121.6, 121.1; HRMS (ESI) [M+H] + m/z calcd for [C 17 H 12 NS] + is , found S4

5 1-benzyl-2-(dibenzo[b,d]thiophen-4-yl)pyridinium bromide (1c) Light brown foamy solid, 1.44 g, 3.3 mmol, 74% yield (starting from 4.5 mmol 2-(dibenzo[b,d]thiophen-4-yl)pyridine); 1 H NMR (400 MHz, CDCl 3 ) δ 9.99 (d, J = 6.2 Hz, ), 8.62 (td, J = 7.7, 1.4 Hz, ), 8.39 (dd, J = 8.0, 0.9 Hz, ), (m, ), 8.01 (dd, J = 7.8, 1.6 Hz, ), 7.86 (dd, J = 7.5, 1.2 Hz, ), 7.81 (m, ), 7.70 (d, J = 7.8 Hz, ), 7.56 (m, 2H), (m, 3H), 7.05 (m, 2H), 6.21 (d, J = 13.8 Hz, ), 6.00 (d, J = 13.8 Hz, ); 13 C NMR (100 MHz, CDCl 3 ) δ 153.7, 148.4, 145.9, 139.3, 138.8, 137.3, 134.9, 132.6, 130.2, 129.7, 129.5, 129.3, 128.7, 128.5, 128.3, 125.7, 124.7, 123.1, 122.5, 62.7; HRMS (ESI) [M] + m/z calcd for [C 24 H 18 NS] + is , found benzyl-2-(4-methylthiophen-3-yl)pyridinium bromide (1d) Light red hygroscopic solid, 1.04 g, 3.02 mmol, 67% yield (starting from 4.5 mmol 2-(4-methylthiophen-3-yl)pyridine); 1 H NMR (400 MHz, CDCl 3 ): δ (d, J = 6.0 Hz, ), 8.67 (t, J = 7.8 Hz, ), 8.23 (t, J = 7.5 Hz, ), 7.92 (d, J = 3.1 Hz, ), 7.77 (d, J = 7.8 Hz, ), (m, 4H), (m, 2H), 6.08 (s, 2H), 1.76 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ): δ 151.7, 148.4, 145.7, 136.4, 132.9, 131.6, 130.8, 129.8, 129.6, 129.4, 128.7, 127.9, 62.9, 14.3; HRMS (ESI) [M] + m/z calcd for [C 17 H 16 NS] + is , found benzyl-2-(2,5-dimethylthiophen-3-yl)pyridin-1-ium bromide (1e) White solid, 1.34 g, 3.73 mmol, 83% yield (starting from 4.5 mmol 2-(2,5- dimethylthiophen-3-yl)pyridine); 1 H NMR (CDCl 3, 500 MHz) δ (d, J = 5.0 Hz, ), 8.68 (t, J = 10.0 Hz, ), 8.20 (t, J = 10.0 Hz, ), 7.81 (d, J = 10.0, ), (m, 3H), 7.01 (d, J = 5.0 Hz, 2H), 6.81 (s, ), 6.10 (br s, 2H), 2.49 (s, 3H), 1.90 (s, 3H); 13 C NMR (CDCl 3, 500 MHz) 151.4, 148.1, 146.0, 140.3, 139.7, 133.0, 130.8, 129.3, 129.1, 128.3, 127.6, 127.5, 124.8, 62.2, 15.1, HRMS (ESI) [M] + m/z calcd for [C 18 H 18 NS] + is , found S5

6 To a three-neck-flak under N 2 charge (3-methylbenzofuran-2-yl)boronic acid (2.67 g, 15.2 mmol, 1.2 equiv), KF (2.2 g, 38.0 mmol, 3.0 equiv), degassed dioxane (50 ml), and 2-bromopyridine (2.0 g, 12.7 mmol, 1.0 equiv). The mixture was sparged with Ar for 15 min, before addition of tri-tertbutylphosphonium tetrafluoroborate (275 mg, 0.95 mmol) and Pd(OAc) 2 (142 mg, 0.63 mmol). The reaction mixture was stirred at 80 C for 14 h and monitored by LC/MS. Upon completion, the reaction was diluted with water (40 ml). The crude mixture was extracted with ethyl acetate (60 ml x 2), dried over sodium sulfate, filtered, and concentrated. The crude mixture was submitted to silica gel chromatography (eluent: hexanes to 10% ethyl acetate in hexanes) to afford the product as pale yellow solid (1.14 g, 5.44 mmol, 43% yield). 1 H NMR (400 MHz, CDCl 3 ) δ 8.68 (d, J = 3.6 Hz, ), 7.87 (d, J = 6.8 Hz, ), 7.72 (td, J = 6.4, 1.2 Hz, ), 7.58 (d, J = 6.0 Hz, ), 7.50 (d, J = 6.4 Hz, ), (m, ), (m, ), (m, ), 2.71 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 154.0, 151.4, 149.6, 149.1, 136.4, 131.2, 125.3, 122.6, 121.9, 121.0, 120.1, 115.9, 111.3, 9.7. To a solution of 2-(3-methylbenzofuran-2-yl)pyridine (400 mg, 1.91 mmol, 1.0 equiv) in acetone (1.0 ml) was added benzyl bromide (0.34 ml, 2.87 mmol, 1.5 equiv), and the resulting mixture was heated at 60 C for 48 h. The reaction was filtered and volatiles were removed under reduced pressure, the crude mixture was purified by silica gel chromatography (eluent: DCM to 10% MeOH in DCM) to afford the product (1f) as light yellow solid (602 mg, 1.58 mmol, 83% yield). 1 H NMR (400 MHz, CDCl 3 ) δ 10.3 (d, J = 6.0 Hz, ), 8.77 (t, J = 8.0 Hz, ), 8.26 (t, J = 7.0 Hz, ), 8.09 (d, J = 7.6 Hz, ), (m, 3H), 7.38 (t, J = 7.4 Hz, ), (m, ), (m, 4H), 6.32 (s, 2H), 2.21 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 154.4, 148.7, 146.7, 143.4, 139.8, 132.4, 131.5, 129.1, 128.7, 128.0, 127.9, , , 123.9, 123.0, 120.8, 111.5, 62.6, 8.7; HRMS (ESI) [M] + m/z calcd for [C 21 H 18 NO] + is , found S6

7 2-(dibenzo[b,d]furan-4-yl)pyridine: white solid, 1.70 g, 6.9 mmol, 69% yield (starting from 10.0 mmol 2-bromopyridine); 1 H NMR (500 MHz, CDCl 3 ) δ 8.79 (d, J = 4.4 Hz, ), 8.42 (d, J = 7.9 Hz, ), 8.28 (d, J = 7.8 Hz, ), 8.00 (t, J = 6.9 Hz, 2H), 7.87 (t, J = 6.9 Hz, ), 7.64 (d, J = 8.4 Hz, ), (m, 2H), 7.37 (t, J = 7.4 Hz, ), 7.30 (dd, J = 7.6, 5.3 Hz, ); 13 C NMR (125 MHz, CDCl 3 ) δ 156.3, 154.0, 153.9, 150.0, 136.8, 127.5, 125.3, , , 124.2, 123.5, 123.2, 122.6, 121.4, 120.9, 112.0; HRMS (ESI) [M+H] + m/z calcd for [C 17 H 12 NO] + is , found benzyl-2-(dibenzo[b,d]furan-4-yl)pyridinium bromide (1g) White solid, 1.33 g, 3.2 mmol, 71% yield (starting from 4.5 mmol 2- (dibenzo[b,d]furan-4-yl)pyridine); 1 H NMR (500 MHz, CDCl 3 ) δ (d, J = 6.0 Hz, ), 8.66 (t, J = 7.8 Hz, ), 8.29 (t, J = 6.9 Hz, ), 8.19 (d, J = 8.2 Hz, ), 8.01 (d, J = 7.8 Hz, ), 7.99 (d, J = 7.8 Hz, ), 7.61 (d, J = 7.6 Hz, ), (m, 2H), 7.48 (m, ), 7.43 (t, J = 7.1 Hz, ), 7.09 (m, 3H), 6.94 (d, J = 6.9 Hz, 2H), 6.13 (br s, 2H); 13 C NMR (125 MHz, CDCl 3 ) δ 156.4, 152.4, 151.2, 148.6, 145.9, 132.7, 131.2, 129.5, 129.2, , , 128.5, 128.2, 125.9, 124.7, 124.2, 124.0, 123.0, 121.4, 115.6, 112.3, 62.9; HRMS (ESI) [M] + m/z calcd for [C 24 H 18 NO] + is , found (3,5-di-tert-butyl-2-methoxyphenyl)pyridine: white solid, 2.68 g, 9.0 mmol, 90% yield (starting from 10.0 mmol 2-bromopyridine); 1 H NMR (400 Hz, CDCl 3 ) 8.73 (d, J = 3.7 Hz, ), (m, 2H), 7.45 (d, J = 1.8 Hz, ), 7.39 (d, J = 1.84 Hz, ), (m, ), 3.30 (s, 3H), 1.44 (s, 9H), 1.34 (s, 9H); 13 C NMR (100 Hz, CDCl 3 ) δ 158.4, 155.5, 149.7, 145.5, 141.9, 136.0, 133.3, 126.4, 124.8, 124.6, 121.6, 61.3, 35.3, 34.6, 31.5, HRMS (ESI) [M+H] + m/z calcd for [C 20 H 28 NO] + is , found S7

8 1-benzyl-2-(3,5-di-tert-butyl-2-methoxyphenyl)pyridinium bromide (1i) White solid, 1.52 g, 3.24 mmol, 72% yield (starting from 4.5 mmol 2-(3,5- di-tert-butyl-2-methoxyphenyl)pyridine); 1 H NMR (400 MHz, CDCl 3 ) δ (d, J = 5.4 Hz, ), (m, ), (m, ), 7.86 (dd, J = 7.8, 1.4 Hz, ), 7.60 (d, J = 2.44 Hz, ), (m, 3H), 6.78 (d, J = 7.3 Hz, ), 6.73 (d, J = 2.44 Hz, ), 6.46 (d, J = 14.4 Hz, ), 5.73 (d, J = 14.4 Hz, ), 3.30 (s, 3H), 1.47 (s, 9H), 1.20 (s, 9H); 13 C NMR (100 MHz, CDCl 3 ) δ 154.5, 153.9, 148.4, 147.8, 146.4, 143.9, 132.9, 130.8, 129.2, 128.9, 128.4, 128.3, 127.7, 126.3, 125.1, 62.7, 62.2, 35.6, 34.7, 31.2, HRMS (ESI) [M] + m/z calcd for [C 27 H 34 NO] + is , found (2,3-dihydrobenzofuran-7-yl)pyridine: pale brown oil, 1.60 g, 8.1 mmol, 81% yield (starting from 10.0 mmol 2-bromopyridine); 1 H NMR (400 MHz, CDCl 3 ): δ 8.69 (m, ), 8.06 (d, J = 8.0 Hz, ), 7.91 (d, J =7.9 Hz, ), 7.71 (dt, J =7.8, 1.7 Hz, ), 7,23 (d, J =7.7 Hz, ), 7.17 (m, ), 6.98 (, J = 7.6 Hz, ), 4.67 (t, J = 8.7 Hz, 2H), 3.27 (t, J = 8.8 Hz, 2H). 13 C NMR (100 MHz, CDCl 3 ): δ 157.8, 154.8, 149.4, 136.3, 128.1, 127.9, 125.5, 123.7, 122.2, 121.7, 120.9, 71.4, 29.4; HRMS (ESI) [M+H] + m/z calcd for [C 13 H 12 NO]+ is , found benzyl-2-(2,3-dihydrobenzofuran-7-yl)pyridin-1-ium bromide (1j) Light brown hygroscopic solid, 773 mg, 2.1 mmol, 35% yield (starting from 6.0 mmol 2-(2,3-dihydrobenzofuran-7-yl)pyridine); 1 H NMR (400 MHz, CDCl 3 ): δ (d, J = 5.9 Hz, ), 8.52 (td, J = 7.8, 1.2 Hz, ), 8.14 (t, J = 7.7 Hz, ), 7.82 (dd, J = 7.8, 1.3 Hz, ), 7.45 (d, J = 7.9 Hz, ), (m, 3H), (m, 4H), 6.10 (s, 2H), 4.58 (t, J = 8.7 Hz, 2H), 3.33 (t, J = 8.7 Hz, 2H); 13 C NMR (100 MHz, CDCl 3 ): δ 157.0, 152.4, 147.9, 145.2, 133.0, 130.7, 129.3, 129.1, 128.9, 128.8, 128.8, 128.5, 127.5, 121.8, 113.3, 72.4, 62.2, 29.4; HRMS (ESI) [M] + m/z calcd for [C 20 H 18 NO] + is , found S8

