CONTINUUM MECHANICS. e 3. x e 2 O e 1. - volume / area V 0, V / A 0,A - base vectors { e 1, e 2, e 3 } - position vector x 0, x
|
|
- Ἀγαπητός Σκλαβούνος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 INTRODUCTION
2 CONTINUUM MECHANICS V 0 A 0 u V A x 0 e 3 x e 2 O e 1 - volume / area V 0, V / A 0,A - base vectors { e 1, e 2, e 3 } - position vector x 0, x - displacement vector u - strains ε kl = 1 2 (u k,l + u l,k ) - compatibility relations - equilibrium equations σ ij,j + ρq i = 0 ; σ ij = σ ji - density ρ - load/mass q i - boundary conditions p i = σ ij n j - material model σ ij = N ij (ε kl )
3 MATERIAL BEHAVIOR σ ε t 1 t 2 t t 1 t 2 t σ ε t 1 t 2 t t 1 t 2 t σ ε t 1 t 2 t t 1 t 2 t
4 STRESS-STRAIN CURVES σ σ σ σ ε ε ε ε
5 FRACTURE
6 FRACTURE MECHANICS (Source: internet) questions : when crack growth? ( crack growth criteria) crack growth rate? residual strength? life time? inspection frequency? repair required? fields of science : material science and chemistry theoretical and numerical mathematics experimental and theoretical mechanics
7 OVERVIEW OF FRACTURE MECHANICS LEFM (Linear Elastic Fracture Mechanics) energy balance crack tip stresses SSY (Small Scale Yielding) DFM (Dynamic Fracture Mechanics) NLFM (Non-Linear Fracture Mechanics) EPFM (Elasto-Plastic Fracture Mechanics) Numerical methods : EEM / BEM Fatigue (HCF / LCF) CDM (Continuum Damage Mechanics) Micro mechanics micro-cracks (intra grain) voids (intra grain) cavities at grain boundaries rupture & disentangling of molecules rupture of atomic bonds dislocation slip
8 EXPERIMENTAL FRACTURE MECHANICS (Source: Internet)
9 LINEAR ELASTIC FRACTURE MECHANICS
10 DYNAMIC FRACTURE MECHANICS
11 NONLINEAR FRACTURE MECHANICS CTOD J-integral
12 NUMERICAL TECHNIQUES
13 FATIGUE
14 OBJECTIVES Insight in : crack growth mechanisms brittle / ductile energy balance crack tip stresses crack growth direction plastic crack tip zone crack growth speed nonlinear fracture mechanics numerical methods fatigue
15
16 FRACTURE MECHANICS
17 FRACTURE MECHANISMS shear fracture cleavage fracture fatigue fracture crazing de-adhesion
18 SHEARING dislocations voids crack dimples load direction
19 CLEAVAGE intra-granulair inter-granulair intra-granular HCP-, BCC-crystal T low ε high 3D-stress state inter-granular weak grain boundary environment (H 2 ) T high
20 FATIGUE clam shell pattern striations
21 CRAZING (Source: Internet) stress whitening crazing materials : PS, PMMA
22 DUCTILE - BRITTLE BEHAVIOR σ ABS, nylon, PC PE, PTFE ε (%) surface energy : γ [Jm 2 ] solids : γ 1 [Jm 2 ] independent from cleavage/shearing ex.: alloyed steels; rubber
23 CHARPY V-NOTCH TEST
24 CHARPY CV-VALUE C v fcc (hcp) metals low strength bcc metals Be, Zn, ceramics high strength metals Al, Ti alloys T C v NDT FATT FTP T T t - Impact Toughness C v - Nil Ductility Temperature NDT - Nil Fracture Appearance Transition Temperature FATT(T t ) - Nil Fracture Transition Plastic FTP
25 THEORETICAL STRENGTH f r f f a λ x r x σ S ( ) 2πx f(x) = f max sin ; x = r a 0 λ σ(x) = 1 ( ) 2πx f(x) = σmax sin S λ
26 ENERGY BALANCE available elastic energy per surface-unity [N m 1 ] U i = 1 S = required surface energy x=λ/2 x=0 x=λ/2 x=0 f(x) dx ( ) 2πx σ max sin dx λ =σ max λ π [Nm 1 ] U a = 2γ [Nm 1 ] energy balance at fracture U i = U a λ = 2πγ σ = σ max sin σ max ( ) x γ σ max
27 APPROXIMATIONS linearization σ = σ max sin ( ) x γ σ max x γ σ2 max linear strain of atomic bond elastic modulus ε = x a 0 x = εa 0 σ = εa 0 γ σ2 max E = ( dσ dε) x=0 = ( dσ dx a 0) x=0 = σ 2 max a 0 γ σ max = Eγ a 0 theoretical strength σ th = Eγ a 0
28 DISCREPANCY WITH EXPERIMENTAL OBSERVATIONS a 0 [m] E [GPa] σ th [GPa] σ b [MPa] σ th /σ b glass steel silica fibers iron whiskers silicon whiskers alumina whiskers ausformed steel piano wire discrepancy with experiments σ th σ b
29 GRIFFITH S EXPERIMENTS σ b [MPa] d [µ] DEFECTS FRACTURE MECHANICS
30 CRACK LOADING MODES Mode I Mode II Mode III Mode I = opening mode Mode II = sliding mode Mode III = tearing mode
31 EXPERIMENTAL TECHNIQUES
32 SURFACE CRACKS (Source: Internet site (2009)) dye penetration small surface cracks fast and cheap on-site magnetic particles cracks disturbance of magnetic field surface cracks for magnetic materials only eddy currents impedance change of a coil penetration depth : a few mm s difficult interpretation
33 ELECTRICAL RESISTANCE
34 X-RAY (Source: Internet site University of Strathclyde (2006)) orientation dependency
35 ULTRASOUND piëzo-el. crystal wave sensor S in out t t
36 ACOUSTIC EMISSION registration intern sounds (hits)
37 ADHESION TESTS blade wedge test peel test (0 o and 90 o ) bending test scratch test indentation test laser blister test pressure blister test fatigue friction test
38 FRACTURE ENERGY
39 ENERGY BALANCE a B = thickness A = Ba Ḃ = 0 U e = U i + U a + U d + U k [Js 1 ] d dt ( ) = da d dt da ( ) = Ȧ d da ( ) = ȧ d da ( ) du e da = du i da + du a da + du d da + du k da [Jm 1 ] total energy balance du e da du i da = du a da + du d da + du k da [Jm 1 ]
40 GRIFFITH S ENERGY BALANCE no dissipation no kinetic energy energy balance energy release rate crack resistance force du e da du i da = du a da G = 1 ( due B da du ) i [Jm 2 ] da R = 1 ( ) dua = 2γ [Jm 2 ] B da Griffith s crack criterion G = R = 2γ [Jm 2 ]
41 GRIFFITH S ENERGY BALANCE du e = 0 a U a da needed G, R 2γ a c available a c U i du i da < du a da du i da > du a da du i da = du a da no crack growth unstable crack growth critical crack length
42 GRIFFITH STRESS σ y 2a a thickness B x σ U i = 2πa 2 B 1 σ 2 2 E ; U a = 4aB γ [Nm = J] Griffith s energy balance (du e = 0) G = 1 B ( ) dui da = 1 B ( ) dua = R 2πa σ2 da E = 4γ [Jm 2 ] Griffith stress σ gr = 2γE πa critical crack length a c = 2γE πσ 2
43 DISCREPANCY WITH EXPERIMENTAL OBSERVATIONS σ gr σ c reason remedy neglection of dissipation measure critical energy release rate G c glass G c = 6 [Jm 2 ] wood G c = 10 4 [Jm 2 ] steel G c = 10 5 [Jm 2 ] composite design problem / high alloyed steel / bone (elephant and mouse) energy balance G = 1 B ( due da du ) i da = R = G c critical crack length Griffith s crack criterion a c = G ce 2πσ 2 G = G c
44 COMPLIANCE CHANGE compliance : C = u/f F u P F u P a a + da F F a a + da a a + da du i du i du e u u fixed grips constant load
45 COMPLIANCE CHANGE : FIXED GRIPS fixed grips : du e = 0 du i =U i (a + da) U i (a) (< 0) = 1 2 (F + df)u 1 2 Fu = 1 2 udf Griffith s energy balance G= 1 2B udf da = 1 2B = 1 2B F2 dc da u 2 dc C 2 da
46 COMPLIANCE CHANGE : CONSTANT LOAD constant load du e = U e (a + da) U e (a) = Fdu du i =U i (a + da) U i (a) (> 0) = 1 2 F(u + du) 1 2 Fu = 1 2 Fdu Griffith s energy balance G= 1 2B F du da = 1 2B F2 dc da
47 COMPLIANCE CHANGE : EXPERIMENT F a 1 F u a 2 ap a 3 a 4 u G = shaded area a 4 a 3 1 B no fixed grips no constant load small deviation!!
48 EXAMPLE B F u 2h a u F u = Fa3 3EI = 4Fa3 EBh 3 C = u F = 2u F = 8a3 G = 1 B [ 1 2 F2dC da G c = 2γ F c = B a dc EBh 3 da = 24a2 EBh 3 ] = 12F2 a 2 [J m 2 ] EB 2 h γeh3
49 EXAMPLE h a question : which h(a) makes dc da independent from a? C = u F = 2u F = 8a3 EBh 3 dc da = 24a2 EBh 3 choice : h = h 0 a n u = Fa 3 3(1 n)ei = 4Fa 3 (1 n)ebh 3 = 4Fa3(1 n) (1 n)ebh 3 0 C = 2u F = 8a3(1 n) (1 n)ebh 3 0 dc da = 24a(2 3n) EBh 3 0 dc da constant for n = 2 3 h = h 0 a 2 3
50 STRESS CONCENTRATIONS
51 DEFORMATION Q X + d X Q P u x + d x P X e 3 e 2 x e 1 x i =X i + u i (X i ) x i + dx i =X i + dx i + u i (X i + dx i ) =X i + dx i + u i (X i ) + u i,j dx j difference vector dx i = dx i +u i,j dx j = (δ ij +u i,j )dx j ds = d x = dx i dx i ds = d X = dx i dx i
