FRACTURE MECHANICS. Piet Schreurs. Eindhoven University of Technology Department of Mechanical Engineering Materials Technology September 5, 2013
|
|
- Σώστρατος Μακρή
- 6 χρόνια πριν
- Προβολές:
Transcript
1 FRACTURE MECHANICS Piet Schreurs Eindhoven University of Technology Department of Mechanical Engineering Materials Technology September 5, 2013
2 INDEX back to index () 1 / 303
3 Introduction Fracture mechanisms Ductile/brittle Theoretical strength Experimental techniques Energy balance Linear elastic stress analysis Crack tip stresses Multi-mode loading Crack growth direction Crack growth rate Plastic crack tip zone Nonlinear fracture mechanics Numerical fracture mechanics Fatigue Engineering plastics () 2 / 303
4 () 3 / 303
5 back to index INTRODUCTION
6 Introduction () 5 / 303
7 Continuum mechanics V 0 A 0 u V A x 0 e 3 x e 1 O e 2 () 6 / 303
8 Continuum mechanics - volume / area V 0, V / A 0, A - base vectors { e 1, e 2, e 3 } - position vector x 0, x - displacement vector u - strains ε kl = 1 2 (u k,l + u l,k ) - compatibility relations - equilibrium equations σ ij,j + ρq i = 0 ; σ ij = σ ji - density ρ - load/mass q i - boundary conditions p i = σ ij n j - material model σ ij = N ij (ε kl ) () 7 / 303
9 Material behavior σ ε σ ε t 1 t 2 t t 1 t 2 t t 1 t 2 t t 1 t 2 t σ ε ε e ε p σ ε t 1 t 2 t t 1 t 2 t t 1 t 2 t t 1 t 2 t () 8 / 303
10 Stress-strain curves σ σ ε ε σ σ ε ε () 9 / 303
11 Fracture () 10 / 303
12 Fracture mechanics questions : when crack growth? ( crack growth criteria) crack growth rate? residual strength? life time? inspection frequency? repair required? fields of science : material science and chemistry theoretical and numerical mathematics experimental and theoretical mechanics () 11 / 303
13 Overview of fracture mechanics LEFM (Linear Elastic Fracture Mechanics) energy balance crack tip stresses SSY (Small Scale Yielding) DFM (Dynamic Fracture Mechanics) NLFM (Non-Linear Fracture Mechanics) EPFM (Elasto-Plastic Fracture Mechanics) Numerical methods : EEM / BEM Fatigue (HCF / LCF) CDM (Continuum Damage Mechanics) Micro mechanics micro-cracks (intra grain) voids (intra grain) cavities at grain boundaries rupture & disentangling of molecules rupture of atomic bonds dislocation slip () 12 / 303
14 Experimental fracture mechanics () 13 / 303
15 Linear elastic fracture mechanics () 14 / 303
16 Dynamic fracture mechanics () 15 / 303
17 Nonlinear fracture mechanics CTOD J-integral () 16 / 303
18 Numerical techniques () 17 / 303
19 Fatigue () 18 / 303
20 Objectives Insight in : crack growth mechanisms brittle / ductile energy balance crack tip stresses crack growth direction plastic crack tip zone crack growth speed nonlinear fracture mechanics numerical methods fatigue () 19 / 303
21 Outline () 20 / 303
22 back to index FRACTURE MECHANISMS
23 Fracture mechanisms shear fracture cleavage fracture fatigue fracture crazing de-adhesion () 22 / 303
24 Shearing dislocations voids crack dimples load direction () 23 / 303
25 Cleavage intra-granulair inter-granulair intra-granular HCP-, BCC-crystal T low ε high 3D-stress state inter-granular weak grain boundary environment (H2) T high () 24 / 303
26 Fatigue clam shell pattern striations () 25 / 303
27 Crazing stress whitening crazing materials : PS, PMMA () 26 / 303
28 () 27 / 303
29 back to index DUCTILE/BRITTLE
30 Ductile - brittle behavior σ ABS, nylon, PC PE, PTFE ε (%) surface energy : γ [Jm 2 ] solids : γ 1 [Jm 2 ] independent from cleavage/shearing ex.: alloyed steels; rubber () 29 / 303
31 Charpy v-notch test () 30 / 303
32 Charpy Cv-value C v fcc (hcp) metals low strength bcc metals Be, Zn, ceramics C v high strength metals Al, Ti alloys T NDT FATT FTP T t T - Impact Toughness C v - Nil Ductility Temperature NDT - Nil Fracture Appearance Transition Temperature FATT(T t ) - Nil Fracture Transition Plastic FTP () 31 / 303
33 back to index THEORETICAL STRENGTH
34 Theoretical strength f f r f x σ a λ x r S ( ) 2πx f (x) = f max sin ; x = r a 0 λ σ(x) = 1 ( ) 2πx f (x) = σmax sin S λ () 33 / 303
35 Energy balance available elastic energy per surface-unity [N m 1 ] required surface energy U i = 1 S = x=λ/2 x=0 x=λ/2 x=0 = σ max λ π f (x) dx σ max sin ( ) 2πx dx λ [Nm 1 ] energy balance at fracture U a = 2γ [Nm 1 ] U i = U a λ = 2πγ σ = σ max sin ( ) x γ σ max σ max () 34 / 303
36 Approximations linearization ( ) x σ = σ max sin γ σ max x γ σ2 max linear strain of atomic bond ε = x a 0 x = εa 0 σ = εa 0 γ σ2 max elastic modulus ( ) ( dσ dσ E = = 0) dε x=0 dx x=0 a = σ 2 max Eγ σ max = theoretical strength a 0 a 0 γ σ th = Eγ a 0 () 35 / 303
37 Discrepancy with experimental observations a 0 [m] E [GPa] σ th [GPa] σ b [MPa] σ th /σ b glass steel silica fibers iron whiskers silicon whiskers alumina whiskers ausformed steel piano wire discrepancy with experiments σ th σ b () 36 / 303
38 Griffith s experiments σ b [MPa] d [µ] DEFECTS FRACTURE MECHANICS () 37 / 303
39 Crack loading modes Mode I Mode II Mode III Mode I = opening mode Mode II = sliding mode Mode III = tearing mode () 38 / 303
40 back to index EXPERIMENTAL TECHNIQUES
41 Surface cracks dye penetration small surface cracks fast and cheap on-site magnetic particles cracks disturbance of magnetic field surface cracks for magnetic materials only eddy currents impedance change of a coil penetration depth : a few mm s difficult interpretation () 40 / 303
42 Electrical resistance () 41 / 303
43 X-ray orientation dependency () 42 / 303
44 Ultrasound piëzo-el. crystal wave sensor S in out t t () 43 / 303
45 Acoustic emission registration intern sounds (hits) () 44 / 303
46 Adhesion tests blade wedge test peel test (0 o and 90 o ) bending test scratch test indentation test laser blister test pressure blister test fatigue friction test () 45 / 303
47 back to index ENERGY BALANCE
48 () total energy balance 47 / 303 Energy balance a B = thickness A = Ba Ḃ = 0 U e = U i + U a + U d + U k [Js 1 ] d dt ( ) = da d dt da ( ) = Ȧ d da ( ) = ȧ d da ( ) du e da = du i da + du a da + du d da + du k da [Jm 1 ]
49 Griffith s energy balance no dissipation no kinetic energy energy balance energy release rate crack resistance force du e da du i da = du a da G = 1 ( due B da du ) i [Jm 2 ] da R = 1 ( ) dua = 2γ [Jm 2 ] B da Griffith s crack criterion G = R = 2γ [Jm 2 ] () 48 / 303
50 Griffith s energy balance du e = 0 a U a da needed G, R 2γ a c available a c U i () 49 / 303
51 Griffith stress σ y 2a a thickness B x σ U i = 2πa 2 B 1 σ 2 2 E G = 1 ( ) dui B da = 1 B ; U a = 4aB γ [Nm = J] ( ) dua = R 2πa σ2 da E = 4γ [Jm 2 ] Griffith stress σ gr = 2γE πa ; critical crack length a c = 2γE πσ 2 () 50 / 303
52 Griffith stress: plane stress 2γE σ gr = (1 ν 2 )πa () 51 / 303
53 Discrepancy with experimental observations σ gr σ c reason remedy neglection of dissipation measure critical energy release rate G c glass G c = 6 [Jm 2 ] wood G c = 10 4 [Jm 2 ] steel G c = 10 5 [Jm 2 ] composite design problem / high alloyed steel / bone (elephant and mouse) energy balance G = 1 ( due B da du ) i = R = G c da critical crack length a c = G ce 2πσ 2 ; Griffith s crack G = G c criterion () 52 / 303
54 Compliance change compliance : C = u/f F u a P F u P a + da F F a a + da a a + da du i du i du e fixed grips u constant load u () 53 / 303
55 Compliance change : Fixed grips fixed grips : du e = 0 Griffith s energy balance du i = U i (a + da) U i (a) (< 0) = 1 2 (F + df)u 1 2 Fu = 1 2 udf G = 1 2B udf da = 1 2B = 1 2B F 2 dc da u 2 dc C 2 da () 54 / 303
56 Compliance change : Constant load constant load du e = U e (a + da) U e (a) = Fdu Griffith s energy balance du i = U i (a + da) U i (a) (> 0) = 1 2 F(u + du) 1 2 Fu = 1 2 Fdu G = 1 2B F du da = 1 2B F 2 dc da () 55 / 303
57 Compliance change : Experiment F a 1 a 2 ap a 3 a 4 F u u G = shaded area a 4 a 3 1 B () 56 / 303
58 Example B 2h F u a u F u = Fa3 3EI = 4Fa3 EBh 3 C = u F = 2u F = 8a3 EBh 3 G = 1 [ 1 B 2 F 2 dc ] = 12F 2 a 2 da EB 2 h 3 [J m 2 ] G c = 2γ F c = B 1 a 6 γeh3 dc da = 24a2 EBh 3 () 57 / 303
59 Example h a question : which h(a) makes dc da C = u F = 2u F = 8a3 EBh 3 independent from a? dc da = 24a2 EBh 3 choice : h = h 0 a n Fa 3 u = 3(1 n)ei = 4Fa 3 (1 n)ebh 3 = 4Fa3(1 n) (1 n)ebh0 3 C = 2u F = dc da 8a3(1 n) (1 n)ebh 3 0 dc da = 24a(2 3n) EBh 3 0 constant for n = 2 3 h = h 0 a 2 3 () 58 / 303
60 back to index LINEAR ELASTIC STRESS ANALYSIS