9 2-(2-phenoxyphenyl)pyridine: pale yellow oil, 2.40 g, 9.97 mmol, 97% yield (starting from 10.0 mmol 2-bromopyridine); 1 H NMR (500 MHz, CDCl 3 ) δ 8.67 (d, J = 4.5 Hz, ), 7.93 (d, J = 7.7 Hz, ), 7.83 (d, J = 8.1 Hz, ), 7.60 (dt, J = 7.7 Hz, 1.7 Hz, ), (m, ), (m, 3H), (m, ), (m, 2H), 6.95 (d, J = 8.1 Hz, 2H); 13 C NMR (125 MHz, CDCl 3 ) δ 157.5, 155.2, 154.1, 149.6, 135.9, 132.1, 131.5, 130.0, 129.7, 124.8, 124.3, 122.9, 122.0, 120.1, benzyl-2-(2-phenoxyphenyl)pyridin-1-ium bromide (1k) Pale red solid, 1.34 g, 3.2 mmol, 71% yield (starting from 4.5 mmol 2-(2- phenoxyphenyl)pyridine); 1 H NMR (400 MHz, DMSO-D 6 ) δ 9.44 (d, J = 6.0 Hz, ), 8.73 (t, J = 7.4 Hz, ), (m, 2H), (m, 2H), (m, 3H), (m, 3H), 7.20 (t, J = 7.4 Hz, ), 6.96 (d, J = 7.4 Hz, 2H), 6.91 (d, J = 7.9 Hz, 2H), 6.84 (d, J = 8.4 Hz, ), 5.94 (d, J = 14.9 Hz, ), 5.84 (d, J = 14.9 Hz, ); 13 C NMR (125 MHz, DMSO-D 6 ) δ , , 152.3, 147.3, 146.8, 134.0, 133.8, 132.2, 131.4, 130.7, 129.3, 128.4, 128.3, 125.5, 123.8, 122.1, 121.4, 117.2, 61.9; HRMS (ESI) [M] + m/z calcd for [C 24 H 20 NO] + is , found benzyl-2-(2-bromophenyl)pyridinium bromide (1l) Ash color solid, 1.05 g, 2.6 mmol, 58% yield (starting from 4.5 mmol 2-(2- bromophenyl)pyridine); 1 H NMR (400 MHz, CDCl 3 ): δ 9.85 (d, J = 6.3 Hz, ), 8.71 (t, J = 8.2 Hz, ), 8.25 (m, ), 7.85 (d, J = 7.5 Hz, ), 7.74 (m, 2H), 7.52 (m, 2H), (m, 3H), 7.11 (m, 2H), 5.94 (s, 2H); 13 C NMR (100 MHz, CDCl 3 ): δ 153.8, 147.4, 146.1, 133.4, 133.2, 132.3, 132.0, 131.8, 130.9, 129.8, , 129.5, 129.4, 128.6, 128.3, 122.3, 62.7; HRMS (ESI) [M] + m/z calcd for [C 18 H 15 NBr] + is , found S9

10 1-benzyl-2-(2,5-difluorophenyl)pyridinium bromide (1m) White solid, 994 mg, mmol, 61% yield (starting from 4.5 mmol 2-(2,5- difluorophenyl)pyridine); 1 H NMR (500 MHz, CDCl 3 ): δ 9.88 (d, J = 6.0 Hz, ), 8.66 (t, J = 7.9 Hz, ), 8.27 (t, J = 6.9 Hz, ), 7.91 (d, J = 7.8 Hz, ), 7.61 (m, ), (m, 4H), 7.22 (dt, J = 9.0, 3.8 Hz, ), 7.10 (d, J = 7.6 Hz, 2H), 6.07 (d, J = 14.3 Hz, 2H); 13 C NMR (125 MHz, CDCl 3 ): δ (d, J = 2.2 Hz), (d, J = 2.5 Hz), (d, J = 2.5 Hz), (d, J = 2.8 Hz), 148.7, 148.2, 146.2, 132.1, 131.1, 129.9, 129.6, 128.9, 128.8, (dd, J = 24.4, 9.4 Hz), (dd, J = 17.6, 8.8 Hz), (dd, J = 26.4, 1.8 Hz ), (dd, J = 23.7, 8.4 Hz) 63.2; HRMS (ESI) [M] + m/z calcd for [C 18 H 14 NF 2 ] + is , found benzyl-2-(2-(trifluoromethyl)phenyl)pyridinium bromide (1n) White solid, 1.10 g, 2.79 mmol, 62% yield (starting from 4.5 mmol 2-(2- (trifluoromethyl)phenyl)pyridine); 1 H NMR (500 MHz, CDCl 3 ): δ 9.18 (d, J = 6.3 Hz, ), 8.50 (d, J = 7.7 Hz, ), 8.33 (d, J = 8.5 Hz, ), 8.10 (t, J = 7.3 Hz, ), 7.89 (d, J = 7.5 Hz, ), 7.81 (m, 3 H), 7.36 (m, 3H), 7.27 (m, 3H); 13 C NMR (125 MHz, CDCl 3 ): δ 152.1, 146.5, 145.1, 133.2, 132.5, 131.9, 131.0, 130.1, , , 129.5, (q, J = 2.1 Hz), (q, J = 30.6 Hz), (d, J = 4.7 Hz), (q, J = Hz), 63.0; HRMS (ESI) [M] + m/z calcd for [C 19 H 15 F 3 N] + is , found benzyl-2-(2-4-dimethylphenyl)pyridin-1-ium bromide (1o) White solid, 1.45 g, 4.1 mmol, 91% yield (starting from 4.5 mmol 2-(2,4- dimethylphenyl)pyridine); 1 H NMR (400 MHz, CDCl 3 ): δ (d, J = 6.0 Hz, ), 8.54 (t, J = 7.7 Hz, ), 8.18 (t, J = 6.9 Hz, ), 7.73 (d, J = 7.7 Hz, ), (m, 5H), 7.16 (s, ), 7.03 (d, J = 7.4 Hz, 2H), 6.07 (d, J = 13.9 Hz, ), 5.98 (d, J = 13.9 Hz, ), 2.43 (s, 3H), 1.84 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ): δ 155.9, 148.3, 145.4, 142.4, 136.4, 132.7, 132.1, 130.2, 129.7, 129.4, 129.1, 128.0, 127.7, 127.6, 62.0, 21.6, 19.8; HRMS (ESI) [M] + m/z calcd for [C 20 H 20 N] + is , found S10

11 1-benzyl-2-(naphthalen-1-yl)pyridinium bromide (1p) Pale brown solid, 0.93 g, mmol, 55% yield (starting from 4.5 mmol 2- (naphthalen-1-yl)pyridine); 1 H NMR (CDCl 3, 500 mhz) δ (d, J = 5.0 Hz, ), 8.75 (t, J = 10.0 Hz, ), 8.32 (t, J = 5.0 Hz, ), 8.12 (d, J = 5.0 Hz, ), 7.99 (d, J = 5.0 Hz, ), 7.94 (d, J = 10 Hz, ), (m, 4H), (m, 4H), 6.89 (d, J = 10.0 Hz, 2H), 5.93 (ABq, J = 10.0 Hz, Δʋ AB = 5.0 Hz, 2H); 13 C NMR (CDCl 3, 500 mhz) δ 154.6, 148.0, 145.9, 133.2, 132.6, 132.2, 131.0, 130.0, 129.4, 129.1, 129.0, 128.8, 128.0, 127.9, 127.4, 125.2, 123.7, HRMS (ESI) [M] + m/z calcd for [C 22 H 18 N] + is , found (phenanthren-9-yl) pyridine: white solid, 2.30 g, 9.0 mmol, 90% yield (starting from 10.0 mmol 2-bromopyridine); 1 H NMR (400 MHz, CDCl 3 ): δ 8.83 (m, ), 8.78 (d, J = 8.3 Hz, ), 8.73 (d, J = 7.7 Hz, ), 8.08 (d, J = 8.3 Hz, ), 7.94 (d, J = 8.3 Hz, ), 7.86 (m, 2H), (m, 2H), 7.66 (m, ), (m, ), (m, ) 7.37 (ddd, J = 4.9,1.8 Hz, ); 13 C NMR (100 MHz, CDCl 3 ): δ 159.6, 149.8, 137.4, 136.7, 131.6, 131.0, 130.7, 130.5, 129.2, 128.3, 127.2, 127.0, 126.8, 125.3, 123.1, 122.8, 122.4; HRMS (ESI) [M+H] + m/z calcd for [C 19 H 14 N] + is , found benzyl-2-(phenanthren-9-yl)pyridinium bromide (1q) White solid, 1.55 g, mmol, 81% yield (starting from 4.5 mmol 2- (phenanthren-9-yl) pyridine); 1 H NMR (400 MHz, CDCl 3 ): δ (dd, J = 6.4, 1.2 Hz, ), 8.80 (d, J = 8.2 Hz, ), 8.76 (d, J = 8.4 Hz, ), 8.67 (td, J = 7.8, 1.4 Hz, ), 8.33 (td, J = 7.8, 1.4 Hz, ), 7.96 (dd, J = 7.9, 1.4 Hz, ), (m, 2H), 7.83 (td, J = 7.3, 1.4 Hz, ), 7.75 (td, J = 7.3, 1.1 Hz, ), 7.70 (td, J = 7.0, 1.0 Hz, ), 7.58 (td, J = 7.0, 1.0 Hz, ), 7.22 (d, J = 8.2 Hz, ), 7.17 (m, ), 7.08 (m, 2H), 6.95 (m, 2H), 6.13 (d, J = 14.0 Hz, ), 5.77 (d, J = 15.0 Hz, ); 13 C NMR (100 MHz, CDCl 3 ): δ 154.8, 148.4, 145.8, 132.9, 131.4, 131.2, 130.9, 130.6, 130.0, 129.9, 129.6, 129.5, 129.3, 129.1, 128.7, 128.6, 128.4, 128.3, 128.1, 127.0, 125.1, 123.8, 123.6, 62.5; HRMS (ESI) [M] + m/z calcd for [C 26 H 20 N] + is , found S11

12 To a solution of 2-(2,4-dimethylphenyl)pyridine (1.0 g, 5.74 mmol, 1.0 equiv) in toluene (5 ml) was added ethyl bromide (1.2 ml, 16.4 mmol, 3.0 equiv), and the resulting mixture was heated at 50 C for 14 h. Precipitates were resulted. At end of the reaction, 5 ml EtOAc was added. The product was collected by filtration, dried to yield the desired product 1s as white solid, 0.97 g, 3.5 mmol, 61% yield. 1 H NMR (500 MHz, CDCl 3 ): δ (d, J = 6.1 Hz, ), 8.59 (td, J = 7.9 Hz, ), 8.25 (t, J = 7.0 Hz, ), 7.74 (dd, J = 7.9, 1.3 Hz, ), 7.20 (d, J = 10.6 Hz, 2H), 7.17 (s, ), 4.99 (dq, J = 7.4 Hz, ), 4.54 (dq, J = 7.4 Hz, ), 2.41 (s, 3H), 2.07 (s, 3H), 1.46 (t, J = 7.33 Hz, 3H); 13 C NMR (125 MHz, CDCl 3 ): δ 155.4, 147.8, 145.4, 142.4, 135.7, 132.2, 130.0, 128.7, 128.3, , 127.8, 54.2, 21.6, 20.0, 17.1; HRMS (ESI) [M] + m/z calcd for [C 15 H 18 N] + is , found General procedure for the asymmetric hydrogenation of pyridinium salts A high pressure steel autoclave (HEL 100 ml) hydrogenation vessel was taken into the glove box. Catalyst solution was prepared in a vial with [Ir(COD)Cl] 2 (1 mol%) and ligand (S,S)-MeOBoQPhos (3 mol%), and stir for 15 min in THF (5 ml). Then I 2 (5 mol%) was added and stir for 1-2 min. Pyridinium salt (1 mmol) was added to the hydrogenation vessel and degassed THF (15 ml). The catalyst solution was then transferred to the vessel and parafilmed before taking out of the glove box. The vessel was put onto the HEL hydrogenation autoclave reactor. The mixture was purged first purged with N 2 (3x) and then H 2 (3x) and stirred at the desired pressure and temperature for 20 h. Upon completion, the reactor was vented and purged with N 2 (2x). The mixture was added diethylamine (2 equiv). Percentage conversions and enantiomeric ratios were determined by chiral HPLC and C and the products were purified by silica gel (100% hexanes to 30% EtOAc/hexanes). S12

