FRACTURE MECHANICS. Piet Schreurs. Eindhoven University of Technology Department of Mechanical Engineering Materials Technology September 5, 2013

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "FRACTURE MECHANICS. Piet Schreurs. Eindhoven University of Technology Department of Mechanical Engineering Materials Technology September 5, 2013"

Transcript

1 FRACTURE MECHANICS Piet Schreurs Eindhoven University of Technology Department of Mechanical Engineering Materials Technology September 5, 2013

2 INDEX back to index () 1 / 303

3 Introduction Fracture mechanisms Ductile/brittle Theoretical strength Experimental techniques Energy balance Linear elastic stress analysis Crack tip stresses Multi-mode loading Crack growth direction Crack growth rate Plastic crack tip zone Nonlinear fracture mechanics Numerical fracture mechanics Fatigue Engineering plastics () 2 / 303

4 () 3 / 303

5 back to index INTRODUCTION

6 Introduction () 5 / 303

7 Continuum mechanics V 0 A 0 u V A x 0 e 3 x e 1 O e 2 () 6 / 303

8 Continuum mechanics - volume / area V 0, V / A 0, A - base vectors { e 1, e 2, e 3 } - position vector x 0, x - displacement vector u - strains ε kl = 1 2 (u k,l + u l,k ) - compatibility relations - equilibrium equations σ ij,j + ρq i = 0 ; σ ij = σ ji - density ρ - load/mass q i - boundary conditions p i = σ ij n j - material model σ ij = N ij (ε kl ) () 7 / 303

9 Material behavior σ ε σ ε t 1 t 2 t t 1 t 2 t t 1 t 2 t t 1 t 2 t σ ε ε e ε p σ ε t 1 t 2 t t 1 t 2 t t 1 t 2 t t 1 t 2 t () 8 / 303

10 Stress-strain curves σ σ ε ε σ σ ε ε () 9 / 303

11 Fracture () 10 / 303

12 Fracture mechanics questions : when crack growth? ( crack growth criteria) crack growth rate? residual strength? life time? inspection frequency? repair required? fields of science : material science and chemistry theoretical and numerical mathematics experimental and theoretical mechanics () 11 / 303

13 Overview of fracture mechanics LEFM (Linear Elastic Fracture Mechanics) energy balance crack tip stresses SSY (Small Scale Yielding) DFM (Dynamic Fracture Mechanics) NLFM (Non-Linear Fracture Mechanics) EPFM (Elasto-Plastic Fracture Mechanics) Numerical methods : EEM / BEM Fatigue (HCF / LCF) CDM (Continuum Damage Mechanics) Micro mechanics micro-cracks (intra grain) voids (intra grain) cavities at grain boundaries rupture & disentangling of molecules rupture of atomic bonds dislocation slip () 12 / 303

14 Experimental fracture mechanics () 13 / 303

15 Linear elastic fracture mechanics () 14 / 303

16 Dynamic fracture mechanics () 15 / 303

17 Nonlinear fracture mechanics CTOD J-integral () 16 / 303

18 Numerical techniques () 17 / 303

19 Fatigue () 18 / 303

20 Objectives Insight in : crack growth mechanisms brittle / ductile energy balance crack tip stresses crack growth direction plastic crack tip zone crack growth speed nonlinear fracture mechanics numerical methods fatigue () 19 / 303

21 Outline () 20 / 303

22 back to index FRACTURE MECHANISMS

23 Fracture mechanisms shear fracture cleavage fracture fatigue fracture crazing de-adhesion () 22 / 303

24 Shearing dislocations voids crack dimples load direction () 23 / 303

25 Cleavage intra-granulair inter-granulair intra-granular HCP-, BCC-crystal T low ε high 3D-stress state inter-granular weak grain boundary environment (H2) T high () 24 / 303

26 Fatigue clam shell pattern striations () 25 / 303

27 Crazing stress whitening crazing materials : PS, PMMA () 26 / 303

28 () 27 / 303

29 back to index DUCTILE/BRITTLE

30 Ductile - brittle behavior σ ABS, nylon, PC PE, PTFE ε (%) surface energy : γ [Jm 2 ] solids : γ 1 [Jm 2 ] independent from cleavage/shearing ex.: alloyed steels; rubber () 29 / 303

31 Charpy v-notch test () 30 / 303

32 Charpy Cv-value C v fcc (hcp) metals low strength bcc metals Be, Zn, ceramics C v high strength metals Al, Ti alloys T NDT FATT FTP T t T - Impact Toughness C v - Nil Ductility Temperature NDT - Nil Fracture Appearance Transition Temperature FATT(T t ) - Nil Fracture Transition Plastic FTP () 31 / 303

33 back to index THEORETICAL STRENGTH

34 Theoretical strength f f r f x σ a λ x r S ( ) 2πx f (x) = f max sin ; x = r a 0 λ σ(x) = 1 ( ) 2πx f (x) = σmax sin S λ () 33 / 303

35 Energy balance available elastic energy per surface-unity [N m 1 ] required surface energy U i = 1 S = x=λ/2 x=0 x=λ/2 x=0 = σ max λ π f (x) dx σ max sin ( ) 2πx dx λ [Nm 1 ] energy balance at fracture U a = 2γ [Nm 1 ] U i = U a λ = 2πγ σ = σ max sin ( ) x γ σ max σ max () 34 / 303

36 Approximations linearization ( ) x σ = σ max sin γ σ max x γ σ2 max linear strain of atomic bond ε = x a 0 x = εa 0 σ = εa 0 γ σ2 max elastic modulus ( ) ( dσ dσ E = = 0) dε x=0 dx x=0 a = σ 2 max Eγ σ max = theoretical strength a 0 a 0 γ σ th = Eγ a 0 () 35 / 303

37 Discrepancy with experimental observations a 0 [m] E [GPa] σ th [GPa] σ b [MPa] σ th /σ b glass steel silica fibers iron whiskers silicon whiskers alumina whiskers ausformed steel piano wire discrepancy with experiments σ th σ b () 36 / 303

38 Griffith s experiments σ b [MPa] d [µ] DEFECTS FRACTURE MECHANICS () 37 / 303

39 Crack loading modes Mode I Mode II Mode III Mode I = opening mode Mode II = sliding mode Mode III = tearing mode () 38 / 303

40 back to index EXPERIMENTAL TECHNIQUES

41 Surface cracks dye penetration small surface cracks fast and cheap on-site magnetic particles cracks disturbance of magnetic field surface cracks for magnetic materials only eddy currents impedance change of a coil penetration depth : a few mm s difficult interpretation () 40 / 303

42 Electrical resistance () 41 / 303

43 X-ray orientation dependency () 42 / 303

44 Ultrasound piëzo-el. crystal wave sensor S in out t t () 43 / 303

45 Acoustic emission registration intern sounds (hits) () 44 / 303

46 Adhesion tests blade wedge test peel test (0 o and 90 o ) bending test scratch test indentation test laser blister test pressure blister test fatigue friction test () 45 / 303

47 back to index ENERGY BALANCE

48 () total energy balance 47 / 303 Energy balance a B = thickness A = Ba Ḃ = 0 U e = U i + U a + U d + U k [Js 1 ] d dt ( ) = da d dt da ( ) = Ȧ d da ( ) = ȧ d da ( ) du e da = du i da + du a da + du d da + du k da [Jm 1 ]

49 Griffith s energy balance no dissipation no kinetic energy energy balance energy release rate crack resistance force du e da du i da = du a da G = 1 ( due B da du ) i [Jm 2 ] da R = 1 ( ) dua = 2γ [Jm 2 ] B da Griffith s crack criterion G = R = 2γ [Jm 2 ] () 48 / 303

50 Griffith s energy balance du e = 0 a U a da needed G, R 2γ a c available a c U i () 49 / 303

51 Griffith stress σ y 2a a thickness B x σ U i = 2πa 2 B 1 σ 2 2 E G = 1 ( ) dui B da = 1 B ; U a = 4aB γ [Nm = J] ( ) dua = R 2πa σ2 da E = 4γ [Jm 2 ] Griffith stress σ gr = 2γE πa ; critical crack length a c = 2γE πσ 2 () 50 / 303

52 Griffith stress: plane stress 2γE σ gr = (1 ν 2 )πa () 51 / 303

53 Discrepancy with experimental observations σ gr σ c reason remedy neglection of dissipation measure critical energy release rate G c glass G c = 6 [Jm 2 ] wood G c = 10 4 [Jm 2 ] steel G c = 10 5 [Jm 2 ] composite design problem / high alloyed steel / bone (elephant and mouse) energy balance G = 1 ( due B da du ) i = R = G c da critical crack length a c = G ce 2πσ 2 ; Griffith s crack G = G c criterion () 52 / 303

54 Compliance change compliance : C = u/f F u a P F u P a + da F F a a + da a a + da du i du i du e fixed grips u constant load u () 53 / 303

55 Compliance change : Fixed grips fixed grips : du e = 0 Griffith s energy balance du i = U i (a + da) U i (a) (< 0) = 1 2 (F + df)u 1 2 Fu = 1 2 udf G = 1 2B udf da = 1 2B = 1 2B F 2 dc da u 2 dc C 2 da () 54 / 303

56 Compliance change : Constant load constant load du e = U e (a + da) U e (a) = Fdu Griffith s energy balance du i = U i (a + da) U i (a) (> 0) = 1 2 F(u + du) 1 2 Fu = 1 2 Fdu G = 1 2B F du da = 1 2B F 2 dc da () 55 / 303

57 Compliance change : Experiment F a 1 a 2 ap a 3 a 4 F u u G = shaded area a 4 a 3 1 B () 56 / 303

58 Example B 2h F u a u F u = Fa3 3EI = 4Fa3 EBh 3 C = u F = 2u F = 8a3 EBh 3 G = 1 [ 1 B 2 F 2 dc ] = 12F 2 a 2 da EB 2 h 3 [J m 2 ] G c = 2γ F c = B 1 a 6 γeh3 dc da = 24a2 EBh 3 () 57 / 303

59 Example h a question : which h(a) makes dc da C = u F = 2u F = 8a3 EBh 3 independent from a? dc da = 24a2 EBh 3 choice : h = h 0 a n Fa 3 u = 3(1 n)ei = 4Fa 3 (1 n)ebh 3 = 4Fa3(1 n) (1 n)ebh0 3 C = 2u F = dc da 8a3(1 n) (1 n)ebh 3 0 dc da = 24a(2 3n) EBh 3 0 constant for n = 2 3 h = h 0 a 2 3 () 58 / 303

60 back to index LINEAR ELASTIC STRESS ANALYSIS

61 Deformation P Q X + d X u x + d x Q P X e 3 e 2 x e 1 x i = X i + u i (X i ) x i + dx i = X i + dx i + u i (X i + dx i ) = X i + dx i + u i (X i ) + u i,j dx j dx i = dx i + u i,j dx j = (δ ij + u i,j )dx j ds = d x = dx i dx i ; ds = dx = dx i dx i () 60 / 303

62 Strains ds 2 = dx i dx i = [(δ ij + u i,j )dx j ][(δ ik + u i,k )dx k ] = (δ ij δ ik + δ ij u i,k + u i,j δ ik + u i,j u i,k )dx j dx k = (δ jk + u j,k + u k,j + u i,j u i,k )dx j dx k = (δ ij + u i,j + u j,i + u k,i u k,j )dx i dx j = dx i dx i + (u i,j + u j,i + u k,i u k,j )dx i dx j = ds 2 + (u i,j + u j,i + u k,i u k,j )dx i dx j ds 2 ds 2 = (u i,j + u j,i + u k,i u k,j )dx i dx j = 2γ ij dx i dx j Green-Lagrange strains γ ij = 1 2 (u i,j + u j,i + u k,i u k,j ) linear strains ε ij = 1 2 (u i,j + u j,i ) () 61 / 303

63 Compatibility 3 displacement components 9 strain components 6 dependencies 6 compatibility equations 2ε 12,12 ε 11,22 ε 22,11 = 0 2ε 23,23 ε 22,33 ε 33,22 = 0 2ε 31,31 ε 33,11 ε 11,33 = 0 ε 11,23 + ε 23,11 ε 31,12 ε 12,13 = 0 ε 22,31 + ε 31,22 ε 12,23 ε 23,21 = 0 ε 33,12 + ε 12,33 ε 23,31 ε 31,32 = 0 () 62 / 303

64 Stress unity normal vector stress vector Cauchy stress components stress cube n = n i e i p = p i e i p i = σ ij n j σ 33 σ σ 21 σ 31 σ 13 σ 32 σ 12 σ 22 1 σ 11 () 63 / 303

