# w o = R 1 p. (1) R = p =. = 1

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "w o = R 1 p. (1) R = p =. = 1"

## Transcript

1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση (a) From the Wiener-Hopf equation we have: w o = R p. () We are give and 0.5 R = p = Hence, the inverse matrix R is 0.5 R = 0.5 = Using Eq. (), we therefore get. w o = = = =

2 ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις (b) The minimum mean-square error is : ] J min = σd 2 ph w o = σd [0.5, = σd (c) The eigenvalues of matrix R are roots of the characteristic equation: ( λ) = 0. That is, the two roots are: λ = 0.5 and λ 2 =.5. The associated eigenvectors are defined by: Rq = λq. For λ = 0.5 we have: q q 2 = 0.5 q q 2. Expanding: q + 0.5q 2 = 0.5q 0.5q + q 2 = 0.5q 2 Therefore, q = q2. ormalizing the eigenvector q to unit length, we therefore have q = 2. Similarly, for the eigenvalue λ 2 =.5, we may show that q 2 = 2. Accordingly, we may express the Wiener fitler in terms of its eigenvalues and eigenvectors as follows:

3 ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις w o = ( 2 i= λ i q i q H i ) p = [ ], + [ ], 0.5 = }{{}}{{} }{{} q λ q H q λ 2 q H p The optimum filtering solution is defined by the Wiener-Hopf equation as: Rw o = p, (2) for which the minimum mean-square error equals: J min = σ 2 d ph w o. (3) Combine Eqs. (2) and (3) into a single relation and we get: σ2 d p p H = J min R w o 0 Define A = σ2 d p p H (4) R Since σ 2 d = E[d(n)d (n)], p = E[u(n)d (n)] and R = E[u(n)u (n)], we may rewrite Eq. (4) as A = E[d(n)d (n)] E[u(n)d (n)] E[d(n)]u H (n) = E d(n) [ d E[u(n)u (n)] (n), u(n) u H (n) ] The minimum mean-square error equals: J min = σ 2 d ph w o (5)

4 ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις Eliminate σd 2 between Eqs. (2) and (5): J(w) = J min + p H w o p H w w H p + w H Rw (6) Eliminate p between Eqs. (3) and (??): J(w) = J min + w H o Rw o w H o Rw w H Rw o + w H Rw, (7) where we have used the property R H = R. We may rewrite Eq. (7) simply as J(w) = J min + (w w o ) H R(w w o ), (8) which clearly shows that J(w o ) = J min. 5.5 The minimum mean-square error equals J min σ 2 d ph R p. (9) Using the spectral theorem, we may express the correlation matrix R as M R = QΛQ H = λ k q k q H k. k= Hence, the inverse of R equals: R = M k= λ k q k q H k. (0) Substituting Eq. (0) into (9): J min = σ 2 d M k= q k q H k λ p = σ2 d M p H q k 2. k λ k k= 5.7 (a) The correlation matrix R is

5 ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις R = E[u(n)u H (n)] = E[ A 2 ] e jω n e jω (n ). e jω (n M+) [ ] e +jωn, e +jω(n ),..., e +jω (n M+) = E[ A 2 ]s H (ω ) where I is the identity matrix. (b) The tap-weight vector of the Wiener filter is w o = R p. From part a, R = σ 2 vi + σ 2 s(ω )s H (ω ). We are given p = σ 2 0s(ω o ). To invert the matrix R. we use the matrix inversion lemma, as described here: If A = B + CD C H then A = B BC(D + C H BC) C H B. In our case, A = σ 2 vi, B = σ 2 vi, D = σ 2, C = s(ω ). Hence, R = σ 2 v I s(ω σv 2 )s H (ω ) σv 2 + s σ H (ω 2 )s(ω ) The corresponding value of the wiener tap-weight vector is w o = R p = σ2 0 σv 2 s(ω 0 ) We note that s H (ω )s(ω ) = M and s H (ω )s(ω 0 ) = scalar. Hence, σ 2 0 σ 2 v s(ω )s H (ω ) σv 2 + s σ H (ω 2 )s(ω )