13 1-benzyl-2-(phenoxathiin-4-yl)piperidine (2a) White solid, 343 mg, 0.92 mmol, 92% yield, er: 99.3:0.7; 1 H NMR (500 MHz, CDCl 3 ) δ 7.59 (d, J = 7.9 Hz, ), 7.25 (m, 4H), (m, 3H), 7.10 (d, J = 7.9 Hz, ), 7.05 (t, J = 7.8 Hz, 2H), 7.01 (d, J = 7.5 Hz, ), 3.87 (d, J = 10.1 Hz, ), 3.80 (d, J = 13.3 Hz, ), 3.02 (d, J = 11.2 Hz, ), 2.90 (d, J = 13.3 Hz, ), 2.02 (d, J = 11.6 Hz, ), 1.86 (d, J = 13.6 Hz, ), 1.81 (d, J = 13.6 Hz, ), (m, 2H), (m, 2H); 13 C NMR (125 MHz, CDCl 3 ) δ 152.9, 150.1, 139.7, 134.8, 128.9, 128.2, 127.8, 127.1, 126.8, 126.7, 125.2, 124.9, 121.8, 120.8, 118.1, 60.5, 60.0, 53.7, 35.7, 26.2, 25.4; Enantiomeric ratio was determined by C: Chiralpack IC-3, 4.6 mm x 150 mm, temperature: 30 ºC, A: CO 2, B: denatured ethanol (contains 5% MeOH and 5% 2-propanol) with 0.2% of diethylamine; Isocratic: A/B:96.5/3.5, v/v, flow rate 3.0 ml/min. HRMS (ESI) [M+H] + m/z calcd for [C 24 H 24 NOS] + is , found (benzo[b]thiophen-3-yl)-1-benzylpiperidine (2b) White solid, 272 mg, 0.89 mmol, 89% yield, er: 96.6:3.4; 1 H NMR (500 MHz, CDCl 3 ) δ 8.36 (d, J = 7.9 Hz, ), 7.84 (d, J = 7.9 Hz, ), 7.40 (m, 2H), 7.39 (m, ), (m, 5H), 3.83 (d, J = 14.7 Hz, ), 3.59 (dd, J = 11.8, 2.7 Hz, ), 3.01 (m, ), 2.87 (d, J = 13.4 Hz, ), (m, 2H), (m, 2H), (m, 2H), 1.43 (m, ); 13 C NMR (125 MHz, CDCl 3 ) δ 141.4, 140.2, 139.8, 138.0, 129.0,128.2, 126.7, 124.5, 123.8, 123.0, 122.7, 64.6, 60.2, 53.8, 34.4, 26.2, 25.4; Enantiomeric ratio was determined by C: Lux Cellulose-3, 4.6 x 150 mm: 30 ºC, A: CO 2, B: denatured ethanol (contains 5% MeOH and 5% 2-propanol) with 0.2% of diethylamine; Isocratic: A/B:97/3, v/v, flow rate 3.0 ml/min. HRMS (ESI) [M+H] + m/z calcd for [C 20 H 22 NS] + is , found benzyl-2-(dibenzo[b,d]thiophen-4-yl)piperidine (2c) White solid, 332 mg, 0.93 mmol, 93% yield, er: 95.1:4.9; 1 H NMR (500 MHz, CDCl 3 ) δ 8.14 (m, ), 8.05 (d, J = 7.6 Hz, ), 7.89 (d, J = 6.3, 1.9 Hz, ), 7.57 (d, J = 7.2 Hz, ), (m, 3H), 7.30 (d, J = 7.3 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.30 (t, J = 7.1 S13

14 Hz, ), 3.80 (d, J = 13.5 Hz, ), 3.45 (dd, J = 11.4, 2.8 Hz, ), 3.06 (m, ), 2.94 (d, J = 13.8 Hz, ), 1.99 (m, 2H), 1.83 (m, 2H), (m, 2H), (m, ); 13 C NMR (125 MHz, CDCl 3 ) δ 140.4, 140.0, 139.1, 137.4, 136.7, 135.9, 129.4, 128.2, 126.8, 126.7, 125.6, 125.0, 124.3, 122.8, 121.6, 120.3, 68.9, 60.4, 53.3, 33.4, 26.0, 25.3; Enantiomeric ratio was determined by C: Chiracel OD-3, 4.6 x 150 mm: 30 ºC, A: CO 2, B: Methanol with 0.2% of diethylamine (A); Isocratic: A/B: 90/10, v/v, flow rate 3.0 ml/min. HRMS (ESI) [M+H] + m/z calcd for [C 24 H 24 NS] + is , found benzyl-2-(4-methylthiophen-3-yl)piperidine (2d) Light brown solid, 192 mg, 0.71 mmol, 71% yield, er: 96.4:3.6; 1 H NMR (500 MHz, CDCl 3 ) δ (m, 6H), 6.87 (m, ), 3.84 (d, J = 13.5 Hz, ), 3.24 (dd, J = 11.0, 2.9 Hz, ), 2.98 (d, J = 11.6 Hz, ), 2.87 (d, J = 13.4 Hz, ), 2.30 (s, 3H), (m, ), (m, 2H), (m, 3H), (m, ); 13 C NMR (125 MHz, CDCl 3 ) δ 144.8, 139.7, 136.4, 128.7, 128.0, 126.5, 121.6, 121.3, 63.0, 59.5, 53.7, 35.1, 25.9, 25.2, 14.9; Enantiomeric ratio was determined by C: Chiracel OZ-3, 4.6 x 150 mm: 30 ºC, A: CO 2, B: denatured ethanol (contains 5% MeOH and 5% 2-propanol) with 0.2% of diethylamine (A); Isocratic: A/B: 99/1, v/v, flow rate 3.0 ml/min. HRMS (ESI) [M+H] + m/z calcd for [C 17 H 22 NS] + is , found benzyl-2-(2,5-dimethylthiophen-3-yl)piperidine (2e) Light yellow liquid, 237 mg, 0.83 mmol, 83% yield, er: 96.7:3.3; 1 H NMR (500 MHz, CDCl 3 ) δ 7.18 (m, 5H), 6.77 (s, ), 3.80 (d, J = 12.4 Hz, ), 3.13 (m, ), 2.92 (d, J = 13.3 Hz, ), 2.81 (d, J = 13.3 Hz, ), 2.40 (s, 3H), 2.35 (s, 3H), 1.88 (td, J = 11.4, 3.4 Hz, ), 1.77 (m, ), (m, 4H), 1.34 (m ); 13 C NMR (125 MHz, CDCl 3 ) δ 140.7, 140.0, 135.7, 129.0, 128.2, 126.7, 125.6, 62.0, 59.7, 53.8, 34.7, 26.2, 25.4, 15.5, 13.1; Enantiomeric ratio was determined by C: Chiralpack IC-3, 4.6 mm x 150 mm, temperature: 30 ºC, A: CO 2, B: denatured ethanol (contains 5% MeOH and 5% 2-propanol) with 0.2% of diethylamine (A); Isocratic: A/B: 96.5/3.5, v/v, flow rate 3.0 ml/min. HRMS (ESI) [M+H] + m/z calcd for [C 18 H 24 NS] + is , found S14

15 1-benzyl-2-(3-methylbenzofuran-2-yl)piperidine (2f) White solid, 238 mg, 78% yield, er: 90.3:9.7; 1 H NMR (500 MHz, CDCl 3 ) δ 7.49 (d, J = 8.0 Hz, ), 7.45 (d, J = 7.7 Hz, ), (m, 7H), 3.80 (d, J = 13.1 Hz, ), 3.47 (dd, J = 11.4, 3.6 Hz, ), 3.07 (d, J = 13.4 Hz, ), 3.00 (m, ), 2.26 (s, 3H), (m, 2H), (m, 2H), (m, 2H), (m, ); 13 C NMR (125 MHz, CDCl 3 ) δ 154.1, 154.0, 138.4, 130.1, 129.3, 128.0, 126.7, 123.6, 122.1, 118.9, 111.5, 111.2, 60.0, 59.6, 53.1, 31.9, 25.7, 24.5, 8.0; Enantiomeric ratio was determined by C: Lux Cel 1, 4.6 mm x 150 mm, temperature: 35 ºC, A: CO 2, B: MeOH with 0.1% of trimethylamine (A); Gradient: 1% B to 3% B in 3 min, to 50% B in 5 min, hold at 50%B for 1 min; flow rate 3.0 ml/min, BPR pressure: 150 bar; 254 nm UV detection. HRMS (ESI) [M+H] + m/z calcd for [C 21 H 24 NO] + is , found benzyl-2-(dibenzo[b,d]furan-4-yl)piperidine (2g) White solid, 303 mg, 0.89 mmol, 89% yield, er: 90.3:9.7; 1 H NMR (500 MHz, CDCl 3 ) δ 7.94 (d, J = 7.6 Hz, ), 7.81 (dd, J = 7.9,1.2 Hz, ), 7.61 (d, J = 8.2 Hz, ), 7.46 (d, J = 7.7 Hz, ), (m, 2H), (m, 5H), 7.18 (m, ), 3.95 (dd, J = 10.9, 2.9 Hz, ), 3.82 (d, J = 13.3 Hz, ), 3.05 (m, ), 2.93 (d, J = 13.3 Hz, ), 2.08 (m, ), 1.94 (m, ), (m, 2H), (m, 2H), (m, ); 13 C NMR (125 MHz, CDCl 3 ) δ 152.9, 150.1, 139.7, 134.8, 128.9, 128.2, 127.8, 127.1, 126.8, 126.7, 125.2, 124.9, 121.8, 120.8, 118.1, 60.5, 60.0, 53.7, 35.7, 26.2, 25.4; Enantiomeric ratio was determined by C: Chiralpack IC-3, 4.6 mm x 150 mm, temperature: 30 ºC, A: CO 2, B: denatured ethanol (contains 5% MeOH and 5% 2-propanol) with 0.2% of diethylamine (A); Isocratic: A/B: 96.5/3.5, v/v, flow rate 3.0 ml/min. HRMS (ESI) [M+H] + m/z calcd for [C 24 H 24 ON] + is , found S15