65 Linear elastic material behavior σ ij = C ijkl ε lk material symmetry isotropic material 2 mat.pars () 64 / 303

66 Hooke s law for isotropic materials σ 11 σ 22 σ 33 σ 12 σ 23 σ 31 σ ij = E ( ε ij + ν ) 1 + ν 1 2ν δ ijε kk i = 1, 2, 3 ε ij = 1 + ν ( σ ij ν ) E 1 + ν δ ijσ kk i = 1, 2, 3 1 ν ν ν ν 1 ν ν = α ν ν 1 ν ν ν ν α = E/[(1 + ν)(1 2ν)] ε 11 ε 22 ε 33 ε 12 ε 23 ε 31 ε 11 ε 22 ε 33 ε 12 ε 23 ε 31 = 1 E 1 ν ν ν 1 ν ν ν ν ν ν σ 11 σ 22 σ 33 σ 12 σ 23 σ 31 () 65 / 303

67 Equilibrium equations σ 12 σ 13 + σ 13,3 dx 3 σ 23 + σ 23,3 dx 3 σ 33 + σ 33,3 dx 3 σ 22 σ 32 σ 11 σ 21 1 σ 11 + σ 11,1 dx 1 σ 21 + σ 21,1 dx 1 σ 31 + σ 31,1 dx σ 13 σ 23 σ 33 σ 31 σ 12 + σ 12,2 dx 2 σ 22 + σ 22,2 dx 2 σ 32 + σ 32,2 dx 2 volume load ρq i force equilibrium σ ij,j + ρq i = 0 i = 1, 2, 3 moment equilibrium σ ij = σ ji () 66 / 303

68 Plane stress σ 33 = σ 13 = σ 23 = 0 equilibrium (q i = 0) σ 11,1 + σ 12,2 = 0 ; σ 21,1 + σ 22,2 = 0 compatibility 2ε 12,12 ε 11,22 ε 22,11 = 0 Hooke s law σ ij = E 1 + ν ( ε ij + ν ) 1 ν δ ijε kk ; ε ij = 1 + ν E Hooke s law in matrix notation ε 11 ε 22 = 1 1 ν 0 ν 1 0 E ε ν σ 11 σ 22 = E 1 ν 0 ν ν σ ν ( σ ij ν ) 1 + ν δ ijσ kk σ 11 σ 22 σ 12 ε 11 ε 22 ε 12 ε 33 = ν E (σ 11 + σ 22 ) = ν 1 ν (ε 11 + ε 22 ) ε 13 = ε 23 = 0 i = 1, 2 () 67 / 303

69 Plane strain ε 33 = ε 13 = ε 23 = 0 equilibrium (q i = 0) σ 11,1 + σ 12,2 = 0 ; σ 21,1 + σ 22,2 = 0 compatibility 2ε 12,12 ε 11,22 ε 22,11 = 0 Hooke s law ε ij = 1 + ν E (σ ij νδ ij σ kk ) ; σ ij = E ( ε ij + ν ) 1 + ν 1 2ν δ ijε kk i = 1, 2 Hooke s law in matrix notation σ 11 σ 22 E = 1 ν ν 0 ν 1 ν 0 (1 + ν)(1 2ν) σ ν ε 11 ε 22 = 1 + ν 1 ν ν 0 ν 1 ν 0 σ 11 σ 22 E ε σ 12 Eν σ 33 = (1 + ν)(1 2ν) (ε 11 + ε 22 ) = ν (σ 11 + σ 22 ) σ 13 = σ 23 = 0 ε 11 ε 22 ε 12 () 68 / 303

70 Displacement method σ ij,j = 0 σ ij = E 1 + ν E 1 + ν ( ε ij,j + ( ε ij + ν ) 1 2ν δ ijε kk,j ν 1 2ν δ ijε kk,j ) = 0 ε ij = 1 2 (u i,j + u j,i ) E ν 2 (u Eν i,jj + u j,ij ) + (1 + ν)(1 2ν) δ iju k,kj = 0 BC s u i ε ij σ ij () 69 / 303

71 Stress function method ψ(x 1, x 2 ) σ ij = ψ,ij + δ ij ψ,kk σ ij,j = 0 ε ij = 1 + ν (σ ij νδ ij σ kk ) E ε ij = 1 + ν } { ψ,ij + (1 ν)δ ij ψ,kk } E 2ε 12,12 ε 11,22 ε 22,11 = 0 2ψ, ψ, ψ,1111 = 0 (ψ,11 + ψ,22 ),11 + (ψ,11 + ψ,22 ),22 = 0 Laplace operator : 2 = 2 x x 2 2 = ( ) 11 + ( ) 22 } bi-harmonic equation 2 ( 2 ψ) = 4 ψ = 0 BC s } ψ σ ij ε ij u i () 70 / 303

72 Cylindrical coordinates z e z e t e r x e 3 e 2 e 1 θ r y vector bases { e 1, e 2, e 3 } { e r, e t, e z } e r = e r (θ) = e 1 cosθ + e 2 sinθ e t = e t (θ) = e 1 sinθ + e 2 cosθ () 71 / 303

73 Laplace operator z e z e t e r x e 3 e 2 e 1 θ r y gradient operator Laplace operator two-dimensional = er r + e 1 t r 2 = = 2 2 = 2 r r θ + e z z r r r r 2 θ 2 r + 1 r 2 2 θ z 2 () 72 / 303

74 Bi-harmonic equation bi-harmonic equation ( 2 r r r ) ( 2 ψ r 2 θ 2 r ψ r r ) ψ r 2 θ 2 = 0 stress components σ rr = 1 ψ r r ψ r 2 θ 2 σ tt = 2 ψ r 2 σ rt = 1 ψ r 2 θ 1 r ψ r θ = r ( 1 r ) ψ θ () 73 / 303

75 Circular hole in infinite plate σ y σ θ r x 2a σ rr = 1 r ( 2 r r ψ r + 1 r 2 2 ψ θ 2 ; r ) ( 2 ψ r 2 θ 2 r ψ r r ) ψ r 2 θ 2 = 0 σ tt = 2 ψ r 2 ; σ rt = 1 r 2 ψ θ 1 r ψ r θ = r ( 1 r ) ψ θ () 74 / 303

76 Load transformation σ σ θ σ rr σ rt σ rr σ rt 2a 2b equilibrium two load cases σ rr (r = b, θ) = 1 2 σ σcos(2θ) σ rt (r = b, θ) = 1 2 σsin(2θ) I. σ rr (r = a) = σ rt (r = a) = 0 σ rr (r = b) = 1 2 σ ; σ rt(r = b) = 0 II. σ rr (r = a) = σ rt (r = a) = 0 σ rr (r = b) = 1 2 σcos(2θ) ; σ rt(r = b) = 1 2 σsin(2θ) () 75 / 303

77 Load case I σ rr (r = a) = σ rt (r = a) = 0 σ rr (r = b) = 1 2 σ ; σ rt(r = b) = 0 Airy function ψ = f (r) stress components σ rr = 1 r ψ r ψ r 2 θ 2 = 1 df r dr ; σ tt = 2 ψ r 2 = d2 f dr 2 ; σ rt = r ( 1 r ) ψ = 0 θ bi-harmonic equation ( d 2 dr r ) ( d d 2 f dr dr ) df = 0 r dr () 76 / 303

78 Solution general solution stresses ψ(r) = Aln r + Br 2 ln r + Cr 2 + D σ rr = A + B(1 + 2 lnr) + 2C r2 σ tt = A + B(3 + 2 lnr) + 2C r2 strains (from Hooke s law for plane stress) ε rr = 1 [ ] A (1 + ν) + B{(1 3ν) + 2(1 ν)ln r} + 2C(1 ν) E r2 ε tt = 1 1 [ Ar ] E r (1 + ν) + B{(3 ν)r + 2(1 ν)r lnr} + 2C(1 ν)r compatibility ε rr = du dr = d(r ε tt) dr 2 BC s and b a A and C B = 0 σ rr = 1 a2 2σ(1 r 2 ) ; σ tt = 1 a2 2σ(1 + r 2 ) ; σ rt = 0 () 77 / 303

79 Load case II σ rr (r = a) = σ rt (r = a) = 0 σ rr (r = b) = 1 2 σcos(2θ) ; σ rt(r = b) = 1 2 σsin(2θ) Airy function ψ(r, θ) = g(r)cos(2θ) stress components σ rr = 1 r ψ r ψ r 2 θ 2 ; σ tt = 2 ψ r 2 σ rt = 1 r 2 ψ θ 1 r ψ r θ = r bi-harmonic equation ( 2 r r r ) {( d 2 g r 2 θ 2 dr dg r dr 4 ( d 2 dr d r dr 4 ) ( d 2 g r 2 dr dg r dr 4 r 2 g ( 1 r ψ θ ) r 2 g ) ) cos(2θ) = 0 } cos(2θ) = 0 () 78 / 303

80 Solution general solution g = Ar 2 + Br 4 + C 1 r 2 + D ( ψ = Ar 2 + Br 4 + C 1 ) r 2 + D cos(2θ) ( stresses σ rr = 2A + 6C r 4 + 4D ) r 2 cos(2θ) ( σ tt = 2A + 12Br 2 + 6C ) r 4 cos(2θ) ( σ rt = 2A + 6Br 2 6C r 4 2D ) r 2 sin(2θ) 4 BC s and b a A,B,C and D ( σ rr = 1 2 σ 1 + 3a4 r 4 4a2 r 2 σ tt = 1 2 σ ( 1 + 3a4 r 4 ) cos(2θ) ) cos(2θ) ( σ rt = 1 2 σ 1 3a4 r 4 + 2a2 r 2 ) sin(2θ) () 79 / 303

81 Stresses for total load σ rr = σ [(1 a2 2 r 2 σ tt = σ [(1 + a2 2 r 2 σ rt = σ 2 ) + (1 + 3a4 ) [1 3a4 r 4 + 2a2 r 2 r 4 4a2 r 2 (1 + 3a4 r 4 ] sin(2θ) ) cos(2θ) ) ] cos(2θ) ] () 80 / 303

82 Special points stress concentration factor σ rr (r = a, θ) = σ rt (r = a, θ) = σ rt (r, θ = 0) = 0 σ tt (r = a, θ = π 2 ) = 3σ σ tt (r = a, θ = 0) = σ K t is independent of hole diameter! K t = σ max σ = 3 [-] () 81 / 303

83 Stress gradients large hole : smaller stress gradient larger area with higher stress higher chance for critical defect in high stress area () 82 / 303

84 Elliptical hole y σ σ yy σ a b radius ρ x ( σ yy (x = a, y = 0) = σ a ) ( = σ ) a/ρ b 2σ a/ρ stress concentration factor K t = 2 a/ρ [-] () 83 / 303

85 back to index CRACK TIP STRESS

86 () 85 / 303

87 Complex plane x 2 r θ x 1 crack tip = singular point complex function theory complex Airy function (Westergaard, 1939) () 86 / 303

88 Complex variables x 2 e i r θ z e r x 1 z z = x 1 + ix 2 = re iθ ; z = x 1 ix 2 = re iθ x 1 = 1 2 (z + z) ; x 2 = 1 2i (z z) = 1 2i(z z) z = x 1 e r + x 2 e i = x 1 e r + x 2 i e r = (x 1 + ix 2 ) e r () 87 / 303

89 Complex functions complex function f (z) = φ + iζ = φ(x 1, x 2 ) + iζ(x 1, x 2 ) = f f ( z) = φ(x 1, x 2 ) iζ(x 1, x 2 ) = f φ = 1 2 {f + f } ; ζ = 1 2 i{f f } 2 φ = 2 ζ = 0 appendix!! () 88 / 303

90 Laplace operator complex function Laplacian derivatives (see App. A) g(x 1, x 2 ) = g(z, z) 2 g = 2 g x g x2 2 g = g x 1 z z + g x 1 z z = g x 1 z + g z ; 2 g x 2 1 = 2 g z g z z + 2 g z 2 g = g x 2 z z + g x 2 z z = i g x 2 z i g z ; 2 g x 2 2 = 2 g z g z z 2 g z 2 Laplacian 2 g = 2 g x = 4 z z + 2 g x 2 2 = 4 g z z () 89 / 303

91 Bi-harmonic equation Airy function ψ(z, z) bi-harmonic equation 2 ( 2 ψ(z, z) ) = 0 () 90 / 303

92 Solution of bi-harmonic equation real part of complex function f satisfies Laplace eqn. 2 ( 2 ψ(z, z) ) = 2 (φ(z, z)) = 0 φ = f + f choice Airy function 2 ψ = 4 ψ z z = φ = f + f integration ψ = 1 2 [ zω + z Ω + ω + ω ] unknown functions : Ω ; Ω ; ω ; ω () 91 / 303

