Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question."

Transcript

1 Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) ) sin 11π 1 ) ( - 1) - ( - 1) ( - 1) - ( - 1) ) sin 1 ) ( - 1) - ( + 1) ( + 1) - ( - 1) ) sin ) - ( + 1) ( + 1) - ( - 1) ( - 1) ) tan ) ) sin cos - cos sin ) ) sin cos 1 + cos sin 1 ) ) cos π 1 cos π + sin π 1 sin π ) ) cos π 1 cos π - sin π 1 sin π )

2 ) tan 0 - tan (-0 ) 1 + tan 0 tan (-0 ) ) Find the exact value under the given conditions. 11) sin α = 0, 0 < α < π 1 ; cos β = 1, 0 < β < π Find cos (α + β). 11) 1 1 1) tan α = 1, π < α < π ; cos β = -, π 1 < β < π Find sin (α + β). 0 1) 1) sin α =, π < α < π; cos β =, 0 < β < π Find cos (α - β). 1) ) sin α = -, π < α < π ; tan β = - 1 1, π < β < π Find cos (α + β). 1) ) cos α = 1, 0 < α < π ; sin β = - 1, - π < β < 0 Find tan(α + β). 1) ) cos α = - 1, π < α < π; sin β = 1 1, π < α < π Find tan(α - β). 1) Solve the problem. 1) If sin θ = 1, θ in quadrant II, find the exact value of cos θ + π 1)

3 1) If cos θ = 1, θ in quadrant IV, find the exact value of tan θ + π 1) Use the figures to evaluate the function if f(x) = sin x, g(x) = cos x, and h(x) = tan x. x + y = x + y = 1 (x, ) 1, y 1) f(α + β) 1) ) g(α + β) 0) ) h(α - β) 1) ) f(α - β) ) SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Establish the identity. ) sin x + π = cos x ) ) cos x + π = cos x - 1 sin x ) ) tan x - π = tan x tan x )

4 ) tan π + x = -cot x ) ) cos π - θ = -sin θ ) ) csc π + u = sec u ) ) cos(α + β) = cot β - tan α ) cos α sin β 0) cos(x - y) - cos(x + y) = sin x sin y 0) 1) cos(x - y) 1 + tan x tan y = cos(x + y) 1 - tan x tan y 1) ) cot(π - θ) = - cot θ ) Solve the problem. ) If tan α = x + 1 and tan β = x - 1, show that cot(α + β) = - x x ) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. ) sin cos sin-1 ) 1 0 ) cos tan -1 - sin-1 ) 1 ) tan tan -1 + sin-1 1 ) ) cos sin tan-1 1 )

5 ) cos tan cos-1 ) 1 1 Use the information given about the angle θ, 0 θ π, to find the exact value of the indicated trigonometric function. ) sin θ = 1 1, 0 < θ < π Find cos(θ). ) ) tan θ =, π < θ < π Find sin(θ). 0) - - 1) csc θ = -, tan θ > 0 Find cos(θ). 1) ) sin θ =, tan θ < 0 Find sin(θ). ) - - ) tan θ =, π < θ < π Find cos(θ). ) - - ) sin θ = -, π < θ < π Find tan(θ). ) - - ) cos θ = - 1, π < θ < π Find tan(θ). ) ) cos θ = -, π < θ < π Find sin θ. ) - -

6 Use the figures to evaluate the function given that f(x) = sin x, g(x) = cos x, and h(x) = tan x. x + y = x + y = 1 (a, ) - 1, b ) f(α) ) ) f(β) ) - - Find the exact value of the expression. ) sin cos -1 - ) ) sin sin -1 0) ) cos sin ) ) tan cos -1 - ) ) sec tan -1 )