6 ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις w o = σ2 0 σ 2 v s(ω 0 ) σ2 0 σv 2 s H (ω )s(ω ) + M s(ω ) σ 2 v σ 2 ) (a) Under the hypothesis H, we have u = s + v. The correlation matrix of u equals R = E[uu T ] = ss T + R, where R = E[VV T ]. The tap-weight vector w k is chosen so that wk T u yields an optimum estimate of the kth element of s. Thus, with s(k) treated as the desired response, the cross-correlation vector between u and s(k) equals: p k = E[us(k)] = ss(k), k =, 2,..., M. Hence, the Wiener-Hopf equation yields the optimum value of w k as w ko = R p k = ( ss T + R ) ss(k), k =, 2,..., M () To apply the matrix inversion lemma, we let A = R, B = R, C = s, D =. Hence, R = R R sst R + s T R s (2) Substitute Eq. (2) into Eq. (): w ko = ( R ) R sst R + s T R s ss(k) = R s( + st R s) R sst R s + s T R s s(k) = s(k) + s T R sr s (b) The output signal-to-noise ratio equals

7 ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις SR = E[(wT s) 2 ] E[(w T v) 2 ] = wt ss T w w T E[vv T ]w = wt ss T w w T R w (3) Since R is positive definite, we may write R = R /2 R/2. Define the vector: a = R /2 w, or equivalently w = R /2 a. (4) Accordingly, we may rewrite Eq. 3 as follows SR = at R /2 sst R /2 a a T, (5) a where we have used the symmetric property of R V. Define the normalized vector ā = a a, where a is the norm of a. Then we may rewrite Eq. 5 as SR = ā T R /2 sst R /2 ā ā = T R /2 s 2 Thus the output signal-to-noise ratio SR equals the squared magnitude of the inner product of two vectors ā and R /2 s. This inner product is maximized when a equals R /2s. That is a S = R /2 s (6) Let w S denote the value of the tap-weight vector that corresponds to Eq. 6. Hence, the use of Eq. 4 in Eq. 6 yields: ( ) w S = R /2 R /2 s = R s.

8 ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις (c)

9 ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 4. 6.

10 ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις

11 ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις 205

12 ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις 205 2

13 ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις

14 ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις

### 2 Composition. Invertible Mappings

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

### ( ) 2 and compare to M.

Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

### Homework 3 Solutions

Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

### EE512: Error Control Coding

EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

### CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

### Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

### 4.6 Autoregressive Moving Average Model ARMA(1,1)

84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

### Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

### Areas and Lengths in Polar Coordinates

Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

### Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

### Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

### Derivation of Optical-Bloch Equations

Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

### The Jordan Form of Complex Tridiagonal Matrices

The Jordan Form of Complex Tridiagonal Matrices Ilse Ipsen North Carolina State University ILAS p.1 Goal Complex tridiagonal matrix α 1 β 1. γ T = 1 α 2........ β n 1 γ n 1 α n Jordan decomposition T =

Διαβάστε περισσότερα

### Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

### Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

### MATRIX INVERSE EIGENVALUE PROBLEM

English NUMERICAL MATHEMATICS Vol.14, No.2 Series A Journal of Chinese Universities May 2005 A STABILITY ANALYSIS OF THE (k) JACOBI MATRIX INVERSE EIGENVALUE PROBLEM Hou Wenyuan ( ΛΠ) Jiang Erxiong( Ξ)

Διαβάστε περισσότερα

### SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

### MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

### Trigonometric Formula Sheet

Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

### Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

### Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π 2, π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### Lecture 6 Mohr s Circle for Plane Stress

P4 Stress and Strain Dr. A.B. Zavatsk HT08 Lecture 6 Mohr s Circle for Plane Stress Transformation equations for plane stress. Procedure for constructing Mohr s circle. Stresses on an inclined element.