16 1-benzyl-2-(2-methoxyphenyl)piperidine (2h) White solid, 256 mg, 0.91 mmol, 91% yield, er: 93.7:6.3; the compound data were in good accordance with the literature. 1 1 H NMR (500 MHz, CDCl 3 ) δ 7.59 (d, J = 7.9 Hz, ), 7.25 (m, 4H), (m, 2H), 6.97 (t, J = 7.9 Hz, ), 6.86 (d, J = 8.4 Hz, ), 3.83 (s, 3H), 3.78 (d, J = 13.6 Hz, ), 3.69 (dd, J = 11.1, 2.6 Hz, ), 2.97 (m, ), 2.82 (d, J = 13.7 Hz, ), 1.96 (td, J = 11.5, 4.0 Hz, ), 1.76 (m, 3H), (m, 2H), 1.48 (m, 2H), 1.38 (m, ); 13 C NMR (125 MHz, CDCl 3 ) δ 140.2, 133.7, 129.9, 128.9, 128.6, 128.1, 127.9, 127.4, 126.6, 121.3, 110.8, 60.0, 59.8, 58.7, 53.9, 35.9, 26.3, 25.5; Enantiomeric ratio was determined by C: Chiralpack IC-3, 4.6 mm x 150 mm, temperature: 30 ºC, A: CO 2, B: denatured ethanol (contains 5% MeOH and 5% 2-propanol) with 0.2% of diethylamine (A); Isocratic: A/B: 96.5/3.5, v/v, flow rate 3.0 ml/min. HRMS (ESI) [M+H] + m/z calcd for [C 19 H 24 NO] + is , found benzyl-2-(3,5-di-tert-butyl-2-methoxyphenyl) piperidine (2i) White solid, 350 mg, 0.89 mmol, 89% yield, er: 95.3:4.7; 1 H NMR (500 MHz, CDCl 3 ) δ 7.66 (d, J = 2.4 Hz, ), (m, 4H), 7.20 (d, J = 2.4 Hz, ), 7.17 (m, ), 3.81 (s, 3H), 3.67 (d, J = 13.3 Hz, ) 3.56 (dd, J = 11.0, 2.2 Hz, ), 2.96 (d, J = 11.4 Hz, ), 2.76 (d, J = 13.3 Hz, ), 1.99 (m, ), 1.83 (m, 2H), (m, 3H), 1.45 (m, ), 1.40 (s, 9H), 1.32 (m, 9H); 13 C NMR (125 MHz, CDCl 3 ) δ 155.6, 146.2, 141.6, 140.7, 138.2, 128.9, 128.1, 126.6, 123.8, 122.8, 62.9, 61.9, 59.7, 54.1, 36.6, 31.8, 31.5, 26.3, 25.8; Enantiomeric ratio was determined by C: Chiralcel OJ-3, 4.6 mm x 150 mm, temperature: 30 ºC, A: CO 2, B: denatured ethanol (contains 5% methanol and 5% 2-propanol) with 0.2% of diethylamine (A). Isocratic: A/B: 97/3, v/v, flow rate 3.0 ml/min. HRMS (ESI) [M+H] + m/z calcd for [C 27 H 40 NO] + is , found M. Chang, Y. Huang, S. Liu, Y. Chen, S. W. Krska, I. W. Davies, X. Zhang, Angew. Chem., Int. Ed. 2014, 53, S16

17 1-benzyl-2-(2,3-dihydrobenzofuran-7-yl)piperidine (2j) White solid, 246 mg, 0.84 mmol, 84% yield, er: 94.5:5.5; 1 H NMR (500 MHz, CDCl 3 ) δ 7.59 (d, J = 7.9 Hz, ), 7.25 (m, 4H), (m, 3H), 7.10 (d, J = 7.9 Hz, ), 7.05 (t, J = 7.8 Hz, 2H), 7.01 (d, J = 7.5 Hz, ), 3.87 (d, J = 10.1 Hz, ), 3.80 (d, J = 13.3 Hz, ), 3.02 (d, J = 11.2 Hz, ), 2.90 (d, J = 13.3 Hz, ), 2.02 (d, J = 11.6 Hz, ), 1.86 (d, J = 13.6 Hz, ), 1.81 (d, J = 13.6 Hz, ), (m, 2H), (m, 2H); 13 C NMR (125 MHz, CDCl 3 ) δ 152.9, 150.1, 139.7, 134.8, 128.9, 128.2, 127.8, 127.1, 126.8, 126.7, 125.2, 124.9, 121.8, 120.8, 118.1, 60.5, 60.0, 53.7, 35.7, 26.2, 25.4; Enantiomeric ratio was determined by C: Lux Cellulose-3, 4.6 x 150 mm, temperature: 30 ºC, A: CO 2, B: MeOH contains 0.2% of diethylamine; Isocratic: A/B: 90/10, v/v, flow rate 3.0 ml/min. HRMS (ESI) [M+H] + m/z calcd for [C 20 H 24 ON] + is , found benzyl-2-(2-phenoxyphenyl)piperidine (2k) Colorless viscous liquid, 305 mg, 0.89 mmol, 89% yield, er: 93.7:6.3; 1 H NMR (500 MHz, CDCl 3 ) δ (m, ), (m, 6H), (m, 3H), 7.06 (t, J = 7.4 Hz, ), 6.94 (d, J = 7.9 Hz, 2H), 6.88 (m, ), 3.83 (d, J = 13.6 Hz, ), 3.64 (dd, J = 11.6, 2.9 Hz, ), 2.93 (d, J = 11.6 Hz, ), 2.76 (d, J = 13.6 Hz, ), (m, 3H) (m, 3H), (m, ); 13 C NMR (125 MHz, CDCl 3 ) δ 158.5, 154.0, 140.1, 137.2, 129.8, 128.9, 128.7, 128.2, 127.7, 126.7, 124.7, 122.7, 120.0, 118.0, 60.7, 60.0, 53.6, 36.0, 26.2, 25.3; Enantiomeric ratio was determined by C: Chiralcel OJ-3, 4.6 mm x 150 mm, temperature: 30 ºC, A: CO 2, B: denatured ethanol (contains 5% methanol and 5% 2-propanol) with 0.2% of diethylamine (A). Isocratic: A/B: 97/3, v/v, flow rate 3.0 ml/min. HRMS (ESI) [M+H] + m/z calcd for [C 24 H 26 ON] + is , found N Bn Br 1-benzyl-2-(2-bromophenyl)piperidine (2l) Light yellow solid, 304 mg, 0.92 mmol, 92% yield, er: 95.5:4.5; 1 H NMR (400 MHz, CDCl 3 ): δ 7.79 (dd, J = 7.8, 1.8 Hz, ), 7.51(dd, J = 7.7, 0.9 Hz, ), 7.31 (m, ), (m, 4H), 7.20 (m, ), 7.05 (m, ), 3.71 (d, J = 13.5 Hz, ), 3.67 (m, ), 2.98 (m, ), 2.89 (d, J = 13.7 Hz, ), 2.01 (dt, J = 11.8 Hz, ), 1.86 (m, ), 1.78 (m, ), (m, 2H), (m, 2H); 13 C NMR (100 MHz, CDCl 3 ): δ 144.3, 139.6, 132.8, 129.1, 128.8, , , 128.0, S17

18 125.8, 123.8, 66.7, 59.8, 53.5, 35.3, 25.1, 25.2; Enantiomeric ratio was determined by HPLC: Kromasil 3- AmyCoat, 4.6 mm x 250 mm, temperature: 10 ºC, A: Heptane, B: ethanol denatured (contains 5% of IPA and 5% of methanol); Isocratic: A/B: 99/1, v/v, flow rate 3.0 ml/min. HRMS (ESI) [M+H] + m/z calcd for [C 18 H 21 NBr] + is , found benzyl-2-(2,5-difluorophenyl)piperidine (2m) White solid, 247 mg, 0.86 mmol, 86% yield, er: 94.7:5.3; 1 H NMR (400 MHz, CDCl 3 ): δ 7.41 (m, ), (m, 4H), (m, ), 6.96 (td, J = 9.0, 4.2 Hz, ), 6.85 (m, ), 3.74 (d, J = 13.8 Hz, ), 3.55 (d, J = 10.8 Hz, ), 2.97 (d, J = 11.5 Hz, ), 2.88 (d, J = 13.5 Hz, ), 1.96 (td, J = 11.5, 3.0 Hz, ), (m, 2H), (m, 3H), (m, ); 13 C NMR (100 MHz, CDCl 3 ): δ (d, J = 2.0 Hz), (d, J = 2.0 Hz), (d, J = 2.5 Hz), (d, J = 2.3 Hz), 139.2, (dd, J = 15.3, 7.0 Hz), 128.6, 128.1, 126.7, (dd, J = 26.0, 8.4 Hz), (dd, J = 24.6, 4.9 Hz), (dd, J = 24.4, 8.9 Hz), 59.9, 59.8, 53.3, 35.5, 22.8, 24.9; Enantiomeric ratio was determined by C: Chiralcel OJ-3, 4.6 mm x 150 mm, temperature: 30 ºC, A: CO 2, B: denatured ethanol (contains 5% methanol and 5% 2-propanol) with 0.2% of diethylamine (A). Isocratic: A/B: 97/3, v/v, flow rate 3.0 ml/min. HRMS (ESI) [M] + m/z calcd for [C 18 H 20 NF 2 ] + is , found benzyl-2-(2-(trifluoromethyl)phenyl)piperidine (2n) White solid, 281 mg, 0.88 mmol, 88% yield, er: 93.5:6.5; 1 H NMR (400 MHz, CDCl 3 ): δ 8.08 (d, J = 7.9 Hz, ), 7.59 (d, J = 7.9 Hz, ), 7.55 (t, J = 7.3 Hz, ), 7.30 (d, J = 7.9 Hz, ), 7.25 (m, 4H), 7.18 (m, ), 3.59 (m, 2H), 2.97 (m, ), 2.79 (d, J = 13.8 Hz, ), 1.96 (td, J = 11.7, 3.7 Hz, ), 1.82 (m, 2H), (m, 3H), (m, ); 13 C NMR (100 MHz, CDCl 3 ): δ 145.0, 139.9, 132.2, 128.9, (q, J = 29.6 Hz), 128.4, 128.0, 126.5, (q, J = 6.0 Hz), (q, J = Hz), 64.1, 60.1, 53.4, 36.9, 26.1, 25.3; Enantiomeric ratio was determined by C: Chiralcel OD-3, 4.6 mm x 150 mm, temperature: 30 ºC, A: CO 2, B: denatured ethanol (contains 5% methanol and 5% 2-propanol). Isocratic: A/B: 99/1, v/v, flow rate 3.0 ml/min. HRMS (ESI) [M+H] + m/z calcd for [C 19 H 21 NF 3 ] + is , found S18

19 1-benzyl-2-(2,4-dimethylphenyl)piperidine (2o) Light yellow viscous liquid, 245 mg, 0.88 mmol, 88% yield, er: 97.7:2.3; 1 H NMR (400 MHz, CDCl 3 ) δ 7.58 (d, J = 7.4 Hz, ), (m, 4H), (m, ), 7.03 (d, J = 7.6 Hz, ), 6.94 (s, ), 3.77 (d, J = 13.4 Hz, ), 3.32 (d, J = 11.2 Hz, ), 2.99 (d, J = 11.2 Hz, ), 2.78 (d, J = 13.4 Hz, ), 2.34 (s, 3H), 2.28 (s, 3H), 1.94 (td, J = 11.1,4.1 Hz, ), 1.75 (m, 2H), (m, 3H), (m, ); 13 C NMR (100 MHz, CDCl 3 ) δ 140.5, 140.0, 135.7, 135.1, 131.2, 128.9, 128.1, 127.4, 127.2, 126.6, 64.1, 59.6, 53.9, 35.5, 26.3, 25.6, 21.1, 19.7; Enantiomeric ratio was determined by C: Chiralpack IC-3, 4.6 mm x 150 mm, temperature: 30 ºC, A: CO 2, B: ethanol (contains 5% methanol and 5% 2-propanol) with 0.2% of diethylamine); Isocratic: A/B:97/3, v/v, flow rate 3.0 ml/min. HRMS (ESI) [M+H] + m/z calcd for [C 20 H 26 N] + is , found benzyl-2-(naphthalen-1-yl)piperidine (2p) White solid, 247 mg, 0.82 mmol, 82% yield, ee: 94.2:5.8; 1 H NMR (400 MHz, CDCl 3 ): δ 7.84 (d, J = 8.3 Hz, ), 7.72 (d, J = 8.4 Hz, ), 7.52 (t, J = 7.2 Hz, ), 7.46 (t, J = 7.2 Hz, 2H), 7.23 (m, 5H), 7.17 (m, ), 3.80 (d, J = 13.8 Hz, ), 3.08 (d, J = 13.8 Hz, ), 2.84 (d, J = 13.8 Hz, ), (m, 4H), (m, 3H), (m, ); 13 C NMR (100 MHz, CDCl 3 ): δ 141.2, 139.9, 134.4, 131.5, 128.9, 128.2,127.8, 126.7, 125.9, 125.6, 60.1, 54.0, 36.7, 36.2, 26.2, 25.4; Enantiomeric ratio was determined by C: Chiralcel OD-3, 4.6 mm x 150 mm, temperature: 30 ºC, A: CO 2, B: Methanol with 0.2% of diethylamine (A). Isocratic: A/B: 90/10, v/v, flow rate 3.0 ml/min. HRMS (ESI) [M] + m/z calcd for [C 22 H 24 N] + is , found benzyl-2-(phenanthren-9-yl)piperidine (2q) White solid, 312 mg, 0.89 mmol, 89% yield, er: 95.6:4.4; 1 H NMR (400 MHz, CDCl 3 ) δ 8.75 (br s, ), 8.65 (d, J = 8.0 Hz, ), 8.25 (br s, ), 7.87 (br s, ), 7.66 (m, 2H), 7.58 (m, 2H), 7.58 (m, 2H), (m, 4H), (m, 2H), 3.11 (br s, ), 2.90 (br s, ), (m, ), 1.85 (m, 2H), 1.74 (m, 3H), 1.49 (m, ); 13 C NMR (100 MHz, CDCl 3 ) δ 139.5, 139.1, 132.1, 130.9, 130.5, 128.9, 128.5, 128.0, 126.6, 126.5, 126.3, 123.3, 122.4, 62.5, S19