61 Deformation P Q X + d X u x + d x Q P X e 3 e 2 x e 1 x i = X i + u i (X i ) x i + dx i = X i + dx i + u i (X i + dx i ) = X i + dx i + u i (X i ) + u i,j dx j dx i = dx i + u i,j dx j = (δ ij + u i,j )dx j ds = d x = dx i dx i ; ds = dx = dx i dx i () 60 / 303
62 Strains ds 2 = dx i dx i = [(δ ij + u i,j )dx j ][(δ ik + u i,k )dx k ] = (δ ij δ ik + δ ij u i,k + u i,j δ ik + u i,j u i,k )dx j dx k = (δ jk + u j,k + u k,j + u i,j u i,k )dx j dx k = (δ ij + u i,j + u j,i + u k,i u k,j )dx i dx j = dx i dx i + (u i,j + u j,i + u k,i u k,j )dx i dx j = ds 2 + (u i,j + u j,i + u k,i u k,j )dx i dx j ds 2 ds 2 = (u i,j + u j,i + u k,i u k,j )dx i dx j = 2γ ij dx i dx j Green-Lagrange strains γ ij = 1 2 (u i,j + u j,i + u k,i u k,j ) linear strains ε ij = 1 2 (u i,j + u j,i ) () 61 / 303
63 Compatibility 3 displacement components 9 strain components 6 dependencies 6 compatibility equations 2ε 12,12 ε 11,22 ε 22,11 = 0 2ε 23,23 ε 22,33 ε 33,22 = 0 2ε 31,31 ε 33,11 ε 11,33 = 0 ε 11,23 + ε 23,11 ε 31,12 ε 12,13 = 0 ε 22,31 + ε 31,22 ε 12,23 ε 23,21 = 0 ε 33,12 + ε 12,33 ε 23,31 ε 31,32 = 0 () 62 / 303
64 Stress unity normal vector stress vector Cauchy stress components stress cube n = n i e i p = p i e i p i = σ ij n j σ 33 σ σ 21 σ 31 σ 13 σ 32 σ 12 σ 22 1 σ 11 () 63 / 303
65 Linear elastic material behavior σ ij = C ijkl ε lk material symmetry isotropic material 2 mat.pars () 64 / 303
66 Hooke s law for isotropic materials σ 11 σ 22 σ 33 σ 12 σ 23 σ 31 σ ij = E ( ε ij + ν ) 1 + ν 1 2ν δ ijε kk i = 1, 2, 3 ε ij = 1 + ν ( σ ij ν ) E 1 + ν δ ijσ kk i = 1, 2, 3 1 ν ν ν ν 1 ν ν = α ν ν 1 ν ν ν ν α = E/[(1 + ν)(1 2ν)] ε 11 ε 22 ε 33 ε 12 ε 23 ε 31 ε 11 ε 22 ε 33 ε 12 ε 23 ε 31 = 1 E 1 ν ν ν 1 ν ν ν ν ν ν σ 11 σ 22 σ 33 σ 12 σ 23 σ 31 () 65 / 303
67 Equilibrium equations σ 12 σ 13 + σ 13,3 dx 3 σ 23 + σ 23,3 dx 3 σ 33 + σ 33,3 dx 3 σ 22 σ 32 σ 11 σ 21 1 σ 11 + σ 11,1 dx 1 σ 21 + σ 21,1 dx 1 σ 31 + σ 31,1 dx σ 13 σ 23 σ 33 σ 31 σ 12 + σ 12,2 dx 2 σ 22 + σ 22,2 dx 2 σ 32 + σ 32,2 dx 2 volume load ρq i force equilibrium σ ij,j + ρq i = 0 i = 1, 2, 3 moment equilibrium σ ij = σ ji () 66 / 303
68 Plane stress σ 33 = σ 13 = σ 23 = 0 equilibrium (q i = 0) σ 11,1 + σ 12,2 = 0 ; σ 21,1 + σ 22,2 = 0 compatibility 2ε 12,12 ε 11,22 ε 22,11 = 0 Hooke s law σ ij = E 1 + ν ( ε ij + ν ) 1 ν δ ijε kk ; ε ij = 1 + ν E Hooke s law in matrix notation ε 11 ε 22 = 1 1 ν 0 ν 1 0 E ε ν σ 11 σ 22 = E 1 ν 0 ν ν σ ν ( σ ij ν ) 1 + ν δ ijσ kk σ 11 σ 22 σ 12 ε 11 ε 22 ε 12 ε 33 = ν E (σ 11 + σ 22 ) = ν 1 ν (ε 11 + ε 22 ) ε 13 = ε 23 = 0 i = 1, 2 () 67 / 303
69 Plane strain ε 33 = ε 13 = ε 23 = 0 equilibrium (q i = 0) σ 11,1 + σ 12,2 = 0 ; σ 21,1 + σ 22,2 = 0 compatibility 2ε 12,12 ε 11,22 ε 22,11 = 0 Hooke s law ε ij = 1 + ν E (σ ij νδ ij σ kk ) ; σ ij = E ( ε ij + ν ) 1 + ν 1 2ν δ ijε kk i = 1, 2 Hooke s law in matrix notation σ 11 σ 22 E = 1 ν ν 0 ν 1 ν 0 (1 + ν)(1 2ν) σ ν ε 11 ε 22 = 1 + ν 1 ν ν 0 ν 1 ν 0 σ 11 σ 22 E ε σ 12 Eν σ 33 = (1 + ν)(1 2ν) (ε 11 + ε 22 ) = ν (σ 11 + σ 22 ) σ 13 = σ 23 = 0 ε 11 ε 22 ε 12 () 68 / 303
70 Displacement method σ ij,j = 0 σ ij = E 1 + ν E 1 + ν ( ε ij,j + ( ε ij + ν ) 1 2ν δ ijε kk,j ν 1 2ν δ ijε kk,j ) = 0 ε ij = 1 2 (u i,j + u j,i ) E ν 2 (u Eν i,jj + u j,ij ) + (1 + ν)(1 2ν) δ iju k,kj = 0 BC s u i ε ij σ ij () 69 / 303
71 Stress function method ψ(x 1, x 2 ) σ ij = ψ,ij + δ ij ψ,kk σ ij,j = 0 ε ij = 1 + ν (σ ij νδ ij σ kk ) E ε ij = 1 + ν } { ψ,ij + (1 ν)δ ij ψ,kk } E 2ε 12,12 ε 11,22 ε 22,11 = 0 2ψ, ψ, ψ,1111 = 0 (ψ,11 + ψ,22 ),11 + (ψ,11 + ψ,22 ),22 = 0 Laplace operator : 2 = 2 x x 2 2 = ( ) 11 + ( ) 22 } bi-harmonic equation 2 ( 2 ψ) = 4 ψ = 0 BC s } ψ σ ij ε ij u i () 70 / 303
72 Cylindrical coordinates z e z e t e r x e 3 e 2 e 1 θ r y vector bases { e 1, e 2, e 3 } { e r, e t, e z } e r = e r (θ) = e 1 cosθ + e 2 sinθ e t = e t (θ) = e 1 sinθ + e 2 cosθ () 71 / 303
73 Laplace operator z e z e t e r x e 3 e 2 e 1 θ r y gradient operator Laplace operator two-dimensional = er r + e 1 t r 2 = = 2 2 = 2 r r θ + e z z r r r r 2 θ 2 r + 1 r 2 2 θ z 2 () 72 / 303
74 Bi-harmonic equation bi-harmonic equation ( 2 r r r ) ( 2 ψ r 2 θ 2 r ψ r r ) ψ r 2 θ 2 = 0 stress components σ rr = 1 ψ r r ψ r 2 θ 2 σ tt = 2 ψ r 2 σ rt = 1 ψ r 2 θ 1 r ψ r θ = r ( 1 r ) ψ θ () 73 / 303
75 Circular hole in infinite plate σ y σ θ r x 2a σ rr = 1 r ( 2 r r ψ r + 1 r 2 2 ψ θ 2 ; r ) ( 2 ψ r 2 θ 2 r ψ r r ) ψ r 2 θ 2 = 0 σ tt = 2 ψ r 2 ; σ rt = 1 r 2 ψ θ 1 r ψ r θ = r ( 1 r ) ψ θ () 74 / 303
76 Load transformation σ σ θ σ rr σ rt σ rr σ rt 2a 2b equilibrium two load cases σ rr (r = b, θ) = 1 2 σ σcos(2θ) σ rt (r = b, θ) = 1 2 σsin(2θ) I. σ rr (r = a) = σ rt (r = a) = 0 σ rr (r = b) = 1 2 σ ; σ rt(r = b) = 0 II. σ rr (r = a) = σ rt (r = a) = 0 σ rr (r = b) = 1 2 σcos(2θ) ; σ rt(r = b) = 1 2 σsin(2θ) () 75 / 303
77 Load case I σ rr (r = a) = σ rt (r = a) = 0 σ rr (r = b) = 1 2 σ ; σ rt(r = b) = 0 Airy function ψ = f (r) stress components σ rr = 1 r ψ r ψ r 2 θ 2 = 1 df r dr ; σ tt = 2 ψ r 2 = d2 f dr 2 ; σ rt = r ( 1 r ) ψ = 0 θ bi-harmonic equation ( d 2 dr r ) ( d d 2 f dr dr ) df = 0 r dr () 76 / 303
78 Solution general solution stresses ψ(r) = Aln r + Br 2 ln r + Cr 2 + D σ rr = A + B(1 + 2 lnr) + 2C r2 σ tt = A + B(3 + 2 lnr) + 2C r2 strains (from Hooke s law for plane stress) ε rr = 1 [ ] A (1 + ν) + B{(1 3ν) + 2(1 ν)ln r} + 2C(1 ν) E r2 ε tt = 1 1 [ Ar ] E r (1 + ν) + B{(3 ν)r + 2(1 ν)r lnr} + 2C(1 ν)r compatibility ε rr = du dr = d(r ε tt) dr 2 BC s and b a A and C B = 0 σ rr = 1 a2 2σ(1 r 2 ) ; σ tt = 1 a2 2σ(1 + r 2 ) ; σ rt = 0 () 77 / 303
79 Load case II σ rr (r = a) = σ rt (r = a) = 0 σ rr (r = b) = 1 2 σcos(2θ) ; σ rt(r = b) = 1 2 σsin(2θ) Airy function ψ(r, θ) = g(r)cos(2θ) stress components σ rr = 1 r ψ r ψ r 2 θ 2 ; σ tt = 2 ψ r 2 σ rt = 1 r 2 ψ θ 1 r ψ r θ = r bi-harmonic equation ( 2 r r r ) {( d 2 g r 2 θ 2 dr dg r dr 4 ( d 2 dr d r dr 4 ) ( d 2 g r 2 dr dg r dr 4 r 2 g ( 1 r ψ θ ) r 2 g ) ) cos(2θ) = 0 } cos(2θ) = 0 () 78 / 303
80 Solution general solution g = Ar 2 + Br 4 + C 1 r 2 + D ( ψ = Ar 2 + Br 4 + C 1 ) r 2 + D cos(2θ) ( stresses σ rr = 2A + 6C r 4 + 4D ) r 2 cos(2θ) ( σ tt = 2A + 12Br 2 + 6C ) r 4 cos(2θ) ( σ rt = 2A + 6Br 2 6C r 4 2D ) r 2 sin(2θ) 4 BC s and b a A,B,C and D ( σ rr = 1 2 σ 1 + 3a4 r 4 4a2 r 2 σ tt = 1 2 σ ( 1 + 3a4 r 4 ) cos(2θ) ) cos(2θ) ( σ rt = 1 2 σ 1 3a4 r 4 + 2a2 r 2 ) sin(2θ) () 79 / 303
81 Stresses for total load σ rr = σ [(1 a2 2 r 2 σ tt = σ [(1 + a2 2 r 2 σ rt = σ 2 ) + (1 + 3a4 ) [1 3a4 r 4 + 2a2 r 2 r 4 4a2 r 2 (1 + 3a4 r 4 ] sin(2θ) ) cos(2θ) ) ] cos(2θ) ] () 80 / 303
82 Special points stress concentration factor σ rr (r = a, θ) = σ rt (r = a, θ) = σ rt (r, θ = 0) = 0 σ tt (r = a, θ = π 2 ) = 3σ σ tt (r = a, θ = 0) = σ K t is independent of hole diameter! K t = σ max σ = 3 [-] () 81 / 303
83 Stress gradients large hole : smaller stress gradient larger area with higher stress higher chance for critical defect in high stress area () 82 / 303
84 Elliptical hole y σ σ yy σ a b radius ρ x ( σ yy (x = a, y = 0) = σ a ) ( = σ ) a/ρ b 2σ a/ρ stress concentration factor K t = 2 a/ρ [-] () 83 / 303
85 back to index CRACK TIP STRESS
86 () 85 / 303
87 Complex plane x 2 r θ x 1 crack tip = singular point complex function theory complex Airy function (Westergaard, 1939) () 86 / 303
88 Complex variables x 2 e i r θ z e r x 1 z z = x 1 + ix 2 = re iθ ; z = x 1 ix 2 = re iθ x 1 = 1 2 (z + z) ; x 2 = 1 2i (z z) = 1 2i(z z) z = x 1 e r + x 2 e i = x 1 e r + x 2 i e r = (x 1 + ix 2 ) e r () 87 / 303
89 Complex functions complex function f (z) = φ + iζ = φ(x 1, x 2 ) + iζ(x 1, x 2 ) = f f ( z) = φ(x 1, x 2 ) iζ(x 1, x 2 ) = f φ = 1 2 {f + f } ; ζ = 1 2 i{f f } 2 φ = 2 ζ = 0 appendix!! () 88 / 303
90 Laplace operator complex function Laplacian derivatives (see App. A) g(x 1, x 2 ) = g(z, z) 2 g = 2 g x g x2 2 g = g x 1 z z + g x 1 z z = g x 1 z + g z ; 2 g x 2 1 = 2 g z g z z + 2 g z 2 g = g x 2 z z + g x 2 z z = i g x 2 z i g z ; 2 g x 2 2 = 2 g z g z z 2 g z 2 Laplacian 2 g = 2 g x = 4 z z + 2 g x 2 2 = 4 g z z () 89 / 303
91 Bi-harmonic equation Airy function ψ(z, z) bi-harmonic equation 2 ( 2 ψ(z, z) ) = 0 () 90 / 303
92 Solution of bi-harmonic equation real part of complex function f satisfies Laplace eqn. 2 ( 2 ψ(z, z) ) = 2 (φ(z, z)) = 0 φ = f + f choice Airy function 2 ψ = 4 ψ z z = φ = f + f integration ψ = 1 2 [ zω + z Ω + ω + ω ] unknown functions : Ω ; Ω ; ω ; ω () 91 / 303