52 STRAINS ds 2 =dx i dx i = [(δ ij + u i,j )dx j ][(δ ik + u i,k )dx k ] =(δ ij δ ik + δ ij u i,k + u i,j δ ik + u i,j u i,k )dx j dx k =(δ jk + u j,k + u k,j + u i,j u i,k )dx j dx k =(δ ij + u i,j + u j,i + u k,i u k,j )dx i dx j =dx i dx i + (u i,j + u j,i + u k,i u k,j )dx i dx j =ds 2 + (u i,j + u j,i + u k,i u k,j )dx i dx j ds 2 ds 2 =(u i,j + u j,i + u k,i u k,j )dx i dx j =2γ ij dx i dx j Green-Lagrange strains γ ij = 1 2 (u i,j + u j,i + u k,i u k,j ) linear strains ε ij = 1 2 (u i,j + u j,i )
53 COMPATIBILITY 3 displacement components 9 strain components 6 dependencies 6 compatibility equations 2ε 12,12 ε 11,22 ε 22,11 = 0 2ε 23,23 ε 22,33 ε 33,22 = 0 2ε 31,31 ε 33,11 ε 11,33 = 0 ε 11,23 + ε 23,11 ε 31,12 ε 12,13 = 0 ε 22,31 + ε 31,22 ε 12,23 ε 23,21 = 0 ε 33,12 + ε 12,33 ε 23,31 ε 31,32 = 0
54 STRESS unity normal vector stress vector Cauchy stress components n = n i e i p = p i e i p i = σ ij n j stress cube σ 33 σ 23 σ 13 σ σ 21 σ 31 σ 12 σ 22 1 σ 11
55 LINEAR ELASTIC MATERIAL BEHAVIOR σ ij = C ijkl ε lk material symmetry isotropic material 2 mat.pars
56 HOOKE S LAW FOR ISOTROPIC MATERIALS σ ij = E 1 + ν ε ij = 1 + ν E ( ε ij + ( σ ij ν ) 1 2ν δ ijε kk ν 1 + ν δ ijσ kk ) i = 1,2, 3 i = 1, 2,3 σ 11 σ 22 σ 33 σ 12 σ 23 σ 31 = α 1 ν ν ν ν 1 ν ν ν ν 1 ν ν ν ν ε 11 ε 22 ε 33 ε 12 ε 23 ε 31 α = E/[(1 + ν)(1 2ν)] ε 11 ε 22 ε 33 ε 12 ε 23 ε 31 = 1 E 1 ν ν ν 1 ν ν ν ν ν ν σ 11 σ 22 σ 33 σ 12 σ 23 σ 31
57 EQUILIBRIUM EQUATIONS stress components on stress cube σ 12 σ 13 + σ 13,3 dx 3 σ 23 + σ 23,3 dx 3 σ 33 + σ 33,3 dx 3 σ 22 σ 32 σ 11 σ 21 1 σ 11 + σ 11,1 dx 1 σ 21 + σ 21,1 dx 1 σ 31 + σ 31,1 dx σ 13 σ 23 σ 33 σ 31 σ 12 + σ 12,2 dx 2 σ 22 + σ 22,2 dx 2 σ 32 + σ 32,2 dx 2 volume load ρq i force equilibrium σ ij,j + ρq i = 0 i = 1,2, 3 moment equilibrium σ ij = σ ji
58 PLANE STRESS σ 33 = σ 13 = σ 23 = 0 equilibrium (q i = 0) σ 11,1 + σ 12,2 = 0 ; σ 21,1 + σ 22,2 = 0 compatibility 2ε 12,12 ε 11,22 ε 22,11 = 0 Hooke s law σ ij = E 1 + ν ε ij = 1 + ν E ( ε ij + ( σ ij ν ) 1 ν δ ijε kk ν 1 + ν δ ijσ kk ) i = 1,2 i = 1, 2 Hooke s law in matrix notation ε 11 ε 22 ε 12 σ 11 σ 22 σ 12 = 1 E = E 1 ν 2 1 ν 0 ν ν 1 ν 0 ν ν σ 11 σ 22 σ 12 ε 11 ε 22 ε 12 ε 33 = ν E (σ 11 + σ 22 ) = ν 1 ν (ε 11 + ε 22 ) ε 13 = ε 23 = 0
59 PLANE STRAIN ε 33 = ε 13 = ε 23 = 0 equilibrium (q i = 0) σ 11,1 + σ 12,2 = 0 ; σ 21,1 + σ 22,2 = 0 compatibility 2ε 12,12 ε 11,22 ε 22,11 = 0 Hooke s law ε ij = 1 + ν E (σ ij νδ ij σ kk ) i = 1, 2 ( ) σ ij = ε ij + E 1 + ν Hooke s law in matrix notation σ 11 σ 22 σ 12 ε 11 ε 22 ε 12 = E (1 + ν)(1 2ν) = 1 + ν E ν 1 2ν δ ijε kk 1 ν ν 0 ν 1 ν i = 1, 2 1 ν ν 0 ν 1 ν ν σ 11 σ 22 σ 12 ε 11 ε 22 ε 12 σ 33 = Eν (1 + ν)(1 2ν) (ε 11 + ε 22 ) = ν (σ 11 + σ 22 ) σ 13 = σ 23 = 0
60 DISPLACEMENT METHOD σ ij,j = 0 σ ij = E 1 + ν E 1 + ν ( ε ij,j + ( ε ij + ε ij = 1 2 (u i,j + u j,i ) ν ) 1 2ν δ ijε kk,j ν ) 1 2ν δ ijε kk,j = 0 E 1 + ν BC s 1 2 (u i,jj + u j,ij ) + Eν (1 + ν)(1 2ν) δ iju k,kj = 0 u i ε ij σ ij
61 STRESS FUNCTION METHOD ψ(x 1,x 2 ) σ ij = ψ,ij + δ ij ψ,kk σ ij,j = 0 ε ij = 1 + ν E (σ ij νδ ij σ kk ) ε ij = 1 + ν E { ψ,ij + (1 ν)δ ij ψ,kk } 2ε 12,12 ε 11,22 ε 22,11 = 0 2ψ, ψ, ψ,1111 = 0 (ψ,11 + ψ,22 ),11 + (ψ,11 + ψ,22 ),22 = 0 Laplace operator : 2 = 2 x x 2 2 = ( ) 11 + ( ) 22 bi-harmonic equation 2 ( 2 ψ) = 4 ψ = 0 BC s } ψ σ ij ε ij u i
62 CYLINDRICAL COORDINATES z e z e t e r x e 3 e 2 e 1 θ r y vector bases { e 1, e 2, e 3 } { e r, e t, e z } e r = e r (θ) = e 1 cosθ + e 2 sinθ e t = e t (θ) = e 1 sin θ + e 2 cosθ θ { e r(θ)} = e t (θ) ; θ { e t(θ)} = e r (θ)
63 LAPLACE OPERATOR z e z e t e r x e 3 e 2 e 1 θ r y gradient operator = e r r + e t 1 r θ + e z z Laplace operator two-dimensional 2 = = 2 r r 2 = 2 r r r + 1 r 2 2 θ z 2 r + 1 r 2 2 θ 2
64 BI-HARMONIC EQUATION bi-harmonic equation ( 2 r r stress components r ) ( 2 ψ r 2 θ 2 r + 1 ψ 2 r r ) ψ r 2 θ 2 σ rr = 1 r σ tt = 2 ψ r 2 ψ r ψ r 2 θ 2 σ rt = 1 ψ r 2 θ 1 2 ψ r r θ = r ( 1 r ) ψ θ = 0
65 CIRCULAR HOLE IN INFINITE PLATE y σ σ r θ x 2a ( 2 r r stress components r ) ( 2 ψ r 2 θ 2 r + 1 ψ 2 r r ) ψ r 2 θ 2 σ rr = 1 r σ tt = 2 ψ r 2 ψ r ψ r 2 θ 2 σ rt = 1 ψ r 2 θ 1 2 ψ r r θ = r ( 1 r ) ψ θ = 0
66 LOAD TRANSFORMATION σ σ θ σ rr σ rt σ rr σ rt 2a 2b equilibrium σ rr (r = b,θ) = 1 2 σ σ cos(2θ) σ rt (r = b, θ) = 1 2 σ sin(2θ) two load cases I. σ rr (r = a) = σ rt (r = a) = 0 σ rr (r = b) = 1 2 σ ; σ rt(r = b) = 0 II. σ rr (r = a) = σ rt (r = a) = 0 σ rr (r = b) = 1 2 σ cos(2θ) ; σ rt(r = b) = 1 2 σ sin(2θ)
67 LOAD CASE I σ rr (r = a) = σ rt (r = a) = 0 σ rr (r = b) = 1 2 σ ; σ rt(r = b) = 0 Airy function ψ = f(r) stress components bi-harmonic equation σ rr = 1 r ψ r ψ r 2 θ = 1 df 2 rdr σ tt = 2 ψ r = d2 f 2 dr 2 σ rt = r ( 1 r ψ θ ) = 0 ( d 2 dr + 1 )( d d 2 f 2 rdr dr + 1 ) df = 0 2 rdr
68 SOLUTION general solution ψ(r) = A lnr + Br 2 ln r + Cr 2 + D stresses σ rr = A + B(1 + 2 ln r) + 2C r2 σ tt = A + B(3 + 2 lnr) + 2C r2 strains (from Hooke s law for plane stress) ε rr = 1 [ ] A E r2(1 + ν) + B{(1 3ν) + 2(1 ν) lnr} + 2C(1 ν) ε tt = 1 1 [ Ar ] E r (1 + ν) + B{(3 ν)r + 2(1 ν)r lnr} + 2C(1 ν)r compatibility ε rr = du dr = d(rε tt) dr B = 0 2 BC s and b a A and C σ rr = 1 2 σ(1 a2 r 2 ) ; σ tt = 1 2 σ(1 + a2 r 2 ) ; σ rt = 0
69 LOAD CASE II σ rr (r = a) = σ rt (r = a) = 0 σ rr (r = b) = 1 2 σ cos(2θ) ; σ rt(r = b) = 1 2 σ sin(2θ) Airy function ψ(r, θ) = g(r) cos(2θ) stress components σ rr = 1 r bi-harmonic equation ( 2 r r ( d 2 dr r ψ r ψ ; σ r 2 θ 2 tt = 2 ψ r 2 σ rt = 1 ψ r 2 θ 1 2 ψ r r θ = r r ) {( d 2 g r 2 θ 2 d dr 4 r 2 ( 1 r ψ θ ) dr + 1 dg 2 r dr 4 ) r 2g ) cos(2θ) = 0 )( d 2 g dr + 1 dg 2 r dr 4 r 2g } cos(2θ) = 0
70 SOLUTION general solution g = Ar 2 + Br 4 + C 1 r 2 + D ψ = ( Ar 2 + Br 4 + C 1 r 2 + D ) cos(2θ) stresses ( σ rr = 2A + 6C r + 4D ) cos(2θ) 4 r 2 ( σ tt = 2A + 12Br 2 + 6C ) cos(2θ) r 4 ( σ rt = 2A + 6Br 2 6C r 2D ) sin(2θ) 4 r 2 4 BC s and b a A,B,C and D ( ) σ rr = 1 2 σ 1 + 3a4 r 4a2 cos(2θ) 4 r 2 σ tt = 1 2 σ ( 1 + 3a4 r 4 ) cos(2θ) ( σ rt = 1 2 σ 1 3a4 r + 2a2 4 r 2 ) sin(2θ)
71 STRESSES FOR TOTAL LOAD σ rr = σ ) ) ] [(1 a2 + (1 + 3a4 2 r 2 r 4a2 cos(2θ) 4 r 2 σ tt = σ ) ) ] [(1 + a2 (1 + 3a4 cos(2θ) 2 r 2 r 4 σ rt = σ ] [1 3a4 2 r + 2a2 sin(2θ) 4 r 2
72 SPECIAL POINTS σ rr (r = a, θ) = σ rt (r = a,θ) = σ rt (r, θ = 0) = 0 σ tt (r = a,θ = π 2 ) = 3σ σ tt (r = a,θ = 0) = σ stress concentration factor K t = σ max σ = 3 [-] K t is independent of hole diameter!
73 STRESS GRADIENTS large hole : smaller stress gradient larger area with higher stress higher chance for critical defect in high stress area
74 ELLIPTICAL HOLE y σ σ yy σ a b radius ρ x σ yy (x = a,y = 0) = σ ( a ) b 2σ a/ρ = σ ( ) a/ρ stress concentration factor K t = 2 a/ρ [-]
75 CRACK TIP STRESSES
76 COMPLEX PLANE x 2 θ r x 1 crack tip = singular point complex function theory complex Airy function (Westergaard, 1939)
77 COMPLEX VARIABLES x 2 e i r θ z e r x 1 z z = x 1 + ix 2 = re iθ z = x 1 ix 2 = re iθ x 1 = 1 (z + z) 2 x 2 = 1 2i (z z) = 1 i(z z) 2 z = x 1 e r + x 2 e i = x 1 e r + x 2 i e r = (x 1 + ix 2 ) e r
78 COMPLEX FUNCTIONS complex function f(z) = φ + iζ = φ(x 1, x 2 ) + iζ(x 1, x 2 ) = f f( z) = φ(x 1,x 2 ) iζ(x 1, x 2 ) = f φ = 1 2 {f + f } ; ζ = 1 2 i{f f } 2 φ = 2 ζ = 0 appendix!!
79 LAPLACE OPERATOR complex function g(x 1, x 2 ) = g(z, z) Laplacian 2 g = 2 g x g x 2 2 derivatives (see App. A) g = g z + g z = g x 1 z x 1 z x 1 z + g z 2 g x 2 1 = 2 g z g 2 z z + 2 g z 2 g = g z + g z = i g x 2 z x 2 z x 2 z i g z 2 g x 2 2 = 2 g z g 2 z z 2 g z 2 Laplacian 2 g = 2 g x g x 2 2 = 4 2 g z z 2 = 4 2 z z