20 60.5, 53.8, 36.1, 26.0, 25.5; Enantiomeric ratio was determined by C: Chiralcel OD-3, 4.6 mm x 150 mm, temperature: 30 ºC, A: CO 2, B: denatured ethanol (contains 5% methanol and 5% 2-propanol) with 0.2% of diethylamine (A). Isocratic: A/B: 75/25, v/v, flow rate 3.0 ml/min. HRMS (ESI) [M+H] + m/z calcd for [C 26 H 26 N] + is , found (2-phenyl)-1-benzylpiperidine (2r) White solid, 228 mg, 0.91 mmol, 91% yield, er: 92.7:7.3; the compound data were in good accordance with the literature. 1 1 H NMR (500 MHz, CDCl 3 ) δ 7.45 (d, J = 7.6 Hz, 2H), 7.32 (t, J = 7.7 Hz, 2H), (m, 6H), 3.77 (d, J = 13.8 Hz, ), 3.11 (d, J = 11.3 Hz, ), (m, ), 2.80 (d, J = 13.2 Hz, ), (dt, J = 11.6, 3.4 Hz, ), (m, 2H), (m, 3H), (m, ); 13 C NMR (500 MHz, CDCl 3 ): δ 145.7, 139.8, 128.7, 128.5, 128.0, 127.4, 126.8, 126.5, 69.2, 59.8, 53.4, 37.0, 26.0, 25.3, 25.3, 26.0; Enantiomeric ratio was determined by C: Lux Cel3, 4.6 mm x 150 mm, temperature: 35 ºC, A: CO 2, B: MeOH; Gradient: 1% B to 3% B in 3 min, to 50% B in 5 min, hold at 50% B for 1 min; flow rate 3.0 ml/min, BPR pressure: 150 bar; 220 nm UV detection. 2-(2,4-dimethylphenyl)-1-ethylpiperidine (2s) Yellow liquid, 132 mg, 0.61 mmol, 61% yield, er: 99:1; 1 H NMR (500 MHz, CDCl 3 ) δ 7.37 (d, J = 7.9 Hz, ), 7.00 (d, J = 7.9 Hz, ), 6.92 (s, ), 3.22 (t, J = 10.8 Hz, 2H), 2.55 (hex, J = 7.2 Hz, ), 2.30 (s, 3H), 2.28 (s, 3H), 2.03 (dt, J = 12.0, 2.8 Hz, ), 1.94 (hex, J = 7.2 Hz, ), (m, 4H), (m, ), (m, ), 0.90 (t, J = 7.2 Hz, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 140.4, 135.6, 135.0, 131.1, 127.2, 63.9, 53.1, 48.9, 35.5, 26.4, 25.6, 21.1, 19.6, 11.6; Enantiomeric ratio was determined by C: Chiralcel OZ-3, 4.6 mm x 150 mm, temperature: 40 ºC, A: CO 2, B: MeOH with 0.2% of diethylamine (A). Isocratic: A/B: 92/8, v/v, flow rate 3.0 ml/min; HRMS (ESI) [M+H] + m/z calcd for [C 15 H 24 N] + is , found M. Chang, Y. Huang, S. Liu, Y. Chen, S. W. Krska, I. W. Davies, X. Zhang, Angew. Chem., Int. Ed. 2014, 53, S20

21 NAME ovz d EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB/ zg10 TD NS 16 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.30 Hz PC ppm ppm NAME ovz d EXPNO 2 Date_ Time PROBHD 5 mm PABBO BB/ zgpg TD NS 1024 DS Hz Hz sec RG usec K sec sec O MHz 13C usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W 0.30 Hz PC 1.40 S21

22 Br N Bn 1a O S ppm NAME ovz d EXPNO 1 Date_ Time 8.45 PROBHD 5 mm PABBO BB/ zg10 TD DMSO NS 16 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.30 Hz PC ppm NAME ovz d EXPNO 2 Date_ Time PROBHD 5 mm PABBO BB/ zgpg TD DMSO NS 1024 DS Hz Hz sec RG usec K sec sec O MHz 13C usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W 0.30 Hz PC 1.40 S22

23 S23

24 S24

25 ppm NAME EXPNO 1 PROCNO 1 Date_ Time PROBHD 5 mm PABBO BB- zg10 TD NS 4 DS Hz Hz sec RG usec usec K sec TD0 1 ===== ==== CHANNEL f1 = ======= O MHz usec PLW W SI MHz W Hz PC S25

26 S26

27 S27

28 NAME EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB- zg10 TD NS 16 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.30 Hz PC ppm ppm NAME EXPNO 2 Date_ Time PROBHD 5 mm PABBO BB- zgpg TD NS 1200 DS Hz Hz sec RG usec K sec sec O MHz 13C 9.75 usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W 0.30 Hz PC 1.40 S28

29 S29

30 S30

31 ppm NAME EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB- zg10 TD NS 16 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.30 Hz PC ppm NAME EXPNO 2 Date_ Time PROBHD 5 mm PABBO BB- zgpg TD NS 1500 DS Hz Hz sec RG usec K sec sec O MHz 13C 9.75 usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W 0.30 Hz PC 1.40 S31

32 S32

33 S33

34 S34

35 S35

36 ppm NAME ovz d EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB/ zg10 TD NS 16 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.30 Hz PC ppm NAME ovz d EXPNO 2 Date_ Time PROBHD 5 mm PABBO BB/ zgpg TD NS 1024 DS Hz Hz sec RG usec K sec sec O MHz 13C usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W 0.30 Hz PC 1.40 S36

37 NAME ovz d EXPNO 2 Date_ Time PROBHD 5 mm PABBO BB/ zg30 TD DMSO NS 16 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W Hz PC ppm ppm NAME ovz d EXPNO 3 Date_ Time PROBHD 5 mm PABBO BB/ zgpg TD DMSO NS 1024 DS Hz Hz sec RG usec K sec sec O MHz 13C usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W 0.30 Hz PC 1.40 S37

38 NAME EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB- zg10 TD NS 4 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.05 Hz PC ppm ppm NAME EXPNO 3 Date_ Time PROBHD 5 mm PABBO BB- zgpg TD NS 2500 DS Hz Hz sec RG usec K sec sec O MHz 13C usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W Hz PC 1.40 S38

39 ppm NAME EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB/ zg10 TD NS 16 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.30 Hz PC ppm NAME EXPNO 2 Date_ Time 6.01 PROBHD 5 mm PABBO BB/ zgpg TD NS 1500 DS Hz Hz sec RG usec K sec sec O MHz 13C usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W 0.30 Hz PC 1.40 S39

40 ppm NAME EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB/ zg10 TD NS 16 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.30 Hz PC ppm NAME p EXPNO 3 Date_ Time 5.04 PROBHD 5 mm PABBO BB- zgpg TD NS 3072 DS Hz Hz sec RG usec K sec sec O MHz 13C usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W Hz PC 1.40 S40

41 ppm NAME EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB/ zg10 TD NS 16 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.30 Hz PC ppm NAME EXPNO 2 Date_ Time PROBHD 5 mm PABBO BB/ zgpg TD NS 1024 DS Hz Hz sec RG usec K sec sec O MHz 13C usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W 0.30 Hz PC 1.40 S41

42 ppm NAME EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB- zg10 TD NS 64 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.30 Hz PC ppm NAME EXPNO 2 Date_ Time PROBHD 5 mm PABBO BB- zgpg TD NS 160 DS Hz Hz sec RG usec K sec sec O MHz 13C 9.75 usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W 0.30 Hz PC 1.40 S42

43 ppm NAME EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB- zg10 TD NS 4 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.05 Hz PC ppm NAME EXPNO 2 Date_ Time PROBHD 5 mm PABBO BB- zgpg TD NS 2500 DS Hz Hz sec RG usec K sec sec O MHz 13C usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W Hz PC 1.40 S43

44 NAME EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB- zg10 TD NS 4 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.05 Hz PC ppm ppm NAME EXPNO 2 Date_ Time PROBHD 5 mm PABBO BB- zgpg TD NS 2500 DS Hz Hz sec RG usec K sec sec O MHz 13C usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W Hz PC 1.40 S44

45 ppm NAME EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB- zg10 TD NS 16 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.30 Hz PC ppm NAME EXPNO 2 Date_ Time PROBHD 5 mm PABBO BB- zgpg TD NS 275 DS Hz Hz sec RG usec K sec sec O MHz 13C 9.75 usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W 0.30 Hz PC 1.40 S45

46 NAME EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB- zg10 TD NS 16 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.30 Hz PC ppm ppm NAME EXPNO 2 Date_ Time 0.03 PROBHD 5 mm PABBO BB- zgpg TD NS 1024 DS Hz Hz sec RG usec K sec sec O MHz 13C 9.75 usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W 0.30 Hz PC 1.40 S46

47 NAME EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB- zg10 TD NS 4 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.05 Hz PC ppm ppm NAME EXPNO 2 Date_ Time 6.00 PROBHD 5 mm PABBO BB- zgpg TD NS 2500 DS Hz Hz sec RG usec K sec sec O MHz 13C usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W Hz PC 1.40 S47

48 ppm NAME EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB- zg10 TD NS 16 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.30 Hz PC ppm NAME EXPNO 2 Date_ Time 1.32 PROBHD 5 mm PABBO BB- zgpg TD NS 2000 DS Hz Hz sec RG usec K sec sec O MHz 13C 9.75 usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W 0.30 Hz PC 1.40 S48

49 NAME bqu EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB/ zg10 TD NS 16 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.30 Hz PC ppm ppm NAME bqu EXPNO 3 Date_ Time 0.17 PROBHD 5 mm PABBO BB/ zgpg TD NS 1024 DS Hz Hz sec RG usec K sec sec O MHz 13C usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W 0.30 Hz PC 1.40 S49

50 ppm NAME EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB- zg10 TD NS 4 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.05 Hz PC ppm NAME EXPNO 2 Date_ Time PROBHD 5 mm PABBO BB- zgpg TD NS 2500 DS Hz Hz sec RG usec K sec sec O MHz 13C usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W Hz PC 1.40 S50

51 NAME bqu b EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB/ zg10 TD NS 16 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.30 Hz PC ppm ppm NAME bqu b EXPNO 2 Date_ Time PROBHD 5 mm PABBO BB/ zgpg TD NS 512 DS Hz Hz sec RG usec K sec sec O MHz 13C usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W 0.30 Hz PC 1.40 S51