93 Stresses Airy function ψ = 1 2 [ zω + z Ω + ω + ω ] stress components σ ij = σ ij (z, z) = ψ,ij + δ ij ψ,kk σ 11 = ψ,11 + ψ,γγ = ψ,22 = Ω + Ω 1 2 { zω + ω + z Ω + ω } σ 22 = ψ,22 + ψ,γγ = ψ,11 = Ω + Ω { zω + ω + z Ω + ω } σ 12 = ψ,12 = 1 2 i { zω + ω z Ω ω } () 92 / 303
94 Displacement u 2 u x 2 e i e 2 θ r u 1 e r e 1 x 1 definition of complex displacement u = u 1 e 1 + u 2 e 2 = u 1 e r + u 2 e i = u 1 e r + u 2 i e r = (u 1 + iu 2 ) e r = u e r u = u 1 + iu 2 = u 1 (x 1, x 2 ) + iu 2 (x 1, x 2 ) = u(z, z) ū = u 1 iu 2 = ū(z, z) () 93 / 303
95 Schematic u u(z, z) with int. const. M(z) z u z u ū z + ū z M(z), M( z) z u z + ū z = ε 11 + ε 22 σ 11, σ 22 M(z) u(z, z) () 94 / 303
96 Displacement derivatives u z = u x 1 x 1 z + u { x 2 u x 2 z = i u } x 1 x 2 { = 1 u1 2 + i u 2 + i u 1 u } 2 = 1 x 1 x 1 x 2 x 2 (ε 11 ε iε 12 ) 2 u z = u x 1 x 1 z + u { x 2 u x 2 z = 1 2 i u } x 1 x 2 { = 1 u1 2 + i u 2 i u 1 + u } { 2 = 1 x 1 x 1 x 2 x 2 ε 11 + ε 22 + i 2 ū z = ū x 1 x 1 z + ū { x 2 ū x 2 z = 1 2 i ū } x 1 x 2 { = 1 u1 2 i u 2 i u 1 u } 2 = 1 x 1 x 1 x 2 x 2 (ε 11 ε 22 2iε 12 ) 2 ū z = ū x 1 x 1 z + ū { x 2 ū x 2 z = i ū } x 1 x 2 { = 1 u1 2 i u 2 + i u 1 + u } 2 = 1 x 1 x 1 x 2 x 2 2 ( u2 u )} 1 x 1 x 2 { ( u2 ε 11 + ε 22 i u )} 1 x 1 x 2 () 95 / 303
97 General solution u z = 1 2 (ε 11 ε iε 12 ) Hooke s law (pl.strain) ] [σ 11 σ iσ 12 u z = ν E = 1 + ν E [z Ω + ω ] Integration u = 1 + ν E [ ] z Ω + ω + M () 96 / 303
98 Integration function u = 1 + ν E ū = 1 + ν E [ ] z Ω + ω + M u z = 1 + ν [ Ω + M ] E [ Ω + M ] [ zω + ω + M ] ū z = 1 + ν E u z + ū z = 1 + ν [ Ω + Ω + M + M ] E u z + ū z = ε 11 + ε 22 = 1 + ν [(1 2ν)(σ 11 + σ 22 )] E (1 + ν)(1 2ν) = 2 [ Ω + Ω ] E M + M = (3 4ν) [ Ω + Ω ] M = (3 4ν)Ω = κω u = 1 + ν E [ ] z Ω + ω κω () 97 / 303
99 Choice of complex functions Ω = (α + iβ)z λ+1 = (α + iβ)r λ+1 e iθ(λ+1) ω = (γ + iδ)z λ+1 = (γ + iδ)r λ+1 e iθ(λ+1) Ω = (α iβ) z λ+1 = (α iβ)r λ+1 e iθ(λ+1) Ω = (α iβ)(λ + 1) z λ = (α iβ)(λ + 1)r λ e iθλ ω = (γ iδ) z λ+1 = (γ iδ)r λ+1 e iθ(λ+1) u = 1 2µ rλ+1 [ κ(α + iβ)e iθ(λ+1) (α iβ)(λ + 1)e iθ(1 λ) (γ iδ)e iθ(λ+1)] with µ = E 2(1 + ν) displacement finite λ > 1 () 98 / 303
100 Displacement components u = 1 2µ rλ+1 [ κ(α + iβ)e iθ(λ+1) (α iβ)(λ + 1)e iθ(1 λ) (γ iδ)e iθ(λ+1)] e iθ = cos(θ) + i sin(θ) u = 1 2µ rλ+1 [ { i = u 1 + iu 2 κα cos(θ(λ + 1)) κβ sin(θ(λ + 1)) α(λ + 1)cos(θ(1 λ)) β(λ + 1)sin(θ(1 λ)) } γ cos(θ(λ + 1)) + δ sin(θ(λ + 1)) + { κα sin(θ(λ + 1)) + κβ cos(θ(λ + 1)) α(λ + 1)sin(θ(1 λ)) + β(λ + 1)cos(θ(1 λ)) + } ] γ sin(θ(λ + 1)) + δ cos(θ(λ + 1)) () 99 / 303
101 Mode I () 100 / 303
102 Mode I : displacement x 2 r θ x 1 displacement for Mode I u 1 (θ > 0) = u 1 (θ < 0) u 2 (θ > 0) = u 2 (θ < 0) } β = δ = 0 Ω = αz λ+1 = αr λ+1 e i(λ+1)θ ω = γz λ+1 = γr λ+1 e i(λ+1)θ () 101 / 303
103 Mode I : stress components σ 11 = (λ + 1) [ αz λ + α z λ { 1 2 αλ zz λ 1 + γz λ + αλz z λ 1 + γ z λ}] σ 22 = (λ + 1) [ αz λ + α z λ { αλ zz λ 1 + γz λ + αλz z λ 1 + γ z λ}] σ 12 = 1 2 i(λ + 1)[ αλ zz λ 1 + γz λ αλz z λ 1 γ z λ] with z = re iθ ; z = re iθ σ 11 = (λ + 1)r λ [ αe iλθ + αe iλθ {αλe i(λ 2)θ + γe iλθ + αλe i(λ 2)θ + γe iλθ}] 1 2 σ 22 = (λ + 1)r λ [ αe iλθ + αe iλθ + {αλe i(λ 2)θ + γe iλθ + αλe i(λ 2)θ + γe iλθ}] 1 2 σ 12 = 1 2 i(λ + 1)rλ [ αλe i(λ 2)θ + γe iλθ αλe i(λ 2)θ γe iλθ] () 102 / 303
104 with e iθ + e iθ = 2 cos(θ) ; e iθ e iθ = 2i sin(θ) σ 11 = 2(λ + 1)r λ [ α cos(λθ) {αλ cos((λ 2)θ) + γ cos(λθ)}] σ 22 = 2(λ + 1)r λ [ α cos(λθ) 1 2 {αλ cos((λ 2)θ) + γ cos(λθ)}] σ 12 = (λ + 1)r λ [αλ sin((λ 2)θ) + γ sin(λθ)] () 103 / 303
105 Stress boundary conditions σ 11 = 2(λ + 1)r λ [ α cos(λθ) {αλ cos((λ 2)θ) + γ cos(λθ)}] σ 22 = 2(λ + 1)r λ [ α cos(λθ) 1 2 {αλ cos((λ 2)θ) + γ cos(λθ)}] σ 12 = (λ + 1)r λ [αλ sin((λ 2)θ) + γ sin(λθ)] crack surfaces are stress free σ 22 (θ = ±π) = σ 12 (θ = ±π) = 0 [ ][ ] [ ] (λ 2)cos(λπ) cos(λπ) α 0 = λ sin(λπ) sin(λπ) γ 0 [ ] (λ 2)cos(λπ) cos(λπ) det = sin(2λπ) = 0 2πλ = nπ λ sin(λπ) sin(λπ) λ = 1 2, n, with n = 0, 1, 2,.. 2 () 104 / 303
106 Stress field λ = 1 2 α = 2γ ; λ = 0 α = 1 2 γ λ = 1 2 α = 2γ ; λ = 1 α = γ σ 11 = 2γr 1 2 cos( 1 2 θ)[ 1 sin( 3 2 θ)sin(1 2 θ)] + σ 22 = 2γr 1 2 cos( 1 2 θ)[ 1 + sin( 3 2 θ)sin(1 2 θ)] + σ 12 = 2γr 1 2 [ cos( 1 2 θ)cos(3 2 θ)sin(1 2 θ)] + () 105 / 303
107 Mode I : stress intensity factor definition stress intensity factor K ( Kies ) ( ) K I = lim 2πr σ22 θ=0 = 2γ 2π [ m 1 2 N m 2 ] r 0 () 106 / 303
108 Mode I : crack tip solution σ 11 = σ 22 = σ 12 = K I 2πr [ cos( 1 2 θ){ 1 sin( 1 2 θ)sin(3 2 θ)}] K I 2πr [ cos( 1 2 θ){ 1 + sin( 1 2 θ)sin(3 2 θ)}] K I 2πr [ cos( 1 2 θ)sin(1 2 θ)cos(3 2 θ)] u 1 = K I r 2µ 2π u 2 = K I r 2µ 2π [ cos( 1 2 θ){ κ sin 2 ( 1 2 θ)}] [ sin( 1 2 θ){ κ cos 2 ( 1 2 θ)}] plane stress plane strain κ = 3 ν 1 + ν κ = 3 4ν () 107 / 303
109 Mode II () 108 / 303
110 Mode II : displacement x 2 r θ x 1 displacements for Mode II u 1 (θ > 0) = u 1 (θ < 0) u 2 (θ > 0) = u 2 (θ < 0) } α = γ = 0 Ω = iβz λ+1 = iβr λ+1 e i(λ+1)θ ω = iδz λ+1 = iδr λ+1 e i(λ+1)θ () 109 / 303
111 Mode II : stress intensity factor definition stress intensity factor K ( Kies ) ( ) K II = lim 2πr σ12 θ=0 r 0 [ m 1 2 N m 2 ] () 110 / 303
112 Mode II : crack tip solution σ 11 = K II 2πr [ sin( 1 2 θ){ 2 + cos( 1 2 θ)cos(3 2 θ)}] σ 22 = K II 2πr [ sin( 1 2 θ)cos(1 2 θ)cos(3 2 θ)] σ 12 = K II 2πr [ cos( 1 2 θ){ 1 sin( 1 2 θ)sin(3 2 θ)}] u 1 = K II r 2µ 2π u 2 = K II r 2µ 2π [ sin( 1 2 θ){ κ cos 2 ( 1 2 θ)}] [ cos( 1 2 θ){ κ 1 2 sin 2 ( 1 2 θ)}] plane stress plane strain κ = 3 ν 1 + ν κ = 3 4ν () 111 / 303
113 Mode III () 112 / 303
114 Laplace equation ε 31 = 1 2 u 3,1 ; ε 32 = 1 2 u 3,2 Hooke s law σ 31 = 2µε 31 = µu 3,1 ; σ 32 = 2µε 32 = µu 3,2 equilibrium σ 31,1 + σ 32,2 = µu 3,11 + µu 3,22 = 0 2 u 3 = 0 () 113 / 303
115 Mode III : displacement general solution u 3 = f + f specific choice f = (A + ib)z λ+1 f = (A ib) z λ+1 () 114 / 303
116 Mode III : stress components σ 31 = 2(λ + 1)r λ {Acos(λθ) B sin(λθ)} σ 32 = 2(λ + 1)r λ {Asin(λθ) + B cos(λθ)} σ 32 (θ = ±π) = 0 [ ] [ ] [ ] sin(λπ) cos(λπ) A 0 = sin(λπ) cos(λπ) B 0 [ ] sin(λπ) cos(λπ) det = sin(2πλ) = 0 2πλ = nπ sin(λπ) cos(λπ) λ = 1 2, n,.. with n = 0, 1, 2,.. 2 crack tip solution λ = 1 2 A = 0 σ 31 = Br 1 2 {sin( 1 2 θ)} ; σ 32 = Br 1 2 {cos( 1 2 θ)} () 115 / 303
117 Mode III : Stress intensity factor definition stress intensity factor ( ) K III = lim 2πr σ32 θ=0 r 0 () 116 / 303
118 Mode III : crack tip solution stress components σ 31 = K III 2πr [ sin( 1 2 θ)] σ 32 = K III 2πr [ cos( 1 2 θ)] displacement u 3 = 2K III µ r [ sin( 1 2π 2 θ)] () 117 / 303
119 Crack tip stress (mode I, II, III) σ τ τ σ τ τ Mode I Mode II Mode III σ ij = K I 2πr f Iij (θ) ; σ ij = K II 2πr f IIij (θ) ; σ ij = K III 2πr f IIIij (θ) crack intensity factors (SIF) K I = β I σ πa ; K II = β II τ πa ; K III = β III τ πa () 118 / 303
120 K-zone D K-zone : D I II D II D I () 119 / 303
121 SIF for specified cases 2a σ τ 2a K I = σ ( πa sec πa W K II = τ πa ) 1/2 small a W W W () 120 / 303
122 SIF for specified cases σ K I = σ [ a 1.12 π 0.41 a W + a W ( a ) 2 ( a ) W W ( a ) ] W 1.12σ πa small a W () 121 / 303
123 SIF for specified cases a W a σ K I = σ [ a 1.12 π a W ( a ) 2 ( a ) ] W W 1.12σ πa () 122 / 303
124 SIF for specified cases W 2a σ K I /σ full 1st term a/w a W σ K I /σ full 1st term a/w plots are made with Kfac.m. () 123 / 303
125 SIF for specified cases P K I = [ PS ( a ) BW 3/2 W W a P/2 S P/2 ( a ) 3 ( 2 a ) W W ] ( a ) 7 ( 2 a ) W W () 124 / 303
126 SIF for specified cases a P W K I = [ P ( a ) BW 1/2 W ( a ) 3 ( 2 a ) W W ] ( a ) 7 ( 2 a ) W W P () 125 / 303
127 SIF for specified cases 2a p K I = p πa p per unit thickness W () 126 / 303
128 SIF for specified cases P W a P/2 S P/2 K I /P full 1st term P a W P K I /P a/w full 1st term a/w plots are made with Kfac.m. () 127 / 303
129 K-based crack growth criteria K I = K Ic ; K II = K IIc ; K III = K IIIc K Ic = Fracture Toughness calculate K I, K II, K III - analytically - literature - relation K G - numerically (EEM, BEM) experimental determination of K Ic, K IIc, K IIIc - normalized experiments (exmpl. ASTM E399) KIc 2 - correlation with C v ( KAN p. 18 : E = mcn v ) () 128 / 303
130 Relation G K I y σ yy x a a crack length a σ yy (θ = 0, r = x a) = σ a 2(x a) ; u y = 0 crack length a + a σ yy (θ = π, r = a + a x) = 0 (1 + ν)(κ + 1) σ a + a u y = E 2 a + a x plane stress : κ = 3 ν 1 + ν ; plane strain : κ = 3 4ν () 129 / 303