93 Stresses Airy function ψ = 1 2 [ zω + z Ω + ω + ω ] stress components σ ij = σ ij (z, z) = ψ,ij + δ ij ψ,kk σ 11 = ψ,11 + ψ,γγ = ψ,22 = Ω + Ω 1 2 { zω + ω + z Ω + ω } σ 22 = ψ,22 + ψ,γγ = ψ,11 = Ω + Ω { zω + ω + z Ω + ω } σ 12 = ψ,12 = 1 2 i { zω + ω z Ω ω } () 92 / 303

94 Displacement u 2 u x 2 e i e 2 θ r u 1 e r e 1 x 1 definition of complex displacement u = u 1 e 1 + u 2 e 2 = u 1 e r + u 2 e i = u 1 e r + u 2 i e r = (u 1 + iu 2 ) e r = u e r u = u 1 + iu 2 = u 1 (x 1, x 2 ) + iu 2 (x 1, x 2 ) = u(z, z) ū = u 1 iu 2 = ū(z, z) () 93 / 303

95 Schematic u u(z, z) with int. const. M(z) z u z u ū z + ū z M(z), M( z) z u z + ū z = ε 11 + ε 22 σ 11, σ 22 M(z) u(z, z) () 94 / 303

96 Displacement derivatives u z = u x 1 x 1 z + u { x 2 u x 2 z = i u } x 1 x 2 { = 1 u1 2 + i u 2 + i u 1 u } 2 = 1 x 1 x 1 x 2 x 2 (ε 11 ε iε 12 ) 2 u z = u x 1 x 1 z + u { x 2 u x 2 z = 1 2 i u } x 1 x 2 { = 1 u1 2 + i u 2 i u 1 + u } { 2 = 1 x 1 x 1 x 2 x 2 ε 11 + ε 22 + i 2 ū z = ū x 1 x 1 z + ū { x 2 ū x 2 z = 1 2 i ū } x 1 x 2 { = 1 u1 2 i u 2 i u 1 u } 2 = 1 x 1 x 1 x 2 x 2 (ε 11 ε 22 2iε 12 ) 2 ū z = ū x 1 x 1 z + ū { x 2 ū x 2 z = i ū } x 1 x 2 { = 1 u1 2 i u 2 + i u 1 + u } 2 = 1 x 1 x 1 x 2 x 2 2 ( u2 u )} 1 x 1 x 2 { ( u2 ε 11 + ε 22 i u )} 1 x 1 x 2 () 95 / 303

97 General solution u z = 1 2 (ε 11 ε iε 12 ) Hooke s law (pl.strain) ] [σ 11 σ iσ 12 u z = ν E = 1 + ν E [z Ω + ω ] Integration u = 1 + ν E [ ] z Ω + ω + M () 96 / 303

98 Integration function u = 1 + ν E ū = 1 + ν E [ ] z Ω + ω + M u z = 1 + ν [ Ω + M ] E [ Ω + M ] [ zω + ω + M ] ū z = 1 + ν E u z + ū z = 1 + ν [ Ω + Ω + M + M ] E u z + ū z = ε 11 + ε 22 = 1 + ν [(1 2ν)(σ 11 + σ 22 )] E (1 + ν)(1 2ν) = 2 [ Ω + Ω ] E M + M = (3 4ν) [ Ω + Ω ] M = (3 4ν)Ω = κω u = 1 + ν E [ ] z Ω + ω κω () 97 / 303

99 Choice of complex functions Ω = (α + iβ)z λ+1 = (α + iβ)r λ+1 e iθ(λ+1) ω = (γ + iδ)z λ+1 = (γ + iδ)r λ+1 e iθ(λ+1) Ω = (α iβ) z λ+1 = (α iβ)r λ+1 e iθ(λ+1) Ω = (α iβ)(λ + 1) z λ = (α iβ)(λ + 1)r λ e iθλ ω = (γ iδ) z λ+1 = (γ iδ)r λ+1 e iθ(λ+1) u = 1 2µ rλ+1 [ κ(α + iβ)e iθ(λ+1) (α iβ)(λ + 1)e iθ(1 λ) (γ iδ)e iθ(λ+1)] with µ = E 2(1 + ν) displacement finite λ > 1 () 98 / 303

100 Displacement components u = 1 2µ rλ+1 [ κ(α + iβ)e iθ(λ+1) (α iβ)(λ + 1)e iθ(1 λ) (γ iδ)e iθ(λ+1)] e iθ = cos(θ) + i sin(θ) u = 1 2µ rλ+1 [ { i = u 1 + iu 2 κα cos(θ(λ + 1)) κβ sin(θ(λ + 1)) α(λ + 1)cos(θ(1 λ)) β(λ + 1)sin(θ(1 λ)) } γ cos(θ(λ + 1)) + δ sin(θ(λ + 1)) + { κα sin(θ(λ + 1)) + κβ cos(θ(λ + 1)) α(λ + 1)sin(θ(1 λ)) + β(λ + 1)cos(θ(1 λ)) + } ] γ sin(θ(λ + 1)) + δ cos(θ(λ + 1)) () 99 / 303

101 Mode I () 100 / 303

102 Mode I : displacement x 2 r θ x 1 displacement for Mode I u 1 (θ > 0) = u 1 (θ < 0) u 2 (θ > 0) = u 2 (θ < 0) } β = δ = 0 Ω = αz λ+1 = αr λ+1 e i(λ+1)θ ω = γz λ+1 = γr λ+1 e i(λ+1)θ () 101 / 303

103 Mode I : stress components σ 11 = (λ + 1) [ αz λ + α z λ { 1 2 αλ zz λ 1 + γz λ + αλz z λ 1 + γ z λ}] σ 22 = (λ + 1) [ αz λ + α z λ { αλ zz λ 1 + γz λ + αλz z λ 1 + γ z λ}] σ 12 = 1 2 i(λ + 1)[ αλ zz λ 1 + γz λ αλz z λ 1 γ z λ] with z = re iθ ; z = re iθ σ 11 = (λ + 1)r λ [ αe iλθ + αe iλθ {αλe i(λ 2)θ + γe iλθ + αλe i(λ 2)θ + γe iλθ}] 1 2 σ 22 = (λ + 1)r λ [ αe iλθ + αe iλθ + {αλe i(λ 2)θ + γe iλθ + αλe i(λ 2)θ + γe iλθ}] 1 2 σ 12 = 1 2 i(λ + 1)rλ [ αλe i(λ 2)θ + γe iλθ αλe i(λ 2)θ γe iλθ] () 102 / 303

104 with e iθ + e iθ = 2 cos(θ) ; e iθ e iθ = 2i sin(θ) σ 11 = 2(λ + 1)r λ [ α cos(λθ) {αλ cos((λ 2)θ) + γ cos(λθ)}] σ 22 = 2(λ + 1)r λ [ α cos(λθ) 1 2 {αλ cos((λ 2)θ) + γ cos(λθ)}] σ 12 = (λ + 1)r λ [αλ sin((λ 2)θ) + γ sin(λθ)] () 103 / 303

105 Stress boundary conditions σ 11 = 2(λ + 1)r λ [ α cos(λθ) {αλ cos((λ 2)θ) + γ cos(λθ)}] σ 22 = 2(λ + 1)r λ [ α cos(λθ) 1 2 {αλ cos((λ 2)θ) + γ cos(λθ)}] σ 12 = (λ + 1)r λ [αλ sin((λ 2)θ) + γ sin(λθ)] crack surfaces are stress free σ 22 (θ = ±π) = σ 12 (θ = ±π) = 0 [ ][ ] [ ] (λ 2)cos(λπ) cos(λπ) α 0 = λ sin(λπ) sin(λπ) γ 0 [ ] (λ 2)cos(λπ) cos(λπ) det = sin(2λπ) = 0 2πλ = nπ λ sin(λπ) sin(λπ) λ = 1 2, n, with n = 0, 1, 2,.. 2 () 104 / 303

106 Stress field λ = 1 2 α = 2γ ; λ = 0 α = 1 2 γ λ = 1 2 α = 2γ ; λ = 1 α = γ σ 11 = 2γr 1 2 cos( 1 2 θ)[ 1 sin( 3 2 θ)sin(1 2 θ)] + σ 22 = 2γr 1 2 cos( 1 2 θ)[ 1 + sin( 3 2 θ)sin(1 2 θ)] + σ 12 = 2γr 1 2 [ cos( 1 2 θ)cos(3 2 θ)sin(1 2 θ)] + () 105 / 303

107 Mode I : stress intensity factor definition stress intensity factor K ( Kies ) ( ) K I = lim 2πr σ22 θ=0 = 2γ 2π [ m 1 2 N m 2 ] r 0 () 106 / 303

108 Mode I : crack tip solution σ 11 = σ 22 = σ 12 = K I 2πr [ cos( 1 2 θ){ 1 sin( 1 2 θ)sin(3 2 θ)}] K I 2πr [ cos( 1 2 θ){ 1 + sin( 1 2 θ)sin(3 2 θ)}] K I 2πr [ cos( 1 2 θ)sin(1 2 θ)cos(3 2 θ)] u 1 = K I r 2µ 2π u 2 = K I r 2µ 2π [ cos( 1 2 θ){ κ sin 2 ( 1 2 θ)}] [ sin( 1 2 θ){ κ cos 2 ( 1 2 θ)}] plane stress plane strain κ = 3 ν 1 + ν κ = 3 4ν () 107 / 303

109 Mode II () 108 / 303

110 Mode II : displacement x 2 r θ x 1 displacements for Mode II u 1 (θ > 0) = u 1 (θ < 0) u 2 (θ > 0) = u 2 (θ < 0) } α = γ = 0 Ω = iβz λ+1 = iβr λ+1 e i(λ+1)θ ω = iδz λ+1 = iδr λ+1 e i(λ+1)θ () 109 / 303

111 Mode II : stress intensity factor definition stress intensity factor K ( Kies ) ( ) K II = lim 2πr σ12 θ=0 r 0 [ m 1 2 N m 2 ] () 110 / 303

112 Mode II : crack tip solution σ 11 = K II 2πr [ sin( 1 2 θ){ 2 + cos( 1 2 θ)cos(3 2 θ)}] σ 22 = K II 2πr [ sin( 1 2 θ)cos(1 2 θ)cos(3 2 θ)] σ 12 = K II 2πr [ cos( 1 2 θ){ 1 sin( 1 2 θ)sin(3 2 θ)}] u 1 = K II r 2µ 2π u 2 = K II r 2µ 2π [ sin( 1 2 θ){ κ cos 2 ( 1 2 θ)}] [ cos( 1 2 θ){ κ 1 2 sin 2 ( 1 2 θ)}] plane stress plane strain κ = 3 ν 1 + ν κ = 3 4ν () 111 / 303

113 Mode III () 112 / 303

114 Laplace equation ε 31 = 1 2 u 3,1 ; ε 32 = 1 2 u 3,2 Hooke s law σ 31 = 2µε 31 = µu 3,1 ; σ 32 = 2µε 32 = µu 3,2 equilibrium σ 31,1 + σ 32,2 = µu 3,11 + µu 3,22 = 0 2 u 3 = 0 () 113 / 303

115 Mode III : displacement general solution u 3 = f + f specific choice f = (A + ib)z λ+1 f = (A ib) z λ+1 () 114 / 303

116 Mode III : stress components σ 31 = 2(λ + 1)r λ {Acos(λθ) B sin(λθ)} σ 32 = 2(λ + 1)r λ {Asin(λθ) + B cos(λθ)} σ 32 (θ = ±π) = 0 [ ] [ ] [ ] sin(λπ) cos(λπ) A 0 = sin(λπ) cos(λπ) B 0 [ ] sin(λπ) cos(λπ) det = sin(2πλ) = 0 2πλ = nπ sin(λπ) cos(λπ) λ = 1 2, n,.. with n = 0, 1, 2,.. 2 crack tip solution λ = 1 2 A = 0 σ 31 = Br 1 2 {sin( 1 2 θ)} ; σ 32 = Br 1 2 {cos( 1 2 θ)} () 115 / 303

117 Mode III : Stress intensity factor definition stress intensity factor ( ) K III = lim 2πr σ32 θ=0 r 0 () 116 / 303

118 Mode III : crack tip solution stress components σ 31 = K III 2πr [ sin( 1 2 θ)] σ 32 = K III 2πr [ cos( 1 2 θ)] displacement u 3 = 2K III µ r [ sin( 1 2π 2 θ)] () 117 / 303