52 O N Bn 2g N Bn 2g O NAME EXPNO 2 PROCNO 1 Date_ Time PROBHD 5 mm PABBO BB- TD NS 1500 DS 0 zgpg Hz Hz sec RG usec usec K sec sec TD0 1 ===== ==== CHANNEL f1 ======== O MHz 13C usec PLW W ===== ==== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W ppm F2 - SI W SSB GB PC Processing parameters MHz Hz S52

53 NAME EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB- zg10 TD NS 16 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.30 Hz PC ppm ppm NAME EXPNO 2 Date_ Time 1.20 PROBHD 5 mm PABBO BB- zgpg TD NS 2500 DS Hz Hz sec RG usec K sec sec O MHz 13C 9.75 usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W 0.30 Hz PC 1.40 S53

54 NAME EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB/ zg10 TD NS 16 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.30 Hz PC ppm ppm NAME EXPNO 2 Date_ Time 1.30 PROBHD 5 mm PABBO BB/ zgpg TD NS 1250 DS Hz Hz sec RG usec K sec sec O MHz 13C usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W 0.30 Hz PC 1.40 S54

55 ppm NAME EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB- zg10 TD NS 4 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.05 Hz PC ppm NAME EXPNO 2 Date_ Time PROBHD 5 mm PABBO BB- zgpg TD NS 4000 DS Hz Hz sec RG usec K sec sec O MHz 13C usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W Hz PC 1.40 S55

56 NAME p EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB- zg10 TD NS 4 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.05 Hz PC ppm ppm NAME p EXPNO 2 Date_ Time PROBHD 5 mm PABBO BB- zgpg TD NS 2560 DS Hz Hz sec RG usec K sec sec O MHz 13C usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W Hz PC 1.40 S56

57 N Bn 2l Br NAME EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB/ zg10 TD NS 16 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.30 Hz PC ppm N Bn 2l Br ppm NAME EXPNO 2 Date_ Time PROBHD 5 mm PABBO BB/ zgpg TD NS 1024 DS Hz Hz sec RG usec K sec sec O MHz 13C usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W 0.30 Hz PC 1.40 S57

58 NAME pp EXPNO 31 PROCNO Date_ Time PROBHD 5 mm PABBO BB- TD NS 2560 DS 4 zgpg Hz Hz sec RG usec usec K sec sec TD0 1 ===== ==== CHANNEL f1 ======== O MHz 13C usec PLW W ===== ==== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W ppm F2 - SI W SSB GB PC Processing parameters MHz Hz S58

59 NAME EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB- zg10 TD NS 4 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.05 Hz PC ppm ppm NAME EXPNO 2 Date_ Time 2.03 PROBHD 5 mm PABBO BB- zgpg TD NS 2500 DS Hz Hz sec RG usec K sec sec O MHz 13C usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W Hz PC 1.40 S59

60 N Bn 2o ppm NAME EXPNO 1 Date_ Time 2.25 PROBHD 5 mm PABBO BB/ zg10 TD NS 16 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.30 Hz PC ppm NAME EXPNO 2 Date_ Time 4.38 PROBHD 5 mm PABBO BB/ zgpg TD NS 1500 DS Hz Hz sec RG usec K sec sec O MHz 13C usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W 0.30 Hz PC 1.40 S60

61 ppm NAME EXPNO 1 PROCNO 1 Date_ Time PROBHD 5 mm PABBO BB- TD NS 16 zg10 DS Hz Hz sec RG usec usec K sec TD0 1 ===== ==== CHANNEL f1 ======== O MHz usec PLW W SI MHz W Hz PC N Bn 2p S61

62 NAME EXPNO 2 PROCNO 1 Date_ Time PROBHD 5 mm PABBO BB/ zgpg TD NS 1500 DS Hz Hz sec RG usec usec K sec sec TD0 1 ===== ==== CHANNEL f1 ======== O MHz 1 3C usec PLW W ===== ==== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W ppm F2 - SI W SSB GB PC Processing parameters MHz Hz S62

63 NAME bqu EXPNO 1 Date_ Time PROBHD 5 mm PABBO BB/ zg10 TD NS 16 DS Hz Hz sec RG usec K sec O MHz usec PLW W SI MHz W 0.30 Hz PC ppm ppm NAME bqu EXPNO 2 Date_ Time PROBHD 5 mm PABBO BB/ zgpg TD NS 256 DS Hz Hz sec RG usec K sec sec O MHz 13C usec PLW W ======== CHANNEL f2 ======== O MHz NUC2 CPDPRG[2 waltz16 PCPD usec PLW W PLW W PLW W SI MHz W 0.30 Hz PC 1.40 S63

64 ppm NAME bqu EXPNO 1 PROCNO 1 Date_ Time PROBHD 5 mm PABBO BB/ zg10 TD NS 16 DS Hz Hz sec RG usec usec K sec TD0 1 ===== ==== CHANNEL f1 ======== O MHz usec PLW W SI MHz W Hz PC S64

65 HPLC Spectra: S65

66 S66

67 AU Minutes AU Minutes S67

68 96.4:3.6 er S68

69 AU Minutes AU Minutes S69

70 mau DA C, Sig=254,10 Ref=500,100 (C:\CH32\ \005-B-D2-bqu Cel1_MeA.D) Area: Area: mau DA C, Sig=254,10 Ref=500,100 (C:\CH32\ \003-B-D5-bqu Cel1_MeA.D) Area: min Area: min S70

71 AU Minutes AU Minutes S71

72 AU Minutes AU Minutes S72

73 S73

74 AU Minutes AU Minutes S74

75 S75

76 95.5:4.5 er S76

77 S77

78 S78

79 S79

80 N Bn 2p AU Minutes AU Minutes S80

81 S81

82 N Bn 2r mau mau 800 DA B, Sig=220,10 Ref=500,100 (C:\CH32\ HL \105-D4F-A2-bqu Cel3_Me.D) DA B, Sig=220,10 Ref=500,100 (C:\CH32\ HL \114-D4F-A5-bqu Cel3_Me.D) Area: min Area: min S82

83 AU Minutes AU Minutes S83

84 Proposed Generation of the Ir-H Species 1 1 Saidi O., Williams J.M.J. (2011) Iridium-Catalyzed Hydrogen Transfer Reactions. In: Andersson P. (eds) Iridium Catalysis. Topics in Organometallic Chemistry, vol 34. Springer, Berlin, Heidelberg S84

85 Details of Computational Studies Optimizations of intermediates and transition states were performed using Gaussian 09 1 software with spin-restricted DFT using PBE 2 functional and split basis set (6-31G(d) for C, P, N, O, H and LANL2DZ for Ir and I) in the gas phase. For all species, vibrational frequencies were also computed at the specified level of theory to obtain thermal Gibbs Free Energy corrections (at 298 K) and to characterize the stationary points as transition states (one and only one imaginary frequency) or minima (zero imaginary frequencies). Single point energy calculations were performed on optimized geometries in THF solvent using the PCM 3 -solvation model, PBE functional including Grimme dispersion correction D2 4, and split basis set (6-311+G(d,p) for C, P, N, O, H; LANL2DZ for I and LANL2DZ (f) for Ir). 5 Obtained single-point energies were converted to the enthalpies and Gibbs free energies using corrections from gasphase frequency analysis. Extensive conformational analysis of the transition states and intermediates was performed manually. Example of the input file specifying basis set used in single-point: # rpbepbe/gen pseudo=read extrabasis scrf=(iefpcm,solvent=tetrahydrofuran) empiricaldispersion=gd2 Title Card Required 0 1 COORDINAS C H P O N G(d,p) **** Ir I 0 Lanl2dz **** Ir 0 F **** Ir I 0 Lanl2dz S2. Coordinates and thermochemical data for computed intermediates and transition states 1 Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett., 1996, 77, 3865; 2 Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett., 1997, 78, 1396; 3 Tomasi, J., Mennucci,B., Cammi, R. Chem. Rev., 2005, 105, Grimme, S. J. Comp. Chem., 2006, 27, Hopmann, K. H. Organometallics, 2016, 35, S85

86 S2. Coordinates and thermochemical data for computed intermediates and transition states Conformational analysis of Ir complexes. Multiple isomers were considered for the starting Ir-H 2 complex. Out of the analyzed isomers, lowest energy one was chosen for further computational study of the mechanism. Reaction diagram: Similar analysis was performed for post-protonation Ir intermediates: S86

87 Starting Ir(III)-complex Zero-point correction= (Hartree/Particle) Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Electronic energy C C C C C C H H H O C H H H O C P C C H H H C H H H C H H H C C C H C C H N Ir O C H H H H I H H H H H Starting enamine Zero-point correction= (Hartree/Particle) Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Electronic energy C C H C H H C H H H H H N C S87

88 H H H H C C H Protonation TS_face2 Zero-point correction= (Hartree/Particle) Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Electronic energy C H C C C C C C H H H O C H H H O C P C C H H H C H H H C H H H C C C H C C H N Ir O C H H H H H I H H H H C C H H H C H H C H H C H H H N C H H Protonation TS_face1 Zero-point correction= (Hartree/Particle) S88

89 Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Electronic energy C C C C H C H H H H H N H C C C C C C H H H O C H H H O C P C C H H H C H H H C H H H C C C H C C H N Ir O C H H H H H I H H H H C H H H C H H H Tight_ion_pair_face2 Zero-point correction= (Hartree/Particle) Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Electronic energy C H C C C C C C H H H O C S89

90 H H H O C P C C H H H C H H H C H H H C C C H C C H N Ir O C H H H H H I H H H H C C H H H C H H C H H C H H H N C H H Tight_ion_pair_face1 Zero-point correction= (Hartree/Particle) Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Electronic energy C C C C H C H H H H H N H C C C C C C H H H O C H H H O C P C C H H S90

91 H C H H H C H H H C C C H C C H N Ir O C H H H H H I H H H H C H H H C H H H Separated_ion_pair: catalyst Zero-point correction= (Hartree/Particle) Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Electronic energy H Ir I C C C C C C H H H O C H H H O C P C C H H H C H H H C H H H C C C H C C H N O C H H H H H H H S91

92 Separated_ion_pair: iminium Pre-H transfer tight_ion_pair_face2 Zero-point correction= (Hartree/Particle) Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Electronic energy C C C H C H H C H H H H H N C H H H H H H C Zero-point correction= (Hartree/Particle) Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Electronic energy C C C H C H H C H H H H H H Ir I C C C C C C H H H O C H H H O C P C C S92

93 H H H C H H H C H H H C C C H C C H N O C H H H H H H H H C H H H N C H H Pre-H transfer tight_ion_pair_face1 Zero-point correction= (Hartree/Particle) Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Electronic energy C C C C H C H H C H H H H H N C H H H H H Ir I C C C C C C H H H O C H H H O C P C C H H H C H H H C H H H C C C H C C H N S93

94 O C H H H H H H H H H H_transfer_TS_face2 Zero-point correction= (Hartree/Particle) Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Electronic energy C C C H C H H C H H H H H H Ir I C C C C C C H H H O C H H H O C P C C H H H C H H H C H H H C C C H C C H N O C H H H H H H H H C H H H N C H H S94

95 H_transfer_TS_face1 Lowest energy structure was located by sequential relaxed PES scans. This allowed to identify the minimum energy conformation. However, optimization of obtained TS structure proved to be unsuccessful with various algorithms, grid sizes and step sizes. This suggests very shallow PES around TS. Located structure satisfies single negative frequency analysis. Zero-point correction= (Hartree/Particle) Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Electronic energy C C C C H C H H C H H H H H N C H H H H H Ir I C C C C C C H H H O C H H H O C P C C H H H C H H H C H H H C C C H C C H N O C H H H H H H H H H S95

96 NBn_protonation_TS_face1 Zero-point correction= (Hartree/Particle) Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Electronic energy C C C C H C H H H H H N H C C C C C C H H H O C H H H O C P C C H H H C H H H C H H H C C C H C C H N Ir O C H H H H H I H H H H C H H C H H H C C C C H C H C H H H S96