131 Relation G K I (continued) accumulation of elastic energy U = 2B energy release rate G = 1 B lim a 0 a+ a a ( U a ) 1 2 σ yy dx u y = B a+ a a σ yy u y dx = B f ( a) a (1 + ν)(κ + 1) = lim f ( a) = σ 2 (1 + ν)(κ + 1) aπ = KI 2 a 0 4E 4E plane stress G = K I 2 E plane strain G = (1 ν 2 ) K I 2 E () 130 / 303
132 Multi mode load G = 1 E ( c1 KI 2 + c 2 KII 2 + c 3 KIII 2 ) plane stress G = 1 E (K 2 I + K 2 II) plane strain G = (1 ν2 ) (KI 2 + K 2 E II) + (1 + ν) KIII 2 E () 131 / 303
133 The critical SIF value σ K I 2a B K Ic σ B c B K Ic = σ c πa B c = 2.5 ( ) 2 KIc σ y () 132 / 303
134 K Ic values Material σ v [MPa] K Ic [MPa m ] steel, 300 maraging steel, 350 maraging steel, D6AC steel, AISI steel, A533B reactor steel, carbon Al 2014-T Al 2024-T Al 7075-T Al 7079-T Ti 6Al-4V Ti 6Al-6V-2Sn Ti 4Al-4Mo-2Sn-0.5Si () 133 / 303
135 back to index MULTI-MODE LOADING
136 Multi-mode crack loading Mode I Mode II Mode I + II Mode I + II () 135 / 303
137 Multi-mode crack loading crack tip stresses s ij Mode I s ij = K I 2πr f Iij (θ) Mode II s ij = K II 2πr f IIij (θ) Mode I + II s ij = K I 2πr f Iij (θ) + K II 2πr f IIij (θ) () 136 / 303
138 Stress component transformation (b) p e 2 e 2 θ n e 1 e 1 = cos(θ) e 1 + sin(θ) e 2 = c e 1 + s e 2 e 2 = sin(θ) e 1 + cos(θ) e 2 = s e 1 + c e 2 e 1 stress vector and normal unity vector p = p 1 e 1 + p 2 e 2 = p1 e 1 + p 2 e [ ] [ ] [ ] p1 c s p = 1 p 2 s c p2 2 [ p 1 p 2 ] [ c s = s c ] [ p1 p 2 ] = T p p p = T T p idem : ñ = T T ñ () 137 / 303
139 Transformation stress matrix p = σñ T p = σtñ p = T T σt ñ = σ ñ σ = T T σt σ = T σ T T [ σ 11 σ 12 σ 21 σ 22 ] [ ][ ] [ ] c s σ11 σ = 12 c s s c σ 21 σ 22 s c [ ][ ] c s cσ11 + sσ = 12 sσ 11 + cσ 12 s c cσ 21 + sσ 22 sσ 21 + cσ 22 c 2 σ csσ 12 + s 2 σ 22 = csσ 11 + (c 2 s 2 )σ 12 + csσ 22 csσ 11 + (c 2 s 2 )σ 12 + csσ 22 s 2 σ 11 2csσ 12 + c 2 σ 22 () 138 / 303
140 Cartesian to cylindrical transformation σ yy σ xy e t e r σ xx e 2 r θ e r = c e 1 + s e 2 e t = s e 1 + c e 2 e 1 σ rt σ rr σ tt [ ] σrr σ rt = σ tr σ tt [ c ][ s σxx σ xy s c = ] [ c s σ xy σ yy s c c 2 σ xx + 2csσ xy + s 2 σ yy csσ xx + (c 2 s 2 )σ xy + csσ yy csσ xx + (c 2 s 2 )σ xy + csσ yy s 2 σ xx 2csσ xy + c 2 σ yy ] () 139 / 303
141 Crack tip stresses : Cartesian σ yyσxy σ xx = σ xx K I 2πr f Ixx (θ) + K II 2πr f IIxx (θ) f Ixx (θ) = cos( θ 2 )[ 1 sin( θ 2 )sin(3θ 2 )] f IIxx (θ) = sin( θ 2 )[ 2 + cos( θ 2 )cos(3θ 2 )] f Iyy (θ) = cos( θ 2 )[ 1 + sin( θ 2 )sin(3θ 2 )] f IIyy (θ) = sin( θ 2 )cos( θ 2 )cos(3θ 2 ) f Ixy (θ) = sin( θ 2 )cos( θ 2 )cos(3θ 2 ) f IIxy (θ) = cos( θ 2 )[ 1 sin( θ 2 )sin(3θ 2 )] σ yy = σ xy = K I 2πr f Iyy (θ) + K II 2πr f IIyy (θ) K I 2πr f Ixy (θ) + K II 2πr f IIxy (θ) () 140 / 303
142 Crack tip stresses : cylindrical σ rr σ rt σ rr = θ σ tt K I 2πr f Irr (θ) + K II 2πr f IIrr (θ) f Irr (θ) = [ 5 4 cos( θ 2 ) 1 4 cos(3θ 2 )] f IIrr (θ) = [ 5 4 sin( θ 2 ) sin(3θ 2 )] f Itt (θ) = [ 3 4 cos( θ 2 ) cos(3θ 2 )] f IItt (θ) = [ 3 4 sin( θ 2 ) 3 4 sin(3θ 2 )] f Irt (θ) = [ 1 4 sin( θ 2 ) sin(3θ 2 )] f IIrt (θ) = [ 1 4 cos( θ 2 ) cos(3θ 2 )] σ tt = σ rt = K I 2πr f Itt (θ) + K II 2πr f IItt (θ) K I 2πr f Irt (θ) + K II 2πr f IIrt (θ) () 141 / 303
143 Multi-mode load 2a σ 22σ12 σ 11 σ 12 σ 22 2a σ 12 σ 11 [ σ 11 σ 12 σ 21 σ 22 ] = e 2 e 2 e 1 θ e 1 σ 12 σ 22 c 2 σ csσ 12 + s 2 σ 22 csσ 11 + (c 2 s 2 )σ 12 + csσ 22 csσ 11 + (c 2 s 2 )σ 12 + csσ 22 s 2 σ 11 2csσ 12 + c 2 σ 22 crack tip stresses s ij = K I 2πr f Iij (θ) + K II 2πr f IIij (θ) with K I = β σ 22 πa ; KII = γ σ 12 πa σ 11 does not do anything () 142 / 303
144 Example multi-mode load σ σ 12 σ 22 σ 11 2a kσ 2a σ 12 θ σ 11 = c2 σ csσ 12 + s 2 σ 22 = c 2 kσ + s 2 σ σ 22 = s2 σ 11 2csσ 12 + c 2 σ 22 = s 2 kσ + c 2 σ σ 12 = csσ 11 + (c 2 s 2 )σ 12 + csσ 22 = cs(1 k)σ crack tip stresses s ij = K I 2πr f Iij (θ) + K II 2πr f IIij (θ) stress intensity factors K I = β I σ 22 πa = βi (s 2 k + c 2 )σ πa K II = β II σ 12 πa = βii cs(1 k)σ πa () 143 / 303
145 Example multi-mode load σ t 2a σ a p R t θ σ 22 σ 12 σ 11 σ t = pr = σ ; σ a = pr t 2t = 1 2 σ k = 1 2 σ 22 = s σ + c2 σ ; σ 12 = cs(1 1 2 )σ = 1 2 cs σ K I = σ 22 πa = ( 1 2 s2 + c 2 )σ πa = ( 1 2 s2 + c 2 ) pr t πa K II = σ 12 πa = 1 2 cs σ = 1 2 cs pr t πa () 144 / 303
146 back to index CRACK GROWTH DIRECTION
147 Crack growth direction criteria for crack growth direction : maximum tangential stress (MTS) criterion strain energy density (SED) criterion requirement : crack tip stresses in cylindrical coordinates () 146 / 303
148 Maximum tangential stress criterion Erdogan & Sih (1963) σ rr σ rt θ σ tt Hypothesis : crack growth towards local maximum of σ tt σ tt θ = 0 and 2 σ tt θ 2 < 0 θ c σ tt (θ = θ c ) = σ tt (θ = 0) = K Ic 2πr crack growth () 147 / 303
149 Maximum tangential stress criterion 3 2 σ tt θ = 0 K I K II [ 1 2πr 4 sin( θ 2 ) 1 4 sin(3θ 2 )] [ πr 4 cos( θ 2 ) 3 4 cos(3θ 2 )] = 0 K I sin(θ) + K II {3 cos(θ) 1} = 0 2 σ tt θ 2 < K I [ 1 2πr 4 cos( θ 2 ) 3 4 cos(3θ 2 )] [ πr 4 sin( θ 2 ) sin(3θ 2 )] < 0 K II σ tt (θ = θ c ) = K Ic 2πr 1 K I 4 K II [ 3 cos( θ c K 2 ) + cos(3θc 2 )] [ sin( θ c Ic K 2 ) 3 sin(3θc 2 )] = 1 Ic () 148 / 303
150 Mode I load K II = 0 σ tt θ = K I sin(θ) = 0 θ c = 0 2 σ tt θ 2 < 0 θc σ tt (θ c ) = K Ic 2πr K I = K Ic () 149 / 303
151 Mode II load K I = 0 σ tt θ = K II(3 cos(θ c ) 1) = 0 θ c = ± arccos( 1 3 ) = ±70.6o 2 σ tt θ 2 < 0 θ c = 70.6 o θc σ tt (θ c ) = K Ic 2πr K IIc = 3 4 K Ic τ θ c τ () 150 / 303
152 Multi-mode load K I [ sin( θ 2 ) sin(3θ 2 )] + K II[ cos( θ 2 ) 3 cos(3θ 2 )] = 0 K I [ cos( θ 2 ) 3 cos(3θ 2 )] + K II[sin( θ 2 ) + 9 sin(3θ 2 )] < 0 K I [3 cos( θ 2 ) + cos(3θ 2 )] + K II[ 3 sin( θ 2 ) 3 sin(3θ 2 )] = 4K Ic K I f 1 K II f 2 = 0 K I f 2 + K II f 3 < 0 K I f 4 3K II f 1 = 4K Ic ( KI K ( Ic KI K ( Ic KI K Ic ) ( KII f 1 ) f 2 + ) f 4 3 K ( Ic KII K ( Ic KII K Ic ) f 2 = 0 ) f 3 < 0 ) f 1 = 4 () 151 / 303
153 Multi-mode load θ c K I /K Ic K II /K Ic K /K I Ic () 152 / 303
154 Strain energy density (SED) criterion Sih (1973) σ rr σ rt θ σ tt Hypothesis : U i = Strain Energy Density (Function) = εij 0 σ ij dε ij S = Strain Energy Density Factor = ru i = S(K I, K II, θ) crack growth towards local minimum of SED S θ = 0 and 2 S θ 2 > 0 θ c S(θ = θ c ) = S(θ = 0, pl.strain) = S c crack growth () 153 / 303
155 SED U i = 1 2E (σ2 xx + σ2 yy + σ2 zz ) ν E (σ xxσ yy + σ yy σ zz + σ zz σ xx ) + 1 2G (σ2 xy + σ2 yz + σ2 zx ) σ xx = σ yy = σ xy = K I 2πr cos( θ 2 )[ 1 sin( θ 2 )sin(3θ 2 )] K II 2πr sin( θ 2 )[ 2 + cos( θ 2 )cos(3θ 2 )] K I 2πr cos( θ 2 )[ 1 + sin( θ 2 )sin(3θ 2 )] + K II 2πr sin( θ 2 )cos( θ 2 )cos(3θ 2 ) K I 2πr sin( θ 2 )cos( θ 2 )cos(3θ 2 ) + K II 2πr cos( θ 2 )[ 1 sin( θ 2 )sin(3θ 2 )] () 154 / 303
156 SED factor S = ru i = S(K I, K II, θ) = a 11 k 2 I + 2a 12 k I k II + a 22 k 2 II with a 11 = 1 16G (1 + cos(θ))(κ cos(θ)) a 12 = 1 16G sin(θ){2 cos(θ) (κ 1)} a 22 = 1 16G {(κ + 1)(1 cos(θ)) + (1 + cos(θ))(3 cos(θ) 1)} k i = K i / π S θ = 0 ki 2 16G {2 sin(θ)cos(θ) (κ 1)sin(θ)} + k Ik II 16G {2 4 sin2 (θ) (κ 1)cos(θ)} + kii 2 { 6 sin(θ)cos(θ) + (κ 1)sin(θ)} = 0 16G 2 S θ 2 > 0 k 2 I 16G {2 4 sin2 (θ) (κ 1)cos(θ)} + k Ik II { 8 sin(θ)cos(θ) + (κ 1)sin(θ)} + 16G kii 2 16G { sin2 (θ) + (κ 1)cos(θ)} > 0 () 155 / 303
157 Mode I load S = a 11 ki 2 = σ2 a {1 + cos(θ)}{κ cos(θ)} 16G S = sin(θ){2 cos(θ) (κ 1)} = 0 θ θ c = 0 or arccos ( 1 2 (κ 1)) 2 S θ 2 = 2 cos(2θ) (κ 1)cos(θ) > 0 θ c = 0 S(θ c ) = σ2 a 16G {2}{κ 1} = σ2 a (κ 1) 8G S c = S(θ c, pl.strain) = (1 + ν)(1 2ν) 2πE K 2 Ic () 156 / 303
158 Mode II load S = a 22 kii 2 = τ2 a [(κ + 1){1 cos(θ)} + {1 + cos(θ)}{3 cos(θ) 1}] 16G S = sin(θ)[ 6 cos(θ) + (κ 1)] = 0 θ 2 S θ 2 = 6 cos2 (θ) + (κ 1)cos(θ) > 0 S(θ c ) = τ2 a 16G { 1 12 ( κ2 + 14κ 1)} θ c = ± arccos ( 1 6 (κ 1)) S(θ c ) = S c τ c = 1 a 192GSc κ κ 1 () 157 / 303
159 Multi-mode load; plane strain ν= ν=0.1 ν=0.2 ν=0.3 ν=0.4 ν= θ c K /K I Ic K II /K Ic ν= ν=0.1 ν=0.2 ν=0.3 ν=0.4 ν= K /K I Ic () 158 / 303
160 Multi-mode load; plane stress ν= ν=0.1 ν=0.2 ν=0.3 ν=0.4 ν= θ c K /K I Ic K II /K Ic ν= ν=0.1 ν=0.2 ν=0.3 ν=0.4 ν= K /K I Ic () 159 / 303
161 Multi-mode load; plane strain k I = σ a sin 2 (β) ; k II = σ a sin(β)cos(β) S = σ 2 a sin 2 (β) { a 11 sin 2 (β) + 2a 12 sin(β)cos(β) + a 22 cos 2 (β) } S θ = (κ 1)sin(θ c 2β) 2 sin{2(θ c β)} sin(2θ c ) = 0 2 S θ 2 = (κ 1)cos(θ c 2β) 4 cos{2(θ c β)} 2 cos(2θ c ) > 0 σ β 2a σ θc 90 θ c ν = ν = ν = β From Gdoutos () 160 / 303
162 back to index DYNAMIC FRACTURE MECHANICS