119 Crack tip stress (mode I, II, III) σ τ τ σ τ τ Mode I Mode II Mode III σ ij = K I 2πr f Iij (θ) ; σ ij = K II 2πr f IIij (θ) ; σ ij = K III 2πr f IIIij (θ) crack intensity factors (SIF) K I = β I σ πa ; K II = β II τ πa ; K III = β III τ πa () 118 / 303

120 K-zone D K-zone : D I II D II D I () 119 / 303

121 SIF for specified cases 2a σ τ 2a K I = σ ( πa sec πa W K II = τ πa ) 1/2 small a W W W () 120 / 303

122 SIF for specified cases σ K I = σ [ a 1.12 π 0.41 a W + a W ( a ) 2 ( a ) W W ( a ) ] W 1.12σ πa small a W () 121 / 303

123 SIF for specified cases a W a σ K I = σ [ a 1.12 π a W ( a ) 2 ( a ) ] W W 1.12σ πa () 122 / 303

124 SIF for specified cases W 2a σ K I /σ full 1st term a/w a W σ K I /σ full 1st term a/w plots are made with Kfac.m. () 123 / 303

125 SIF for specified cases P K I = [ PS ( a ) BW 3/2 W W a P/2 S P/2 ( a ) 3 ( 2 a ) W W ] ( a ) 7 ( 2 a ) W W () 124 / 303

126 SIF for specified cases a P W K I = [ P ( a ) BW 1/2 W ( a ) 3 ( 2 a ) W W ] ( a ) 7 ( 2 a ) W W P () 125 / 303

127 SIF for specified cases 2a p K I = p πa p per unit thickness W () 126 / 303

128 SIF for specified cases P W a P/2 S P/2 K I /P full 1st term P a W P K I /P a/w full 1st term a/w plots are made with Kfac.m. () 127 / 303

129 K-based crack growth criteria K I = K Ic ; K II = K IIc ; K III = K IIIc K Ic = Fracture Toughness calculate K I, K II, K III - analytically - literature - relation K G - numerically (EEM, BEM) experimental determination of K Ic, K IIc, K IIIc - normalized experiments (exmpl. ASTM E399) KIc 2 - correlation with C v ( KAN p. 18 : E = mcn v ) () 128 / 303

130 Relation G K I y σ yy x a a crack length a σ yy (θ = 0, r = x a) = σ a 2(x a) ; u y = 0 crack length a + a σ yy (θ = π, r = a + a x) = 0 (1 + ν)(κ + 1) σ a + a u y = E 2 a + a x plane stress : κ = 3 ν 1 + ν ; plane strain : κ = 3 4ν () 129 / 303

131 Relation G K I (continued) accumulation of elastic energy U = 2B energy release rate G = 1 B lim a 0 a+ a a ( U a ) 1 2 σ yy dx u y = B a+ a a σ yy u y dx = B f ( a) a (1 + ν)(κ + 1) = lim f ( a) = σ 2 (1 + ν)(κ + 1) aπ = KI 2 a 0 4E 4E plane stress G = K I 2 E plane strain G = (1 ν 2 ) K I 2 E () 130 / 303

132 Multi mode load G = 1 E ( c1 KI 2 + c 2 KII 2 + c 3 KIII 2 ) plane stress G = 1 E (K 2 I + K 2 II) plane strain G = (1 ν2 ) (KI 2 + K 2 E II) + (1 + ν) KIII 2 E () 131 / 303

133 The critical SIF value σ K I 2a B K Ic σ B c B K Ic = σ c πa B c = 2.5 ( ) 2 KIc σ y () 132 / 303

134 K Ic values Material σ v [MPa] K Ic [MPa m ] steel, 300 maraging steel, 350 maraging steel, D6AC steel, AISI steel, A533B reactor steel, carbon Al 2014-T Al 2024-T Al 7075-T Al 7079-T Ti 6Al-4V Ti 6Al-6V-2Sn Ti 4Al-4Mo-2Sn-0.5Si () 133 / 303

135 back to index MULTI-MODE LOADING

136 Multi-mode crack loading Mode I Mode II Mode I + II Mode I + II () 135 / 303

137 Multi-mode crack loading crack tip stresses s ij Mode I s ij = K I 2πr f Iij (θ) Mode II s ij = K II 2πr f IIij (θ) Mode I + II s ij = K I 2πr f Iij (θ) + K II 2πr f IIij (θ) () 136 / 303

138 Stress component transformation (b) p e 2 e 2 θ n e 1 e 1 = cos(θ) e 1 + sin(θ) e 2 = c e 1 + s e 2 e 2 = sin(θ) e 1 + cos(θ) e 2 = s e 1 + c e 2 e 1 stress vector and normal unity vector p = p 1 e 1 + p 2 e 2 = p1 e 1 + p 2 e [ ] [ ] [ ] p1 c s p = 1 p 2 s c p2 2 [ p 1 p 2 ] [ c s = s c ] [ p1 p 2 ] = T p p p = T T p idem : ñ = T T ñ () 137 / 303

139 Transformation stress matrix p = σñ T p = σtñ p = T T σt ñ = σ ñ σ = T T σt σ = T σ T T [ σ 11 σ 12 σ 21 σ 22 ] [ ][ ] [ ] c s σ11 σ = 12 c s s c σ 21 σ 22 s c [ ][ ] c s cσ11 + sσ = 12 sσ 11 + cσ 12 s c cσ 21 + sσ 22 sσ 21 + cσ 22 c 2 σ csσ 12 + s 2 σ 22 = csσ 11 + (c 2 s 2 )σ 12 + csσ 22 csσ 11 + (c 2 s 2 )σ 12 + csσ 22 s 2 σ 11 2csσ 12 + c 2 σ 22 () 138 / 303

140 Cartesian to cylindrical transformation σ yy σ xy e t e r σ xx e 2 r θ e r = c e 1 + s e 2 e t = s e 1 + c e 2 e 1 σ rt σ rr σ tt [ ] σrr σ rt = σ tr σ tt [ c ][ s σxx σ xy s c = ] [ c s σ xy σ yy s c c 2 σ xx + 2csσ xy + s 2 σ yy csσ xx + (c 2 s 2 )σ xy + csσ yy csσ xx + (c 2 s 2 )σ xy + csσ yy s 2 σ xx 2csσ xy + c 2 σ yy ] () 139 / 303

141 Crack tip stresses : Cartesian σ yyσxy σ xx = σ xx K I 2πr f Ixx (θ) + K II 2πr f IIxx (θ) f Ixx (θ) = cos( θ 2 )[ 1 sin( θ 2 )sin(3θ 2 )] f IIxx (θ) = sin( θ 2 )[ 2 + cos( θ 2 )cos(3θ 2 )] f Iyy (θ) = cos( θ 2 )[ 1 + sin( θ 2 )sin(3θ 2 )] f IIyy (θ) = sin( θ 2 )cos( θ 2 )cos(3θ 2 ) f Ixy (θ) = sin( θ 2 )cos( θ 2 )cos(3θ 2 ) f IIxy (θ) = cos( θ 2 )[ 1 sin( θ 2 )sin(3θ 2 )] σ yy = σ xy = K I 2πr f Iyy (θ) + K II 2πr f IIyy (θ) K I 2πr f Ixy (θ) + K II 2πr f IIxy (θ) () 140 / 303

142 Crack tip stresses : cylindrical σ rr σ rt σ rr = θ σ tt K I 2πr f Irr (θ) + K II 2πr f IIrr (θ) f Irr (θ) = [ 5 4 cos( θ 2 ) 1 4 cos(3θ 2 )] f IIrr (θ) = [ 5 4 sin( θ 2 ) sin(3θ 2 )] f Itt (θ) = [ 3 4 cos( θ 2 ) cos(3θ 2 )] f IItt (θ) = [ 3 4 sin( θ 2 ) 3 4 sin(3θ 2 )] f Irt (θ) = [ 1 4 sin( θ 2 ) sin(3θ 2 )] f IIrt (θ) = [ 1 4 cos( θ 2 ) cos(3θ 2 )] σ tt = σ rt = K I 2πr f Itt (θ) + K II 2πr f IItt (θ) K I 2πr f Irt (θ) + K II 2πr f IIrt (θ) () 141 / 303

143 Multi-mode load 2a σ 22σ12 σ 11 σ 12 σ 22 2a σ 12 σ 11 [ σ 11 σ 12 σ 21 σ 22 ] = e 2 e 2 e 1 θ e 1 σ 12 σ 22 c 2 σ csσ 12 + s 2 σ 22 csσ 11 + (c 2 s 2 )σ 12 + csσ 22 csσ 11 + (c 2 s 2 )σ 12 + csσ 22 s 2 σ 11 2csσ 12 + c 2 σ 22 crack tip stresses s ij = K I 2πr f Iij (θ) + K II 2πr f IIij (θ) with K I = β σ 22 πa ; KII = γ σ 12 πa σ 11 does not do anything () 142 / 303

144 Example multi-mode load σ σ 12 σ 22 σ 11 2a kσ 2a σ 12 θ σ 11 = c2 σ csσ 12 + s 2 σ 22 = c 2 kσ + s 2 σ σ 22 = s2 σ 11 2csσ 12 + c 2 σ 22 = s 2 kσ + c 2 σ σ 12 = csσ 11 + (c 2 s 2 )σ 12 + csσ 22 = cs(1 k)σ crack tip stresses s ij = K I 2πr f Iij (θ) + K II 2πr f IIij (θ) stress intensity factors K I = β I σ 22 πa = βi (s 2 k + c 2 )σ πa K II = β II σ 12 πa = βii cs(1 k)σ πa () 143 / 303

145 Example multi-mode load σ t 2a σ a p R t θ σ 22 σ 12 σ 11 σ t = pr = σ ; σ a = pr t 2t = 1 2 σ k = 1 2 σ 22 = s σ + c2 σ ; σ 12 = cs(1 1 2 )σ = 1 2 cs σ K I = σ 22 πa = ( 1 2 s2 + c 2 )σ πa = ( 1 2 s2 + c 2 ) pr t πa K II = σ 12 πa = 1 2 cs σ = 1 2 cs pr t πa () 144 / 303

146 back to index CRACK GROWTH DIRECTION

147 Crack growth direction criteria for crack growth direction : maximum tangential stress (MTS) criterion strain energy density (SED) criterion requirement : crack tip stresses in cylindrical coordinates () 146 / 303

148 Maximum tangential stress criterion Erdogan & Sih (1963) σ rr σ rt θ σ tt Hypothesis : crack growth towards local maximum of σ tt σ tt θ = 0 and 2 σ tt θ 2 < 0 θ c σ tt (θ = θ c ) = σ tt (θ = 0) = K Ic 2πr crack growth () 147 / 303

149 Maximum tangential stress criterion 3 2 σ tt θ = 0 K I K II [ 1 2πr 4 sin( θ 2 ) 1 4 sin(3θ 2 )] [ πr 4 cos( θ 2 ) 3 4 cos(3θ 2 )] = 0 K I sin(θ) + K II {3 cos(θ) 1} = 0 2 σ tt θ 2 < K I [ 1 2πr 4 cos( θ 2 ) 3 4 cos(3θ 2 )] [ πr 4 sin( θ 2 ) sin(3θ 2 )] < 0 K II σ tt (θ = θ c ) = K Ic 2πr 1 K I 4 K II [ 3 cos( θ c K 2 ) + cos(3θc 2 )] [ sin( θ c Ic K 2 ) 3 sin(3θc 2 )] = 1 Ic () 148 / 303

150 Mode I load K II = 0 σ tt θ = K I sin(θ) = 0 θ c = 0 2 σ tt θ 2 < 0 θc σ tt (θ c ) = K Ic 2πr K I = K Ic () 149 / 303

151 Mode II load K I = 0 σ tt θ = K II(3 cos(θ c ) 1) = 0 θ c = ± arccos( 1 3 ) = ±70.6o 2 σ tt θ 2 < 0 θ c = 70.6 o θc σ tt (θ c ) = K Ic 2πr K IIc = 3 4 K Ic τ θ c τ () 150 / 303

152 Multi-mode load K I [ sin( θ 2 ) sin(3θ 2 )] + K II[ cos( θ 2 ) 3 cos(3θ 2 )] = 0 K I [ cos( θ 2 ) 3 cos(3θ 2 )] + K II[sin( θ 2 ) + 9 sin(3θ 2 )] < 0 K I [3 cos( θ 2 ) + cos(3θ 2 )] + K II[ 3 sin( θ 2 ) 3 sin(3θ 2 )] = 4K Ic K I f 1 K II f 2 = 0 K I f 2 + K II f 3 < 0 K I f 4 3K II f 1 = 4K Ic ( KI K ( Ic KI K ( Ic KI K Ic ) ( KII f 1 ) f 2 + ) f 4 3 K ( Ic KII K ( Ic KII K Ic ) f 2 = 0 ) f 3 < 0 ) f 1 = 4 () 151 / 303