80 BI-HARMONIC EQUATION Airy function ψ(z, z) bi-harmonic equation 2 ( 2 ψ(z, z) ) = 0
81 SOLUTION OF BI-HARMONIC EQUATION real part of complex function f satisfies Laplace eqn. 2 ( 2 ψ(z, z) ) = 2 (φ(z, z)) = 0 φ = f + f choice Airy function 2 ψ = 4 2 ψ z z = φ = f + f integration ψ = 1 2 [ zω + z Ω + ω + ω ] unknown functions : Ω ; Ω ; ω ; ω
82 STRESSES Airy function ψ = 1 2 [ zω + z Ω + ω + ω ] stress components σ ij =σ ij (z, z) = ψ,ij + δ ij ψ,kk σ 11 = ψ,11 + ψ,γγ = ψ,22 =Ω + Ω 1 2 { zω + ω + z Ω + ω } σ 22 = ψ,22 + ψ,γγ = ψ,11 =Ω + Ω { zω + ω + z Ω + ω } σ 12 = ψ,12 = 1 2 i { zω + ω z Ω ω }
83 DISPLACEMENT u 2 u e i e 2 x 2 θ r u 1 e r e 1 x 1 definition of complex displacement u=u 1 e 1 + u 2 e 2 =u 1 e r + u 2 e i =u 1 e r + u 2 i e r =(u 1 + iu 2 ) e r =u e r u=u 1 + iu 2 =u 1 (x 1, x 2 ) + iu 2 (x 1,x 2 ) = u(z, z) ū=u 1 iu 2 = ū(z, z)
84 SCHEMATIC u z u z ū z u(z, z) with int. const. M(z) u z + ū z M(z), M( z) u z + ū z = ε 11 + ε 22 σ 11, σ 22 M(z) u(z, z)
85 DISPLACEMENT DERIVATIVES u z = u x 1 x 1 z + u x 2 x 2 = 1 2 z = 1 2 { u + i u x 1 x 2 } { u1 + i u 2 + i u 1 u 2 x 1 x 1 x 2 x 2 u z = u x 1 x 1 z + u x 2 x 2 z = 1 2 { u1 = 1 2 = 1 2 { u i u x 1 x 2 } + i u 2 i u 1 + u 2 x 1 x 1 x 2 x 2 { ε 11 + ε 22 + i ū z = ū x 1 x 1 z + ū x 2 x 2 = 1 2 ( u2 u 1 x 1 x 2 z = 1 2 )} { ū i ū x 1 x 2 } { u1 i u 2 i u 1 u 2 x 1 x 1 x 2 x 2 ū z = ū x 1 x 1 z + ū x 2 x 2 z = 1 2 { u1 = 1 2 = 1 2 { ū + i ū x 1 x 2 } i u 2 + i u 1 + u 2 x 1 x 1 x 2 x 2 { ε 11 + ε 22 i ( u2 x 1 u 1 x 2 )} } = 1 2 (ε 11 ε iε 12 ) } } = 1 2 (ε 11 ε 22 2iε 12 ) }
86 GENERAL SOLUTION u z = 1 2 (ε 11 ε iε 12 ) Hooke s law (pl.strain) u z = ν E = 1 + ν E [σ 11 σ iσ 12 ] [z Ω + ω ] Integration u = 1 + ν E [ ] z Ω + ω + M
87 INTEGRATION FUNCTION u= 1 + ν E [ ] z Ω + ω + M u z = 1 + ν E ū= 1 + ν E ū z = 1 + ν E [ Ω + M ] [ zω + ω + M ] [ Ω + M ] u z + ū z = 1 + ν E [ Ω + Ω + M + M ] u z + ū z =ε 11 + ε 22 = 1 + ν E [(1 2ν)(σ 11 + σ 22 )] = (1 + ν)(1 2ν) E 2 [ Ω + Ω ] M + M = (3 4ν) [ Ω + Ω ] M= (3 4ν)Ω = κω u= 1 + ν E [ ] z Ω + ω κω
88 CHOICE OF COMPLEX FUNCTIONS Ω = (α + iβ)z λ+1 = (α + iβ)r λ+1 e iθ(λ+1) ω = (γ + iδ)z λ+1 = (γ + iδ)r λ+1 e iθ(λ+1) Ω = (α iβ) z λ+1 = (α iβ)r λ+1 e iθ(λ+1) Ω = (α iβ)(λ + 1) z λ = (α iβ)(λ + 1)r λ e iθλ ω = (γ iδ) z λ+1 = (γ iδ)r λ+1 e iθ(λ+1) displacement u = 1 2µ rλ+1 [ κ(α + iβ)e iθ(λ+1) (α iβ)(λ + 1)e iθ(1 λ) (γ iδ)e iθ(λ+1) ] with µ = E 2(1 + ν) displacement finite λ > 1
89 DISPLACEMENT COMPONENTS u = 1 2µ rλ+1 [ κ(α + iβ)e iθ(λ+1) e iθ = cos(θ) + i sin(θ) (α iβ)(λ + 1)e iθ(1 λ) (γ iδ)e iθ(λ+1) ] u= 1 2µ rλ+1 [ { κα cos(θ(λ + 1)) κβ sin(θ(λ + 1)) i α(λ + 1) cos(θ(1 λ)) β(λ + 1) sin(θ(1 λ)) } γ cos(θ(λ + 1)) + δ sin(θ(λ + 1)) + { κα sin(θ(λ + 1)) + κβ cos(θ(λ + 1)) α(λ + 1) sin(θ(1 λ)) + β(λ + 1) cos(θ(1 λ)) + } ] γ sin(θ(λ + 1)) + δ cos(θ(λ + 1)) =u 1 + iu 2
90 MODE I
91 MODE I : DISPLACEMENT x 2 θ r x 1 displacement for Mode I u 1 (θ > 0) = u 1 (θ < 0) u 2 (θ > 0) = u 2 (θ < 0) } β = δ = 0 Ω = αz λ+1 = αr λ+1 e i(λ+1)θ ω = γz λ+1 = γr λ+1 e i(λ+1)θ
92 MODE I : STRESS COMPONENTS σ 11 =(λ + 1) [ αz λ + α z λ 1 2 σ 22 =(λ + 1) [ αz λ + α z λ { αλ zz λ 1 + γz λ + αλz z λ 1 + γ z λ}] { αλ zz λ 1 + γz λ + αλz z λ 1 + γ z λ}] σ 12 = 1 2 i(λ + 1) [ αλ zz λ 1 + γz λ αλz z λ 1 γ z λ] with z = re iθ ; z = re iθ σ 11 =(λ + 1)r [ λ αe iλθ + αe iλθ }] {αλe i(λ 2)θ + γe iλθ + αλe i(λ 2)θ + γe iλθ 1 2 σ 22 =(λ + 1)r [ λ αe iλθ + αe iλθ + }] {αλe i(λ 2)θ + γe iλθ + αλe i(λ 2)θ + γe iλθ 1 2 σ 12 = 1 2 i(λ + 1)rλ [ αλe i(λ 2)θ + γe iλθ αλe i(λ 2)θ γe iλθ ] with e iθ + e iθ = 2 cos(θ) ; e iθ e iθ = 2i sin(θ) σ 11 =2(λ + 1)r λ [ α cos(λθ) σ 22 =2(λ + 1)r λ [ α cos(λθ) 1 2 {αλ cos((λ 2)θ) + γ cos(λθ)}] {αλ cos((λ 2)θ) + γ cos(λθ)}] σ 12 =(λ + 1)r λ [αλ sin((λ 2)θ) + γ sin(λθ)]
93 STRESS BOUNDARY CONDITIONS σ 11 = 2(λ + 1)r λ [ α cos(λθ) σ 22 = 2(λ + 1)r λ [ α cos(λθ) 1 2 {αλ cos((λ 2)θ) + γ cos(λθ)}] {αλ cos((λ 2)θ) + γ cos(λθ)}] σ 12 = (λ + 1)r λ [αλ sin((λ 2)θ) + γ sin(λθ)] crack surfaces are stress free σ 22 (θ = ±π) = σ 12 (θ = ±π) = 0 [ det (λ 2) cos(λπ) cos(λπ) λ sin(λπ) sin(λπ) [ ][ (λ 2) cos(λπ) cos(λπ) λ sin(λπ) sin(λπ) α γ ] ] = [ 0 0 ] = sin(2λπ) = 0 2πλ = nπ λ = 1 2, n, with n = 0, 1,2,.. 2
94 STRESS FIELD λ = 1 2 α = 2γ ; λ = 0 α = 1 2 γ λ = 1 2 α = 2γ ; λ = 1 α = γ σ 11 =2γr 1 2 cos( 1 2 θ) [ 1 sin( 3 2 θ) sin(1 2 θ)] + σ 22 =2γr 1 2 cos( 1 2 θ) [ 1 + sin( 3 2 θ) sin(1 2 θ)] + σ 12 =2γr 1 2 [ cos( 1 2 θ) cos(3 2 θ) sin(1 2 θ)] +
95 MODE I : STRESS INTENSITY FACTOR definition stress intensity factor K ( Kies ) ( ) K I = lim 2πr σ22 θ=0 r 0 = 2γ 2π [ m 1 2 N m 2 ]
96 MODE I : CRACK TIP SOLUTION stress components σ 11 = σ 22 = σ 12 = K I 2πr [ cos( 1 2 θ) { 1 sin( 1 2 θ) sin(3 2 θ)}] K I 2πr [ cos( 1 2 θ) { 1 + sin( 1 2 θ) sin(3 2 θ)}] K I 2πr [ cos( 1 2 θ) sin(1 2 θ) cos(3 2 θ)] displacement components u 1 = K I r 2µ 2π [ cos( 1 2 θ) { κ sin 2 ( 1 2 θ)}] u 2 = K I r 2µ 2π [ sin( 1 2 θ) { κ cos 2 ( 1 2 θ)}] plane stress plane strain κ = 3 ν 1 + ν κ = 3 4ν
97 MODE II
98 MODE II : DISPLACEMENT x 2 θ r x 1 displacements for Mode II u 1 (θ > 0) = u 1 (θ < 0) u 2 (θ > 0) = u 2 (θ < 0) } α = γ = 0 Ω = iβz λ+1 = iβr λ+1 e i(λ+1)θ ω = iδz λ+1 = iδr λ+1 e i(λ+1)θ
99 MODE II : STRESS INTENSITY FACTOR definition stress intensity factor K ( Kies ) ( ) K II = lim 2πr σ12 θ=0 r 0 [ m 1 2 N m 2 ]
100 MODE II : CRACK TIP SOLUTION stress components σ 11 = K II 2πr [ sin( 1 2 θ) { 2 + cos( 1 2 θ) cos(3 2 θ)}] σ 22 = K II 2πr [ sin( 1 2 θ) cos(1 2 θ) cos(3 2 θ)] σ 12 = K II 2πr [ cos( 1 2 θ) { 1 sin( 1 2 θ) sin(3 2 θ)}] displacement components u 1 = K II r 2µ 2π [ sin( 1 2 θ) { κ cos 2 ( 1 2 θ)}] u 2 = K II r 2µ 2π [ cos( 1 2 θ) { κ 1 2 sin 2 ( 1 2 θ)}] plane stress plane strain κ = 3 ν 1 + ν κ = 3 4ν
101 MODE III
102 LAPLACE EQUATION ε 31 = 1 2 u 3,1 ; ε 32 = 1 2 u 3,2 Hooke s law σ 31 = 2µε 31 = µu 3,1 ; σ 32 = 2µε 32 = µu 3,2 equilibrium σ 31,1 + σ 32,2 = µu 3,11 + µu 3,22 = 0 2 u 3 = 0
103 MODE III : DISPLACEMENT general solution u 3 = f + f specific choice f = (A + ib)z λ+1 f = (A ib) z λ+1
104 MODE III : STRESS COMPONENTS σ 31 = 2(λ + 1)r λ {A cos(λθ) B sin(λθ)} σ 32 = 2(λ + 1)r λ {A sin(λθ) + B cos(λθ)} σ 32 (θ = ±π) = 0 [ sin(λπ) cos(λπ) sin(λπ) cos(λπ) ][ A B ] = [ 0 0 ] det [ sin(λπ) cos(λπ) sin(λπ) cos(λπ) ] = sin(2πλ) = 0 2πλ = nπ λ = 1 2, n,.. with n = 0, 1,2,.. 2 crack tip solution λ = 1 2 A = 0 σ 31 = Br 1 2{sin( 1 2 θ)} ; σ 32 = Br 1 2{cos( 1 2 θ)}
105 MODE III : STRESS INTENSITY FACTOR definition stress intensity factor ( ) K III = lim 2πr σ32 θ=0 r 0
106 MODE III : CRACK TIP SOLUTION stress components σ 31 = K III 2πr [ sin( 1 2 θ)] σ 32 = K III 2πr [ cos( 1 2 θ)] displacement u 3 = 2K III r µ 2π [ sin( 1 2 θ)]
107 CRACK TIP STRESS (MODE I, II, III) σ τ τ σ τ τ Mode I Mode II Mode III σ ij = K I 2πr f Iij (θ) ; σ ij = K II 2πr f IIij (θ) ; σ ij = K III 2πr f IIIij (θ) crack intensity factors (SIF) K I = β I σ πa ; K II = β II τ πa ; K III = β III τ πa
108 K-ZONE D K-zone : D I II D II D I
109 SIF FOR SPECIFIED CASES W 2a σ W τ 2a K I = σ ( πa sec πa W K II = τ πa ) 1/2 small a W σ K I = σ [ a 1.12 π 0.41 a W + a W ( a ) 2 ( a ) W W ( ] a W) 1.12σ πa small a W σ K I = σ [ a 1.12 π a W a W a ( a ) 2 ( ] a W W) 1.12σ πa
110 W 2a σ K I /σ full 1st term a/w a W σ K I /σ full 1st term a/w plots are made with Kfac.m.
111 P K I = PS BW 3/2 [ 2.9 ( a W)1 2 W a P/2 S P/ ( a ( W)3 2 a W)5 2 ( a W) ] ( a 2 W)9 P a W P K I = P BW 1/ [ 29.6 ( a W)1 2 ( a ( W)3 2 a W)5 2 ( a W) ] ( a 2 W)9 2a p K I = p πa W p per unit thickness