7 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Solve the problem. ) The path of a projectile fired at an inclination θ (in degrees) to the horizontal with an initial speed v0 is a parabola. The range R of the projectile, that is, the horizontal distance that the projectile travels, is found by using the formula ) R = v 0 g sin(θ) where g is the acceleration due to gravity. The maximum height H of the projectile is v 0 H = (1 - cos(θ)) g Find the range R and the maximum height H in terms of g if the projectile is fired with an initial speed of 00 meters per second at an angle of 1 and then at an angle of.. Do not use a calculator, but simplify the answers. Establish the identity. ) tan u (1 + cos(u)) = 1 - cos(u) ) ) cot(θ)= csc θ - cot θ ) ) cos(x) = cos x - sin x cos x ) ) cot u = csc u + cot u csc u - cot u ) ) cos(u) = cos (u) - 1 ) 0) sin (x) = 1 (sin(x))(1 - cos(x)) 0) 1) sin(θ) = sin θ - cos θ sin θ - cos θ 1) ) cos(θ) = cos θ - sin θ cos θ + sin θ ) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Use the information given about the angle θ, 0 θ π, to find the exact value of the indicated trigonometric function. ) sin θ = 1, 0 < θ < π Find sin θ. )

8 ) sin θ = 1, tan θ > 0 Find cos θ. ) ) tan θ = 1, π < θ < π Find sin θ. ) ) tan θ = 1, π < θ < π Find cos θ. ) ) cot θ = -, sec θ > 0 Find sin θ. ) ) tan θ =, cos θ < 0 Find sin θ. ) ) cos θ = -, π < θ < π Find cos θ. ) ) cos θ = -, sin θ > 0 Find cos θ. 0) ) cos(θ) = 1, 0 < θ < π Find cos θ. 1) - - ) cos(θ) = 1, 0 < θ < π Find sin θ. ) - -

9 Use the Half-angle Formulas to find the exact value of the trigonometric function. ) sin ) ) cos 1 ) ) sin ) ) cos ) ) cos - π ) ) sin π ) Find the exact value of the expression. ) sin 1 cos-1 ) ) cos 1 sin-1 0) 1 1

10 Use the figures to evaluate the function given that f(x) = sin x, g(x) = cos x, and h(x) = tan x. x + y = x + y = 1 (a, ) - 1, b 1) f α 1) ) f β ) - - ) h β ) - - Express the product as a sum containing only sines or cosines. ) sin(θ) cos(θ) ) 1 [sin(1θ) + sin(θ)] 1 [cos(1θ) - cos(θ)] 1 [sin(1θ) + cos(θ)] sin cos(θ ) ) cos(θ) cos(θ) ) cos (θ ) 1 [ cos θ + cos(θ)] 1 [cos(θ) - cos θ] 1 [cos(θ) - sin θ] ) sin(θ) cos(θ) ) 1 [cos(θ) - cos θ] sin cos(0θ ) 1 [cos(θ) + sin θ] 1 [sin(θ) - sin θ]

11 ) cos θ cos θ ) 1 [cos(θ) - sin(θ)] 1 [cos(θ) + cos(θ)] 1 cos (θ) 1 [cos(θ) - sin(θ)] ) sin θ cos θ ) 1 [cos(θ) - sin(θ)] 1 sin cos(θ) 1 [cos(θ) + sin(θ)] 1 [sin(θ) - sin(θ)] Complete the identity. ) sin(θ) sin(θ) cos(θ) cos(θ) =? cos (0θ) sin (0θ) cos (1θ) + cos (θ) cos (θ) - cos (1θ) ) Express the sum or difference as a product of sines and/or cosines. 0) sin(θ) + sin(θ) sin(1θ) cos(θ) sin(θ) sin(θ) sin(θ) sin(θ) cos(θ) 0) 1) cos(θ) - cos(θ) - cos(θ) sin(θ) cos(θ) - sin(θ) sin(θ) cos(θ) cos(θ) 1) ) sin(θ) - sin(θ) sin(θ) cos(θ) cos(θ) sin(θ) cos(θ) sin(θ) cos(θ) ) ) cos θ + cos θ ) cos(θ) sin(θ) sin θ sin(θ) sin θ cos(θ) cos θ ) sin 11θ + sin θ ) sin θ sin θ cos(θ) sin θ sin θ cos θ sin(θ) ) sin(θ) - sin(θ) sin(θ) cos θ sin(θ) cos θ sin θ cos(θ) sin θ cos(θ) ) 11