163 Dynamic fracture mechanics impact load (quasi)static load fast fracture - kinetic approach - static approach () 162 / 303
164 Crack growth rate Mott (1948) du e da du i da = du a da + du d da + du k da σ y 2a a thickness B x du e da = 0 ; du d da = 0 U a = 4aBγ du a da = 4γB σ U i = 2πa 2 B 1 σ 2 2 E du i da = 2πaBσ2 E () 163 / 303
165 Kinetic energy U k = 1 2 ρb Ω ( u 2 x + u 2 y)dxdy material velocity u x u y = du y dt ( ) 2 U k = 1 duy 2 ρs2 B dxdy Ω da ds assumption da = 0 ( ) 2 du k da = 1 d duy 2 ρs2 B dxdy Ω da da u y = 2 2 σ E a2 ax du ( k σ ) 2 da = ρs2 B a E Ω = du y da du y da = 2 σ E da dt = du y da s 2a x a2 ax 1 x 2 (x 2a) ( σ ) 2 a 3 (a x) 2 dxdy = ρs 2 B a k(a) E () 164 / 303
166 Energy balance 2πaσ 2 E s = ( E ρ ( = 4γ + ρs 2 σ ) 2 ak E ) 1 ( ) 2 2π 1 ( 2 1 2γE ) 1 2 k πaσ 2 ( ds ) da 0!! 2π k 0.38 ; a c = 2γE E πσ 2 ; c = ρ ( s = 0.38 c 1 a c a a a c ) 1 2 s 0.38 c () 165 / 303
167 Experimental crack growth rates steel copper aluminum glass rubber E [GPa] ρ [kg/m 2 ] ν c [m/sec] s [m/sec] s/c < s c < 0.4 () 166 / 303
168 Elastic wave speeds C 0 = elongational wave speed = C 1 = dilatational wave speed = C 2 = shear wave speed = E ρ κ + 1 κ 1 µ ρ µ ρ C R = Rayleigh velocity = 0.54 C 0 á 0.62 C 0 () 167 / 303
169 Corrections ( Dulancy & Brace (1960) s = 0.38 C 0 1 a ) c a ( Freund (1972) s = C R 1 a ) c a () 168 / 303
170 Crack tip stress Yoffe (1951) : σ Dij = K D 2πr f ij (θ, r, s, E, ν) () 169 / 303
171 Crack branching Yoffe (1951) σ Dij = K ID 2πr f ij (θ, r, s, E, ν) 0.9 σ Dtt (θ) max σ Dtt (θ = 0) s c R 0.87 σ tt π π 2 θ crack branching volgens MTS Source: Gdoutos (1993) p.245 () 170 / 303
172 Fast fracture and crack arrest K D K Dc (s, T) crack growth K D < min 0<s<C R K Dc (s, T) = K A crack arrest () 171 / 303
173 Experiments Source: KAN1985 p.210 High Speed Photography : 10 6 frames/sec Robertson : CA Temperature (CAT) test (KAN1985 p.258) () 172 / 303
174 back to index PLASTIC CRACK TIP ZONE
175 () 174 / 303
176 Von Mises and Tresca yield criteria Von Mises Tresca W d = W d c (σ 1 σ 2 ) 2 + (σ 2 σ 3 ) 2 + (σ 3 σ 1 ) 2 = 2σ 2 y τ max = τ maxc σ max σ min = σ y yield surface in principal stress space () 175 / 303
177 Principal stresses at the crack tip plane stress state σ zz = σ zx = σ zy = 0 σ = σ xx σ xy 0 σ xy σ yy characteristic equation det(σ σi) = 0 σ [ σ 2 σ(σ xx + σ yy ) + (σ xx σ yy σ 2 xy )] = 0 σ 1 = 1 2 (σ xx + σ yy ) + { 1 4 (σ xx σ yy ) 2 + σ 2 xy σ 2 = 1 2 (σ xx + σ yy ) { 1 4 (σ xx σ yy ) 2 + σ 2 xy σ 3 = 0 } 1/2 } 1/2 plane strain state σ 3 = ν(σ 1 + σ 2 ) () 176 / 303
178 Principal stresses at crack tip crack tip stresses σ ij = K I 2πr f Iij (θ) σ 1(+),2( ) = K I [ cos( θ 2πr 2 )± ] { cos( θ 2 )sin( θ 2 )sin(3θ 2 )} 2 { + sin( θ 2 )cos( θ 2 )cos(3θ 2 )} 2 σ 1 = σ 2 = K I 2πr cos( θ 2 ){1 + sin( θ 2 )} K I 2πr cos( θ 2 ){1 sin( θ 2 )} σ 3 = 0 or σ 3 = 2νK I 2πr cos( θ 2 ) () 177 / 303
179 Principal stresses at crack tip plane stress σ 1 > σ 2 > σ 3 plane strain σ 1 > σ 2 > σ 3 or σ 1 > σ 3 > σ ν = ν = σ σ θ θ 1000 ν = ν = σ σ θ θ () 178 / 303
180 Von Mises plastic zone (σ 1 σ 2 ) 2 + (σ 2 σ 3 ) 2 + (σ 3 σ 1 ) 2 = 2σ 2 y plane stress σ 3 = 0 (σ 1 σ 2 ) 2 + σ σ2 1 = 2σ2 y KI 2 cos 2 ( θ 2πr 2 )[ 6 sin 2 ( θ 2 ) + 2] = 2σ 2 y y r y = K I 2 2πσ 2 y cos 2 ( θ 2 )[ sin 2 ( θ 2 )] = K I 2 [ 1 + cos(θ) + 3 4πσ 2 2 sin2 (θ) ] y plane strain σ 3 = ν(σ 1 + σ 2 ) (ν 2 ν + 1)(σ σ 2 2) + (2ν 2 2ν 1)σ 1 σ 2 = σ 2 y KI 2 cos 2 ( θ 2πr 2 )[ 6 sin 2 ( θ 2 ) + 2(1 2ν)2] = 2σ 2 y y r y = K I 2 4πσ 2 y [ (1 2ν) 2 {1 + cos(θ)} sin2 (θ) ] () 179 / 303
181 Von Mises plastic zone 1 Von Mises plastic zones pl.stress pl.strain Plot made with plazone.m. () 180 / 303
182 Tresca plastic zone σ max σ min = σ y plane stress {σ max, σ min } = {σ 1, σ 3 } K I 2πry [ cos( θ 2 ) + cos( θ 2 )sin( θ 2 ) ] = σ y r y = K I 2 [ cos( θ 2πσ 2 2 ) + cos( θ 2 )sin( θ 2 ) ] 2 y plane strain I σ 1 > σ 2 > σ 3 {σ max, σ min } = {σ 1, σ 3 } r y = K I 2 [ (1 2ν)cos( θ 2πσ 2 2 ) + cos( θ 2 )sin( θ 2 ) ] 2 y plane strain II σ 1 > σ 3 > σ 2 {σ max, σ min } = {σ 1, σ 2 } r y = K I 2 2πσ 2 sin 2 (θ) y () 181 / 303
183 Tresca plastic zone Tresca plastic zones pl.stress pl.strain sig3 = min pl.strain sig2 = min Plot made with plazone.m. () 182 / 303
184 Influence of the plate thickness B c > 25 3π ( KIc σ y ) 2 > 2.5 ( ) 2 KIc σ y () 183 / 303
185 Shear planes Source: Gdoutos p.60/61/62; Kanninen p.176 () 184 / 303
186 Plastic zone in the crack plane () 185 / 303
187 Irwin plastic zone correction σ xx σ xx σ yy σ yy σ y σ y a r y r a r y r p r θ = 0 σ xx = σ yy = K I 2πr yield σ xx = σ yy = σ y r y = 1 ( ) 2 KI 2π σ y equilibrium not satisfied correction required shaded area equal () 186 / 303
188 Irwin plastic zone correction σ xx σ xx σ yy σ yy σ y σ y a r y r a r y r p r σ y r p = ry 0 σ yy (r)dr = K I 2π ry 0 r 1 2 dr = 2K I 2π ry r p = 2K I ry r p = 1 ( KI 2π σ y π σ y ) 2 = 2 r y () 187 / 303
189 Dugdale-Barenblatt plastic zone correction y a σ y r p σ x σ load σ load σ y K I (σ) = σ π(a + r p ) K I (σ y ) = 2σ y a + rp π ( ) a arccos a + r p singular term = 0 K I (σ) = K I (σ y ) ( ) a πσ = cos r p = πk I 2 a + r p 2σ y 8σ 2 y () 188 / 303
190 Plastic constraint factor 1 2 {(σ 1 σ 2 ) 2 + (σ 2 σ 3 ) 2 + (σ 3 σ 1 ) 2 } = [ ] 1 n m + n2 + m 2 mn σ max = σ y PCF = σ max 1 = σ y 1 n m + n2 + m 2 mn () 189 / 303
191 PCF at the crack tip pl.sts n = [ 1 sin( θ 2 )] / [ 1 + sin( θ 2 )] ; m = 0 pl.stn n = [ 1 sin( θ 2 )] / [ 1 + sin( θ 2 )] ; m = 2ν/ [ 1 + sin( θ 2 )] () 190 / 303
192 PCF at the crack tip in the crack plane pl.sts n = 1 ; m = 0 PCF = 1 pl.stn n = 1 ; m = 2ν PCF = 1 1 4ν + 4ν 2 () 191 / 303
193 Plastic zones in the crack plane r y r p criterion state r y or r p (K I /σ y ) 2 ( ) 2 1 KI Von Mises plane stress π σ y ( ) 2 1 KI Von Mises plane strain π σ y ( ) 2 1 KI Tresca plane stress π σ y ( ) 2 1 KI Tresca plane strain σ 1 > σ 2 > σ π Tresca plane strain σ 1 > σ 3 > σ ( ) 2 1 KI Irwin plane stress π σ y ( ) 2 1 KI Irwin plane strain (pcf = 3) π 3σ y ( ) 2 π KI Dugdale plane stress σ y ( ) 2 π KI Dugdale plane strain (pcf = 3) σ y σ y () 192 / 303
194 Small Scale Yielding LEFM & SSY correction effective crack length a eff Irwin / Dugdale-Barenblatt correction SSY : outside plastic zone : K I (a eff )-stress a eff = a + (r y r p ) K I = β I (a eff )σ πa eff () 193 / 303
195 back to index NONLINEAR FRACTURE MECHANICS
196 Nonlinear Fracture Mechanics () 195 / 303
197 Crack-tip opening displacement crack tip displacement u y = σ πa r [ sin( 1 2µ 2π 2 θ){ κ cos 2 ( 1 2 θ)}] displacement in crack plane θ = π; r = a x u y = (1 + ν)(κ + 1) E Crack Opening Displacement (COD) δ(x) = 2u y (x) = Crack Tip Opening Displacement (CTOD) (1 + ν)(κ + 1) E δ t = δ(x = a) = 0 σ 2a(a x) 2 σ 2a(a x) () 196 / 303
198 CTOD () 197 / 303
199 CTOD by Irwin σ xx σ xx σ yy σ yy σ y σ y a r y r a r y r p r effective crack length a eff = a + r y = a + 1 2π ( ) 2 KI σ y () 198 / 303
200 CTOD by Irwin (1 + ν)(κ + 1) δ(x) = σ 2a eff (a eff x) E (1 + ν)(κ + 1) = σ 2(a + r y )(a + r y x) E (1 + ν)(κ + 1) δ t = δ(x = a) = σ 2(a + r y )r y E (1 + ν)(κ + 1) = σ 2ar y + 2ry E 2 (1 + ν)(κ + 1) σ 2ar y E plane stress : δ t = 4 = 4 G π Eσ y π σ y [ ] 1 4(1 ν 2 ) plane strain : δ t = 3 π K 2 I K 2 I Eσ y () 199 / 303
201 CTOD by Dugdale y σ y σ x a r p σ effective crack length ( ) 2 KI a eff = a + r p = a + π 8 σ y () 200 / 303
202 CTOD by Dugdale displacement from requirement singular term = 0 : ū y (x) [ ū y (x) = (a + r { p)σ y x sin 2 } { } ] 2 (^γ γ) sin(^γ) + sin(γ) ln πe a + r p sin 2 + cos(^γ) ln (^γ + γ) sin(^γ) sin(γ) ( ) x γ = arccos ; ^γ = π σ a + r p 2 σ y Crack Tip Opening Displacement δ t = lim 2ū x a y(x) = 8σ { ( )} va π πe ln σ sec 2 σ y series expansion & σ σ y plane stress : δ t = K I 2 = G Eσ y σ y [ ] 1 plane strain : δ t = 2 (1 ν 2 ) K I 2 Eσ y () 201 / 303
203 CTOD crack growth criterion δ t (G, K I ) at LEFM δ t = measure for deformation at crack tip (LEFM) δ t = measure for (large) plastic deformation at crack tip (NLFM) criterion δ t = δ tc ( ε, T) δ t calculate or measure δ tc experimental determination (ex. BS 5762) () 202 / 303
204 J-integral n t x 2 e 2 Γ Ω V S positive e 1 x 1 J k = Γ J = J 1 = ( u i Wn k t i x k Γ ( Wn 1 t i u i x 1 ) dγ ; W = specific energy = ) dγ Epq 0 σ ij dε ij [ ] N m () 203 / 303