112 P full 1st term W a P/2 S P/2 K I /P a/w a P W K I /P full 1st term P a/w plots are made with Kfac.m.
113 K-BASED CRACK GROWTH CRITERIA K I = K Ic ; K II = K IIc ; K III = K IIIc K Ic = Fracture Toughness calculate K I,K II,K III - analytically - literature - relation K G - numerically (EEM, BEM) experimental determination of K Ic,K IIc, K IIIc - normalized experiments (exmpl. ASTM E399) - correlation with C v ( KAN p. 18 : K 2 Ic E = mcn v )
114 RELATION G K I y σ yy x a a crack length a σ yy (θ = 0, r = x a) = σ a 2(x a) ; u y = 0 crack length a + a σ yy (θ = π,r = a + a x) = 0 u y = (1 + ν)(κ + 1) E σ a + a 2 a + a x plane stress : κ = 3 ν 1 + ν plane strain : κ = 3 4ν
115 RELATION G K I (CONTINUED) accumulation of elastic energy U=2B a+ a a =Bf( a) a 1 2 σ yy dx u y = B a+ a a σ yy u y dx energy release rate G= 1 B lim a 0 ( ) U a = lim a 0 f( a) = (1 + ν)(κ + 1) 4E σ 2 aπ = (1 + ν)(κ + 1) 4E K 2 I plane stress G = K2 I E plane strain G = (1 ν 2 ) K2 I E
116 MULTI MODE LOAD G = 1 ( ) c1 K 2 I + c 2 K 2 II + c 3 K 2 III E plane stress G = 1 E (K2 I + K 2 II) plane strain G = (1 ν2 ) (K 2 I + K 2 E II) + (1 + ν) K 2 III E
117 THE CRITICAL SIF VALUE σ K I K Ic 2a σ B B c B K Ic = σ c πa B c = 2.5 ( ) 2 KIc σ y
118 K IC VALUES Material σ v [MPa] K Ic [MPa m ] steel, 300 maraging steel, 350 maraging steel, D6AC steel, AISI steel, A533B reactor steel, carbon Al 2014-T Al 2024-T Al 7075-T Al 7079-T Ti 6Al-4V Ti 6Al-6V-2Sn Ti 4Al-4Mo-2Sn-0.5Si
119 MULTI-MODE CRACK LOADING
120 MULTI-MODE CRACK LOADING Mode I Mode II Mode I + II Mode I + II crack tip stresses s ij Mode I s ij = K I 2πr f Iij (θ) Mode II s ij = K II 2πr f IIij (θ) Mode I + II s ij = K I 2πr f Iij (θ)+ K II 2πr f IIij (θ)
121 STRESS COMPONENT TRANSFORMATION (b) e 2 p n e 2 e 1 θ e 1 e 1 = cos(θ) e 1 + sin(θ) e 2 = c e 1 + s e 2 e 2 = sin(θ) e 1 + cos(θ) e 2 = s e 1 + c e 2 stress vector and normal unity vector p = p 1 e 1 + p 2 e 2 = p 1 e 1 + p 2 e 2 [ ] [ ][ ] [ p 1 c s = p 2 s c p 1 p 2 p 1 p 2 ] = [ c s s c ][ p 1 p 2 ] = T p p p = T T p idem : ñ = T T ñ
122 TRANSFORMATION STRESS MATRIX p = σñ T p = σ Tñ p = T T σ T ñ = σ ñ σ = T T σ T σ = T σ T T [ σ 11 σ 12 σ 21 σ 22 ] = = [ [ = c s s c c s s c ] [ ] [ σ 11 σ 12 σ 21 σ 22 ][ c s s c cσ 11 + sσ 12 sσ 11 + cσ 12 cσ 21 + sσ 22 sσ 21 + cσ 22 c 2 σ csσ 12 + s 2 σ 22 csσ 11 + (c 2 s 2 )σ 12 + csσ 22 csσ 11 + (c 2 s 2 )σ 12 + csσ 22 s 2 σ 11 2csσ 12 + c 2 σ 22 ] ]
123 CARTESIAN TO CYLINDRICAL TRANSFORMATION σ yy σ xy e t e r σ xx e 2 r θ e 1 σ rt σ rr σ tt e r = c e 1 + s e 2 ; e t = s e 1 + c e 2 [ σ rr σ rt σ tr σ tt ] = = [ c s s c ][ σ xx σ xy σ xy σ yy ][ c s s c c 2 σ xx + 2csσ xy + s 2 σ yy csσ xx + (c 2 s 2 )σ xy + csσ yy csσ xx + (c 2 s 2 )σ xy + csσ yy s 2 σ xx 2csσ xy + c 2 σ yy ]
124 CRACK TIP STRESSES : CARTESIAN σ yy σxy σ xx σ xx = K I 2πr f Ixx (θ) + K II 2πr f IIxx (θ) σ yy = K I 2πr f Iyy (θ) + K II 2πr f IIyy (θ) σ xy = K I 2πr f Ixy (θ) + K II 2πr f IIxy (θ) f Ixx (θ) = cos( θ 2 )[ 1 sin( θ 2 ) sin(3θ 2 )] f IIxx (θ) = sin( θ 2 )[ 2 + cos( θ 2 ) cos(3θ 2 )] f Iyy (θ) = cos( θ 2 ) [ 1 + sin( θ 2 ) sin(3θ 2 )] f IIyy (θ) = sin( θ 2 ) cos(θ 2 ) cos(3θ 2 ) f Ixy (θ) = sin( θ 2 ) cos(θ 2 ) cos(3θ 2 ) f IIxy (θ) = cos( θ 2 ) [ 1 sin( θ 2 ) sin(3θ 2 )]
125 CRACK TIP STRESSES : CYLINDRICAL σ rr σ rt θ σ tt σ rr = K I 2πr f Irr (θ) + K II 2πr f IIrr (θ) σ tt = K I 2πr f Itt (θ) + K II 2πr f IItt (θ) σ rt = K I 2πr f Irt (θ) + K II 2πr f IIrt (θ) f Irr (θ) = [ 5 4 cos(θ 2 ) 1 4 cos(3θ 2 )] f IIrr (θ) = [ 5 4 sin(θ 2 ) sin(3θ 2 )] f Itt (θ) = [ 3 4 cos(θ 2 ) cos(3θ 2 )] f IItt (θ) = [ 3 4 sin(θ 2 ) 3 4 sin(3θ 2 )] f Irt (θ) = [ 1 4 sin(θ 2 ) sin(3θ 2 )] f IIrt (θ) = [ 1 4 cos(θ 2 ) cos(3θ 2 )]
126 MULTI-MODE LOAD σ 22σ12 σ 22 σ 12 σ 12 2a σ 11 2a σ 11 e 2 e 2 e 1 θ σ 12 σ 22 e 1 load [ σ 11 σ 12 σ 21 σ 22 ] = c 2 σ csσ 12 + s 2 σ 22 csσ 11 + (c 2 s 2 )σ 12 + csσ 22 csσ 11 + (c 2 s 2 )σ 12 + csσ 22 s 2 σ 11 2csσ 12 + c 2 σ 22 crack tip stresses s ij = K I 2πr f Iij (θ) + K II 2πr f IIij (θ) with K I = β σ 22 πa ; KII = γ σ 12 πa σ 11 does not do anything
127 EXAMPLE MULTI-MODE LOAD 2a σ kσ σ 12 σ 22 2a σ 11 σ 12 θ load σ 11 = c 2 σ csσ 12 + s 2 σ 22 = c 2 kσ + s 2 σ σ 22 = s 2 σ 11 2csσ 12 + c 2 σ 22 = s 2 kσ + c 2 σ σ 12 = csσ 11 + (c 2 s 2 )σ 12 + csσ 22 = cs(1 k)σ crack tip stresses s ij = K I 2πr f Iij (θ) + K II 2πr f IIij (θ) stress intensity factors K I = β I σ 22 πa = βi (s 2 k + c 2 )σ πa K II = β II σ 12 πa = βii cs(1 k)σ πa
128 EXAMPLE MULTI-MODE LOAD σ t 2a σ a p R t θ σ 22 σ 12 σ 11 σ t = pr t = σ ; σ a = pr 2t = 1 2 σ k = 1 2 σ 22 = s σ + c2 σ ; σ 12 = cs(1 1 2 )σ = 1 2 csσ K I = σ 22 πa = ( 1 2 s2 + c 2 )σ πa = ( 1 2 s2 + c 2 ) pr t πa K II = σ 12 πa = 1 2 csσ = 1 2 cs pr t πa
129 CRACK GROWTH DIRECTION
130 CRACK GROWTH DIRECTION criteria for crack growth direction : maximum tangential stress (MTS) criterion strain energy density (SED) criterion requirement : crack tip stresses in cylindrical coordinates
131 MAXIMUM TANGENTIAL STRESS CRITERION Erdogan & Sih (1963) σ rr σ rt θ σ tt Hypothesis : crack growth towards local maximum of σ tt σ tt θ = 0 and 2 σ tt θ 2 < 0 θ c σ tt (θ = θ c ) = σ tt (θ = 0) = K Ic 2πr crack growth
132 3 2 σ tt θ = 0 K I [ 1 2πr 4 sin(θ 2 ) 1 4 sin(3θ 2 )] K II [ 1 2πr 4 cos(θ 2 ) 3 4 cos(3θ 2 )] = 0 K I sin(θ) + K II {3 cos(θ) 1} = σ tt θ 2 < 0 K I [ 1 2πr 4 cos(θ 2 ) 3 4 cos(3θ 2 )] K II 2πr [ 1 4 sin(θ 2 ) sin(3θ 2 )] < 0 σ tt (θ = θ c ) = K Ic 2πr 1 K I 4 [ 3 cos( θ c K 2 ) + cos( 3θ c 2 )] + Ic 1K II 4 [ 3 sin( θ c K 2 ) 3 sin( 3θ c 2 )] = 1 Ic
133 MODE I LOAD K II = 0 σ tt θ = K I sin(θ) = 0 θ c = 0 2 σ tt θ 2 < 0 θc σ tt (θ c ) = K Ic 2πr K I = K Ic
134 MODE II LOAD K I = 0 σ tt θ = K II(3 cos(θ c ) 1) = 0 2 σ tt θ 2 θ c = ± arccos( 1 3 ) = ±70.6o < 0 θc θ c = 70.6 o σ tt (θ c ) = K Ic 2πr K IIc = 3 4 K Ic τ θ c τ
135 MULTI-MODE LOAD K I [ sin( θ 2 ) sin(3θ 2 )] + K II[ cos( θ 2 ) 3 cos(3θ 2 )] = 0 K I [ cos( θ 2 ) 3 cos(3θ 2 )] + K II[sin( θ 2 ) + 9 sin(3θ 2 )] < 0 K I [3 cos( θ 2 ) + cos(3θ 2 )] + K II[ 3 sin( θ 2 ) 3 sin(3θ 2 )] = 4K Ic K I f 1 K II f 2 = 0 K I f 2 + K II f 3 < 0 K I f 4 3K II f 1 = 4K Ic ( KI K Ic ( KI ( KI K Ic ) f 1 ) f 2 + ) f 4 3 K Ic ( KII K Ic ( KII K Ic ( KII K Ic ) f 2 = 0 ) f 3 < 0 ) f 1 = 4
136 MULTI-MODE LOAD θ c K I /K Ic K II /K Ic K I /K Ic Plot made with
137 STRAIN ENERGY DENSITY (SED) CRITERION Sih (1973) σ rr σ rt θ σ tt U i = Strain Energy Density (Function) = εij 0 σ ij dε ij S = Strain Energy Density Factor = ru i = S(K I,K II,θ) Hypothesis : crack growth towards local minimum of SED S θ = 0 and 2 S θ > 0 θ 2 c S(θ = θ c ) = S(θ = 0, pl.strain) = S c crack growth
138 SED U i = 1 2E (σ2 xx + σ 2 yy + σ 2 zz) ν E (σ xxσ yy + σ yy σ zz + σ zz σ xx ) + 1 2G (σ2 xy + σ 2 yz + σ 2 zx) σ xx = K I 2πr cos( θ 2 ) [ 1 sin( θ 2 ) sin(3θ 2 )] K II 2πr sin( θ 2 )[ 2 + cos( θ 2 ) cos(3θ 2 )] σ yy = K I 2πr cos( θ 2 ) [ 1 + sin( θ 2 ) sin(3θ 2 )] + K II 2πr sin( θ 2 ) cos(θ 2 ) cos(3θ 2 ) σ xy = K I 2πr sin( θ 2 ) cos(θ 2 ) cos(3θ 2 ) + K II 2πr cos( θ 2 )[ 1 sin( θ 2 ) sin(3θ 2 )]
139 SED FACTOR S = ru i = S(K I, K II, θ) = a 11 k 2 I + 2a 12 k I k II + a 22 k 2 II with a 11 = 1 16G (1 + cos(θ))(κ cos(θ)) a 12 = 1 16G sin(θ){2 cos(θ) (κ 1)} a 22 = 1 16G {(κ + 1)(1 cos(θ))+ (1 + cos(θ))(3 cos(θ) 1)} k i = K i / π S θ = 0 k 2 I 16G {2 sin(θ) cos(θ) (κ 1) sin(θ)} + k Ik II 16G {2 4 sin2 (θ) (κ 1) cos(θ)} + k 2 II { 6 sin(θ) cos(θ) + (κ 1) sin(θ)} = 0 16G 2 S θ 2 > 0 k 2 I 16G {2 4 sin2 (θ) (κ 1) cos(θ)} + k Ik II { 8 sin(θ) cos(θ) + (κ 1) sin(θ)} + 16G k 2 II 16G { sin2 (θ) + (κ 1) cos(θ)} > 0
140 MODE I LOAD S = a 11 k 2 I = σ2 a {1 + cos(θ)}{κ cos(θ)} 16G S θ = sin(θ){2 cos(θ) (κ 1)} = 0 θ c = 0 or arccos ( 1 2 (κ 1)) 2 S θ 2 = 2 cos(2θ) (κ 1) cos(θ) > 0 θ c = 0 S(θ c ) = σ2 a 16G {2}{κ 1} = σ2 a 8G (κ 1) S c = S(θ c, pl.strain) = (1 + ν)(1 2ν) 2πE K 2 Ic
141 MODE II LOAD S = a 22 k 2 II = τ2 a 16G [(κ + 1){1 cos(θ)} + {1 + cos(θ)}{3 cos(θ) 1}] S θ = sin(θ) [ 6 cos(θ) + (κ 1)] = 0 2 S θ 2 = 6 cos2 (θ) + (κ 1) cos(θ) > 0 θ c = ± arccos ( 1(κ 1)) 6 S(θ c ) = τ2 a 16G { 1 12 ( κ2 + 14κ 1)} S(θ c ) = S c τ c = 1 192GSc a κ κ 1
142 MULTI-MODE LOAD; PLANE STRAIN ν= ν=0.1 ν=0.2 ν=0.3 ν=0.4 ν= θ c K /K I Ic K II /K Ic ν= ν=0.1 ν=0.2 ν=0.3 ν=0.4 ν= K /K I Ic Plots made with sedmm2.m
143 MULTI-MODE LOAD; PLANE STRESS ν= ν=0.1 ν=0.2 ν=0.3 ν=0.4 ν= θ c K /K I Ic K II /K Ic ν= ν=0.1 ν=0.2 ν=0.3 ν=0.4 ν= K /K I Ic Plots made with sedmm2.m
144 MULTI-MODE LOAD; PLANE STRAIN k I = σ a sin 2 (β) ; k II = σ a sin(β) cos(β) S = σ 2 a sin 2 (β) { a 11 sin 2 (β) + 2a 12 sin(β) cos(β) + a 22 cos 2 (β) } S θ = (κ 1) sin(θ c 2β) 2 sin{2(θ c β)} sin(2θ c ) = 0 2 S θ 2 = (κ 1) cos(θ c 2β) 4 cos{2(θ c β)} 2 cos(2θ c ) > 0 σ β 2a σ θ c 90 θ c ν = ν = 0 20 ν = β From Gdoutos
145 DYNAMIC FRACTURE MECHANICS
146 DYNAMIC FRACTURE MECHANICS impact load (quasi)static load fast fracture - kinetic approach - static approach
147 CRACK GROWTH RATE Mott (1948) energy balance du e da du i da = du a da + du d da + du k da σ y 2a a thickness B x σ du e da = 0 ; du d da = 0 U a = 4aBγ U i = 2πa 2 B 1 σ 2 2 E du a da = 4γB du i da = 2πaBσ2 E
148 KINETIC ENERGY U k = 1 2 ρb Ω material velocity ( u 2 x + u 2 y) dxdy u x u y = du y dt = du y da da dt = du y da s U k = 1 2 ρs2 B assumption Ω ( ) 2 duy dxdy da ds da = 0 du k da = 1 2 ρs2 B Ω u y = 2 2 σ E ( ) 2 duy dxdy da d da a2 ax du y da = 2 σ E 2a x a2 ax du k σ B( da = ρs2 E ( σ = ρs 2 B E ) 2 a Ω ) 2 a k(a) 1 a 3 x 2 (x 2a) (a x) 2 dxdy
149 ENERGY BALANCE 2πaσ 2 E = 4γ + ρs 2 ( σ E) 2 ak s = ( )1 E ρ 2 ( 2π k )1 2 ( 1 2γE πaσ 2 )1 2 2π k 0.38 ; a c = 2γE πσ 2 ; c = ( ds ) da 0!! E ρ ( s = 0.38 c 1 a c a )1 2 s 0.38 c a a c
150 EXPERIMENTAL CRACK GROWTH RATES steel copper aluminum glass rubber E [GPa] ρ [kg/m 2 ] ν c [m/sec] s [m/sec] s/c < s c < 0.4
151 ELASTIC WAVE SPEEDS C 0 = elongational wave speed = C 1 = dilatational wave speed = C 2 = shear wave speed = E ρ κ + 1 κ 1 µ ρ µ ρ C R = Rayleigh velocity = 0.54 C 0 á 0.62 C 0
152 CORRECTIONS ( Dulancy & Brace (1960) s = 0.38 C 0 1 a ) c a ( Freund (1972) s = C R 1 a ) c a
153 CRACK TIP STRESS Yoffe (1951) : σ Dij = K D 2πr f ij (θ,r, s, E, ν)
154 CRACK BRANCHING Yoffe (1951) σ Dij = K ID 2πr f ij (θ, r, s, E,ν) σ Dtt (θ) σ Dtt (θ = 0) 0.9 max s c R 0.87 σ tt π π 2 θ crack branching volgens MTS Source: Gdoutos (1993) p.245
155 FAST FRACTURE AND CRACK ARREST K D K Dc (s, T) K D < min 0<s<C R K Dc (s, T) = K A crack growth crack arrest
156 EXPERIMENTS Source: KAN1985 p.210 High Speed Photography : 10 6 frames/sec Robertson : CA Temperature (CAT) test (KAN1985 p.258)
157 PLASTIC CRACK TIP ZONE
158 VON MISES AND TRESCA YIELD CRITERIA Von Mises Tresca W d = W d c (σ 1 σ 2 ) 2 +(σ 2 σ 3 ) 2 +(σ 3 σ 1 ) 2 = 2σ 2 y τ max = τ maxc σ max σ min = σ y yield surface in principal stress space
159 PRINCIPAL STRESSES AT THE CRACK TIP plane stress state σ zz = σ zx = σ zy = 0 σ xx σ xy 0 σ = σ xy σ yy 0 det(σ σi) = characteristic equation σ [ σ 2 σ(σ xx + σ yy ) + (σ xx σ yy σ 2 xy) ] = 0 σ 1 = 1 2 (σ xx + σ yy ) + { 1 4 (σ } xx σ yy ) 2 + σ 2 1/2 xy σ 2 = 1 2 (σ xx + σ yy ) { 1 4 (σ } xx σ yy ) 2 + σ 2 1/2 xy σ 3 = 0 plane strain state σ 3 = ν(σ 1 + σ 2 )
160 PRINCIPAL STRESSES AT CRACK TIP σ 1 = 1 2 (σ xx + σ yy ) + { 1 4 (σ xx σ yy ) 2 + σ 2 xy} 1/2 σ 2 = 1 2 (σ xx + σ yy ) { 1 4 (σ xx σ yy ) 2 + σ 2 xy} 1/2 σ 3 = 0 or σ 3 = ν(σ 1 + σ 2 ) crack tip stresses σ ij = K I 2πr f Iij (θ) σ 1(+),2( ) = 1 4 K I 2πr [ cos( θ 2 )± ] { 2 cos( θ 2 ) sin(θ 2 ) sin(3θ 2 )} 2 { + sin( θ 2 ) cos(θ 2 ) cos(3θ 2 )} 2 σ 1 = K I 2πr cos( θ 2 ){1 + sin(θ 2 )} σ 2 = K I 2πr cos( θ 2 ){1 sin(θ 2 )} σ 3 = 0 or σ 3 = 2νK I 2πr cos( θ 2 ) plane stress σ 1 > σ 2 > σ 3 plane strain σ 1 > σ 2 > σ 3 or σ 1 > σ 3 > σ 2
161 1000 ν = ν = σ σ θ θ 1000 ν = ν = σ σ θ θ Plots are made with plstr.m.