Διαβάστε περισσότερα

### E[x 2 ] = E[(an+b) 2 ] = E[a 2 n 2 +2nab+b 2 ] = n 2 E[a 2 ]+2nE[ab]+E[b 2 ] = n 2 E[a 2 ]+E[b 2 ] E[x 2 ] = n 2 σ 2 a+σ 2 b

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-57: Στατιστική Επεξεργασία Σήµατος 15 ιδάσκων : Α. Μουχτάρης Πρώτη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Since a and b are independent and have zero mean,

Διαβάστε περισσότερα

### Calculating the propagation delay of coaxial cable

Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

### Second Order Partial Differential Equations

Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

### 2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

### Problem Set 3: Solutions

CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

### TMA4115 Matematikk 3

TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

### DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

### Homework 3 Solutions

Homework 3 Solutions Differential Topology (math876 - Spring2006 Søren Kold Hansen Problem 1: Exercise 3.2 p. 246 in [MT]. Let {ɛ 1,..., ɛ n } be the basis of Alt 1 (R n dual to the standard basis {e 1,...,

Διαβάστε περισσότερα

### EE101: Resonance in RLC circuits

EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

### Solution to Review Problems for Midterm III

Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

### Exercises to Statistics of Material Fatigue No. 5

Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

### Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

### Two generalisations of the binomial theorem

39 Two generalisations of the binomial theorem Sacha C. Blumen Abstract We prove two generalisations of the binomial theorem that are also generalisations of the q-binomial theorem. These generalisations

Διαβάστε περισσότερα

### 1. For each of the following power series, find the interval of convergence and the radius of convergence:

Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

### The Spiral of Theodorus, Numerical Analysis, and Special Functions

Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

### Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S.

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. Proof. ( ) Since α is 1-1, β : S S such that β α = id S. Since β α = id S is onto,

Διαβάστε περισσότερα

### Μηχανική Μάθηση Hypothesis Testing

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

### Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ Ι Ο Ν Ι Ω Ν Ν Η Σ Ω Ν ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Ταχ. Δ/νση : ΑΤΕΙ Ιονίων Νήσων- Λεωφόρος Αντώνη Τρίτση Αργοστόλι Κεφαλληνίας, Ελλάδα 28100,+30

Διαβάστε περισσότερα

### Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

### Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

### Chapter 7 Analytic Trigonometry

Chapter 7 Analytic Trigonometry Section 7.. Domain: { is any real number} ; Range: { y y }. { } or { }. [, ). True. ;. ; 7. sin y 8. 0 9. 0. False. The domain of. True. True.. y sin is. sin 0 We are finding

Διαβάστε περισσότερα

### Αναερόβια Φυσική Κατάσταση

Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

### Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

### Risk! " #\$%&'() *!'+,'''## -. / # \$

Risk! " #\$%&'(!'+,'''## -. / 0! " # \$ +/ #%&''&(+(( &'',\$ #-&''&\$ #(./0&'',\$( ( (! #( &''/\$ #\$ 3 #4&'',\$ #- &'',\$ #5&''6(&''&7&'',\$ / ( /8 9 :&' " 4; < # \$ 3 " ( #\$ = = #\$ #\$ ( 3 - > # \$ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

### Ψηφιακή Επεξεργασία Φωνής

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time

Διαβάστε περισσότερα

### Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

### 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

### Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

### ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Εργαστήριο Β Χημικής Μηχανικής Τ.Θ. 472 54124 Θεσσαλονίκη PROCESS DYNAMICS & CONTROL 2014 Final Review Series of Solved Problems Problem 1:

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

### Correction Table for an Alcoholometer Calibrated at 20 o C

An alcoholometer is a device that measures the concentration of ethanol in a water-ethanol mixture (often in units of %abv percent alcohol by volume). The depth to which an alcoholometer sinks in a water-ethanol