12 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Establish the identity. sin(θ) + sin(θ) ) cos(θ) + cos(θ) = tan(θ) ) ) sin(θ) + sin(θ) sin(θ) - sin(θ) = - tan(θ) tan(θ) ) ) cos(θ) - cos(θ) cos(θ)+ cos(θ) = - tan(θ) tan(θ) ) ) sin θ[sin θ + sin(θ)] = cos(θ)[cos(θ) - cos(θ)] ) 0) sin α - sin β sin α + sin β = tan α - β cot α + β 0) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Complete the identity. 1) 1 - cos(θ) + cos(θ) - cos(θ) =? sin θ sin(θ) sin(θ) cos θ cos(θ) sin(θ) cos θ cos(θ) cos(θ) sin θ cos(θ) sin(θ) 1) Solve the equation on the interval 0 θ < π. ) cos θ + = π, 11π π, π π, π π, π ) ) sin θ = 1 π, π, π, 11π π, π ) π, π, π, π π, π ) sin θ - = 0 π, π, π, π π, π, π, 11π ) π, π π, π 1

13 ) tan θ = ) π, π π π π, π ) sec θ = - ) π, π, π, 11π π, π π, π π, π, 11π ) cot θ = - ) π, π π, π, 1π π, π, 1π, π π, π ) cot θ - 1 = 0 π, π π, π π, 11π π, π ) ) csc θ - 1 = ) π π π π 1) cos(θ) = 1) π π, 11π π 1, 11π 1, 1π 1, π 1 π 111) cos θ - π = 111) π, π π, π, 11π π, π, π, and 1π π, π 1

14 11) cot θ - π = 1 11) π π, π, 11π 1π, and π, π π, π, π, and 1π Solve the equation. Give a general formula for all the solutions. 11) cos θ = 1 {θ θ = kπ} θ θ = π + kπ 11) {θ θ = π + kπ} θ θ = π + kπ 11) sin θ = 1 θ θ = π + kπ θ θ = π + kπ 11) {θ θ = π + kπ} {θ θ = kπ} 11) sin θ = 11) θ θ = π + kπ, θ = π + kπ θ θ = π + kπ, θ = π + kπ θ θ = π + kπ, θ = π + kπ θ θ = π + kπ, θ = π + kπ 11) csc θ = 11) θ θ = π + kπ {θ θ = π + kπ} 1 θ θ = π + kπ θ θ = π + kπ Use a calculator to solve the equation on the interval 0 θ < π. Round the answer to two decimal places. 11) sin θ = 0. 0., ,. 0.,. 0.,.1 11) 11) tan θ =. 1.1,. 1.1, ,.0 1.1,.1 11) 11) csc θ = ,. 0.1, ) ) cot θ = -.,.1.,.1.,..,. ) 1