97 NBn_protonation_TS_face2 Zero-point correction= (Hartree/Particle) Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= Electronic energy C H C C C C C C H H H O C H H H O C P C C H H H C H H H C H H H C C C H C C H N Ir O C H H H H H I H H H H C C H H H C H H C H H C H H N C H H C C C C H C H C H H H NBn_oPh_protonation_TS_face1 Zero-point correction= (Hartree/Particle) Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= S97

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic

Διαβάστε περισσότερα

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Διαβάστε περισσότερα

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic Supporting Information Asymmetric Binary-acid Catalysis with Chiral Phosphoric Acid and MgF 2 : Catalytic Enantioselective Friedel-Crafts Reactions of β,γ- Unsaturated-α-Ketoesters Jian Lv, Xin Li, Long

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information for AgOTf-catalyzed one-pot reactions of 2-alkynylbenzaldoximes with α,β-unsaturated carbonyl compounds Qiuping Ding 1, Dan Wang 1, Puying Luo* 2, Meiling Liu 1, Shouzhi Pu* 3 and

Διαβάστε περισσότερα

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2016 Enantioselective Organocatalytic Michael Addition of Isorhodanines to α,

Διαβάστε περισσότερα

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces Highly enantioselective cascade synthesis of spiropyrazolones Alex Zea a, Andrea-Nekane R. Alba a, Andrea Mazzanti b, Albert Moyano a and Ramon Rios a,c * Supporting Information NMR spectra and HPLC traces

Διαβάστε περισσότερα

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction Supporting Information ne-pot Approach to Chiral Chromenes via Enantioselective rganocatalytic Domino xa-michael-aldol Reaction Hao Li, Jian Wang, Timiyin E-Nunu, Liansuo Zu, Wei Jiang, Shaohua Wei, *

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Copper/Silver Cocatalyzed Oxidative Coupling of Vinylarenes with ICH 2 CF 3 or ICH 2 CHF 2 Leading to β-cf 3 /CHF 2 -Substituted Ketones Niannian Yi, Hao Zhang, Chonghui Xu, Wei

Διαβάστε περισσότερα

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran 1 Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran Munawar Hussain, a Rasheed Ahmad Khera, a Nguyen Thai Hung, a Peter Langer* a,b a Institut für Chemie, Universität Rostock,

Διαβάστε περισσότερα

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone. Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone. Won-Suk Kim, Hyung-Jin Kim and Cheon-Gyu Cho Department of Chemistry, Hanyang University, Seoul 133-791, Korea Experimental Section

Διαβάστε περισσότερα

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol FeCl 3 6H 2 O-Catalyzed Disproportionation of Allylic Alcohols and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol Jialiang Wang, Wen Huang, Zhengxing Zhang, Xu

Διαβάστε περισσότερα

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%. Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%. S1 Supplementary Figure S2. Single X-ray structure 5a at probability ellipsoids of 20%. S2 H 15 Ph Ac Ac I AcH Ph Ac

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Lewis acid catalyzed ring-opening reactions of methylenecyclopropanes with diphenylphosphine oxide in the presence of sulfur or selenium Min Shi,* Min Jiang and Le-Ping Liu State

Διαβάστε περισσότερα

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is the Partner Organisations 2016 Supporting information Copper-Catalyzed Oxidative Dehydrogenative - Bond Formation

Διαβάστε περισσότερα

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled Supporting Information for: Room Temperature Highly Diastereoselective Zn-Mediated Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled Stereoselectivity Reversal

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information for Lewis acid-catalyzed redox-neutral amination of 2-(3-pyrroline-1-yl)benzaldehydes via intramolecular [1,5]-hydride shift/isomerization reaction Chun-Huan Jiang, Xiantao Lei,

Διαβάστε περισσότερα

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2016 Supporting Information Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine

Διαβάστε περισσότερα

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer

Διαβάστε περισσότερα

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Synthesis of 3-omosubstituted Pyrroles via Palladium- Catalyzed Intermolecular Oxidative Cyclization

Διαβάστε περισσότερα

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting information for Metal-free Oxidative Coupling of Amines with Sodium Sulfinates:

Διαβάστε περισσότερα

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Unprecedented Carbon-Carbon Bond Cleavage in Nucleophilic Aziridine Ring Opening Reaction, Efficient Ring Transformation of Aziridines to Imidazolidin-4-ones Jin-Yuan

Διαβάστε περισσότερα

Supporting Information for

Supporting Information for Supporting Information for An atom-economic route to densely functionalized thiophenes via base-catalyzed rearrangement of 5-propargyl-2H-thiopyran-4(3H)-ones Chunlin Tang a, Jian Qin b, Xingqi Li *a a

Διαβάστε περισσότερα

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines Direct Palladium-Catalyzed Arylations of Aryl Bromides with 2/9-Substituted Pyrimido[5,4-b]indolizines Min Jiang, Ting Li, Linghua Meng, Chunhao Yang,* Yuyuan Xie*, and Jian Ding State Key Laboratory of

Διαβάστε περισσότερα

Fischer Indole Synthesis in Low Melting Mixtures

Fischer Indole Synthesis in Low Melting Mixtures Fischer Indole Synthesis in Low Melting Mixtures Sangram Gore, a,b Sundarababu Baskaran* a and Burkhard König* b Supporting Information Table of Contents: General Information General Procedure for the

Διαβάστε περισσότερα

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3 Supporting Information Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3 Shohei Shimokawa, Yuhsuke Kawagoe, Katsuhiko Moriyama, Hideo Togo* Graduate

Διαβάστε περισσότερα

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes Supporting Information for Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes Changkun Li and Jianbo Wang* Beijing National Laboratory

Διαβάστε περισσότερα

Divergent synthesis of various iminocyclitols from D-ribose

Divergent synthesis of various iminocyclitols from D-ribose Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 205 Divergent synthesis of various iminocyclitols from D-ribose Ramu Petakamsetty,

Διαβάστε περισσότερα

Supporting Information. Experimental section

Supporting Information. Experimental section Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Experimental section General. Proton nuclear magnetic resonance ( 1

Διαβάστε περισσότερα

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process Jincan Zhao 1, Hong Fang 1, Jianlin Han* 1,2 and Yi Pan* 1

Διαβάστε περισσότερα

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of Supporting Information File 1 for First DMAP-mediated direct conversion of Morita Baylis Hillman alcohols into γ-ketoallylphosphonates: Synthesis of γ-aminoallylphosphonates Marwa Ayadi 1,2, Haitham Elleuch

Διαβάστε περισσότερα

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes 1 Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes Gonzalo Blay, Isabel Fernández, Alícia Marco-Aleixandre, and José R. Pedro Departament de Química Orgànica, Facultat de Química,

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Montmorillonite KSF-Catalyzed One-pot, Three-component, Aza-Diels- Alder Reactions of Methylenecyclopropanes With Arylaldehydes and Aromatic Amines Li-Xiong Shao and Min Shi* General

Διαβάστε περισσότερα

Supporting Information for

Supporting Information for Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information for Quinine-Catalyzed Highly Enantioselective Cycloannulation

Διαβάστε περισσότερα

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting information Copper-catalysed intramolecular O-arylation: a simple

Διαβάστε περισσότερα

Aminofluorination of Fluorinated Alkenes

Aminofluorination of Fluorinated Alkenes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Synthesis of ɑ CF 3 and ɑ CF 2 H Amines via Aminofluorination of Fluorinated Alkenes Ling Yang,

Διαβάστε περισσότερα

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A new Entry to N-Carbamate Protected Arylamines Bing Zhou,* Juanjuan Du, Yaxi Yang,* Huijin Feng, Yuanchao Li Shanghai Institute of Materia Medica,

Διαβάστε περισσότερα

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for rganic Chemistry Frontiers. This journal is the Partner rganisations 2018 Palladium-catalyzed direct approach to α-cf 3 aryl ketones from arylboronic acids Bo

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Ceric Ammonium Nitrate (CAN) catalyzed efficient one-pot three component aza-diels-alder reactions for a facile synthesis of tetrahydropyranoquinoline derivatives Ravinder Goud Puligoundla

Διαβάστε περισσότερα

Supporting Information. Experimental section

Supporting Information. Experimental section Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Experimental section General. Anhydrous solvents were transferred by

Διαβάστε περισσότερα

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 205 Vilsmeier aack reagent-promoted formyloxylation of α-chloro-arylacetamides by formamide Jiann-Jyh

Διαβάστε περισσότερα

Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid

Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid Yawen Wei, a Chao Wang,* a Xue Jiang, a Dong Xue, a Zhao-Tie Liu, a and Jianliang Xiao* a,b a Key Laboratory of Applied

Διαβάστε περισσότερα

Zuxiao Zhang, Xiaojun Tang and William R. Dolbier, Jr.* Department of Chemistry, University of Florida, Gainesville, FL

Zuxiao Zhang, Xiaojun Tang and William R. Dolbier, Jr.* Department of Chemistry, University of Florida, Gainesville, FL Photoredox-Catalyzed Intramolecular Difluoromethylation of -Benzylacrylamides Coupled with a Dearomatizing Spirocyclization: Access to CF2H Containing 2- Azaspiro[4.5]deca-6,9-diene-3,8-diones. Zuxiao

Διαβάστε περισσότερα

Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles

Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles Electronic Supplementary Material (ESI) for rganic and Biomolecular Chemistry SUPPRTIG IFRMATI Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles Anahit Pews-Davtyan and Matthias Beller* Leibniz-Institut

Διαβάστε περισσότερα

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF. ESI for A simple and efficient protocol for the palladium-catalyzed ligand-free Suzuki reaction at room temperature in aqueous DMF Chun Liu,* Qijian i, Fanying Bao and Jieshan Qiu State Key Laboratory

Διαβάστε περισσότερα

Supplementary information

Supplementary information Electronic Supplementary Material (ESI) for MedChemComm. This journal is The Royal Society of Chemistry 2015 Supplementary information Synthesis of carboxyimidamide-substituted benzo[c][1,2,5]oxadiazoles

Διαβάστε περισσότερα

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2 Free Radical Initiated Coupling Reaction of Alcohols and Alkynes: not C-O but C-C Bond Formation Zhongquan Liu,* Liang Sun, Jianguo Wang, Jie Han, Yankai Zhao, Bo Zhou Institute of Organic Chemistry, Gannan

Διαβάστε περισσότερα

The Free Internet Journal for Organic Chemistry

The Free Internet Journal for Organic Chemistry The Free Internet Journal for Organic Chemistry Paper Archive for Organic Chemistry Arkivoc 2018, part iii, S1-S6 Synthesis of dihydropyranones and dihydropyrano[2,3- d][1,3]dioxine-diones by cyclization

Διαβάστε περισσότερα

Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol

Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol Supporting Information for: Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol Yu-Fang Zhang, Diao Chen, Wen-Wen

Διαβάστε περισσότερα

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions Supplementary Information for Phosphorus xychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions u Chen,* a,b Xunfu Xu, a Liu Liu, a Guo Tang,* a

Διαβάστε περισσότερα

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang* Facile construction of the functionalized 4H-chromene via tandem benzylation and cyclization Jinmin Fan and Zhiyong Wang* Hefei National Laboratory for Physical Science at Microscale, Joint- Lab of Green

Διαβάστε περισσότερα

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds Electronic upplementary Material (EI) for rganic & Biomolecular Chemistry. This journal is The Royal ociety of Chemistry 2017 Laboratoire de Méthodologie et ynthèse de Produit aturels. Université du Québec

Διαβάστε περισσότερα

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate upporting Information Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate Jing-Yu Wu, Zhi-Bin Luo, Li-Xin Dai and Xue-Long Hou* a tate Key Laboratory of Organometallic

Διαβάστε περισσότερα

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl Philippe Pierrat, Philippe Gros* and Yves Fort Synthèse Organométallique

Διαβάστε περισσότερα

Supporting Information For: Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes

Supporting Information For: Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes Supporting Information For: Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes Xiao-Hui Yang and Vy M. Dong* dongv@uci.edu Department of Chemistry, University

Διαβάστε περισσότερα

Supporting Information. Route to benzo- and pyrido-fused 1,2,4-triazinyl radicals via N'-(het)aryl- N'-[2-nitro(het)aryl]hydrazides