Διαβάστε περισσότερα

### 3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7 0. cot, 0.. 9. cos sin. sin

Διαβάστε περισσότερα

### ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ

Διαβάστε περισσότερα

### Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδηµαϊκό έτος 2011-12 Εαρινό Εξάµηνο Ενδιάµεση Εξέταση 1 Παρασκευή 17 Φεβρουαρίου

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

### 1. Introduction and Preliminaries.

Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

### ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

### Derivation of Quadratic Response Time Dependent Hartree-Fock (TDHF) Equations

Derivation of Quadratic Response Time Dependent Hartree-Fock (TDHF) Equations Joshua Goings, Feizhi Ding, Xiaosong Li Department of Chemistry, University of Washington Nember 21, 2014 1 Derivation of Equations

Διαβάστε περισσότερα

### Θωμάς ΣΑΛΟΝΙΚΙΟΣ 1, Χρήστος ΚΑΡΑΚΩΣΤΑΣ 2, Βασίλειος ΛΕΚΙΔΗΣ 2, Μίλτων ΔΗΜΟΣΘΕΝΟΥΣ 1, Τριαντάφυλλος ΜΑΚΑΡΙΟΣ 3,

Αξιοποίηση Έξι Σεισμών στην Πελοπόννησο για την Συσχέτιση Φασματικών Επιταχύνσεων με την Απόκριση του Δομημένου Περιβάλλοντος Correlation of Spectral Accelerations with the Response of the Built Environment

Διαβάστε περισσότερα

### On a four-dimensional hyperbolic manifold with finite volume

BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

### Solution Concepts. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ισορροπία Nash αγνές στρατηγικές µικτές στρατηγικές Κυρίαρχες στρατηγικές Rationalizability

Διαβάστε περισσότερα

### Ιστορία νεότερων Μαθηματικών

Ιστορία νεότερων Μαθηματικών Ενότητα 3: Παπασταυρίδης Σταύρος Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Περιγραφή Ενότητας Ιταλοί Αβακιστές. Αλγεβρικός Συμβολισμός. Άλγεβρα στην Γαλλία, Γερμανία, Αγγλία.

Διαβάστε περισσότερα

### DETERMINANT AND PFAFFIAN OF SUM OF SKEW SYMMETRIC MATRICES. 1. Introduction

Unspecified Journal Volume 00, Number 0, Pages 000 000 S????-????(XX)0000-0 DETERMINANT AND PFAFFIAN OF SUM OF SKEW SYMMETRIC MATRICES TIN-YAU TAM AND MARY CLAIR THOMPSON Abstract. We completely describe

Διαβάστε περισσότερα

### (1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

### Section 8.2 Graphs of Polar Equations

Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

### SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

### Ψηφιακή Επεξεργασία Εικόνας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Μετασχηματισμοί έντασης και χωρικό φιλτράρισμα Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

### EXAMENSARBETEN I MATEMATIK

EXAMENSARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Operator theory in finite-dimensional vector spaces av Kharema Ebshesh 2008 - No 12 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET,

Διαβάστε περισσότερα

### 16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

### ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΗΛΙΚΙΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Διαπολιτισμική Εκπαίδευση και Θρησκευτική Ετερότητα: εθνικές και θρησκευτικές

Διαβάστε περισσότερα

### «Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: «Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων.

Διαβάστε περισσότερα

### MATRICES

MARICES 1. Matrix: he arrangement of numbers or letters in the horizontal and vertical lines so that each horizontal line contains same number of elements and each vertical row contains the same numbers

Διαβάστε περισσότερα

### Συντακτικές λειτουργίες

2 Συντακτικές λειτουργίες (Syntactic functions) A. Πτώσεις και συντακτικές λειτουργίες (Cases and syntactic functions) The subject can be identified by asking ποιος (who) or τι (what) the sentence is about.