15 Solve the equation on the interval [0, π). 11) Suppose f(x) = cos θ -1. Solve f(x) = 0. π 0 π π 11) 1) Suppose f(x) = cos θ + 1. Solve f(x) = 0. 1) π, π π π, π π, π Solve the problem. 1) What are the x-intercepts of the graph of f(x) = sin(x) + on the interval [0, π]? π, π, π, 11π, 1π, 1π π 1, 11π 1, 1π 1, π 1 π, π, π, 11π, 1π, 1π π, π 1) 1) Given f(x) = tan x, for what values of x is f(x) > - on the interval - π, π? 1) - π, π - π, π 0, π - π, π Solve the problem using Snellʹs Law: sin θ 1 sin θ = v 1 v. 1) A light beam in air travels at. meters per second. If its angle of incidence to a second medium is and its angle of refraction in the second medium is, what is its speed in the second medium (to two decimal places)? 1.0 mps.01 mps. mps 1. mps 1) The index of refraction of light passing from air into a second medium is 1.. If the angle of incidence is, what is the angle of refraction (to two decimal places)? ) 1) 1) A light beam in air travels at. meters per second. If its angle of incidence to a second medium is and its angle of refraction in the second medium is, what is its speed in the second medium (to two decimal places)?.0 mps. mps. mps.0 mps 1) Solve the problem. 1) A weight suspended from a spring is vibrating vertically with up being the positive direction. The function f(t) = sin πt - π represents the distance in centimeters of the weight from its rest position as a function of time t, where t is measured in seconds. Find the smallest positive value of t for which the displacement of the weight above its rest position is cm. Round answer to three decimal places, if necessary. 0. sec 0. sec 1. sec. sec 1) 1

16 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) Wildlife management personnel use predator-prey equations to model the populations of certain predators and their prey in the wild. Suppose the population M of a predator after t months is given by 1) M = sin π t while the population N of its primary prey is given by N = 1, cos π t Find the values of t, 0 t < 1, for which the predator population is. Find the values of t, 0 t < 1, for which the prey population is,. ) You are flying a kite and want to know its angle of elevation. The string on the kite is meters long and the kite is level with the top of a building that you know is meters high. Use an inverse trigonometric function to find the angle of elevation of the kite. Round to two decimal places. ) 1

17 Answer Key Testname: UNTITLED1 1) D ) C ) A ) C ) D ) A ) D ) A ) D ) B 11) D 1) C 1) D 1) C 1) B 1) D 1) C 1) C 1) A 0) C 1) C ) D ) sin x + π = sin x cos π + sin π cos x = (sin x)(0) + (1)(cos x) = cos x. ) cos x + π = cos x cos π - sin x sin π = cos x - 1 sin x. ) tan x - π = tan x - tan π/ 1 + (tan x)(tan π/) = tan x tan x. ) tan π sin ((π/) + x) sin (π/) cos x + sin x cos (π/) + x = = cos ((π/) + x) cos (π/) cos x - sin (π/) sin x = 1 cos x + sin x 0 0 cos x - 1 sin x π ) cos - θ = cos π cos θ + sin π sin θ = 0 cos θ - 1 sin θ = - sin θ ) csc π + u = 1 sin (π/) cos u + cos (π/) sin u = 1 = sec u. 1 cos u + 0 sin u ) cos(α + β) cos α cos β - sin α sin β cos α cos β = = cos α sin β cos α sin β cos α sin β = -cot x. sin α sin β - cos α sin β = cos β sin β - sin α = cot β - tan α cos α 0) cos (x - y) - cos (x + y) = cos x cos y + sin x sin y - ( cos x cos y - sin x sin y) = sin x sin y. cos (x - y) cos x cos y + sin x sin y 1/(cos x cos y) cos x cos y + sin x sin y 1) = = cos (x + y) cos x cos y - sin x sin y 1/(cos x cos y) cos x cos y - sin x sin y = 1 + tan x tan y 1 - tan x tan y. ) cot(π - θ) = ) cot(α + β) = ) D ) B cos(π - θ) sin(π - θ) cos π cos θ + sin π sin θ (-1) cos θ + 0 sin θ = = sin π cos θ - cos π sin θ 0 cos θ - (-1) sin θ = - cos θ sin θ = - cot θ tan α tan β 1 - (x + 1)(x - 1) = = = 1 - (x - 1) = - x tan(α + β) tan α + tan β (x + 1) + (x - 1) x x 1