162 VON MISES PLASTIC ZONE Von Mises yield criterion (σ 1 σ 2 ) 2 + (σ 2 σ 3 ) 2 + (σ 3 σ 1 ) 2 = 2σ 2 y plane stress σ 3 = 0 (σ 1 σ 2 ) 2 + σ σ 2 1 = 2σ 2 y K 2 I 2πr y cos 2 ( θ 2 )[ 6 sin 2 ( θ 2 ) + 2] = 2σ 2 y r y = K2 I 2πσ 2 y cos 2 ( θ 2 ) [ sin 2 ( θ 2 )] = K2 I 4πσ 2 y [ 1 + cos(θ) sin2 (θ) ] plane strain σ 3 = ν(σ 1 + σ 2 ) (ν 2 ν + 1)(σ σ 2 2) + (2ν 2 2ν 1)σ 1 σ 2 = σ 2 y K 2 I 2πr y cos 2 ( θ 2 )[ 6 sin 2 ( θ 2 ) + 2(1 2ν)2] = 2σ 2 y r y = K2 I 4πσ 2 y [ (1 2ν) 2 {1 + cos(θ)} sin2 (θ) ]
163 VON MISES PLASTIC ZONE 1 Von Mises plastic zones pl.stress pl.strain Plot made with plazone.m.
164 TRESCA PLASTIC ZONE σ max σ min = σ y plane stress {σ max,σ min } = {σ 1,σ 3 } K I 2πry [ cos( θ 2 ) + cos( θ 2 ) sin(θ 2 ) ] = σ y r y = K2 I 2πσ 2 y [ cos( θ 2 ) + cos( θ 2 ) sin(θ 2 ) ] 2 plane strain I σ 1 > σ 2 > σ 3 {σ max, σ min } = {σ 1, σ 3 } r y = K2 I 2πσ 2 y [ (1 2ν) cos( θ 2 ) + cos( θ 2 ) sin(θ 2 ) ] 2 plane strain II σ 1 > σ 3 > σ 2 {σ max, σ min } = {σ 1, σ 2 } r y = K2 I 2πσ 2 y sin 2 (θ)
165 TRESCA PLASTIC ZONE Tresca plastic zones pl.stress pl.strain sig3 = min pl.strain sig2 = min Plot made with plazone.m.
166 INFLUENCE OF THE PLATE THICKNESS CRITICAL PLATE THICKNESS B c > 25 3π ( KIc σ y ) 2 > 2.5 ( ) 2 KIc σ y
167 SHEAR PLANES Source: Gdoutos p.60/61/62; Kanninen p.176
168 IRWIN PLASTIC ZONE CORRECTION σ xx σ yy σ xx σ yy σ y σ y a r y r a r y r p r θ = 0 σ xx = σ yy = K I 2πr yield σ xx = σ yy = σ y r y = 1 2π equilibrium no longer satisfied correction required shaded area equal ( ) 2 KI σ y σ y r p = ry 0 σ yy (r) dr = K I 2π ry 0 r 1 2 dr = 2K I 2π ry r p = 2K I 2π ry σ y r p = 1 π ( KI σ y ) 2 = 2 r y
169 DUGDALE-BARENBLATT PLASTIC ZONE CORRECTION y σ y σ x a r p load σ load σ y K I (σ) = σ π(a + r p ) K I (σ y ) = 2σ y a + rp π σ ( ) a arccos a + r p singular term = 0 K I (σ) = K I (σ y ) ( ) a πσ = cos a + r p 2σ y r p = πk2 I 8σ 2 y
170 PLASTIC CONSTRAINT FACTOR 1 2 {(σ 1 σ 2 ) 2 + (σ 2 σ 3 ) 2 + (σ 3 σ 1 ) 2 } = [ ] 1 n m + n2 + m 2 mn σ max = σ y pcf = σ max σ y = 1 1 n m + n2 + m 2 mn PCF AT THE CRACK TIP pl.sts n = [ 1 sin( θ 2 )] / [ 1 + sin( θ 2 )] ; m = 0 pl.stn n = [ 1 sin( θ 2 )] / [ 1 + sin( θ 2 )] ; m = 2ν/ [ 1 + sin( θ 2 )] PCF AT THE CRACK TIP IN THE CRACK PLANE pl.sts n = 1 ; m = 0 pcf = 1 pl.stn n = 1 ; m = 2ν pcf = 1 1 4ν + 4ν 2
171 PLASTIC ZONES IN THE CRACK PLANE r y r p criterion state r y or r p (K I /σ y ) 2 Von Mises plane stress Von Mises plane strain Tresca plane stress 1 2π 1 18π 1 2π Tresca plane strain σ 1 > σ 2 > σ π ( KI σ y ( KI σ y ( KI σ y ( KI σ y ) ) ) ) Tresca plane strain σ 1 > σ 3 > σ Irwin plane stress Irwin plane strain (pcf = 3) Dugdale plane stress Dugdale plane strain (pcf = 3) 1 π 1 π π 8 π 8 ( KI σ y ( KI ) ) σ y ) ( KI σ y ( KI 3σ y )
172 SMALL SCALE YIELDING LEFM & SSY correction effective crack length a eff Irwin / Dugdale-Barenblatt correction SSY : outside plastic zone : K I (a eff )-stress a eff = a + (r y r p ) K I = β I (a eff )σ πa eff
173 NONLINEAR FRACTION MECHANICS
174 CRACK-TIP OPENING DISPLACEMENT crack tip displacement u y = σ πa r 2µ 2π [ sin( 1 2 θ) { κ cos 2 ( 1 2 θ)}] displacement in crack plane θ = π; r = a x u y = (1 + ν)(κ + 1) E σ 2 2a(a x) Crack Opening Displacement (COD) δ(x) = 2u y (x) = (1 + ν)(κ + 1) E σ 2a(a x) Crack Tip Opening Displacement (CTOD) δ t = δ(x = a) = 0
175 CTOD BY IRWIN σ xx σ xx σ yy σ yy σ y σ y a r y r a r y r p r effective crack length a eff = a + r y = a + 1 2π ( ) 2 KI σ y
176 CTOD BY IRWIN δ(x) = = (1 + ν)(κ + 1) E (1 + ν)(κ + 1) E σ 2a eff (a eff x) σ 2(a + r y )(a + r y x) (1 + ν)(κ + 1) δ t = δ(x = a) = σ 2(a + r y )r y E (1 + ν)(κ + 1) = σ 2ar y + 2r E 2 y (1 + ν)(κ + 1) E σ 2ar y plane stress : δ t = 4 K 2 I = 4 G π Eσ y πσ y [ ] 1 4(1 ν 2 ) plane strain : δ t = 3 π K 2 I Eσ y
177 CTOD BY DUGDALE y σ y σ x a r p σ effective crack length ( ) 2 KI a eff = a + r p = a + π 8 σ y
178 CTOD BY DUGDALE displacement from requirement singular term = 0 : ū y (x) ū y (x) = (a + r p)σ y πe [ { x sin 2 (^γ γ) ln a + r p sin 2 (^γ + γ) cos(^γ) ln } + { } ] 2 sin(^γ) + sin(γ) sin(^γ) sin(γ) ( ) x γ = arccos a + r p ; ^γ = π 2 σ σ y Crack Tip Opening Displacement δ t = lim 2ū x a y(x) = 8σ { ( va π πe ln sec 2 series expansion & σ σ y σ σ y )} plane stress : δ t = K2 I = G Eσ y σ y [ ] 1 plane strain : δ t = (1 ν 2 ) K2 I 2 Eσ y
179 CTOD CRACK GROWTH CRITERION δ t (G,K I ) at LEFM δ t = measure for deformation at crack tip (LEFM) δ t = measure for (large) plastic deformation at crack tip (NLFM) criterion δ t = δ tc ( ε, T) δ t calculate or measure δ tc experimental determination (ex. BS 5762)
180 J-INTEGRAL n t x 2 Ω V S e 2 Γ positive e 1 x 1 definition J k -integral (vector!!) J k = Γ ( ) u i Wn k t i x k dγ W = specific energy = J = J 1 = Γ Epq ( ) u i Wn 1 t i x 1 0 σ ij dε ij dγ [ ] N m
181 INTEGRAL ALONG CLOSED CURVE J k = Γ ) (Wδ jk σ ij u i,k n j dγ inside Γ no singularities Stokes (Gauss in 3D) Ω ( dw dε mn ε mn x j δ jk σ ij,j u i,k σ ij u i,kj ) dω homogeneous hyper-elastic σ mn = W ε mn linear strain ε mn = 1 2 (u m,n+u n,m ) equilibrium equations σ ij,j = 0 Ω Ω { 1 2 σ mn(u m,nk + u n,mk ) σ ij u i,kj } (σ mn u m,nk σ ij u i,kj ) dω = 0 dω =
182 PATH INDEPENDENCE x 2 Ω n e 2 e 1 Γ+ Γ n Γ B x 1 Γ A f k dγ + f k dγ + f k dγ + f k dγ = 0 Γ A Γ B Γ Γ + f 1 dγ + f 1 dγ + f 1 dγ + f 1 dγ = 0 Γ A Γ B Γ Γ + no loading of crack faces : n 1 = 0 ; t i = 0 on Γ + and Γ f 1 dγ + f 1 dγ = 0 Γ A Γ B f 1 dγ = J 1A ; f 1 dγ = J 1B Γ A Γ B J 1A + J 1B = 0 J 1A = J 1B
183 RELATION J K lin. elast. material : W = 1 2 σ mnε mn = 1 4 σ mn(u m,n + u n,m ) J k = Γ = Mode I + II + III Γ ( 1 4 σ mn(u m.n + u n,m )δ jk σ ij u i,k ) n j dγ ( 1 2 σ mnu m,n δ jk σ ij u i,k )n j dγ σ ij = 1 2πr [K I f Iij + K II f IIij + K III f IIIij ] u i = u Ii + u IIi + u IIIi substitution and integration over Γ = circle J 1 = J 2 = (κ + 1)(1 + ν) 4E (κ + 1)(1 + ν) K I K II 2E ( K 2 I + KII) 2 (1 + ν) + K 2 III E
184 RELATION J G Mode I J 1 = J = (κ + 1)(1 + ν) 4E K 2 I = G plane stress plane strain κ + 1 = 3 ν 1 + ν ν 1 + ν = ν J = 1 E K2 I κ + 1 = 4 4ν J = (1 ν2 ) E K 2 I
185 RELATION J δ T plane stress Irwin J = π 4 σ yδ t Dugbale J = σ y δ t plane strain Irwin J = π 4 3 σy δ t Dugbale J = 2σ y δ t PLASTIC CONSTRAINT FACTOR J = mσ y δ t m = a W σ u σ y
186 RAMBERG-OSGOOD MATERIAL LAW ε = σ ( ) n σ + α ε y0 σ y0 σ y0 n strain hardening parameter (n 1) n = 1 linear elastic n ideal plastic 5 Ramberg Osgood for α = 0.01 n = 1 4 n = 3 3 σ/σ y0 2 n = 5 n = 7 1 n = ε/ε y0
187 HRR-SOLUTION HRR - solution σ ij = σ y0 β r 1 n+1 σ ij (θ) u i = αε y0 β n r 1 n+1 ũ i (θ) with : β = [ J ασ y0 ε y0 I n ] 1 n+1 (I n from num. anal.) I n plane strain plane stress n
188 J-INTEGRAL CRACK GROWTH CRITERION LEFM : J k G (K I, K II, K III ) NLFM : Ramberg-Osgood : J determines crack tip stress criterion J = J c calculate J J Ic from experiments e.g. ASTM E813
189 NUMERICAL FRACTURE MECHANICS
190 NUMERICAL FRACTURE MECHANICS Methods EEM ; BEM Calculations G K δ t J Simulation crack growth
191 QUADRATIC ELEMENTS ξ 2 ξ ξ 2 3 ξ isoparametric coordinates : 1 ξ i 1 shape functions for each node n ψ n (ξ 1,ξ 2 ) = quadratic in ξ 1 and ξ 2
192 CRACK TIP MESH bad approximation stress field results are mesh-dependent 1/ r
193 SPECIAL ELEMENTS enriched elements crack tip field added to element displacement field structure K and changes f transition elements for compatibility hybrid elements modified variational principle
194 QUARTER POINT ELEMENTS p 3p p p Distorted Quadratic Quadrilateral (1/ r) Distorted Quadratic Triangle (1/ r) Collapsed Quadratic Quadrilateral (1/ r) Collapsed Distorted Linear Quadrilateral (1/r) good approximation stress field (1/ r or 1/r) bad approximation non-singular stress field standard FEM-programs can be used
195 CRACK TIP ROZET Quarter Point Elements : 8x Transition Elements : number is problem dependent Buffer Elements
196 ONE-DIMENSIONAL CASE ξ = 1 ξ = 0 ξ = 1 1 x 3 2 position x= 1 2 ξ(ξ 1)x ξ(ξ + 1)x 2 (ξ 2 1)x 3 = 1 2 ξ(ξ + 1)L (ξ2 1)x 3 displacement and strain u = 1 2 ξ(ξ 1)u ξ(ξ + 1)u 2 (ξ 2 1)u 3 du dξ = (ξ 1 2 )u 1 + (ξ )u 2 2ξu 3 du dx = du dξ dξ dx = du dξ /dx dξ
197 MID POINT ELEMENT mid-point element : x 3 = 1 2 L ξ = 1 ξ = 0 ξ = 1 1 x 3 2 x = 1 2 ξ(ξ + 1)L (ξ2 1) 1 2 L = 1 2 (ξ + 1)L dx dξ = 1 2 L du du dx = dξ 1 2 L du dx x=0 ξ= 1 = ( 2 L ) {( 3 2 ) u1 + ( ) } 1 2 u2 + 2u 3
198 QUARTER POINT ELEMENT quarter-point element : x 3 = 1 4 L ξ = 1ξ = 0 ξ = 1 1 x 3 2 x = 1 2 ξ(ξ + 1)L (ξ2 1) 1 4 L = 1 4 (ξ + 1)2 L ξ + 1 = dx dξ = 1 2 (ξ + 1)L = xl 4x L du du dx = dξ du xl dx x=0 ξ= 1 = singularity 1 x
199 VIRTUAL CRACK EXTENSION METHOD (VCEM) u u a a + a I II fixed grips G = 1 B du e da = 0 du i da 1 B U i (a + a) U i (a) a
200 VCEM : STIFFNESS MATRIX VARIATION BG = du i da = C 1 2ũT a ũ with C = C(a+ a) C(a) G from analysis crack tip mesh only nodal point displacement : ± element size not possible with crack tip in interface unloaded crack plane no thermal stresses
201 STRESS INTENSITY FACTOR calculate G I and G II with VCEM calculate K I and K II from K 2 I = E G I ; K 2 II = E G II plane stress E = E plane strain E = E/(1 ν 2 ) difficult for crack propagation study
202 SIF : STRESS FIELD extrapolation to crack tip ( ) K I = lim 2πr σ22 θ=0 r 0 ( ) K II = lim 2πr σ12 θ=0 r 0 p p 4 p 3 p 2 1 θ r K K p1kp2 K p3 Kp4 r 1 r 2 r 3 r 4 r questions : which elements? how much elements? which integration points?