153 Multi-mode load θ c K I /K Ic K II /K Ic K /K I Ic () 152 / 303

154 Strain energy density (SED) criterion Sih (1973) σ rr σ rt θ σ tt Hypothesis : U i = Strain Energy Density (Function) = εij 0 σ ij dε ij S = Strain Energy Density Factor = ru i = S(K I, K II, θ) crack growth towards local minimum of SED S θ = 0 and 2 S θ 2 > 0 θ c S(θ = θ c ) = S(θ = 0, pl.strain) = S c crack growth () 153 / 303

155 SED U i = 1 2E (σ2 xx + σ2 yy + σ2 zz ) ν E (σ xxσ yy + σ yy σ zz + σ zz σ xx ) + 1 2G (σ2 xy + σ2 yz + σ2 zx ) σ xx = σ yy = σ xy = K I 2πr cos( θ 2 )[ 1 sin( θ 2 )sin(3θ 2 )] K II 2πr sin( θ 2 )[ 2 + cos( θ 2 )cos(3θ 2 )] K I 2πr cos( θ 2 )[ 1 + sin( θ 2 )sin(3θ 2 )] + K II 2πr sin( θ 2 )cos( θ 2 )cos(3θ 2 ) K I 2πr sin( θ 2 )cos( θ 2 )cos(3θ 2 ) + K II 2πr cos( θ 2 )[ 1 sin( θ 2 )sin(3θ 2 )] () 154 / 303

156 SED factor S = ru i = S(K I, K II, θ) = a 11 k 2 I + 2a 12 k I k II + a 22 k 2 II with a 11 = 1 16G (1 + cos(θ))(κ cos(θ)) a 12 = 1 16G sin(θ){2 cos(θ) (κ 1)} a 22 = 1 16G {(κ + 1)(1 cos(θ)) + (1 + cos(θ))(3 cos(θ) 1)} k i = K i / π S θ = 0 ki 2 16G {2 sin(θ)cos(θ) (κ 1)sin(θ)} + k Ik II 16G {2 4 sin2 (θ) (κ 1)cos(θ)} + kii 2 { 6 sin(θ)cos(θ) + (κ 1)sin(θ)} = 0 16G 2 S θ 2 > 0 k 2 I 16G {2 4 sin2 (θ) (κ 1)cos(θ)} + k Ik II { 8 sin(θ)cos(θ) + (κ 1)sin(θ)} + 16G kii 2 16G { sin2 (θ) + (κ 1)cos(θ)} > 0 () 155 / 303

157 Mode I load S = a 11 ki 2 = σ2 a {1 + cos(θ)}{κ cos(θ)} 16G S = sin(θ){2 cos(θ) (κ 1)} = 0 θ θ c = 0 or arccos ( 1 2 (κ 1)) 2 S θ 2 = 2 cos(2θ) (κ 1)cos(θ) > 0 θ c = 0 S(θ c ) = σ2 a 16G {2}{κ 1} = σ2 a (κ 1) 8G S c = S(θ c, pl.strain) = (1 + ν)(1 2ν) 2πE K 2 Ic () 156 / 303

158 Mode II load S = a 22 kii 2 = τ2 a [(κ + 1){1 cos(θ)} + {1 + cos(θ)}{3 cos(θ) 1}] 16G S = sin(θ)[ 6 cos(θ) + (κ 1)] = 0 θ 2 S θ 2 = 6 cos2 (θ) + (κ 1)cos(θ) > 0 S(θ c ) = τ2 a 16G { 1 12 ( κ2 + 14κ 1)} θ c = ± arccos ( 1 6 (κ 1)) S(θ c ) = S c τ c = 1 a 192GSc κ κ 1 () 157 / 303

159 Multi-mode load; plane strain ν= ν=0.1 ν=0.2 ν=0.3 ν=0.4 ν= θ c K /K I Ic K II /K Ic ν= ν=0.1 ν=0.2 ν=0.3 ν=0.4 ν= K /K I Ic () 158 / 303

160 Multi-mode load; plane stress ν= ν=0.1 ν=0.2 ν=0.3 ν=0.4 ν= θ c K /K I Ic K II /K Ic ν= ν=0.1 ν=0.2 ν=0.3 ν=0.4 ν= K /K I Ic () 159 / 303

161 Multi-mode load; plane strain k I = σ a sin 2 (β) ; k II = σ a sin(β)cos(β) S = σ 2 a sin 2 (β) { a 11 sin 2 (β) + 2a 12 sin(β)cos(β) + a 22 cos 2 (β) } S θ = (κ 1)sin(θ c 2β) 2 sin{2(θ c β)} sin(2θ c ) = 0 2 S θ 2 = (κ 1)cos(θ c 2β) 4 cos{2(θ c β)} 2 cos(2θ c ) > 0 σ β 2a σ θc 90 θ c ν = ν = ν = β From Gdoutos () 160 / 303

162 back to index DYNAMIC FRACTURE MECHANICS

163 Dynamic fracture mechanics impact load (quasi)static load fast fracture - kinetic approach - static approach () 162 / 303

164 Crack growth rate Mott (1948) du e da du i da = du a da + du d da + du k da σ y 2a a thickness B x du e da = 0 ; du d da = 0 U a = 4aBγ du a da = 4γB σ U i = 2πa 2 B 1 σ 2 2 E du i da = 2πaBσ2 E () 163 / 303

165 Kinetic energy U k = 1 2 ρb Ω ( u 2 x + u 2 y)dxdy material velocity u x u y = du y dt ( ) 2 U k = 1 duy 2 ρs2 B dxdy Ω da ds assumption da = 0 ( ) 2 du k da = 1 d duy 2 ρs2 B dxdy Ω da da u y = 2 2 σ E a2 ax du ( k σ ) 2 da = ρs2 B a E Ω = du y da du y da = 2 σ E da dt = du y da s 2a x a2 ax 1 x 2 (x 2a) ( σ ) 2 a 3 (a x) 2 dxdy = ρs 2 B a k(a) E () 164 / 303

166 Energy balance 2πaσ 2 E s = ( E ρ ( = 4γ + ρs 2 σ ) 2 ak E ) 1 ( ) 2 2π 1 ( 2 1 2γE ) 1 2 k πaσ 2 ( ds ) da 0!! 2π k 0.38 ; a c = 2γE E πσ 2 ; c = ρ ( s = 0.38 c 1 a c a a a c ) 1 2 s 0.38 c () 165 / 303

167 Experimental crack growth rates steel copper aluminum glass rubber E [GPa] ρ [kg/m 2 ] ν c [m/sec] s [m/sec] s/c < s c < 0.4 () 166 / 303

168 Elastic wave speeds C 0 = elongational wave speed = C 1 = dilatational wave speed = C 2 = shear wave speed = E ρ κ + 1 κ 1 µ ρ µ ρ C R = Rayleigh velocity = 0.54 C 0 á 0.62 C 0 () 167 / 303

169 Corrections ( Dulancy & Brace (1960) s = 0.38 C 0 1 a ) c a ( Freund (1972) s = C R 1 a ) c a () 168 / 303

170 Crack tip stress Yoffe (1951) : σ Dij = K D 2πr f ij (θ, r, s, E, ν) () 169 / 303

171 Crack branching Yoffe (1951) σ Dij = K ID 2πr f ij (θ, r, s, E, ν) 0.9 σ Dtt (θ) max σ Dtt (θ = 0) s c R 0.87 σ tt π π 2 θ crack branching volgens MTS Source: Gdoutos (1993) p.245 () 170 / 303

172 Fast fracture and crack arrest K D K Dc (s, T) crack growth K D < min 0<s<C R K Dc (s, T) = K A crack arrest () 171 / 303

173 Experiments Source: KAN1985 p.210 High Speed Photography : 10 6 frames/sec Robertson : CA Temperature (CAT) test (KAN1985 p.258) () 172 / 303

174 back to index PLASTIC CRACK TIP ZONE

175 () 174 / 303

176 Von Mises and Tresca yield criteria Von Mises Tresca W d = W d c (σ 1 σ 2 ) 2 + (σ 2 σ 3 ) 2 + (σ 3 σ 1 ) 2 = 2σ 2 y τ max = τ maxc σ max σ min = σ y yield surface in principal stress space () 175 / 303

177 Principal stresses at the crack tip plane stress state σ zz = σ zx = σ zy = 0 σ = σ xx σ xy 0 σ xy σ yy characteristic equation det(σ σi) = 0 σ [ σ 2 σ(σ xx + σ yy ) + (σ xx σ yy σ 2 xy )] = 0 σ 1 = 1 2 (σ xx + σ yy ) + { 1 4 (σ xx σ yy ) 2 + σ 2 xy σ 2 = 1 2 (σ xx + σ yy ) { 1 4 (σ xx σ yy ) 2 + σ 2 xy σ 3 = 0 } 1/2 } 1/2 plane strain state σ 3 = ν(σ 1 + σ 2 ) () 176 / 303

178 Principal stresses at crack tip crack tip stresses σ ij = K I 2πr f Iij (θ) σ 1(+),2( ) = K I [ cos( θ 2πr 2 )± ] { cos( θ 2 )sin( θ 2 )sin(3θ 2 )} 2 { + sin( θ 2 )cos( θ 2 )cos(3θ 2 )} 2 σ 1 = σ 2 = K I 2πr cos( θ 2 ){1 + sin( θ 2 )} K I 2πr cos( θ 2 ){1 sin( θ 2 )} σ 3 = 0 or σ 3 = 2νK I 2πr cos( θ 2 ) () 177 / 303

179 Principal stresses at crack tip plane stress σ 1 > σ 2 > σ 3 plane strain σ 1 > σ 2 > σ 3 or σ 1 > σ 3 > σ ν = ν = σ σ θ θ 1000 ν = ν = σ σ θ θ () 178 / 303

180 Von Mises plastic zone (σ 1 σ 2 ) 2 + (σ 2 σ 3 ) 2 + (σ 3 σ 1 ) 2 = 2σ 2 y plane stress σ 3 = 0 (σ 1 σ 2 ) 2 + σ σ2 1 = 2σ2 y KI 2 cos 2 ( θ 2πr 2 )[ 6 sin 2 ( θ 2 ) + 2] = 2σ 2 y y r y = K I 2 2πσ 2 y cos 2 ( θ 2 )[ sin 2 ( θ 2 )] = K I 2 [ 1 + cos(θ) + 3 4πσ 2 2 sin2 (θ) ] y plane strain σ 3 = ν(σ 1 + σ 2 ) (ν 2 ν + 1)(σ σ 2 2) + (2ν 2 2ν 1)σ 1 σ 2 = σ 2 y KI 2 cos 2 ( θ 2πr 2 )[ 6 sin 2 ( θ 2 ) + 2(1 2ν)2] = 2σ 2 y y r y = K I 2 4πσ 2 y [ (1 2ν) 2 {1 + cos(θ)} sin2 (θ) ] () 179 / 303

181 Von Mises plastic zone 1 Von Mises plastic zones pl.stress pl.strain Plot made with plazone.m. () 180 / 303

182 Tresca plastic zone σ max σ min = σ y plane stress {σ max, σ min } = {σ 1, σ 3 } K I 2πry [ cos( θ 2 ) + cos( θ 2 )sin( θ 2 ) ] = σ y r y = K I 2 [ cos( θ 2πσ 2 2 ) + cos( θ 2 )sin( θ 2 ) ] 2 y plane strain I σ 1 > σ 2 > σ 3 {σ max, σ min } = {σ 1, σ 3 } r y = K I 2 [ (1 2ν)cos( θ 2πσ 2 2 ) + cos( θ 2 )sin( θ 2 ) ] 2 y plane strain II σ 1 > σ 3 > σ 2 {σ max, σ min } = {σ 1, σ 2 } r y = K I 2 2πσ 2 sin 2 (θ) y () 181 / 303

183 Tresca plastic zone Tresca plastic zones pl.stress pl.strain sig3 = min pl.strain sig2 = min Plot made with plazone.m. () 182 / 303

184 Influence of the plate thickness B c > 25 3π ( KIc σ y ) 2 > 2.5 ( ) 2 KIc σ y () 183 / 303

185 Shear planes Source: Gdoutos p.60/61/62; Kanninen p.176 () 184 / 303

186 Plastic zone in the crack plane () 185 / 303

187 Irwin plastic zone correction σ xx σ xx σ yy σ yy σ y σ y a r y r a r y r p r θ = 0 σ xx = σ yy = K I 2πr yield σ xx = σ yy = σ y r y = 1 ( ) 2 KI 2π σ y equilibrium not satisfied correction required shaded area equal () 186 / 303