18 Answer Key Testname: UNTITLED1 ) B ) A ) B ) A 0) C 1) C ) D ) C ) B ) D ) B ) C ) D ) C 0) D 1) D ) D ) D ) θ = 1 : R = 0,000, H = g θ =. : R = 000( - ) ; g 0,000( ) 000( - ), H = g g ) tan u (1 + cos(u)) = 1 - cos(u) (1 + cos(u)) = 1 - cos(u) 1 + cos(u) ) cot(θ) = cos(θ) sin(θ) = 1 - sin θ sin θ cos θ = 1 sin θ - cos θ sin θ = csc θ - cot θ ) cos(x) = cos(x + x) = cos(x) cos x - sin(x) sin x = (cos x - sin x) cos x - sin x cos x sin x = cos x - sin x cos x - sin x cos x = cos x - sin x cos x. ) cot u = 1 tan u = 1 + cos u csc u + cot u = 1 - cos u csc u - cot u ) cos(u) = cos[(u)] = cos (u) - 1 0) sin (x) = (sin (x))(sin(x)) = 1 - cos(x) (sin(x)) = 1 (sin(x))(1 - cos(x)). 1) sin θ - cos θ sin θ - cos θ = sin θ + sin θ cos θ + cos θ = 1 + sin θ cos θ = sin(θ) ) cos(θ) = cos[(θ)] = cos (θ) - sin (θ) = (cos θ - sin θ) - ( sin θ cos θ) = cos θ - sin θ cos θ + sin θ - sin θ cos θ = cos θ - sin θ cos θ + sin θ ) A ) A ) C ) B ) A 1

19 Answer Key Testname: UNTITLED1 ) D ) B 0) A 1) B ) B ) A ) B ) A ) C ) B ) C ) A 0) A 1) B ) D ) D ) A ) B ) D ) B ) D ) D 0) D 1) C ) D ) D ) C ) D sin (θ) + sin (θ) sin (θ) cos (θ) sin (θ) ) = = cos (θ) + cos (θ) cos (θ) cos (θ) cos (θ) ) ) sin (θ) + sin (θ) sin (θ) - sin (θ) = sin (θ) cos (θ) sin (θ) cos (θ) = sin (θ) cos (θ) = tan (θ) cos (θ) tan (θ) = sin (θ) tan (θ) cos (θ) - cos (θ) - sin (θ) sin (θ) sin (θ) = = - cos (θ) + cos (θ) cos (θ) cos (θ) cos (θ) sin(θ) = - tan (θ) tan (θ) cos(θ) ) sin θ[sin θ + sin(θ)] = sin θ[ sin(θ) cos(θ)] = cos(θ)[sin θ sin(θ)] = cos(θ) 1 (cos(θ) - cos(θ)) = cos( 0) θ)[cos(θ) - cos(θ)] sin α - β cos α + β sin α - sin β sin α + sin β = sin α + β cos α - β = sin α - β cos α - β cos α + β sin α + β = tan α - β cot α + β 1) D ) C ) A ) A ) B ) D ) B 1

20 Answer Key Testname: UNTITLED1 ) B ) B 1) C 111) B 11) C 11) A 11) B 11) B 11) B 11) D 11) C 11) C ) D 11) B 1) A 1) C 1) D 1) C 1) D 1) D 1) A 1) M =, t = ; N =,, t =, ) 0. 0

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Section 7.7 Product-to-Sum and Sum-to-Product Formulas Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:

Διαβάστε περισσότερα

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6) C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations //.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Chapter 6 BLM Answers

Chapter 6 BLM Answers Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

TRIGONOMETRIC FUNCTIONS

TRIGONOMETRIC FUNCTIONS Chapter TRIGONOMETRIC FUNCTIONS. Overview.. The word trigonometry is derived from the Greek words trigon and metron which means measuring the sides of a triangle. An angle is the amount of rotation of

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level * 6 3 1 7 7 7 6 4 0 6 * MATHEMATICS (SYLLABUS D) 4024/21 Paper 2 October/November 2013 Candidates answer

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15 Trigonometry (4 Trigonometric Identities 1//15 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,

Διαβάστε περισσότερα

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem. 5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

Homework#13 Trigonometry Honors Study Guide for Final Test#3

Homework#13 Trigonometry Honors Study Guide for Final Test#3 Homework#13 Trigonometry Honors Study Guide for Final Test#3 1. Στο παρακάτω σχήμα δίνεται ο μοναδιαίος κύκλος: Να γράψετε τις συντεταγμένες του σημείου ή το όνομα του άξονα: 1. (ε 1) είναι ο άξονας 11.