203 SIF : DISPLACEMENT FIELD crack tip displacement y-component u y = 4(1 ν2 ) E [ K I = lim r 0 E 4(1 ν 2 ) r 2π K I g ij (θ) ] 2π r u y(θ = 0) more accurate than SIF from stress field
204 J-INTEGRAL J = Γ ( ) u i Wn 1 t i x 1 with W = dγ ε σ ij dε ij 0
205 J-INTEGRAL : DIRECT CALCULATION J = 2 y [ W 2 x ( σ xx u x x + σ yx [( σ xy u x x + σ yy )] u y x )] u y x dy dx W = E 2(1 ν 2 ) (ε2 xx + 4νε xx ε yy + 2(1 ν)ε 2 xy + ε 2 yy) path through integration points no need for quarter point elements
206 J-INTEGRAL : DOMAIN INTEGRATION x 2 Ω n q = 0 e 2 e1 Γ + Γ n Γ B Γ A x 1 Ω q = 1 J = Ω q x j ( ) u i σ ij Wδ 1j x 1 dω interpolation q e = Ñ T (ξ ) q e
207 DE LORENZI J-INTEGRAL : VCE TECHNIQUE J= Ω q x j ( ) u i σ i1 Wδ 1j x 1 u i qp i dγ x 1 Γ s Ω dω q(ρq i ρü i ) u i x 1 dω + Ω qσ ij ε o ij x 1 dω rigid region elongation a of crack translation δx 1 of internal nodes fixed position of boundary q = δx 1 a = shift function (0 < q < 1)
208 CRACK GROWTH SIMULATION Node release Moving Crack Tip Mesh Element splitting Smeared crack approach
209 NODE RELEASE node collocation technique
210 MOVING CRACK TIP MESH
211 ELEMENT SPLITTING
212 SMEARED CRACK APPROACH e 2 e 1 e 2 n 2 e 1 σ 2 n 1 σ1 n 2 n 1
213 TELETEKST WO 3 OKTOBER 2007 Van de 274 stalen bruggen in ons land kampen er 25 met metaalmoeheid. Dat is de uitkomst van een groot onderzoek van het ministerie van Verkeer. Bij twaalf bruggen zijn de problemen zo groot dat noodmaatregelen nodig zijn. Ook de meer dan 2000 betonnen bruggen en viaducten zijn onderzocht. De helft daarvan moet nog nader worden bekeken. Ze gaan mogelijk minder lang mee dan was berekend, maar de veiligheid komt volgens het ministerie niet in gevaar. Verkeersbeperkende maatregelen zijn dan ook niet nodig. Die werden in april wel getroffen voor het vrachtverkeer over de Hollandse Brug bij Almere.
214 FATIGUE ± 1850 (before Griffith!) : cracks at diameter-jumps in axles carriages / trains failure due to cyclic loading with small amplitude Wöhler : systematic experimental examination cyclic loading : variable mechanical loads vibrations pressurization / depressurization thermal loads (heating / cooling) random external loads
215 CRACK SURFACE clam shell markings (beach marks) - irregular crack growth - crack growth under changing conditions striations - sliding of slip planes - plastic blunting / sharpening of crack tip - regular crack growth
216 EXPERIMENTS full-scale testing a.o. train axles airplanes laboratory testing harmonic loading constant force/moment strain/deflection SIF
217 TRAIN AXLE D = 0.75 [m] 1 rev = πd = π [m] 1 km = 1000 m = = [c(ycles)] 1 day Maastricht - Groningen = [km] = 1000 [km] 1 day Maastricht - Groningen = [c] 1 year = [c] = [c] [c] frequency : 100 [km/h] = [c/h] = = 12.5 [c/sec] = 12.5 [Hz]
218 FATIGUE LOAD stress controlled σ σ max σ m σ min 0 0 i i + 1 t N σ = σ max σ min ; σ a = 1 2 σ σ m = 1 2 (σ max + σ min ) ; R σ = σ min /σ max ; σ a = 1 R σ m 1 + R - frequency bending Hz tensile electric Hz mechanic < 50 Hz hydraulic 1-50 Hz - no influence frequency for ± 5000 [c/min] (metals) strain controlled ε ; ε a ; ε m ; R ε
219 FATIGUE LIMIT σ σ th N σ < σ th : no increase of damage materials with fatigue limit mild steel low strength steels Ti / Al / Mg -alloys materials without fatigue limit some austenitic steels high strength steels most non-ferro alloys Al / Mg-alloys
220 (S-N)-CURVE B.S part I 1984 : S = σ max S σ th 0 0 log(n f ) reference : R = 1 and σ m = 0 σ max = 1 2 σ fatigue life : N f at σ max (= S) fatigue limit : σ th (= σ fat ) N f = (±10 9 ) fatigue strength : σ e = σ max when N f steels : σ th 1 2 σ b
221 (S A -N)-CURVE B.S part I 1984 : S a = 1 2 σ = σ a S a σ th 0 0 log(n f ) reference : R = 1 and σ m = 0 σ a = σ max (S a N) curve = (S N) curve
222 EXAMPLES steelt1 400 σ max [MPa] steel Mgalloy Al2024T N f
223 INFLUENCE OF AVERAGE STRESS σ a σ m σ th 0 0 log(n f )
224 CORRECTION FOR AVERAGE STRESS Gerber (1874) σ a σ a = 1 ( ) 2 σm σ u Goodman (1899) σ a σ a = 1 σ m σ u Soderberg (1939) σ a σ a = 1 σ m σ y0 σ u σ y0 : tensile strength : initial yield stress
225 (P-S-N)-CURVE σ max [MPa] % prob.failure % prob.failure % prob.failure N f
226 HIGH/LOW CYCLE FATIGUE S a σ m = LCF 4 5 HCF log(n f ) high cycle fatigue N f > ±50000 low stresses LEFM + SSY stress-life curve Basquin relation K max = βσ max πa ; Kmin = βσ min πa ; K = β σ πa low cycle fatigue N f < ±50000 high stresses EPFM strain-life curve Manson-Coffin relation
227 BASQUIN RELATION 1 2 σ = σ a = σ f(2n f ) b σn b f = constant σ f = fatigue strength coefficient σ b (monotonic tension) b = fatigue strength exponent (Basquin exponent) log ( ) σ 2 log(2n f )
228 MANSON-COFFIN RELATION 1 2 εp = ε f(2n f ) c ε p N c f = constant ε f = fatigue ductility coefficient ε b (monotonic tension) c = fatigue ductility exponent ( 0.5 < c < 0.7) log ( ) ε p 2 log(2n f )
229 TOTAL STRAIN-LIFE CURVE log( ε 2 ) log(n f ) ε 2 = εe 2 + εp 2 = 1 E σ f(2n f ) b + ε f(2n f ) c
230 INFLUENCE FACTORS load spectrum stress concentrations stress gradients material properties surface quality environment
231 LOAD SPECTRUM sign / magnitude / rate / history multi-axial lower f.limit than uni-axial
232 STRESS CONCENTRATIONS ρ σ max = K t σ nom σ th (notched) = 1 K t σ th (unnotched) σ th (notched) = 1 K f σ th (unnotched) ; 1 < K f < K t K f : fatigue strength reduction factor (effective stress concentration factor) notch sensitivity factor q(ρ) K f = 1 + q(k t 1) Peterson : q = a ρ with a = material parameter Neuber : q = b ρ with b = grain size parameter
233 STRESS GRADIENTS full-scale experiments necessary
234 MATERIAL PROPERTIES grain size/structure : small grains higher f.limit at low temp. large grains higher f.limit at high temp. (less grain boundaries less creep) texture inhomogeneities and flaws residual stresses fibers and particles
235 10µm surface extrusions & intrusions notch + inclusion of O 2 etc. bulk defect internal surfaces internal grain boundaries / triple points (high T) voids manufacturing minimize residual tensile stresses surface finish minimize defects (roughness) surface treatment (mech/temp) residual pressure stresses coating environmental protection high σ y0 more resistance to slip band formation
236 ENVIRONMENT temperature creep - fatigue low temperature : ships / liquefied gas storage elevated temperature (T > 0.5T m ) : turbine blades creep mechanism : diffusion / dislocation movement / migration of vacancies / grain boundary sliding grain boundary voids / wedge cracks chemical influence corrosion-fatigue
237 CRACK GROWTH a I II III a c a c σ a f a 1 a i N i N f N I : N < N i - N i = fatigue crack initiation life - a i = initial fatigue crack II : N i < N < N f - slow stable crack propagation - a 1 = non-destr. inspection detection limit III : N f < N - global instability - towards catastrophic failure - a = a c : failure rest-life N r N f = 1 N N f
238 CRACK GROWTH MODELS da dn striation spacing 6 ( ) 2 K (Bates, Clark (1969)) E da dn f(σ, a) σm a n ; m 2 7 ; n 1 2 da dn δ t ( K)2 Eσ y (BRO263) da dn da K dn K E Source: HER1976a p515 Paris law : da dn = C( K)m
239 PARIS LAW log ( ) da dn [mm/c] log C = 8.7 log( K) [MPa m] ( ) da da dn = C( K)m log = log(c) + m log( K) dn ( ) da log( K) = 0 log(c) = log = 8.7 dn C = [mm] [MPa m] m m = ( 2) ( 4) (2) (1.5) = 4
240 LIMITS OF PARIS LAW log( da dn ) power law growth R rapid crack growth slow crack growth K th K c log( K) Paris law : da dn = C( K)m da dn = C(K max) m R 0 K K th roughness induced crack closure K < K th growth very short cracks (10 8 mm/cycle) dangerous overestimation of fatigue life σ m R ( )
241 PARIS LAW PARAMETERS material K th [MNm 3/2 ] m[-] C [!] mild steel structural steel idem in sea water aluminium aluminium alloy copper titanium
242 CONVERSION da dn = C ( σ πa) m C = da dn ( σ πa) m [in] and [ksi] [m] and [MPa] 1 [ in ] [ ksi in ] = [m] m {6.86 [ MPa] [m]} m ( ) [ m] = (1.09) m [ MPa m ] m [m] and [MPa] [mm] and [MPa] 1 [ m ] [ MPa m ] = 10 3 [ mm ] m {[ MPa] 10 3 [ mm ]} m ( ) 10 3 = { [ mm ] 10 3 } m [ MPa mm ] m
243 FATIGUE LIFE : ANALYTICAL INTEGRATION integration Paris law fatigue life N f N f N i = [ ( σ) m β m C( 2 ) π) m (1 m 2 ) a(1 m f 1 ( ai a f ) (1 m 2 ) ]
244 FATIGUE LIFE : NUMERICAL INTEGRATION set σ, N, a c initialize N = 0, a = a 0 while a < a c end K = β σ π a da dn = C ( K)m a = da dn N a = a + a N = N + N
245 INITIAL CRACK LENGTH 120 C = 4.56e 11 ; m = 2.9 ; DN = a0 = 1 [mm] a0 = 0.1 [mm] a [mm] N [c] x 10 6 aluminum ; σ = 50 [MPa] 120 C = 0.25e 11 ; m = 3.3 ; DN = 1000 a0 = 1 [mm] 100 a0 = 1.1 [mm] 80 a [mm] N [c] x 10 6 mild steel ; σ = 50 [MPa]
246 FATIGUE LOAD integration Paris law for different load levels fatigue life at a f = a c = 2γ π E σ 2 N f aluminum C = 4.56e 11 ; m = 2.9 E = 70 [GPa] ; γ = 1 [J/m 2 ] σ [MPa] a 0 [mm] a c [mm] N f [c] a [mm] N [c] x 10 7
247 OTHER CRACK GROW LAWS Erdogan (1963) ( general empirical law ) da dn = C(1 + β)m ( K K th ) n K Ic (1 + β) K with β = K max + K min K max K min Broek & Schijve (1963) da dn = CK2 max K Forman (1967) ( K max K c ) da dn = C( K) n (1 R)K c K with R = K min K max Donahue (1972) ( K K th ) da dn = C( K K th) m with K th = (1 R) γ K th (R = 0) Walker (1970) ( influence R ) { } m da K dn = C with m = 0.4 ; n = 0.5 (1 R) n
248 Priddle (1976) ( K K th & K max K c ) da dn = C ( K Kth K Ic K max ) m with K th = A(1 R) γ and 1 2 γ 1 [Schijve (1979)] McEvily & Gröger (1977) ( theoretical ) da dn = A ( ( K K th ) Eσ v with K th = A, K 0 1 R 1 + R K 0 K K Ic K max influence environment ) NASA / FLAGRO program (1989) da dn = C(1 R)m K n ( K K th ) p [(1 R)K Ic K] q m = p = q = 0 Paris m = p = 0,q = 1 Forman p = q = 0, m = (m w 1)n Walker
249 CRACK GROWTH AT LOW CYCLE FATIGUE σ slipline θ λσ θ Kanninen & Atkinson (1980) da dn = 3 sin 2 (θ) cos 2 ( θ 2 ) 9 sin(θ) ( ) K 1 βγ 1 2 Eσ v K 2 max {1 (1 λ) σ max σ v } θ = cos ( ) β = R + 0.4R 2 γ da dn = K Eσ v (1 0.2R 0.8R 2 ) K 2 max {1 (1 λ) σ max σ v }
250 CRACK GROWTH AT LOW CYCLE FATIGUE J-integral based Paris law da dn = C ( J) m with J = Γ { } W u i n 1 t i x 1 dγ ; W = ε pq max ε pqmin σ ij dε ij
251 LOAD SPECTRUM σ 0 N n 1 n 2 n 3 n 4 Palmgren-Miner (1945) L i=1 n i N if = 1 life time by piecewise integration da dn f( K,K max) no interaction interaction Palmgren-Miner no longer valid : L i=1 n i N if =