188 Irwin plastic zone correction σ xx σ xx σ yy σ yy σ y σ y a r y r a r y r p r σ y r p = ry 0 σ yy (r)dr = K I 2π ry 0 r 1 2 dr = 2K I 2π ry r p = 2K I ry r p = 1 ( KI 2π σ y π σ y ) 2 = 2 r y () 187 / 303

189 Dugdale-Barenblatt plastic zone correction y a σ y r p σ x σ load σ load σ y K I (σ) = σ π(a + r p ) K I (σ y ) = 2σ y a + rp π ( ) a arccos a + r p singular term = 0 K I (σ) = K I (σ y ) ( ) a πσ = cos r p = πk I 2 a + r p 2σ y 8σ 2 y () 188 / 303

190 Plastic constraint factor 1 2 {(σ 1 σ 2 ) 2 + (σ 2 σ 3 ) 2 + (σ 3 σ 1 ) 2 } = [ ] 1 n m + n2 + m 2 mn σ max = σ y PCF = σ max 1 = σ y 1 n m + n2 + m 2 mn () 189 / 303

191 PCF at the crack tip pl.sts n = [ 1 sin( θ 2 )] / [ 1 + sin( θ 2 )] ; m = 0 pl.stn n = [ 1 sin( θ 2 )] / [ 1 + sin( θ 2 )] ; m = 2ν/ [ 1 + sin( θ 2 )] () 190 / 303

192 PCF at the crack tip in the crack plane pl.sts n = 1 ; m = 0 PCF = 1 pl.stn n = 1 ; m = 2ν PCF = 1 1 4ν + 4ν 2 () 191 / 303

193 Plastic zones in the crack plane r y r p criterion state r y or r p (K I /σ y ) 2 ( ) 2 1 KI Von Mises plane stress π σ y ( ) 2 1 KI Von Mises plane strain π σ y ( ) 2 1 KI Tresca plane stress π σ y ( ) 2 1 KI Tresca plane strain σ 1 > σ 2 > σ π Tresca plane strain σ 1 > σ 3 > σ ( ) 2 1 KI Irwin plane stress π σ y ( ) 2 1 KI Irwin plane strain (pcf = 3) π 3σ y ( ) 2 π KI Dugdale plane stress σ y ( ) 2 π KI Dugdale plane strain (pcf = 3) σ y σ y () 192 / 303

194 Small Scale Yielding LEFM & SSY correction effective crack length a eff Irwin / Dugdale-Barenblatt correction SSY : outside plastic zone : K I (a eff )-stress a eff = a + (r y r p ) K I = β I (a eff )σ πa eff () 193 / 303

195 back to index NONLINEAR FRACTURE MECHANICS

196 Nonlinear Fracture Mechanics () 195 / 303

197 Crack-tip opening displacement crack tip displacement u y = σ πa r [ sin( 1 2µ 2π 2 θ){ κ cos 2 ( 1 2 θ)}] displacement in crack plane θ = π; r = a x u y = (1 + ν)(κ + 1) E Crack Opening Displacement (COD) δ(x) = 2u y (x) = Crack Tip Opening Displacement (CTOD) (1 + ν)(κ + 1) E δ t = δ(x = a) = 0 σ 2a(a x) 2 σ 2a(a x) () 196 / 303

198 CTOD () 197 / 303

199 CTOD by Irwin σ xx σ xx σ yy σ yy σ y σ y a r y r a r y r p r effective crack length a eff = a + r y = a + 1 2π ( ) 2 KI σ y () 198 / 303

200 CTOD by Irwin (1 + ν)(κ + 1) δ(x) = σ 2a eff (a eff x) E (1 + ν)(κ + 1) = σ 2(a + r y )(a + r y x) E (1 + ν)(κ + 1) δ t = δ(x = a) = σ 2(a + r y )r y E (1 + ν)(κ + 1) = σ 2ar y + 2ry E 2 (1 + ν)(κ + 1) σ 2ar y E plane stress : δ t = 4 = 4 G π Eσ y π σ y [ ] 1 4(1 ν 2 ) plane strain : δ t = 3 π K 2 I K 2 I Eσ y () 199 / 303

201 CTOD by Dugdale y σ y σ x a r p σ effective crack length ( ) 2 KI a eff = a + r p = a + π 8 σ y () 200 / 303

202 CTOD by Dugdale displacement from requirement singular term = 0 : ū y (x) [ ū y (x) = (a + r { p)σ y x sin 2 } { } ] 2 (^γ γ) sin(^γ) + sin(γ) ln πe a + r p sin 2 + cos(^γ) ln (^γ + γ) sin(^γ) sin(γ) ( ) x γ = arccos ; ^γ = π σ a + r p 2 σ y Crack Tip Opening Displacement δ t = lim 2ū x a y(x) = 8σ { ( )} va π πe ln σ sec 2 σ y series expansion & σ σ y plane stress : δ t = K I 2 = G Eσ y σ y [ ] 1 plane strain : δ t = 2 (1 ν 2 ) K I 2 Eσ y () 201 / 303

203 CTOD crack growth criterion δ t (G, K I ) at LEFM δ t = measure for deformation at crack tip (LEFM) δ t = measure for (large) plastic deformation at crack tip (NLFM) criterion δ t = δ tc ( ε, T) δ t calculate or measure δ tc experimental determination (ex. BS 5762) () 202 / 303

204 J-integral n t x 2 e 2 Γ Ω V S positive e 1 x 1 J k = Γ J = J 1 = ( u i Wn k t i x k Γ ( Wn 1 t i u i x 1 ) dγ ; W = specific energy = ) dγ Epq 0 σ ij dε ij [ ] N m () 203 / 303

205 Integral along closed curve J k = Γ (Wδ jk σ ij u i,k ) n j dγ inside Γ no singularities Stokes (Gauss in 3D) ( ) dw ε mn δ jk σ ij,j u i,k σ ij u i,kj dω dε mn x j Ω homogeneous hyper-elastic σ mn = W ε mn linear strain ε mn = 1 2 (u m,n + u n,m ) equilibrium equations σ ij,j = 0 Ω { 1 2 σ mn(u m,nk + u n,mk ) σ ij u i,kj } dω = ) (σ mn u m,nk σ ij u i,kj dω = 0 Ω () 204 / 303

206 Path independence x 2 Ω n e 2 e 1 Γ+ Γ n Γ B Γ A x 1 f 1 dγ + f 1 dγ + f 1 dγ + f 1 dγ = 0 Γ A Γ B Γ Γ + no loading of crack faces : n 1 = 0 ; t i = 0 on Γ + and Γ f 1 dγ + f 1 dγ = 0 Γ A Γ B J 1A + J 1B = 0 J 1A = J 1B f 1 dγ = J 1A ; f 1 dγ = J 1B Γ A Γ B () 205 / 303

207 Relation J K lin. elast. material : W = 1 2 σ mnε mn = 1 4 σ mn(u m,n + u n,m ) ( ) 1 J k = 4 σ mn(u m.n + u n,m )δ jk σ ij u i,k n j dγ Mode I + II + III Γ = Γ ( 1 2 σ mnu m,n δ jk σ ij u i,k ) n j dγ σ ij = 1 2πr [K I f Iij + K II f IIij + K III f IIIij ] u i = u Ii + u IIi + u IIIi substitution and integration over Γ = circle (κ + 1)(1 + ν) J 1 = 4E J 2 = ( K 2 I + KII 2 (κ + 1)(1 + ν) K I K II 2E ) (1 + ν) + KIII 2 E () 206 / 303

208 Relation J G Mode I J 1 = J = (κ + 1)(1 + ν) 4E K 2 I = G plane stress κ + 1 = 3 ν 1 + ν ν 1 + ν = ν J = 1 E K 2 I plane strain κ + 1 = 4 4ν J = (1 ν2 ) E K 2 I () 207 / 303

209 Relation J δ t plane stress Irwin J = π 4 σ yδ t Dugbale J = σ y δ t plane strain Irwin J = π 4 3σy δ t Dugbale J = 2σ y δ t () 208 / 303

210 Plastic constraint factor J = m σ y δ t m = a W σ u σ y () 209 / 303

211 HRR crack tip stresses and strains () 210 / 303

212 Ramberg-Osgood material law ε = σ ( ) n σ + α ε y0 σ y0 σ y0 n strain hardening parameter (n 1) n = 1 linear elastic n ideal plastic 5 Ramberg Osgood for α = 0.01 n = 1 4 n = 3 3 σ/σ y0 2 n = 5 n = 7 1 n = ε/ε y () 211 / 303

213 HRR-solution σ ij = σ y0 β r 1 n+1 σ ij (θ) ; u i = αε y0 β n 1 r n+1 ũ i (θ) [ ] J 1 n+1 with : β = (I n from num. anal.) ασ y0 ε y0 I n I n plane strain plane stress n () 212 / 303

214 J-integral crack growth criterion LEFM : J k G (K I, K II, K III ) NLFM : Ramberg-Osgood : J determines crack tip stress criterion J = J c calculate J J Ic from experiments e.g. ASTM E813 () 213 / 303

215 back to index NUMERICAL FRACTURE MECHANICS

216 Numerical fracture mechanics Methods EEM ; BEM Calculations G K δt J Simulation crack growth () 215 / 303

217 Quadratic elements ξ 2 ξ ξ 2 3 ξ isoparametric coordinates : 1 ξ i 1 shape functions for each node n ψ n (ξ 1, ξ 2 ) = quadratic in ξ 1 and ξ 2 () 216 / 303

218 Crack tip mesh bad approximation stress field results are mesh-dependent 1/ r () 217 / 303

219 Special elements enriched elements crack tip field added to element displacement field structure K and f changes transition elements for compatibility hybrid elements modified variational principle () 218 / 303

220 Quarter point elements p 3p p p Distorted Quadratic Quadrilateral (1/ r) Distorted Quadratic Triangle (1/ r) Collapsed Quadratic Quadrilateral (1/ r) Collapsed Distorted Linear Quadrilateral (1/r) good approximation stress field (1/ r or 1/r) bad approximation non-singular stress field standard FEM-programs can be used () 219 / 303

221 Crack tip rozet Quarter Point Elements : 8x Transition Elements : number is problem dependent Buffer Elements () 220 / 303

222 One-dimensional case ξ = 1 ξ = 0 ξ = 1 1 x 3 2 position displacement and strain x = 1 2 ξ(ξ 1)x ξ(ξ + 1)x 2 (ξ 2 1)x 3 = 1 2 ξ(ξ + 1)L (ξ2 1)x 3 u = 1 2 ξ(ξ 1)u ξ(ξ + 1)u 2 (ξ 2 1)u 3 du dξ = (ξ 1 2 )u 1 + (ξ )u 2 2ξu 3 du dx = du dξ dξ dx = du dξ /dx dξ () 221 / 303

223 Mid point element mid-point element : x 3 = 1 2 L ξ = 1 ξ = 0 ξ = 1 1 x 3 2 x = 1 2 ξ(ξ + 1)L (ξ2 1) 1 2 L = 1 2 (ξ + 1)L dx dξ = 1 2 L du du dx = dξ 1 2 L du dx x=0 ξ= 1 = ( 2 L ) {( 3 2 ) u1 + ( ) } 1 2 u2 + 2u 3 () 222 / 303

224 Quarter point element quarter-point element : x 3 = 1 4 L ξ = 1 ξ = 0 ξ = 1 1 x 3 2 x = 1 2 ξ(ξ + 1)L (ξ2 1) 1 4 L = 1 4 (ξ + 1)2 L ξ + 1 = dx dξ = 1 2 (ξ + 1)L = xl du du dx = dξ du xl dx singularity 1 x x=0 ξ= 1 = 4x L () 223 / 303

225 Virtual crack extension method (VCEM) u u a a + a I II fixed grips du e da = 0 G = 1 du i B da 1 U i (a + a) U i (a) B a () 224 / 303

226 VCEM : stiffness matrix variation B G = du i da = C 1 2ũT a ũ with C = C(a + a) C(a) G from analysis crack tip mesh only nodal point displacement : ± element size not possible with crack tip in interface unloaded crack plane no thermal stresses () 225 / 303

227 Stress intensity factor calculate G I and G II with VCEM calculate K I and K II from KI 2 = E G I ; KII 2 = E G II plane stress E = E plane strain E = E/(1 ν 2 ) difficult for crack propagation study () 226 / 303

228 SIF : stress field ( ) K I = lim 2πr σ22 θ=0 r 0 extrapolation to crack tip ( ) ; K II = lim 2πr σ12 θ=0 r 0 p p 4 3 p p 2 1 θ r K K p1 Kp2 K p3 K p4 r 1 r 2 r 3 r 4 r questions : which elements? how much elements? which integration points? () 227 / 303