Διαβάστε περισσότερα

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem. 5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric

Διαβάστε περισσότερα

Core Mathematics C34

Core Mathematics C34 Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C34 Advanced Tuesday 21 June 2016 Morning Time: 2 hours 30 minutes

Διαβάστε περισσότερα

Chapter 7 Analytic Trigonometry

Chapter 7 Analytic Trigonometry Chapter 7 Analytic Trigonometry Section 7.. Domain: { is any real number} ; Range: { y y }. { } or { }. [, ). True. ;. ; 7. sin y 8. 0 9. 0. False. The domain of. True. True.. y sin is. sin 0 We are finding

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level * 0 5 1 0 3 4 8 7 8 5 * MATHEMATICS (SYLLABUS D) 4024/21 Paper 2 May/June 2013 Candidates answer on the

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

MATH 150 Pre-Calculus

MATH 150 Pre-Calculus MATH 150 Pre-Calculus Fall, 014, WEEK 11 JoungDong Kim Week 11: 8A, 8B, 8C, 8D Chapter 8. Trigonometry Chapter 8A. Angles and Circles The size of an angle may be measured in revolutions (rev), in degree

Διαβάστε περισσότερα

Principles of Mathematics 12 Answer Key, Contents 185

Principles of Mathematics 12 Answer Key, Contents 185 Principles of Mathematics Answer Ke, Contents 85 Module : Section Trigonometr Trigonometric Functions Lesson The Trigonometric Values for θ, 0 θ 60 86 Lesson Solving Trigonometric Equations for 0 θ 60

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3. Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Core Mathematics C12

Core Mathematics C12 Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C12 Advanced Subsidiary Wednesday 25 May 2016 Morning Time: 2 hours

Διαβάστε περισσότερα

F-TF Sum and Difference angle

F-TF Sum and Difference angle F-TF Sum and Difference angle formulas Alignments to Content Standards: F-TF.C.9 Task In this task, you will show how all of the sum and difference angle formulas can be derived from a single formula when

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

COMPLEX NUMBERS. 1. A number of the form.

COMPLEX NUMBERS. 1. A number of the form. COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

physicsandmathstutor.com Paper Reference Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes

physicsandmathstutor.com Paper Reference Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6666/01 Edexcel GCE Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

CORDIC Background (2A)

CORDIC Background (2A) CORDIC Background 2A Copyright c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

Διαβάστε περισσότερα

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets System of Equations and Matrices 3 Matrix Row Operations: MATH 41-PreCalculus Switch any two rows. Multiply any row by a nonzero constant. Add any constant-multiple row to another Even and Odd functions

Διαβάστε περισσότερα

Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is

Διαβάστε περισσότερα

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

Fourier Analysis of Waves

Fourier Analysis of Waves Exercises for the Feynman Lectures on Physics by Richard Feynman, Et Al. Chapter 36 Fourier Analysis of Waves Detailed Work by James Pate Williams, Jr. BA, BS, MSwE, PhD From Exercises for the Feynman

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES, CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ EE Solutions of Problems 4 ) Differentiation from first principles: f (x) = lim f(x+) f(x) : a) f(x) = x +x f(x+) f(x) = (x+) +(x+) (x +x) = x+ + = x++ f(x+) f(x) Thus lim = lim x++ = x+. b) f(x) = cos(ax),

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAndMathsTutor.com June 2005 1. A car of mass 1200 kg moves along a straight horizontal road. The resistance to motion of the car from non-gravitational forces is of constant magnitude 600 N. The

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln

Διαβάστε περισσότερα