Supporting Information. Route to benzo- and pyrido-fused 1,2,4-triazinyl radicals via N'-(het)aryl- N'-[2-nitro(het)aryl]hydrazides Supporting Information Route to benzo- and pyrido-fused 1,2,4-triazinyl radicals via N'-(het)aryl- N'-[2-nitro(het)aryl]hydrazides Andrey A. Berezin, Georgia Zissimou, Christos P. Constantinides, Yassine

Διαβάστε περισσότερα

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu* Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 204 Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng

Διαβάστε περισσότερα

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China; Supplementary Data Synthesis, Chemo-selective Properties of Substituted 9-Aryl-9H-fluorenes from Triarylcarbinols and Enantiomerical Kinetics of Chiral 9-Methoxy-11-(naphthalen-1-yl)-11H-benzo[a]fluorene

Διαβάστε περισσότερα

Supplement: Intramolecular N to N acyl migration in conformationally mobile 1 -acyl-1- systems promoted by debenzylation conditions (HCOONH 4

Supplement: Intramolecular N to N acyl migration in conformationally mobile 1 -acyl-1- systems promoted by debenzylation conditions (HCOONH 4 Cent. Eur. J. Chem. 9(5) 2011 S164-S175 DI: 10.2478/s11532-011-0082-y Central European Journal of Chemistry Supplement: Intramolecular to acyl migration in conformationally mobile 1 -acyl-1- benzyl-3,4

Διαβάστε περισσότερα

Experimental procedure

Experimental procedure Supporting Information for Direct electrophilic N-trifluoromethylthiolation of amines with trifluoromethanesulfenamide Sébastien Alazet 1,2, Kevin Ollivier 1 and Thierry Billard* 1,2 Address: 1 Institute

Διαβάστε περισσότερα

Supporting Information

Supporting Information Electronic upplementary Material (EI) for Green Chemistry. This journal is The Royal ociety of Chemistry 204 upporting Information ynthesis of sulfonamides via I 2 -mediated reaction of sodium sulfinates

Διαβάστε περισσότερα

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2015 SUPPRTIG IFRMATI Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst-

Διαβάστε περισσότερα

gem-dichloroalkenes for the Construction of 3-Arylchromones

gem-dichloroalkenes for the Construction of 3-Arylchromones Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Pd(OAc)2/S=PPh3 Accelerated Activation of gem-dichloroalkenes for the Construction of 3-Arylchromones

Διαβάστε περισσότερα

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting Information 1. General experimental methods (S2). 2. Table 1: Initial studies (S2-S4).

Διαβάστε περισσότερα

Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation

Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation This journal is The Royal Society of Chemistry 212 Supporting Information for Synthesis of Fused -Heterocycles via Tandem C-H Activation Ge Meng, Hong-Ying iu, Gui-Rong Qu, John S. Fossey, Jian-Ping Li,*

Διαβάστε περισσότερα

An Enantioselective Oxidative C H/C H Cross-Coupling Reaction: Highly Efficient Method to Prepare Planar Chiral Ferrocenes

An Enantioselective Oxidative C H/C H Cross-Coupling Reaction: Highly Efficient Method to Prepare Planar Chiral Ferrocenes Supporting Information for An Enantioselective Oxidative C H/C H Cross-Coupling Reaction: Highly Efficient Method to Prepare Planar Chiral Ferrocenes De-Wei Gao, Qing Gu, and Shu-Li You* State Key Laboratory

Διαβάστε περισσότερα

Ferric(III) Chloride Catalyzed Halogenation Reaction of Alcohols and Carboxylic Acids using - Dichlorodiphenylmethane

Ferric(III) Chloride Catalyzed Halogenation Reaction of Alcohols and Carboxylic Acids using - Dichlorodiphenylmethane Supporting Information Ferric(III) Chloride Catalyzed Halogenation Reaction of Alcohols and Carboxylic Acids using - Dichlorodiphenylmethane Chang-Hee Lee,, Soo-Min Lee,, Byul-Hana Min, Dong-Su Kim, Chul-Ho

Διαβάστε περισσότερα

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2017 Modular Synthesis of Propargylamine Modified Cyclodextrins by a Gold(III)-catalyzed Three Component

Διαβάστε περισσότερα

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006 Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006 1 A Facile Way to Synthesize 2H-Chromenes: Reconsideration of the Reaction Mechanism between Salicylic Aldehyde and

Διαβάστε περισσότερα

Supplementary Figure 1. (X-ray structures of 6p and 7f) O N. Br 6p

Supplementary Figure 1. (X-ray structures of 6p and 7f) O N. Br 6p Supplementary Figure 1 (X-ray structures of 6p and 7f) Me Br 6p 6p Supplementary Figures 2-68 (MR Spectra) Supplementary Figure 2. 1 H MR of the 6a Supplementary Figure 3. 13 C MR of the 6a Supplementary

Διαβάστε περισσότερα

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du* Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Palladium-Catalyzed Asymmetric Benzylic Substitution of Secondary Benzyl Carbonates with Nitrogen and Oxygen Nucleophiles Atifah Najib, Koji Hirano,* and Masahiro Miura* Department

Διαβάστε περισσότερα

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2017 Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via

Διαβάστε περισσότερα

Diastereo- and Enantioselective Propargylation of Benzofuranones. Catalyzed by Pybox-Copper Complex

Diastereo- and Enantioselective Propargylation of Benzofuranones. Catalyzed by Pybox-Copper Complex Diastereo- and Enantioselective Propargylation of Benzofuranones Catalyzed by Pybox-Copper Complex Long Zhao, Guanxin Huang, Beibei Guo, Lijun Xu, Jie Chen, Weiguo Cao, Gang Zhao, *, Xiaoyu Wu *, Department

Διαβάστε περισσότερα

Supporting Information for

Supporting Information for Supporting Information for Palladium-Catalyzed C-H Bond Functionalization of C6-Arylpurines Hai-Ming Guo,* Wei-Hao Rao, Hong-Ying iu, Li-Li Jiang, Ge ng, Jia-Jia Jin, Xi-ing Yang, and Gui-Rong Qu* College

Διαβάστε περισσότερα

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2018 Supporting Information Silver or Cerium-Promoted Free Radical Cascade Difunctionalization

Διαβάστε περισσότερα

Supporting Information. Synthesis and biological evaluation of nojirimycin- and

Supporting Information. Synthesis and biological evaluation of nojirimycin- and Supporting Information for Synthesis and biological evaluation of nojirimycin- and pyrrolidine-based trehalase inhibitors Davide Bini 1, Francesca Cardona 2, Matilde Forcella 1, Camilla Parmeggiani 2,3,

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Metal-catalyzed Stereoselective and Protecting-group-free Synthesis of 1,2-cis-Glycosides Using 4,6-Dimethoxy-1,3,5-triazin-2-yl Glycosides as Glycosyl Donors Tomonari Tanaka,* 1

Διαβάστε περισσότερα

Supporting information

Supporting information Electronic upplementary Material (EI) for New Journal of Chemistry. This journal is The Royal ociety of Chemistry and the Centre National de la Recherche cientifique 7 upporting information Lipase catalyzed,-addition

Διαβάστε περισσότερα

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information. Electronic upplementary Material (EI) for rganic & Biomolecular Chemistry. This journal is The Royal ociety of Chemistry 2018 The,-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H Carbonylation using

Διαβάστε περισσότερα

Supporting Information for

Supporting Information for Supporting Information for A ovel Synthesis of luorinated Pyrazoles via Gold(I)-Catalyzed Tandem Aminofluorination of Alkynes in the Presence of Selectfluor Jianqiang Qian, Yunkui Liu,* Jie Zhu, Bo Jiang,

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2010 A Highly Effective Bis(sulfonamide) Diamine Ligand: A Unique Chiral Skeleton for the Enantioselective Cu-Catalyzed

Διαβάστε περισσότερα

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent Supplementary information for the paper Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent Yang Xue, Ling-Po Li, Yan-Hong He * & Zhi Guan * School of Chemistry and Chemical Engineering,

Διαβάστε περισσότερα

Acrylate Esters for Synthesis of Chiral γ-lactams and Amino Acids

Acrylate Esters for Synthesis of Chiral γ-lactams and Amino Acids Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2015 Supplementary Information for: Highly Efficient Asymmetric Hydrogenation

Διαβάστε περισσότερα

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors Supporting Information Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors Xiao-Peng He, abd Cui Li, d Xiao-Ping Jin, b Zhuo Song, b Hai-Lin Zhang,

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Lewis Acid Mediated [2,3]-Sigmatropic Rearrangement of Allylic α-amino Amides. Jan Blid, Peter Brandt, Peter Somfai*, Department of Chemistry, rganic Chemistry, Royal Institute of

Διαβάστε περισσότερα

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information Synthesis of novel 1,2,3-triazolyl derivatives of

Διαβάστε περισσότερα

Supplementary Material

Supplementary Material Supplementary Material Chiral N-aryl tert-butanesulfinamide-olefin ligands for rhodium-catalyzed asymmetric 1,4-addition Shuai Yuan, Qingle Zeng,* Jiajun Wang, Lihong Zhou State Key Laboratory of Geohazard

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information An Approach to 3,6-Disubstituted 2,5-Dioxybenzoquinones via Two Sequential Suzuki Couplings. Three-step Synthesis of Leucomelone Xianwen Gan, Wei Jiang, Wei Wang,,,* Lihong Hu,,*

Διαβάστε περισσότερα

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors Andrea Trabocchi a, icolino Pala b, Ilga Krimmelbein c, Gloria Menchi a, Antonio Guarna a, Mario Sechi b, Tobias Dreker c, Andrea Scozzafava

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Metal-Free Direct Intramolecular Carbotrifluoromethylation of Alkenes to Functionalized Trifluoromethyl Azaheterocycles Lei Li, Min Deng, Sheng-Cai Zheng, Ya-Ping Xiong, Li-Jiao

Διαβάστε περισσότερα

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles Supporting Information for Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles Angélica de Fátima S. Barreto*, Veronica Alves dos Santos, and Carlos

Διαβάστε περισσότερα

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans Liang Yun, Shi Tang, Xu-Dong Zhang, Li-Qiu Mao, Ye-Xiang Xie and Jin-Heng Li* Key Laboratory

Διαβάστε περισσότερα

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Pd Catalyzed Carbonylation for the Construction of Tertiary and Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Pd Catalyzed Carbonylation for the Construction of Tertiary and Quaternary

Διαβάστε περισσότερα

Supplementary Information for

Supplementary Information for Supplementary Information for Organocatalytic Asymmetric Intramolecular [3+2] Cycloaddition: A Straightforward Approach to Access Multiply Substituted Hexahydrochromeno[4,3-b]pyrrolidine Derivatives in

Διαβάστε περισσότερα

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors Supporting Information Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors Frédéric Pin, a Frédéric Buron, a Fabienne Saab, a Lionel Colliandre,

Διαβάστε περισσότερα

Supporting Information

Supporting Information S1 Supporting Information Synthesis of 2-Arylated Hydroxytyrosol Derivatives via Suzuki-Myaura Cross-Coupling Roberta Bernini, a Sandro Cacchi, b* Giancarlo Fabrizi, b* Eleonora Filisti b a Dipartimento

Διαβάστε περισσότερα

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2 Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with β-nitroalkenes Jing Zheng, Dahai Wang, and Sunliang Cui* College of Pharmaceutical Sciences, Zhejiang University,

Διαβάστε περισσότερα

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 6945 Weinheim, 2007 A New Method for Constructing Quaternary Carbon Centres: Tandem Rhodium-Catalysed,4-Addition/Intramolecular Cyclization.

Διαβάστε περισσότερα

Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes

Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes Supporting Information for Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes Yibiao Li* 1, Liang Cheng 1, Xiaohang Liu

Διαβάστε περισσότερα

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Synthesis and evaluation of novel aza-caged Garcinia xanthones Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry Synthesis and evaluation of novel aza-caged Garcinia xanthones Xiaojin Zhang, a,1 Xiang Li, a,1 Haopeng Sun, * b Zhengyu Jiang,

Διαβάστε περισσότερα