229 SIF : displacement field crack tip displacement y-component u y = 4(1 ν2 ) r E 2π K I g ij (θ) [ ] E 2π K I = lim r 0 4(1 ν 2 u y (θ = 0) ) r more accurate than SIF from stress field () 228 / 303

230 J-integral J = Γ ( ) ε u i Wn 1 t i dγ with W = σ ij dε ij x 1 0 () 229 / 303

231 J-integral : Direct calculation J = 2 W = y [ ( u x W σ xx x + σ yx )] u y x dy 2 E 2(1 ν 2 ) (ε2 xx + 4νε xxε yy + 2(1 ν)ε 2 xy + ε2 yy ) x [( σ xy u x x + σ yy )] u y dx x path through integration points no need for quarter point elements () 230 / 303

232 J-integral : Domain integration x 2 Ω e 2 Γ + n e 1 Γ Γ B n Γ A x 1 Ω q = 0 q = 1 q J = x j Ω ( ) u i σ ij Wδ 1j dω x 1 interpolation q e = Ñ T e (ξ )q () 231 / 303

233 De Lorenzi J-integral : VCE technique ( ) u i σ i1 Wδ 1j dω x 1 q J = x j Ω u i qp i dγ x 1 Γ s rigid region Ω elongation a of crack translation δx1 of internal nodes fixed position of boundary q = δx 1 = shift function (0 < q < 1) a q(ρq i ρü i ) u i dω + x 1 Ω qσ ij ε o ij x 1 dω () 232 / 303

234 Crack growth simulation Node release Moving Crack Tip Mesh Element splitting Smeared crack approach () 233 / 303

235 Node release node collocation technique () 234 / 303

236 Moving Crack Tip Mesh () 235 / 303

237 Element splitting () 236 / 303

238 Smeared crack approach e 2 e 1 e 2 e 1 n 2 σ 2 σ 1 n1 n 2 n 1 () 237 / 303

239 back to index FATIGUE

240 Teletekst Wo 3 oktober 2007 Van de 274 stalen bruggen in ons land kampen er 25 met metaalmoeheid. Dat is de uitkomst van een groot onderzoek van het ministerie van Verkeer. Bij twaalf bruggen zijn de problemen zo groot dat noodmaatregelen nodig zijn. Ook de meer dan 2000 betonnen bruggen en viaducten zijn onderzocht. De helft daarvan moet nog nader worden bekeken. Ze gaan mogelijk minder lang mee dan was berekend, maar de veiligheid komt volgens het ministerie niet in gevaar. Verkeersbeperkende maatregelen zijn dan ook niet nodig. Die werden in april wel getroffen voor het vrachtverkeer over de Hollandse Brug bij Almere. () 239 / 303

241 Fatigue ± 1850 (before Griffith!) : cracks at diameter-jumps in axles carriages / trains failure due to cyclic loading with small amplitude Wöhler : systematic experimental examination cyclic loading : variable mechanical loads vibrations pressurization / depressurization thermal loads (heating / cooling) random external loads () 240 / 303

242 Crack surface clam shell markings (beach marks) - irregular crack growth - crack growth under changing conditions striations - sliding of slip planes - plastic blunting / sharpening of crack tip - regular crack growth () 241 / 303

243 Experiments full-scale testing a.o. train axles airplanes laboratory testing harmonic loading constant force/moment strain/deflection SIF () 242 / 303

244 Train axle D = 0.75 [m] 1 rev = πd = π [m] 1 km = 1000 m = = [c(ycles)] 1 day Maastricht - Groningen = [km] = 1000 [km] 1 day Maastricht - Groningen = [c] 1 year = [c] = [c] [c] frequency : 100 [km/h] = [c/h] = = 12.5 [c/sec] = 12.5 [Hz] () 243 / 303

245 Fatigue load (stress controlled) σ σ max σ m σ min 0 0 i i + 1 t N σ = σ max σ min ; σ a = 1 2 σ σ m = 1 2 (σ max + σ min ) ; R σ = σ min /σ max ; - frequency bending Hz tensile electric Hz mechanic < 50 Hz hydraulic 1-50 Hz - no influence frequency for ± 5000 [c/min] (metals) σ a = 1 R σ m 1 + R () 244 / 303

246 Fatigue limit (σ th ) σ σ th N σ < σ th : no increase of damage materials with fatigue limit mild steel low strength steels Ti / Al / Mg -alloys materials without fatigue limit some austenitic steels high strength steels most non-ferro alloys Al / Mg-alloys () 245 / 303

247 (S-N)-curve B.S part I 1984 : S = σ max S σ th 0 0 log(n f ) reference : R = 1 and σ m = 0 σ max = 1 2 σ fatigue life : N f at σ max (= S) fatigue limit : σ th (= σ fat ) N f = (±10 9 ) fatigue strength : σ e = σ max when N f steels : σ th 1 2 σ b () 246 / 303

248 (S a -N)-curve B.S part I 1984 : S a = 1 2 σ = σ a S a σ th 0 0 log(n f ) reference : R = 1 and σ m = 0 σ a = σ max (S a N) curve = (S N) curve () 247 / 303

249 Examples steelt1 400 σ max [MPa] steel Mgalloy Al2024T N f () 248 / 303

250 Influence of average stress σ a σ m σ th 0 0 log(n f ) () 249 / 303

251 Correction for average stress Gerber (1874) Goodman (1899) Soderberg (1939) σ a σ a = 1 σ a ( ) 2 σm σ u = 1 σ m σ a σ u σ a = 1 σ m σ a σ y0 σ u : tensile strength σ y0 : initial yield stress () 250 / 303

252 (P-S-N)-curve σ max [MPa] % prob.failure % prob.failure % prob.failure N f () 251 / 303

253 High/low cycle fatigue S a σ m = LCF 4 5 HCF log(n f ) high cycle fatigue N f > ±50000 low stresses LEFM + SSY stress-life curve Basquin relation K max = βσ max πa ; Kmin = βσ min πa ; K = β σ πa () 252 / 303

254 High/low cycle fatigue S a σ m = LCF 4 5 HCF log(n f ) low cycle fatigue N f < ±50000 high stresses EPFM strain-life curve Manson-Coffin relation () 253 / 303

255 Basquin relation 1 2 σ = σ a = σ f (2N f ) b σn b f = constant σ f = fatigue strength coefficient σ b (monotonic tension) b = fatigue strength exponent (Basquin exponent) log ( ) σ 2 log(2n f ) () 254 / 303

256 Manson-Coffin relation 1 2 εp = ε f (2N f ) c ε p N c f = constant ε f = fatigue ductility coefficient ε b (monotonic tension) c = fatigue ductility exponent ( log ) ε p 2 ( 0.5 < c < 0.7) log(2n f ) () 255 / 303

257 Total strain-life curve log( ε 2 ) log(n f ) ε 2 = εe 2 + εp 2 = 1 E σ f (2N f ) b + ε f (2N f ) c () 256 / 303

258 Influence factors load spectrum stress concentrations stress gradients material properties surface quality environment () 257 / 303

259 Load spectrum sign / magnitude / rate / history multi-axial lower f.limit than uni-axial () 258 / 303

260 Stress concentrations ρ σ th (notched) = 1 K f σ th (unnotched) ; 1 < K f < K t K f : fatigue strength reduction factor (effective stress concentration factor) K f = 1 + q(ρ)(k t 1) Peterson : q = a ρ 1 Neuber : q = 1 + b ρ with with q(ρ) = notch sensitivity factor a = material parameter b = grain size parameter () 259 / 303

261 Stress gradients full-scale experiments necessary () 260 / 303

262 Material properties grain size/structure : small grains higher f.limit at low temp. large grains higher f.limit at high temp. (less grain boundaries less creep) texture inhomogeneities and flaws residual stresses fibers and particles () 261 / 303

263 Surface quality 10µm surface extrusions & intrusions notch + inclusion of O 2 etc. bulk defect internal surfaces internal grain boundaries / triple points (high T) voids manufacturing minimize residual tensile stresses surface finish minimize defects (roughness) surface treatment (mech/temp) residual pressure stresses coating environmental protection high σ y0 more resistance to slip band formation () 262 / 303

264 Environment temperature creep - fatigue low temperature : ships / liquefied gas storage elevated temperature (T > 0.5T m ) : turbine blades creep mechanism : diffusion / dislocation movement / migration of vacancies / grain boundary sliding grain boundary voids / wedge cracks chemical influence corrosion-fatigue () 263 / 303

265 Crack growth a I II III a c a c σ a f a 1 a i N i N f N I : N < N i - N i = fatigue crack initiation life - a i = initial fatigue crack II : N i < N < N f - slow stable crack propagation - a 1 = non-destr. inspection detection limit III : N f < N - global instability - towards catastrophic failure - a = a c : failure N r N f = 1 N N f N r = rest life () 264 / 303

266 Crack growth models ( ) 2 da K striation spacing 6 dn E (Bates, Clark (1969)) da dn f (σ, a) σm a n ; m 2 7 ; n 1 2 da dn δ t ( K)2 Eσ y (BRO263) da da K dn dn K E Source: HER1976a p515 da Paris law : dn = C( K)m () 265 / 303

INDEX. Introduction (ch 1) Theoretical strength (ch 2) Ductile/brittle (ch 2) Energy balance (ch 4) Stress concentrations (ch 6)

INDEX. Introduction (ch 1) Theoretical strength (ch 2) Ductile/brittle (ch 2) Energy balance (ch 4) Stress concentrations (ch 6) INDEX Introduction (ch 1) Theoretical strength (ch 2) Ductile/brittle (ch 2) Energy balance (ch 4) Stress concentrations (ch 6) () April 30, 2018 1 / 52 back to index INTRODUCTION Introduction () 3 / 52

Διαβάστε περισσότερα

CONTINUUM MECHANICS. e 3. x e 2 O e 1. - volume / area V 0, V / A 0,A - base vectors { e 1, e 2, e 3 } - position vector x 0, x

CONTINUUM MECHANICS. e 3. x e 2 O e 1. - volume / area V 0, V / A 0,A - base vectors { e 1, e 2, e 3 } - position vector x 0, x INTRODUCTION CONTINUUM MECHANICS V 0 A 0 u V A x 0 e 3 x e 2 O e 1 - volume / area V 0, V / A 0,A - base vectors { e 1, e 2, e 3 } - position vector x 0, x - displacement vector u - strains ε kl = 1 2

Διαβάστε περισσότερα

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain

Διαβάστε περισσότερα

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory Mechanical Behaviour of Materials Chapter 5 Plasticity Theory Dr.-Ing. 郭瑞昭 Yield criteria Question: For what combinations of loads will the cylinder begin to yield plastically? The criteria for deciding

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Introduction to Theory of. Elasticity. Kengo Nakajima Summer Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

ADVANCED STRUCTURAL MECHANICS

ADVANCED STRUCTURAL MECHANICS VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Διαβάστε περισσότερα

Chapter 10: Failure. Titanic on April 15, 1912 ISSUES TO ADDRESS. Failure Modes:

Chapter 10: Failure. Titanic on April 15, 1912 ISSUES TO ADDRESS. Failure Modes: Chapter10:Failure ISSUESTOADDRESS FailureModes: 1 LECTURER: PROF. SEUNGTAE CHOI TitaniconApril15, 1912 RMS Titanic was a British passenger liner that sank in the North Atlantic Ocean on 15 April 1912 after

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

(Mechanical Properties)

(Mechanical Properties) 109101 Engineering Materials (Mechanical Properties-I) 1 (Mechanical Properties) Sheet Metal Drawing / (- Deformation) () 3 Force -Elastic deformation -Plastic deformation -Fracture Fracture 4 Mode of

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

Chapter 2. Stress, Principal Stresses, Strain Energy

Chapter 2. Stress, Principal Stresses, Strain Energy Chapter Stress, Principal Stresses, Strain nergy Traction vector, stress tensor z z σz τ zy ΔA ΔF A ΔA ΔF x ΔF z ΔF y y τ zx τ xz τxy σx τ yx τ yz σy y A x x F i j k is the traction force acting on the

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Chapter 7 Transformations of Stress and Strain

Chapter 7 Transformations of Stress and Strain Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

Mechanics of Materials Lab

Mechanics of Materials Lab Mechanics of Materials Lab Lecture 9 Strain and lasticity Textbook: Mechanical Behavior of Materials Sec. 6.6, 5.3, 5.4 Jiangyu Li Jiangyu Li, Prof. M.. Tuttle Strain: Fundamental Definitions "Strain"

Διαβάστε περισσότερα

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E. DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000