252 MINER S RULE n 1 n 2 N 1f N 2f n 3 N 3f n 4 N 4f rest life N r N f : 1 1 n N 1f ( 1 n 1 N 1f ) n 2 N 2f ( 1 n 1 n ) 2 n 3 N 1f N 2f N 3f ( 1 n 1 n 2 n ) 3 N 1f N 2f N 3f n 4 N 4f = 0
253 RANDOM LOAD σ 0 t cyclic counting procedure - (mean crossing) peak count - range pair (mean) count - rain flow count statistical representation load spectrum
254 MEASURED LOAD HISTORIES instrumentation with strain gages at critical locations measure load history continuous monitoring during service update spectrum standard spectra
255 TENSILE OVERLOAD (K max ) OL K max a a b 2 b 1 N
256 CRACK RETARDATION Al 2024-T3 (Hertzberg, 1976) K % P max nr. P max delay [MPa m] [-] [-] [10 3 cycles]
257 PLASTIC ZONE RESIDUAL STRESS σ σ yy σ σ 1 σ v 0 t A B σ σ yy B 1 A 1 σ yy σ = 0 B 2 ε yy A 2
258 CRACK RETARDATION MODELS Willenborg (1971) K R = φ [(K max ) OL [ 1 a r y ] K max ] ; a < r y K R = residual SIF ; K R = 0 delay distance φ = [1 (K th /K max )](S 1) 1 ; S = shut-off ratio (K max ) OL K max a a r y Johnson (1981) R eff = K min K R K max K R ; r y = 1 βπ β = plastic constraint factor ( (Kmax ) OL σ v ) 2
259 CRACK RETARDATION Elber (1971) [?] K eff = U K ; U = R with 0.1 R 0.7 Schijve (1981) [?] U = R R 2 with 1.0 < R < 0.54
260 DESIGN AGAINST FATIGUE - infinite life design - safe life design - damage tolerant design - fail safe design
261 INFINITE LIFE DESIGN σ < σ th (σ < σ e ) no fatigue damage sometimes economically undesirable
262 SAFE LIFE DESIGN determine load spectra empirical rules / numerical analysis / laboratory tests fatigue life : (S N)-curves apply safety factors sometimes safety factors are undesirable (weight) stress-life design or strain-life design
263 STRESS/STRAIN LIFE DESIGN Basquin 1 2 σ = σ f(2n f ) b 1 2 εe = 1 E σ f(2n f ) b Manson-Coffin 1 2 εp = ε f(2n f ) c combination ε = ε e + ε p 1 2 ε = 1 2 σ f(2n f ) b + ε f(2n f ) c log ( ) ε 2 log(2n f )
264 DAMAGE TOLERANT DESIGN dangerous situations not acceptable safety factors undesirable determine load spectra periodic inspection (insp. schedules) monitor cracks NDT important calculate safe rest life ( integrate appropriate da -growth law ) dn repair when necessary
265 FAIL SAFE DESIGN design for safety : crack arrest / etc.
266 ENGINEERING PLASTICS (POLYMERS) ABS acrylonitrilbutadieenstyreen EM HIPS high-impact polystyreen TP LDPE low-density polyetheen TP Nylon PC polycarbonaat TP PMMA polymethylmethacrylaat (plexiglas) TP PP polypropeen TP PPO polyfenyleenoxyde TP PS polystyreen TP PSF PolySulFon TP PTFE polytetrafluoretheen (teflon) TP PVC polyvinylchloride TP PVF polyvinylfluoride TP PVF2 polyvinylidieenfluoride TP
267 MECHANICAL PROPERTIES - (nonlinear) elastic - visco-elastic - thermal influences - anisotropy
268 DAMAGE shearing (shear yielding) no change in density crazing (normal yielding) change in density : % decrease shear bands crazes
269 PROPERTIES OF ENGINEERING PLASTICS AC CZ K Ic PMMA a PS a PSF a - low PC a - high main chain segmental motions energy dissipation Nylon 66 cr - main chain segmental motions energy dissipation crystalline regions crack retardation PVF2 sc PET sc amorphous strain induced crystallization at crack tip CPLS - cross-linked suppressed crazing HIPS + µ-sized rubber spheres enhanced crazing ABS blending AC : a = amorphous AC : c = crystalline AC : sc = semicrystalline AC : cr = crystalline regions CZ = crazing K Ic = fracture toughness in MPa m
270 FATIGUE amorphous crystalline high low molecular weight main chain motions toughening
271 FCP FOR POLYMERS 10 2 da dn [mm/cycle] K 2 5 [MPa m] 1 : PMMA 5 Hz crazing 2 : LDPE 1 Hz 3 : ABS 10 Hz 4 : PC 10 Hz no crazing 5 : Nylon 10 Hz cristalline regions
272 FCP FOR POLYMERS : CRYSTALLINE VERSUS AMORPHOUS da dn [mm/cycle] : PS 5 : PC 2 : PMMA 6 : Nylon : PSF 7 : PVF2 4 : PPO 8 : PET 9 : PVC K [MPa m]
273 FCP POLYMERS : TOUGHENING da dn [mm/cycle] K [MPa m] : CLPS 2 : PS 3 : HIPS 4 : ABS
274 COHESIVE ZONE MODELS
275 COHESIVE ZONE MODELS n t traction = f(opening) T = f( ) normal / tangential T n = f n ( n ) ; T t = f t ( t ) coupling T n = f n ( n, t ) ; T t = f t ( t, n ) MODELS polynomial piece-wise linear rigid-linear exponential
276 EXPONENTIAL COHESIVE ZONE LAW φ( n, t ) = φ n t [1 ( 1 + ) ( n exp ) ( )] n exp 2 t δ n δ n δ 2 t T n = φ n = φ n φn δ n T t = φ t = 2 φ t φt δ t ( n δ n ( t δ t ) exp ( ) ( ) n exp 2 t δ n δ 2 t ) ( 1 + ) ( ) ( n exp 2 t exp ) n δ n δ 2 t δ n δ n = φ n T n,max exp(1) ; δ t = φ t T t,max 1 2 exp(1) Tn/Tn,max 0 Tt/Tt,max n /δ n t /δ t parameters : φ n,φ t, δ n,δ t
277 COUPLING : TRACTION Tn/Tn,max 0 Tt/Tt,max n /δ n t /δ t
278 T t = max{t t ( t, n,max )} T n = max{t n ( n, t,max )} T t /T t,max T n/tn,max n,max /δ n t,max /δ t
279 COUPLING : DISSIPATED ENERGY φ n = 100 Jm 2 ; φ t = 80 Jm W[Jm 2 ] W[Jm 2 ] W n W n 20 W t 20 W t W tot W tot n,max /δ n t,max /δ t MODE-MIXITY W[Jm 2 ] W n W t W tot α
280 WEIGHTED RESIDUAL FORMULATION FOR CZ
281 EQUILIBRIUM EQUATION σ + ρ q = 0 x V with : gradient operator σ : Cauchy stress tensor ρ : density q : volume load v : material velocity
282 WEIGHTED RESIDUAL FORMULATION σ + ρ q = 0 x V [ ] w σ + ρ q dv = 0 w( x) V V ( w) c : σ dv = V w ρ q dv + A w t da w( x) f i ( w, σ) = f e ( w, t, q) w( x)
283 TRANSFORMATION TO INITIAL STATE V ( w) c : σdv = f e ( w, t, q) w( x) = F c 0 ( w) c = ( 0 w) c F 1 dv = det(f) dv 0 = J dv 0 ( 0 w) c F 1 : σj dv 0 = f e0 w( x) V 0 ( 0 w) c : (F 1 σj)dv 0 = f e0 w( x) V 0 ( 0 w) c : T dv 0 = f e0 w( x) V 0 f i0 ( w,t) = f e0 ( w, t 0, q 0 ) w( x)
284 INTERNAL LOAD : BULK AND VOLUME f i0 = ( 0 w) c : T dv 0 V 0 = ( 0 w) c : T dv 0 + ( 0 w) c : T dv 0 = f i0b + f i0cz V 0b V 0 cz
285 f i0cz = ( 0 w) c : T dv 0 V 0 cz f i0cz = V 0 cz f i0cz =d 0 =d 0 = d 0 h 0 w = δ u ( 0 w) c : T = ( 0 δ u) c : T = δε l : T δε l : T dv 0 = d 0 δε l : T da 0 A 0 cz δε l = δε l e 0 e 0 = δ ε l e 0 T = T e 0 e 0 = T e 0 A 0 cz A 0 cz A 0 cz δ ε l T da 0 = d 0 (δ u) h 0 T da 0 w T da 0 A 0 cz } δε l : T = δ ε l T δ u h 0 T da 0
286 FINITE ELEMENTS FOR CZ
287 TWO-DIMENSIONAL CZ ELEMENT 3 A Q T P 0 ξ η 1 B 2 f i0cz = d 0 h 0 A 0 cz w T da 0 = d 0 h 0 1 ξ= 1 1 η= 1 w T h 0 2 l 0 2 dηdξ = d ξ= 1 1 η= 1 w T l 0 2 dηdξ = d 0l η= 1 w T dη
288 LOCAL VECTOR BASE 3 4 T e n T B 1 A e t 2 w= w t e t + w n e n = [ w t w n ] T =Tt e t + T n e n = [ T t T n ] [ e t e n ] [ ] e t e n = T T ẽ = w T ẽ f i0cz = d 0l η= 1 w T (η)t (η) dη
289 INTERPOLATION w T (η)=[ w t w n ] = = [ ] w A t w A n w B t w B n = w AB T N T (η) (1 η) (1 η) (1 + η) 0 (1 + η) w A t = w 4 t w 1 t ; w A n = w 4 n w 1 n w B t = w 3 t w 2 t ; w B n = w 3 n w 2 n w AB = w A t w A n w B t w B n = w 1 t w 1 n w 2 t w 2 n w 3 t w 3 n w 4 t w 4 n =P l w w T T = l P w T N T
290 LOCAL GLOBAL w l = w 1 t w 1 n w 2 t w 2 n w 3 t w 3 n w 4 t w 4 n = c s s c c s s c c s s c c s s c w 1 1 w 1 2 w 2 1 w 2 2 w 3 1 w 3 2 w 4 1 w 4 2 = R w w T T = l P w T N T (η) = w T R T P T N T (η) f i0cz = w T d 0l 0 2 R T P T 1 η= 1 N T (η)t (η) dη = w T f i0 cz (R, T )
291 ASSEMBLING + WRF w T f i0 b + w T f i0 cz = w T f e0 w i0 f (σ, F) + b f i0 (R, T ) = cz f e0 f i0 = f e0
292 ITERATIVE PROCEDURE T = T + δt ; R = R + δr R f = i + δf i i f δf i0 cz = d 0l 0 2 R T P T 1 η= 1 N T (η) δt (η) dη δt (η) = T δ = T t T t [ ] t n δ t T n T n δ n t n = M(η) δ (η) δ (η)=n(η)δ AB = N(η)P δũ l = N(η)P R δũ δf i0 cz = [ d 0 l 0 2 R T P T =K cz δũ { 1 η= 1 N T (η)m(η) N(η) dη }P R ] δũ
293 EXAMPLES : SINGLE MODE np7 np8 fy/tn,max u y /δ n 1 np7 np fx/tt,max u x /δ t
294 MULTIMODE WITHOUT ROTATION np7 np np7 np8 fy/tn,max fx/tt,max u y /δ n u x /δ t ip1 ip ip1 ip2 Tn/Tn,max Tt/Tt,max n /δ n t /δ t
295 ROTATION np7 np8 1 np7 np fy/tn,max fx/tt,max u y /δ n u x /δ t ip1 ip ip1 ip2 Tn/Tn,max Tt/Tt,max n /δ n t /δ t
296 CHOICE OF REFERENCE LINE (M T B) ip1 ip ip1 ip2 Tt/Tt,max Tt/Tt,max t /δ t t /δ t ip1 ip Tt/Tt,max t /δ t
297 CZ FOR LARGE DEFORMATIONS T [MPa] [µm] = e ; T = T( ) e ; T = f( ) φ ; T = δ ( ) ( exp ) δ δ φ = =0 T( ) d ; T max = φ δ exp(1)
298 MODE-MIXITY d = d 1 d 2 T = φ ( ) exp δ δ ( ) ( exp α d ) δ α = 0.2 α = 0.0 α = α = 0.2 α = 0.0 α = 0.2 W [Jm 2 ] T [MPa] β [ o ] [µm] parameters : φ, δ, α
299 POLYMER COATED STEEL FOR PACKAGING
300 EASY PEEL-OFF LID
301 SOLDER JOINT FATIGUE
INDEX. Introduction (ch 1) Theoretical strength (ch 2) Ductile/brittle (ch 2) Energy balance (ch 4) Stress concentrations (ch 6)
INDEX Introduction (ch 1) Theoretical strength (ch 2) Ductile/brittle (ch 2) Energy balance (ch 4) Stress concentrations (ch 6) () April 30, 2018 1 / 52 back to index INTRODUCTION Introduction () 3 / 52
FRACTURE MECHANICS. Piet Schreurs. Eindhoven University of Technology Department of Mechanical Engineering Materials Technology September 5, 2013
FRACTURE MECHANICS Piet Schreurs Eindhoven University of Technology Department of Mechanical Engineering Materials Technology September 5, 2013 INDEX back to index () 1 / 303 Introduction Fracture mechanisms
MECHANICAL PROPERTIES OF MATERIALS
MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain
Mechanical Behaviour of Materials Chapter 5 Plasticity Theory
Mechanical Behaviour of Materials Chapter 5 Plasticity Theory Dr.-Ing. 郭瑞昭 Yield criteria Question: For what combinations of loads will the cylinder begin to yield plastically? The criteria for deciding
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
Introduction to Theory of. Elasticity. Kengo Nakajima Summer
Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Chapter 10: Failure. Titanic on April 15, 1912 ISSUES TO ADDRESS. Failure Modes:
Chapter10:Failure ISSUESTOADDRESS FailureModes: 1 LECTURER: PROF. SEUNGTAE CHOI TitaniconApril15, 1912 RMS Titanic was a British passenger liner that sank in the North Atlantic Ocean on 15 April 1912 after
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
(Mechanical Properties)
109101 Engineering Materials (Mechanical Properties-I) 1 (Mechanical Properties) Sheet Metal Drawing / (- Deformation) () 3 Force -Elastic deformation -Plastic deformation -Fracture Fracture 4 Mode of
ADVANCED STRUCTURAL MECHANICS
VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
Chapter 2. Stress, Principal Stresses, Strain Energy
Chapter Stress, Principal Stresses, Strain nergy Traction vector, stress tensor z z σz τ zy ΔA ΔF A ΔA ΔF x ΔF z ΔF y y τ zx τ xz τxy σx τ yx τ yz σy y A x x F i j k is the traction force acting on the
Chapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
University of Waterloo. ME Mechanical Design 1. Partial notes Part 1
University of Waterloo Department of Mechanical Engineering ME 3 - Mechanical Design 1 Partial notes Part 1 G. Glinka Fall 005 1 Forces and stresses Stresses and Stress Tensor Two basic types of forces
Mechanics of Materials Lab
Mechanics of Materials Lab Lecture 9 Strain and lasticity Textbook: Mechanical Behavior of Materials Sec. 6.6, 5.3, 5.4 Jiangyu Li Jiangyu Li, Prof. M.. Tuttle Strain: Fundamental Definitions "Strain"
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
Grey Cast Irons. Technical Data
Grey Cast Irons Standard Material designation Grey Cast Irons BS EN 1561 EN-GJL-200 EN-GJL-250 EN-GJL-300 EN-GJL-350-1997 (EN-JL1030) (EN-JL1040) (EN-JL1050) (EN-JL1060) Characteristic SI unit Tensile
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS
NATIONAL TECHNICAL UNIVERSITY OF ATHENS SCHOOL OF NAVAL ARCHITECTURE AND ARINE ENGINEERING SHIPBUILDING TECHNOLOGY LABORATORY EXPERIENTAL AND NUERICAL STUDY OF A STEEL-TO-COPOSITE ADHESIVE JOINT UNDER
θ p = deg ε n = με ε t = με γ nt = μrad
IDE 110 S08 Test 7 Name: 1. The strain components ε x = 946 με, ε y = -294 με and γ xy = -362 με are given for a point in a body subjected to plane strain. Determine the strain components ε n, ε t, and
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
CH-4 Plane problems in linear isotropic elasticity
CH-4 Plane problems in linear isotropic elasticity HUMBERT Laurent laurent.humbert@epfl.ch laurent.humbert@ecp.fr Thursday, march 18th 010 Thursday, march 5th 010 1 4.1 ntroduction Framework : linear isotropic
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model
1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,
Graded Refractive-Index
Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for
ω α β χ φ() γ Γ θ θ Ξ Μ ν ν ρ σ σ σ σ σ σ τ ω ω ω µ υ ρ α Coefficient of friction Coefficient of friction 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 0.90 0.80 0.70 0.60 0.50 0.40 0.30
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
4.4 Superposition of Linear Plane Progressive Waves
.0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Surface Mount Multilayer Chip Capacitors for Commodity Solutions
Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Thin Film Chip Resistors
FEATURES PRECISE TOLERANCE AND TEMPERATURE COEFFICIENT EIA STANDARD CASE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERABLE (Pb FREE TERMINATION FINISH) Type Size EIA PowerRating
3.5 - Boundary Conditions for Potential Flow
13.021 Marine Hydrodynamics, Fall 2004 Lecture 10 Copyright c 2004 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hydrodynamics Lecture 10 3.5 - Boundary Conditions for Potential
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in
ME 10W E. Evans Stresses in a Plane Some parts eperience normal stresses in two directions. hese tpes of problems are called Plane Stress or Biaial Stress Cross Section thru Bod z angent and normal to
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
ΚΕΦΑΛΑΙΟ 1 Ο 1.1. ΕΛΑΣΤΙΚΟ ΣΤΕΡΕΟ
ΚΕΦΑΛΑΙΟ Ο.. ΕΛΑΣΤΙΚΟ ΣΤΕΡΕΟ Ο Robert Hooke έγρψε το 678, "he power of any spring is in the same proportion with the tension thereof". Αυτή η δήλωση είνι η βάση του πρώτου ρεολογικού νόµου γι ιδνικά ελστικά
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Figure 1 - Plan of the Location of the Piles and in Situ Tests
Figure 1 - Plan of the Location of the Piles and in Situ Tests 1 2 3 A B C D DMT4 DMT5 PMT1 CPT4 A 2.2 1.75 S5+ SPT CPT7 CROSS SECTION A-A C2 E7 E5 S4+ SPT E3 E1 E DMT7 T1 CPT9 DMT9 CPT5 C1 ground level
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl
Topic 4 Linear Wire and Small Circular Loop Antennas Tamer Abuelfadl Electronics and Electrical Communications Department Faculty of Engineering Cairo University Tamer Abuelfadl (EEC, Cairo University)
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
katoh@kuraka.co.jp okaken@kuraka.co.jp mineot@fukuoka-u.ac.jp 4 35 3 Normalized stress σ/g 25 2 15 1 5 Breaking test Theory 1 2 Shear tests Failure tests Compressive tests 1 2 3 4 5 6 Fig.1. Relation between
Finite difference method for 2-D heat equation
Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Constitutive Relations in Chiral Media
Constitutive Relations in Chiral Media Covariance and Chirality Coefficients in Biisotropic Materials Roger Scott Montana State University, Department of Physics March 2 nd, 2010 Optical Activity Polarization
Wavelet based matrix compression for boundary integral equations on complex geometries
1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
CONSULTING Engineering Calculation Sheet
E N G I N E E R S Consulting Engineers jxxx 1 Structure Design - EQ Load Definition and EQ Effects v20 EQ Response Spectra in Direction X, Y, Z X-Dir Y-Dir Z-Dir Fundamental period of building, T 1 5.00
Το σχέδιο της μέσης τομής πλοίου
ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Το σχέδιο της μέσης τομής πλοίου Α. Θεοδουλίδης Σχέδιο Μέσης Τομής Αποτελεί ένα από τα βασικώτερα κατασκευαστικά σχέδια του πλοίου.
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers
1/5 Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Deendent Polymers by Yukio SANOMURA Hydrostatic ressure deendence in mechanical behavior of olymers is studied for the constitutive
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/
Page: 10 CONTENTS Contents... 10 General Data... 10 Structural Data des... 10 erials... 10 Sections... 10 ents... 11 Supports... 11 Loads General Data... 12 LC 1 - Vollast 120 km/h 0,694 kn/qm... 12 LC,
Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/
Page: 1 CONTENTS Contents... 1 General Data... 1 Structural Data des... 1 erials... 1 Sections... 1 ents... 2 Supports... 2 Loads General Data... 3 LC 1 - Vollast 90 km/h 0,39 kn/qm... 3 LC, LG Results
Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw
Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Μηχανουργική Τεχνολογία & Εργαστήριο Ι
Μηχανουργική Τεχνολογία & Εργαστήριο Ι Mechanics in Deforming Processes - Διεργασίες Διαμόρφωσης Καθηγητής Χρυσολούρης Γεώργιος Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Mechanics in deforming processes
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9
Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da
BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
NTC Thermistor:TTC3 Series
Features. RoHS compliant 2. Halogen-Free(HF) series are available 3. Body size: Ф3mm 4. Radial lead resin coated 5. Operating temperature range: -40 ~+25 6. Wide resistance range 7. Cost effective 8. Agency
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Multilayer Ceramic Chip Capacitors
FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* Temperature Coefficient
NTC Thermistor:SCK Series
Features. RoHS & HF compliant 2. Body size: Ф5mm ~ Ф 30mm 3. Radial lead resin coated 4. High power rating 5. Wide resistance range 6. Cost effective 7. Operating temperature range: Φ5mm:-40~+50 Φ8~Φ0mm:-40~+70
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence
Major Concepts Multiphase Equilibrium Stability Applications to Phase Equilibrium Phase Rule Clausius-Clapeyron Equation Special case of Gibbs-Duhem wo-phase Coexistence Criticality Metastability Spinodal
Electronic Supplementary Information (ESI)
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) Cyclopentadienyl iron dicarbonyl (CpFe(CO) 2 ) derivatives
Aluminum Electrolytic Capacitors (Large Can Type)
Aluminum Electrolytic Capacitors (Large Can Type) Snap-In, 85 C TS-U ECE-S (U) Series: TS-U Features General purpose Wide CV value range (33 ~ 47,000 µf/16 4V) Various case sizes Top vent construction
Crack Propagation Terminating at a Bimaterial Interface Studied Using Extended Finite Element Method
014 3 3 XFEM 1116 6 J kε K I K II J kε θ p J kε XFEM θ p θ p 4 θ p v 1/v lg E 1/E J O30 A doi 10.3981/j.issn.1000-7857.014.3.001 Crack Propagation Terminating at a Bimaterial Interface Studied Using Extended
1. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? (3 points) Areas (1) and (5)
IDE 0 S08 Test 5 Name:. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? ( points) Areas () and (5) Areas () through (5) Areas (), ()
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation
ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied
Answer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago
Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal
Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa<on
Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa
NMBTC.COM /
Common Common Vibration Test:... Conforms to JIS C 60068-2-6, Amplitude: 1.5mm, Frequency 10 to 55 Hz, 1 hour in each of the X, Y and Z directions. Shock Test:...Conforms to JIS C 60068-2-27, Acceleration
Eulerian Simulation of Large Deformations
Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications
Rectangular Polar Parametric
Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m
1. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points) ΣF x = 0 = ΣF y = 0 =
IDE S8 Test 6 Name:. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points) ΣF x = = ΣF y = = ΣM A = = (counter-clockwise as positie). Sketch
YJM-L Series Chip Varistor
Features 1. RoHS & Halogen Free (HF) compliant 2. EIA size: 0402 ~ 2220 3. Operating voltage: 5.5Vdc ~ 85Vdc 4. High surge suppress capability 5. Bidirectional and symmetrical V/I characteristics 6. Multilayer
Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206
Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206 Scope -This specification applies to all sizes of rectangular-type fixed chip resistors with Ruthenium-base as material. Features
Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
Multilayer Ceramic Chip Capacitors
FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* PART NUMBER SYSTEM
A Summary Of Linear Continuum Mechanics 1. a b = a i b i = a b cos θ. det A = ɛ ijk A 1i A 2j A 3k. e 1 e 2 e 3 a b = ɛ ijk a j b k e i =
A Summary Of Linear Continuum Mechanics 1 Vector Analysis Inner / Scalar / Dot product Norm of a vector Kronecker delta a b = a i b i = a b cos θ a = [a a] 1/2 = a 1 a 1 + a 2 a 2 + a 3 a 3 δ ij = I =