205 Integral along closed curve J k = Γ (Wδ jk σ ij u i,k ) n j dγ inside Γ no singularities Stokes (Gauss in 3D) ( ) dw ε mn δ jk σ ij,j u i,k σ ij u i,kj dω dε mn x j Ω homogeneous hyper-elastic σ mn = W ε mn linear strain ε mn = 1 2 (u m,n + u n,m ) equilibrium equations σ ij,j = 0 Ω { 1 2 σ mn(u m,nk + u n,mk ) σ ij u i,kj } dω = ) (σ mn u m,nk σ ij u i,kj dω = 0 Ω () 204 / 303
206 Path independence x 2 Ω n e 2 e 1 Γ+ Γ n Γ B Γ A x 1 f 1 dγ + f 1 dγ + f 1 dγ + f 1 dγ = 0 Γ A Γ B Γ Γ + no loading of crack faces : n 1 = 0 ; t i = 0 on Γ + and Γ f 1 dγ + f 1 dγ = 0 Γ A Γ B J 1A + J 1B = 0 J 1A = J 1B f 1 dγ = J 1A ; f 1 dγ = J 1B Γ A Γ B () 205 / 303
207 Relation J K lin. elast. material : W = 1 2 σ mnε mn = 1 4 σ mn(u m,n + u n,m ) ( ) 1 J k = 4 σ mn(u m.n + u n,m )δ jk σ ij u i,k n j dγ Mode I + II + III Γ = Γ ( 1 2 σ mnu m,n δ jk σ ij u i,k ) n j dγ σ ij = 1 2πr [K I f Iij + K II f IIij + K III f IIIij ] u i = u Ii + u IIi + u IIIi substitution and integration over Γ = circle (κ + 1)(1 + ν) J 1 = 4E J 2 = ( K 2 I + KII 2 (κ + 1)(1 + ν) K I K II 2E ) (1 + ν) + KIII 2 E () 206 / 303
208 Relation J G Mode I J 1 = J = (κ + 1)(1 + ν) 4E K 2 I = G plane stress κ + 1 = 3 ν 1 + ν ν 1 + ν = ν J = 1 E K 2 I plane strain κ + 1 = 4 4ν J = (1 ν2 ) E K 2 I () 207 / 303
209 Relation J δ t plane stress Irwin J = π 4 σ yδ t Dugbale J = σ y δ t plane strain Irwin J = π 4 3σy δ t Dugbale J = 2σ y δ t () 208 / 303
210 Plastic constraint factor J = m σ y δ t m = a W σ u σ y () 209 / 303
211 HRR crack tip stresses and strains () 210 / 303
212 Ramberg-Osgood material law ε = σ ( ) n σ + α ε y0 σ y0 σ y0 n strain hardening parameter (n 1) n = 1 linear elastic n ideal plastic 5 Ramberg Osgood for α = 0.01 n = 1 4 n = 3 3 σ/σ y0 2 n = 5 n = 7 1 n = ε/ε y () 211 / 303
213 HRR-solution σ ij = σ y0 β r 1 n+1 σ ij (θ) ; u i = αε y0 β n 1 r n+1 ũ i (θ) [ ] J 1 n+1 with : β = (I n from num. anal.) ασ y0 ε y0 I n I n plane strain plane stress n () 212 / 303
214 J-integral crack growth criterion LEFM : J k G (K I, K II, K III ) NLFM : Ramberg-Osgood : J determines crack tip stress criterion J = J c calculate J J Ic from experiments e.g. ASTM E813 () 213 / 303
215 back to index NUMERICAL FRACTURE MECHANICS
216 Numerical fracture mechanics Methods EEM ; BEM Calculations G K δt J Simulation crack growth () 215 / 303
217 Quadratic elements ξ 2 ξ ξ 2 3 ξ isoparametric coordinates : 1 ξ i 1 shape functions for each node n ψ n (ξ 1, ξ 2 ) = quadratic in ξ 1 and ξ 2 () 216 / 303
218 Crack tip mesh bad approximation stress field results are mesh-dependent 1/ r () 217 / 303
219 Special elements enriched elements crack tip field added to element displacement field structure K and f changes transition elements for compatibility hybrid elements modified variational principle () 218 / 303
220 Quarter point elements p 3p p p Distorted Quadratic Quadrilateral (1/ r) Distorted Quadratic Triangle (1/ r) Collapsed Quadratic Quadrilateral (1/ r) Collapsed Distorted Linear Quadrilateral (1/r) good approximation stress field (1/ r or 1/r) bad approximation non-singular stress field standard FEM-programs can be used () 219 / 303
221 Crack tip rozet Quarter Point Elements : 8x Transition Elements : number is problem dependent Buffer Elements () 220 / 303
222 One-dimensional case ξ = 1 ξ = 0 ξ = 1 1 x 3 2 position displacement and strain x = 1 2 ξ(ξ 1)x ξ(ξ + 1)x 2 (ξ 2 1)x 3 = 1 2 ξ(ξ + 1)L (ξ2 1)x 3 u = 1 2 ξ(ξ 1)u ξ(ξ + 1)u 2 (ξ 2 1)u 3 du dξ = (ξ 1 2 )u 1 + (ξ )u 2 2ξu 3 du dx = du dξ dξ dx = du dξ /dx dξ () 221 / 303
223 Mid point element mid-point element : x 3 = 1 2 L ξ = 1 ξ = 0 ξ = 1 1 x 3 2 x = 1 2 ξ(ξ + 1)L (ξ2 1) 1 2 L = 1 2 (ξ + 1)L dx dξ = 1 2 L du du dx = dξ 1 2 L du dx x=0 ξ= 1 = ( 2 L ) {( 3 2 ) u1 + ( ) } 1 2 u2 + 2u 3 () 222 / 303
224 Quarter point element quarter-point element : x 3 = 1 4 L ξ = 1 ξ = 0 ξ = 1 1 x 3 2 x = 1 2 ξ(ξ + 1)L (ξ2 1) 1 4 L = 1 4 (ξ + 1)2 L ξ + 1 = dx dξ = 1 2 (ξ + 1)L = xl du du dx = dξ du xl dx singularity 1 x x=0 ξ= 1 = 4x L () 223 / 303
225 Virtual crack extension method (VCEM) u u a a + a I II fixed grips du e da = 0 G = 1 du i B da 1 U i (a + a) U i (a) B a () 224 / 303
226 VCEM : stiffness matrix variation B G = du i da = C 1 2ũT a ũ with C = C(a + a) C(a) G from analysis crack tip mesh only nodal point displacement : ± element size not possible with crack tip in interface unloaded crack plane no thermal stresses () 225 / 303
227 Stress intensity factor calculate G I and G II with VCEM calculate K I and K II from KI 2 = E G I ; KII 2 = E G II plane stress E = E plane strain E = E/(1 ν 2 ) difficult for crack propagation study () 226 / 303
228 SIF : stress field ( ) K I = lim 2πr σ22 θ=0 r 0 extrapolation to crack tip ( ) ; K II = lim 2πr σ12 θ=0 r 0 p p 4 3 p p 2 1 θ r K K p1 Kp2 K p3 K p4 r 1 r 2 r 3 r 4 r questions : which elements? how much elements? which integration points? () 227 / 303
229 SIF : displacement field crack tip displacement y-component u y = 4(1 ν2 ) r E 2π K I g ij (θ) [ ] E 2π K I = lim r 0 4(1 ν 2 u y (θ = 0) ) r more accurate than SIF from stress field () 228 / 303
230 J-integral J = Γ ( ) ε u i Wn 1 t i dγ with W = σ ij dε ij x 1 0 () 229 / 303
231 J-integral : Direct calculation J = 2 W = y [ ( u x W σ xx x + σ yx )] u y x dy 2 E 2(1 ν 2 ) (ε2 xx + 4νε xxε yy + 2(1 ν)ε 2 xy + ε2 yy ) x [( σ xy u x x + σ yy )] u y dx x path through integration points no need for quarter point elements () 230 / 303
232 J-integral : Domain integration x 2 Ω e 2 Γ + n e 1 Γ Γ B n Γ A x 1 Ω q = 0 q = 1 q J = x j Ω ( ) u i σ ij Wδ 1j dω x 1 interpolation q e = Ñ T e (ξ )q () 231 / 303
233 De Lorenzi J-integral : VCE technique ( ) u i σ i1 Wδ 1j dω x 1 q J = x j Ω u i qp i dγ x 1 Γ s rigid region Ω elongation a of crack translation δx1 of internal nodes fixed position of boundary q = δx 1 = shift function (0 < q < 1) a q(ρq i ρü i ) u i dω + x 1 Ω qσ ij ε o ij x 1 dω () 232 / 303
234 Crack growth simulation Node release Moving Crack Tip Mesh Element splitting Smeared crack approach () 233 / 303
235 Node release node collocation technique () 234 / 303
236 Moving Crack Tip Mesh () 235 / 303
237 Element splitting () 236 / 303
238 Smeared crack approach e 2 e 1 e 2 e 1 n 2 σ 2 σ 1 n1 n 2 n 1 () 237 / 303
239 back to index FATIGUE
240 Teletekst Wo 3 oktober 2007 Van de 274 stalen bruggen in ons land kampen er 25 met metaalmoeheid. Dat is de uitkomst van een groot onderzoek van het ministerie van Verkeer. Bij twaalf bruggen zijn de problemen zo groot dat noodmaatregelen nodig zijn. Ook de meer dan 2000 betonnen bruggen en viaducten zijn onderzocht. De helft daarvan moet nog nader worden bekeken. Ze gaan mogelijk minder lang mee dan was berekend, maar de veiligheid komt volgens het ministerie niet in gevaar. Verkeersbeperkende maatregelen zijn dan ook niet nodig. Die werden in april wel getroffen voor het vrachtverkeer over de Hollandse Brug bij Almere. () 239 / 303
241 Fatigue ± 1850 (before Griffith!) : cracks at diameter-jumps in axles carriages / trains failure due to cyclic loading with small amplitude Wöhler : systematic experimental examination cyclic loading : variable mechanical loads vibrations pressurization / depressurization thermal loads (heating / cooling) random external loads () 240 / 303
242 Crack surface clam shell markings (beach marks) - irregular crack growth - crack growth under changing conditions striations - sliding of slip planes - plastic blunting / sharpening of crack tip - regular crack growth () 241 / 303
243 Experiments full-scale testing a.o. train axles airplanes laboratory testing harmonic loading constant force/moment strain/deflection SIF () 242 / 303
244 Train axle D = 0.75 [m] 1 rev = πd = π [m] 1 km = 1000 m = = [c(ycles)] 1 day Maastricht - Groningen = [km] = 1000 [km] 1 day Maastricht - Groningen = [c] 1 year = [c] = [c] [c] frequency : 100 [km/h] = [c/h] = = 12.5 [c/sec] = 12.5 [Hz] () 243 / 303
245 Fatigue load (stress controlled) σ σ max σ m σ min 0 0 i i + 1 t N σ = σ max σ min ; σ a = 1 2 σ σ m = 1 2 (σ max + σ min ) ; R σ = σ min /σ max ; - frequency bending Hz tensile electric Hz mechanic < 50 Hz hydraulic 1-50 Hz - no influence frequency for ± 5000 [c/min] (metals) σ a = 1 R σ m 1 + R () 244 / 303
246 Fatigue limit (σ th ) σ σ th N σ < σ th : no increase of damage materials with fatigue limit mild steel low strength steels Ti / Al / Mg -alloys materials without fatigue limit some austenitic steels high strength steels most non-ferro alloys Al / Mg-alloys () 245 / 303