Διαβάστε περισσότερα

### ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Πτυχιακή εργασία ΕΝΕΡΓΟ ΦΙΛΤΡΟ ΔΙΑΚΟΠΤΙΚΟΥ ΠΗΝΙΟΥ ( Switched Inductor Variable Filter ) Ευτυχία Ιωσήφ Λεμεσός, Μάιος 2016 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

### ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Firm Behavior GOAL: Firms choose the maximum possible output (technological

Διαβάστε περισσότερα

### Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

### Online Appendix to. When Do Times of Increasing Uncertainty Call for Centralized Harmonization in International Policy Coordination?

Online Appendix to When o Times of Increasing Uncertainty Call for Centralized Harmonization in International Policy Coordination? Andrzej Baniak Peter Grajzl epartment of Economics, Central European University,

Διαβάστε περισσότερα

### A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

### Principal Components Analysis - PCA

Dr. Demetrios D. Diamantidis Assistant Professor, Section of Telecommunications and Space Sciences, Department of Electrical and Computer Engineering, Polytechnic School, Demokritos University of Thrace,

Διαβάστε περισσότερα

### Ανάκτηση Πληροφορίας

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Λανθάνουσα Σημασιολογική Ανάλυση (Latent Semantic Analysis) Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

### A Lambda Model Characterizing Computational Behaviours of Terms

A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities

Διαβάστε περισσότερα

### Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science

Statistics & Research methods Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science 30 25 1,65 20 1,66 15 10 5 1,67 1,68 Κανονική 0 Height 1,69 Καμπύλη Κανονική Διακύμανση & Ζ-scores

Διαβάστε περισσότερα

### Advanced Subsidiary Unit 1: Understanding and Written Response

Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

### Cross sectional area, square inches or square millimeters

Symbols A E Cross sectional area, square inches or square millimeters of Elasticity, 29,000 kips per square inch or 200 000 Newtons per square millimeter (N/mm 2 ) I Moment of inertia (X & Y axis), inches

Διαβάστε περισσότερα

Connectionless transmission with datagrams. Connection-oriented transmission is like the telephone system You dial and are given a connection to the telephone of fthe person with whom you wish to communicate.

Διαβάστε περισσότερα

### Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

Ανώτατο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ανατολικής Μακεδονίας και Θράκης Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων

Διαβάστε περισσότερα

### Repeated measures Επαναληπτικές μετρήσεις

ΠΡΟΒΛΗΜΑ Στο αρχείο δεδομένων diavitis.sav καταγράφεται η ποσότητα γλυκόζης στο αίμα 10 ασθενών στην αρχή της χορήγησης μιας θεραπείας, μετά από ένα μήνα και μετά από δύο μήνες. Μελετήστε την επίδραση

Διαβάστε περισσότερα

### Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

### EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

EPL 603 TOPICS IN SOFTWARE ENGINEERING Lab 5: Component Adaptation Environment (COPE) Performing Static Analysis 1 Class Name: The fully qualified name of the specific class Type: The type of the class

Διαβάστε περισσότερα

### Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Course Outline Part II: Mathematical Tools

Διαβάστε περισσότερα

### Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert

Διαβάστε περισσότερα

### PART ONE. Solutions to Exercises

PART ONE Soutions to Exercises Chapter Review of Probabiity Soutions to Exercises. (a) Probabiity distribution function for Outcome = 0 = = (number of heads) probabiity 0.5 0.50 0.5 Cumuative probabiity

Διαβάστε περισσότερα

### SOLUTIONS TO PROBLEMS ELEMENTARY LINEAR ALGEBRA

SOLUTIONS TO PROBLEMS ELEMENTARY LINEAR ALGEBRA K R MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND First Printing, 99 CONTENTS PROBLEMS 6 PROBLEMS 4 PROBLEMS 7 8 PROBLEMS 36 3 PROBLEMS 4 45

Διαβάστε περισσότερα