Διαβάστε περισσότερα

High order interpolation function for surface contact problem

High order interpolation function for surface contact problem 3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300

Διαβάστε περισσότερα

University of Waterloo. ME Mechanical Design 1. Partial notes Part 1

University of Waterloo. ME Mechanical Design 1. Partial notes Part 1 University of Waterloo Department of Mechanical Engineering ME 3 - Mechanical Design 1 Partial notes Part 1 G. Glinka Fall 005 1 Forces and stresses Stresses and Stress Tensor Two basic types of forces

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

CH-4 Plane problems in linear isotropic elasticity

CH-4 Plane problems in linear isotropic elasticity CH-4 Plane problems in linear isotropic elasticity HUMBERT Laurent laurent.humbert@epfl.ch laurent.humbert@ecp.fr Thursday, march 18th 010 Thursday, march 5th 010 1 4.1 ntroduction Framework : linear isotropic

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS NATIONAL TECHNICAL UNIVERSITY OF ATHENS SCHOOL OF NAVAL ARCHITECTURE AND ARINE ENGINEERING SHIPBUILDING TECHNOLOGY LABORATORY EXPERIENTAL AND NUERICAL STUDY OF A STEEL-TO-COPOSITE ADHESIVE JOINT UNDER

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

θ p = deg ε n = με ε t = με γ nt = μrad

θ p = deg ε n = με ε t = με γ nt = μrad IDE 110 S08 Test 7 Name: 1. The strain components ε x = 946 με, ε y = -294 με and γ xy = -362 με are given for a point in a body subjected to plane strain. Determine the strain components ε n, ε t, and

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model 1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,

Διαβάστε περισσότερα

Grey Cast Irons. Technical Data

Grey Cast Irons. Technical Data Grey Cast Irons Standard Material designation Grey Cast Irons BS EN 1561 EN-GJL-200 EN-GJL-250 EN-GJL-300 EN-GJL-350-1997 (EN-JL1030) (EN-JL1040) (EN-JL1050) (EN-JL1060) Characteristic SI unit Tensile

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl Topic 4 Linear Wire and Small Circular Loop Antennas Tamer Abuelfadl Electronics and Electrical Communications Department Faculty of Engineering Cairo University Tamer Abuelfadl (EEC, Cairo University)

Διαβάστε περισσότερα

3.5 - Boundary Conditions for Potential Flow

3.5 - Boundary Conditions for Potential Flow 13.021 Marine Hydrodynamics, Fall 2004 Lecture 10 Copyright c 2004 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hydrodynamics Lecture 10 3.5 - Boundary Conditions for Potential

Διαβάστε περισσότερα

ω α β χ φ() γ Γ θ θ Ξ Μ ν ν ρ σ σ σ σ σ σ τ ω ω ω µ υ ρ α Coefficient of friction Coefficient of friction 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 0.90 0.80 0.70 0.60 0.50 0.40 0.30

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Constitutive Relations in Chiral Media

Constitutive Relations in Chiral Media Constitutive Relations in Chiral Media Covariance and Chirality Coefficients in Biisotropic Materials Roger Scott Montana State University, Department of Physics March 2 nd, 2010 Optical Activity Polarization

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

4.4 Superposition of Linear Plane Progressive Waves

4.4 Superposition of Linear Plane Progressive Waves .0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in ME 10W E. Evans Stresses in a Plane Some parts eperience normal stresses in two directions. hese tpes of problems are called Plane Stress or Biaial Stress Cross Section thru Bod z angent and normal to

Διαβάστε περισσότερα

katoh@kuraka.co.jp okaken@kuraka.co.jp mineot@fukuoka-u.ac.jp 4 35 3 Normalized stress σ/g 25 2 15 1 5 Breaking test Theory 1 2 Shear tests Failure tests Compressive tests 1 2 3 4 5 6 Fig.1. Relation between

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships

Διαβάστε περισσότερα

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Surface Mount Multilayer Chip Capacitors for Commodity Solutions Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF

Διαβάστε περισσότερα

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers 1/5 Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Deendent Polymers by Yukio SANOMURA Hydrostatic ressure deendence in mechanical behavior of olymers is studied for the constitutive

Διαβάστε περισσότερα

Wavelet based matrix compression for boundary integral equations on complex geometries

Wavelet based matrix compression for boundary integral equations on complex geometries 1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Thin Film Chip Resistors

Thin Film Chip Resistors FEATURES PRECISE TOLERANCE AND TEMPERATURE COEFFICIENT EIA STANDARD CASE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERABLE (Pb FREE TERMINATION FINISH) Type Size EIA PowerRating

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Το σχέδιο της μέσης τομής πλοίου

Το σχέδιο της μέσης τομής πλοίου ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Το σχέδιο της μέσης τομής πλοίου Α. Θεοδουλίδης Σχέδιο Μέσης Τομής Αποτελεί ένα από τα βασικώτερα κατασκευαστικά σχέδια του πλοίου.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο 1.1. ΕΛΑΣΤΙΚΟ ΣΤΕΡΕΟ

ΚΕΦΑΛΑΙΟ 1 Ο 1.1. ΕΛΑΣΤΙΚΟ ΣΤΕΡΕΟ ΚΕΦΑΛΑΙΟ Ο.. ΕΛΑΣΤΙΚΟ ΣΤΕΡΕΟ Ο Robert Hooke έγρψε το 678, "he power of any spring is in the same proportion with the tension thereof". Αυτή η δήλωση είνι η βάση του πρώτου ρεολογικού νόµου γι ιδνικά ελστικά

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) Cyclopentadienyl iron dicarbonyl (CpFe(CO) 2 ) derivatives

Διαβάστε περισσότερα

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert

Διαβάστε περισσότερα

Crack Propagation Terminating at a Bimaterial Interface Studied Using Extended Finite Element Method

Crack Propagation Terminating at a Bimaterial Interface Studied Using Extended Finite Element Method 014 3 3 XFEM 1116 6 J kε K I K II J kε θ p J kε XFEM θ p θ p 4 θ p v 1/v lg E 1/E J O30 A doi 10.3981/j.issn.1000-7857.014.3.001 Crack Propagation Terminating at a Bimaterial Interface Studied Using Extended

Διαβάστε περισσότερα

Eigenfunction expansion for penny-shaped and circumferential cracks

Eigenfunction expansion for penny-shaped and circumferential cracks International Journal of Fracture 89:, 998. 998 Kluwer Academic Publishers. Printed in the Netherlands. Eigenfunction expansion for penny-shaped and circumferential cracks A.Y.T. LEUNG, and R.K.L. SU Professor,

Διαβάστε περισσότερα

CONSULTING Engineering Calculation Sheet

CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Structure Design - EQ Load Definition and EQ Effects v20 EQ Response Spectra in Direction X, Y, Z X-Dir Y-Dir Z-Dir Fundamental period of building, T 1 5.00

Διαβάστε περισσότερα

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u

Διαβάστε περισσότερα

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence Major Concepts Multiphase Equilibrium Stability Applications to Phase Equilibrium Phase Rule Clausius-Clapeyron Equation Special case of Gibbs-Duhem wo-phase Coexistence Criticality Metastability Spinodal

Διαβάστε περισσότερα

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/ Page: 10 CONTENTS Contents... 10 General Data... 10 Structural Data des... 10 erials... 10 Sections... 10 ents... 11 Supports... 11 Loads General Data... 12 LC 1 - Vollast 120 km/h 0,694 kn/qm... 12 LC,

Διαβάστε περισσότερα

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/ Page: 1 CONTENTS Contents... 1 General Data... 1 Structural Data des... 1 erials... 1 Sections... 1 ents... 2 Supports... 2 Loads General Data... 3 LC 1 - Vollast 90 km/h 0,39 kn/qm... 3 LC, LG Results

Διαβάστε περισσότερα

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3. Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16

Διαβάστε περισσότερα

Μηχανουργική Τεχνολογία & Εργαστήριο Ι

Μηχανουργική Τεχνολογία & Εργαστήριο Ι Μηχανουργική Τεχνολογία & Εργαστήριο Ι Mechanics in Deforming Processes - Διεργασίες Διαμόρφωσης Καθηγητής Χρυσολούρης Γεώργιος Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Mechanics in deforming processes

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

INTERVAL ARITHMETIC APPLIED TO STRUCTURAL DESIGN OF UNCERTAIN MECHANICAL SYSTEMS

INTERVAL ARITHMETIC APPLIED TO STRUCTURAL DESIGN OF UNCERTAIN MECHANICAL SYSTEMS INTERVAL ARITHMETIC APPLIED TO STRUCTURAL DESIGN OF UNCERTAIN MECHANICAL SYSTEMS O. Dessombz, F.Thouverez J-P. Laîné, L.Jézéquel Laboratoire de Tribologie et Dynamique des Systèmes UMR CNRS 5513 École

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Multilayer Ceramic Chip Capacitors

Multilayer Ceramic Chip Capacitors FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* Temperature Coefficient

Διαβάστε περισσότερα

Figure 1 - Plan of the Location of the Piles and in Situ Tests

Figure 1 - Plan of the Location of the Piles and in Situ Tests Figure 1 - Plan of the Location of the Piles and in Situ Tests 1 2 3 A B C D DMT4 DMT5 PMT1 CPT4 A 2.2 1.75 S5+ SPT CPT7 CROSS SECTION A-A C2 E7 E5 S4+ SPT E3 E1 E DMT7 T1 CPT9 DMT9 CPT5 C1 ground level

Διαβάστε περισσότερα

Eulerian Simulation of Large Deformations

Eulerian Simulation of Large Deformations Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications

Διαβάστε περισσότερα

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM AT-3263 Surface Mount Package SOT-363 (SC-7) I I Y Pin Connections B 1 C 1 E 1 E 2 C 2 B 2 Page 1 21.4., 7:6 PM Absolute Maximum Ratings [1] Absolute Thermal Resistance [2] : Symbol Parameter Units Maximum

Διαβάστε περισσότερα

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied

Διαβάστε περισσότερα

CorV CVAC. CorV TU317. 1

CorV CVAC. CorV TU317. 1 30 8 JOURNAL OF VIBRATION AND SHOCK Vol. 30 No. 8 2011 1 2 1 2 2 1. 100044 2. 361005 TU317. 1 A Structural damage detection method based on correlation function analysis of vibration measurement data LEI

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

SMD Power Inductor. - SPRH127 Series. Marking. 1 Marking Outline: 1 Appearance and dimensions (mm)

SMD Power Inductor. - SPRH127 Series. Marking. 1 Marking Outline: 1 Appearance and dimensions (mm) Marking Outline: Low DCR, high rated current. Magnetic shielded structure Lead free product, RoHS compliant. RoHS Carrier tape packing, suitable for SMT process. SMT Widely used in buck converter, laptop,

Διαβάστε περισσότερα

NTC Thermistor:TTC3 Series

NTC Thermistor:TTC3 Series Features. RoHS compliant 2. Halogen-Free(HF) series are available 3. Body size: Ф3mm 4. Radial lead resin coated 5. Operating temperature range: -40 ~+25 6. Wide resistance range 7. Cost effective 8. Agency

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων

ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων Ένα δυσδιάστατο παράδειγμα με το λογισμικό MATLAB Θεωρούμε το εξής Π.Σ.Τ.: Να βρεθεί η u(x, y) έτσι ώστε όπου f (x, y) = 1. u u f ( x, y), x ( 1,1) ( 1,1) x

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

NTC Thermistor:SCK Series

NTC Thermistor:SCK Series Features. RoHS & HF compliant 2. Body size: Ф5mm ~ Ф 30mm 3. Radial lead resin coated 4. High power rating 5. Wide resistance range 6. Cost effective 7. Operating temperature range: Φ5mm:-40~+50 Φ8~Φ0mm:-40~+70

Διαβάστε περισσότερα

Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa<on

Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa<on Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΥ / ΥΝΑΜΙΚΗΣ & ΘΕΩΡΙΑΣ ΜΗΧΑΝΩΝ ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

A Summary Of Linear Continuum Mechanics 1. a b = a i b i = a b cos θ. det A = ɛ ijk A 1i A 2j A 3k. e 1 e 2 e 3 a b = ɛ ijk a j b k e i =

A Summary Of Linear Continuum Mechanics 1. a b = a i b i = a b cos θ. det A = ɛ ijk A 1i A 2j A 3k. e 1 e 2 e 3 a b = ɛ ijk a j b k e i = A Summary Of Linear Continuum Mechanics 1 Vector Analysis Inner / Scalar / Dot product Norm of a vector Kronecker delta a b = a i b i = a b cos θ a = [a a] 1/2 = a 1 a 1 + a 2 a 2 + a 3 a 3 δ ij = I =

Διαβάστε περισσότερα