247 (S-N)-curve B.S part I 1984 : S = σ max S σ th 0 0 log(n f ) reference : R = 1 and σ m = 0 σ max = 1 2 σ fatigue life : N f at σ max (= S) fatigue limit : σ th (= σ fat ) N f = (±10 9 ) fatigue strength : σ e = σ max when N f steels : σ th 1 2 σ b () 246 / 303
248 (S a -N)-curve B.S part I 1984 : S a = 1 2 σ = σ a S a σ th 0 0 log(n f ) reference : R = 1 and σ m = 0 σ a = σ max (S a N) curve = (S N) curve () 247 / 303
249 Examples steelt1 400 σ max [MPa] steel Mgalloy Al2024T N f () 248 / 303
250 Influence of average stress σ a σ m σ th 0 0 log(n f ) () 249 / 303
251 Correction for average stress Gerber (1874) Goodman (1899) Soderberg (1939) σ a σ a = 1 σ a ( ) 2 σm σ u = 1 σ m σ a σ u σ a = 1 σ m σ a σ y0 σ u : tensile strength σ y0 : initial yield stress () 250 / 303
252 (P-S-N)-curve σ max [MPa] % prob.failure % prob.failure % prob.failure N f () 251 / 303
253 High/low cycle fatigue S a σ m = LCF 4 5 HCF log(n f ) high cycle fatigue N f > ±50000 low stresses LEFM + SSY stress-life curve Basquin relation K max = βσ max πa ; Kmin = βσ min πa ; K = β σ πa () 252 / 303
254 High/low cycle fatigue S a σ m = LCF 4 5 HCF log(n f ) low cycle fatigue N f < ±50000 high stresses EPFM strain-life curve Manson-Coffin relation () 253 / 303
255 Basquin relation 1 2 σ = σ a = σ f (2N f ) b σn b f = constant σ f = fatigue strength coefficient σ b (monotonic tension) b = fatigue strength exponent (Basquin exponent) log ( ) σ 2 log(2n f ) () 254 / 303
256 Manson-Coffin relation 1 2 εp = ε f (2N f ) c ε p N c f = constant ε f = fatigue ductility coefficient ε b (monotonic tension) c = fatigue ductility exponent ( log ) ε p 2 ( 0.5 < c < 0.7) log(2n f ) () 255 / 303
257 Total strain-life curve log( ε 2 ) log(n f ) ε 2 = εe 2 + εp 2 = 1 E σ f (2N f ) b + ε f (2N f ) c () 256 / 303
258 Influence factors load spectrum stress concentrations stress gradients material properties surface quality environment () 257 / 303
259 Load spectrum sign / magnitude / rate / history multi-axial lower f.limit than uni-axial () 258 / 303
260 Stress concentrations ρ σ th (notched) = 1 K f σ th (unnotched) ; 1 < K f < K t K f : fatigue strength reduction factor (effective stress concentration factor) K f = 1 + q(ρ)(k t 1) Peterson : q = a ρ 1 Neuber : q = 1 + b ρ with with q(ρ) = notch sensitivity factor a = material parameter b = grain size parameter () 259 / 303
261 Stress gradients full-scale experiments necessary () 260 / 303
262 Material properties grain size/structure : small grains higher f.limit at low temp. large grains higher f.limit at high temp. (less grain boundaries less creep) texture inhomogeneities and flaws residual stresses fibers and particles () 261 / 303
263 Surface quality 10µm surface extrusions & intrusions notch + inclusion of O 2 etc. bulk defect internal surfaces internal grain boundaries / triple points (high T) voids manufacturing minimize residual tensile stresses surface finish minimize defects (roughness) surface treatment (mech/temp) residual pressure stresses coating environmental protection high σ y0 more resistance to slip band formation () 262 / 303
264 Environment temperature creep - fatigue low temperature : ships / liquefied gas storage elevated temperature (T > 0.5T m ) : turbine blades creep mechanism : diffusion / dislocation movement / migration of vacancies / grain boundary sliding grain boundary voids / wedge cracks chemical influence corrosion-fatigue () 263 / 303
265 Crack growth a I II III a c a c σ a f a 1 a i N i N f N I : N < N i - N i = fatigue crack initiation life - a i = initial fatigue crack II : N i < N < N f - slow stable crack propagation - a 1 = non-destr. inspection detection limit III : N f < N - global instability - towards catastrophic failure - a = a c : failure N r N f = 1 N N f N r = rest life () 264 / 303
266 Crack growth models ( ) 2 da K striation spacing 6 dn E (Bates, Clark (1969)) da dn f (σ, a) σm a n ; m 2 7 ; n 1 2 da dn δ t ( K)2 Eσ y (BRO263) da da K dn dn K E Source: HER1976a p515 da Paris law : dn = C( K)m () 265 / 303
INDEX. Introduction (ch 1) Theoretical strength (ch 2) Ductile/brittle (ch 2) Energy balance (ch 4) Stress concentrations (ch 6)
INDEX Introduction (ch 1) Theoretical strength (ch 2) Ductile/brittle (ch 2) Energy balance (ch 4) Stress concentrations (ch 6) () April 30, 2018 1 / 52 back to index INTRODUCTION Introduction () 3 / 52
CONTINUUM MECHANICS. e 3. x e 2 O e 1. - volume / area V 0, V / A 0,A - base vectors { e 1, e 2, e 3 } - position vector x 0, x
INTRODUCTION CONTINUUM MECHANICS V 0 A 0 u V A x 0 e 3 x e 2 O e 1 - volume / area V 0, V / A 0,A - base vectors { e 1, e 2, e 3 } - position vector x 0, x - displacement vector u - strains ε kl = 1 2
MECHANICAL PROPERTIES OF MATERIALS
MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain
Mechanical Behaviour of Materials Chapter 5 Plasticity Theory
Mechanical Behaviour of Materials Chapter 5 Plasticity Theory Dr.-Ing. 郭瑞昭 Yield criteria Question: For what combinations of loads will the cylinder begin to yield plastically? The criteria for deciding
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Introduction to Theory of. Elasticity. Kengo Nakajima Summer
Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
ADVANCED STRUCTURAL MECHANICS
VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
Chapter 10: Failure. Titanic on April 15, 1912 ISSUES TO ADDRESS. Failure Modes:
Chapter10:Failure ISSUESTOADDRESS FailureModes: 1 LECTURER: PROF. SEUNGTAE CHOI TitaniconApril15, 1912 RMS Titanic was a British passenger liner that sank in the North Atlantic Ocean on 15 April 1912 after
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
(Mechanical Properties)
109101 Engineering Materials (Mechanical Properties-I) 1 (Mechanical Properties) Sheet Metal Drawing / (- Deformation) () 3 Force -Elastic deformation -Plastic deformation -Fracture Fracture 4 Mode of
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Chapter 2. Stress, Principal Stresses, Strain Energy
Chapter Stress, Principal Stresses, Strain nergy Traction vector, stress tensor z z σz τ zy ΔA ΔF A ΔA ΔF x ΔF z ΔF y y τ zx τ xz τxy σx τ yx τ yz σy y A x x F i j k is the traction force acting on the
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Chapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
Mechanics of Materials Lab
Mechanics of Materials Lab Lecture 9 Strain and lasticity Textbook: Mechanical Behavior of Materials Sec. 6.6, 5.3, 5.4 Jiangyu Li Jiangyu Li, Prof. M.. Tuttle Strain: Fundamental Definitions "Strain"
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
University of Waterloo. ME Mechanical Design 1. Partial notes Part 1
University of Waterloo Department of Mechanical Engineering ME 3 - Mechanical Design 1 Partial notes Part 1 G. Glinka Fall 005 1 Forces and stresses Stresses and Stress Tensor Two basic types of forces
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
CH-4 Plane problems in linear isotropic elasticity
CH-4 Plane problems in linear isotropic elasticity HUMBERT Laurent laurent.humbert@epfl.ch laurent.humbert@ecp.fr Thursday, march 18th 010 Thursday, march 5th 010 1 4.1 ntroduction Framework : linear isotropic
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS
NATIONAL TECHNICAL UNIVERSITY OF ATHENS SCHOOL OF NAVAL ARCHITECTURE AND ARINE ENGINEERING SHIPBUILDING TECHNOLOGY LABORATORY EXPERIENTAL AND NUERICAL STUDY OF A STEEL-TO-COPOSITE ADHESIVE JOINT UNDER
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
θ p = deg ε n = με ε t = με γ nt = μrad
IDE 110 S08 Test 7 Name: 1. The strain components ε x = 946 με, ε y = -294 με and γ xy = -362 με are given for a point in a body subjected to plane strain. Determine the strain components ε n, ε t, and
Graded Refractive-Index
Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for
Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model
1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,
Grey Cast Irons. Technical Data
Grey Cast Irons Standard Material designation Grey Cast Irons BS EN 1561 EN-GJL-200 EN-GJL-250 EN-GJL-300 EN-GJL-350-1997 (EN-JL1030) (EN-JL1040) (EN-JL1050) (EN-JL1060) Characteristic SI unit Tensile
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl
Topic 4 Linear Wire and Small Circular Loop Antennas Tamer Abuelfadl Electronics and Electrical Communications Department Faculty of Engineering Cairo University Tamer Abuelfadl (EEC, Cairo University)
3.5 - Boundary Conditions for Potential Flow
13.021 Marine Hydrodynamics, Fall 2004 Lecture 10 Copyright c 2004 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hydrodynamics Lecture 10 3.5 - Boundary Conditions for Potential
ω α β χ φ() γ Γ θ θ Ξ Μ ν ν ρ σ σ σ σ σ σ τ ω ω ω µ υ ρ α Coefficient of friction Coefficient of friction 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 0.90 0.80 0.70 0.60 0.50 0.40 0.30
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Constitutive Relations in Chiral Media
Constitutive Relations in Chiral Media Covariance and Chirality Coefficients in Biisotropic Materials Roger Scott Montana State University, Department of Physics March 2 nd, 2010 Optical Activity Polarization
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
4.4 Superposition of Linear Plane Progressive Waves
.0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in
ME 10W E. Evans Stresses in a Plane Some parts eperience normal stresses in two directions. hese tpes of problems are called Plane Stress or Biaial Stress Cross Section thru Bod z angent and normal to
katoh@kuraka.co.jp okaken@kuraka.co.jp mineot@fukuoka-u.ac.jp 4 35 3 Normalized stress σ/g 25 2 15 1 5 Breaking test Theory 1 2 Shear tests Failure tests Compressive tests 1 2 3 4 5 6 Fig.1. Relation between
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw
Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships
Surface Mount Multilayer Chip Capacitors for Commodity Solutions
Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF
Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers
1/5 Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Deendent Polymers by Yukio SANOMURA Hydrostatic ressure deendence in mechanical behavior of olymers is studied for the constitutive
Wavelet based matrix compression for boundary integral equations on complex geometries
1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications
Finite difference method for 2-D heat equation
Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Thin Film Chip Resistors
FEATURES PRECISE TOLERANCE AND TEMPERATURE COEFFICIENT EIA STANDARD CASE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERABLE (Pb FREE TERMINATION FINISH) Type Size EIA PowerRating
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Το σχέδιο της μέσης τομής πλοίου
ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Το σχέδιο της μέσης τομής πλοίου Α. Θεοδουλίδης Σχέδιο Μέσης Τομής Αποτελεί ένα από τα βασικώτερα κατασκευαστικά σχέδια του πλοίου.
ΚΕΦΑΛΑΙΟ 1 Ο 1.1. ΕΛΑΣΤΙΚΟ ΣΤΕΡΕΟ
ΚΕΦΑΛΑΙΟ Ο.. ΕΛΑΣΤΙΚΟ ΣΤΕΡΕΟ Ο Robert Hooke έγρψε το 678, "he power of any spring is in the same proportion with the tension thereof". Αυτή η δήλωση είνι η βάση του πρώτου ρεολογικού νόµου γι ιδνικά ελστικά
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Electronic Supplementary Information (ESI)
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) Cyclopentadienyl iron dicarbonyl (CpFe(CO) 2 ) derivatives
Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B
Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert
Crack Propagation Terminating at a Bimaterial Interface Studied Using Extended Finite Element Method
014 3 3 XFEM 1116 6 J kε K I K II J kε θ p J kε XFEM θ p θ p 4 θ p v 1/v lg E 1/E J O30 A doi 10.3981/j.issn.1000-7857.014.3.001 Crack Propagation Terminating at a Bimaterial Interface Studied Using Extended
Eigenfunction expansion for penny-shaped and circumferential cracks
International Journal of Fracture 89:, 998. 998 Kluwer Academic Publishers. Printed in the Netherlands. Eigenfunction expansion for penny-shaped and circumferential cracks A.Y.T. LEUNG, and R.K.L. SU Professor,
CONSULTING Engineering Calculation Sheet
E N G I N E E R S Consulting Engineers jxxx 1 Structure Design - EQ Load Definition and EQ Effects v20 EQ Response Spectra in Direction X, Y, Z X-Dir Y-Dir Z-Dir Fundamental period of building, T 1 5.00
Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da
BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u
Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence
Major Concepts Multiphase Equilibrium Stability Applications to Phase Equilibrium Phase Rule Clausius-Clapeyron Equation Special case of Gibbs-Duhem wo-phase Coexistence Criticality Metastability Spinodal
Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/
Page: 10 CONTENTS Contents... 10 General Data... 10 Structural Data des... 10 erials... 10 Sections... 10 ents... 11 Supports... 11 Loads General Data... 12 LC 1 - Vollast 120 km/h 0,694 kn/qm... 12 LC,
Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/
Page: 1 CONTENTS Contents... 1 General Data... 1 Structural Data des... 1 erials... 1 Sections... 1 ents... 2 Supports... 2 Loads General Data... 3 LC 1 - Vollast 90 km/h 0,39 kn/qm... 3 LC, LG Results
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16
Μηχανουργική Τεχνολογία & Εργαστήριο Ι
Μηχανουργική Τεχνολογία & Εργαστήριο Ι Mechanics in Deforming Processes - Διεργασίες Διαμόρφωσης Καθηγητής Χρυσολούρης Γεώργιος Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Mechanics in deforming processes
Integrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.
INTERVAL ARITHMETIC APPLIED TO STRUCTURAL DESIGN OF UNCERTAIN MECHANICAL SYSTEMS
INTERVAL ARITHMETIC APPLIED TO STRUCTURAL DESIGN OF UNCERTAIN MECHANICAL SYSTEMS O. Dessombz, F.Thouverez J-P. Laîné, L.Jézéquel Laboratoire de Tribologie et Dynamique des Systèmes UMR CNRS 5513 École
Answer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
Multilayer Ceramic Chip Capacitors
FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* Temperature Coefficient
Figure 1 - Plan of the Location of the Piles and in Situ Tests
Figure 1 - Plan of the Location of the Piles and in Situ Tests 1 2 3 A B C D DMT4 DMT5 PMT1 CPT4 A 2.2 1.75 S5+ SPT CPT7 CROSS SECTION A-A C2 E7 E5 S4+ SPT E3 E1 E DMT7 T1 CPT9 DMT9 CPT5 C1 ground level
Eulerian Simulation of Large Deformations
Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications
AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM
AT-3263 Surface Mount Package SOT-363 (SC-7) I I Y Pin Connections B 1 C 1 E 1 E 2 C 2 B 2 Page 1 21.4., 7:6 PM Absolute Maximum Ratings [1] Absolute Thermal Resistance [2] : Symbol Parameter Units Maximum
Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago
Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation
ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied
CorV CVAC. CorV TU317. 1
30 8 JOURNAL OF VIBRATION AND SHOCK Vol. 30 No. 8 2011 1 2 1 2 2 1. 100044 2. 361005 TU317. 1 A Structural damage detection method based on correlation function analysis of vibration measurement data LEI
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
SMD Power Inductor. - SPRH127 Series. Marking. 1 Marking Outline: 1 Appearance and dimensions (mm)
Marking Outline: Low DCR, high rated current. Magnetic shielded structure Lead free product, RoHS compliant. RoHS Carrier tape packing, suitable for SMT process. SMT Widely used in buck converter, laptop,
NTC Thermistor:TTC3 Series
Features. RoHS compliant 2. Halogen-Free(HF) series are available 3. Body size: Ф3mm 4. Radial lead resin coated 5. Operating temperature range: -40 ~+25 6. Wide resistance range 7. Cost effective 8. Agency
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων
ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων Ένα δυσδιάστατο παράδειγμα με το λογισμικό MATLAB Θεωρούμε το εξής Π.Σ.Τ.: Να βρεθεί η u(x, y) έτσι ώστε όπου f (x, y) = 1. u u f ( x, y), x ( 1,1) ( 1,1) x
Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9
NTC Thermistor:SCK Series
Features. RoHS & HF compliant 2. Body size: Ф5mm ~ Ф 30mm 3. Radial lead resin coated 4. High power rating 5. Wide resistance range 6. Cost effective 7. Operating temperature range: Φ5mm:-40~+50 Φ8~Φ0mm:-40~+70
Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa<on
Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa
ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΥ / ΥΝΑΜΙΚΗΣ & ΘΕΩΡΙΑΣ ΜΗΧΑΝΩΝ ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
A Summary Of Linear Continuum Mechanics 1. a b = a i b i = a b cos θ. det A = ɛ ijk A 1i A 2j A 3k. e 1 e 2 e 3 a b = ɛ ijk a j b k e i =
A Summary Of Linear Continuum Mechanics 1 Vector Analysis Inner / Scalar / Dot product Norm of a vector Kronecker delta a b = a i b i = a b cos θ a = [a a] 1/2 = a 1 a 1 + a 2 a 2 + a 3 a 3 δ ij = I =