New Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic Rod. 1 Introduction

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "New Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic Rod. 1 Introduction"

Transcript

1 ISSN print), online) International Journal of Nonlinear Science Vol.15013) No.,pp New Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic Rod Peng Guo, Guixin Wan, Xiaoyun Wang, Xiaowei Sun School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou , China Received 6 October 01, accepted 1 January 013) Abstract: In this paper, we consider nonlinear wave equation in finite deformation elastic rod, and we obtain abundant new exact solutions for it by using the G /G)-expansion method. The obtained solutions include hyperbolic function solutions, trigonometric function solutions and rational solutions. It is shown that G /G)-expansion method provides a powerful mathematical tool for solving a great many nonlinear partial differential equations in mathematical physics. Keywords: the G /G)-expansion method; travelling wave solutions; nonlinear wave; finite deformation elastic rod 1 Introduction During the last decades, investigations of exact travelling wave solutions to nonlinear evolution equations NLEEs) play an important role in the study of complex physical and mechanical phenomena. Many effective approaches for obtaining exact solutions of NLEEs have been presented, such as the tanh-function expansion method, the Jacobi elliptic function expansion method, the homogeneous balance method, F-expansion method, the exp-function expansion method and others [1-8]. Many exact solutions, including solitary wave solutions, shock wave solutions, and periodic wave solutions of NLEEs were successfully obtained. But because of the complexity of the nonlinear evolution equations, it is difficult for us to determine the solutions for the problems. Recently, Mingliang Wang et al. proposed a new method called the G /G)- expansion method to look for travelling wave solutions of NLEEs [9]. By using the G /G)-expansion method, the authors in [9-11] have successfully obtained hyperbolic function solutions, trigonometric function solutions and rational solutions of some important NLEEs. In Ref.[1], Zhifang Liu et al. derived the nonlinear wave equation in finite deformation elastic rod as follows: u t u c 0 x = x [3E ρ u + E ρ u3 + ν R u t u v 0 )], 1) x where R, c 0= E/ρ), v 0= ν/ρ), ν, E and ρ are the cross-section area of the rod, the square of the linear elastic longitudinal wave velocity, the square of the shear wave velocity, Poisson ratio, the Young s modulus and the density of the rod, respectively. Eq.1) is the double nonlinear wave equation with respect to the axial displacement gradient finite deformation elastic rod. It is shown that when the longitudinal wave propagates, the shear wave also propagates as a result of the transverse Poisson effects. Recently, travelling wave solutions for this equation were constructed by using Jacobi elliptic function expansion method [1-16]. The goal of this work is to implement the G /G)-expansion method to obtain more new exact travelling wave solutions of nonlinear wave equation in finite deformation elastic rod. Description of the G /G)-expansion method The generalized G /G)-expansion method can be summarized as follows [9-11]. Suppose that a given nonlinear partial differential equation has the form P u, u t, u x, u tt, u xx, ) = 0. ) Corresponding author. address: guopenglzjtu@16.com Copyright c World Academic Press, World Academic Union IJNS /716

2 P. Guo et al: New Soliton and Periodic Solutions for Nonlinear Wave 183 Step 1. When we seek travelling wave solutions of Eq.), the first step is to introduce the wave transformation: ux, t) = u), = x ct, 3) where c is a real constant. Under the transformation Eq.3), Eq.) becomes an ordinary differential equation Step. Take the solutions of Eq.4) in the more general form u) = a 0 + Qu, u, u, ) = 0. 4) m i=1 [a i G ) G) )i + b i G ) G) ) i ], 5) where a 0, a i and b i i = 1,,, m) are constants to be determined later. The integer m in Eq.5) can be determined by balancing the highest order nonlinear terms and the highest order linear terms of u) in Eq.4). G = G) satisfies the second-order linear ordinary differential equation G + λg + µg = 0, 6) where λ and µ are constants. The explicit expressions for the general solution of Eq.6) are as follows: when λ 4µ > 0, G) = c 1 e λ+ λ 4µ ) + c e λ λ 4µ ) ; when λ 4µ = 0, G) = c 1 + c )e λ ) ; when λ λ 4µ < 0, G) = e ) 4µ λ + c sin 4µ λ ). Step 3. Substitute Eq.5) into Eq.4) and collect all terms with the same order of G /G together. The left-hand side of Eq.4) is converted into a polynomial in G /G. Then, let each coefficient of this polynomial to be zero to derive a set of over-determined algebraic equations for a 0, a i, b i i = 1,,, m), λ, µ and c. Step 4. Solve the algebraic equations obtained in Step 3 with the aid of a computer algebra system such as Mathematica or Maple) to determine these constants. Then, substituting a 0, a i, b i i = 1,,, m), c and the solutions of Eq.6) into Eq.5), we can obtain the exact travelling wave solutions of Eq.). 3 Soliton and periodic solutions for nonlinear wave equation in finite deformation elastic rod Choose the travelling wave transformation Eq.3). Substituting Eq.3) into Eq.1), integrating it with respect to twice, and letting the integrating constant to be zero, we have u + β 1 u + β u + β 3 u 3 = 0, 8) where β 1 = c c 0) ν R c v0 ), β 3c 0 = ν R c v0 ), β c 0 3 = ν R c v0 9) ). According to Step, we get m = 1. Therefore, we can write the solution of Eq.8) in the form u) = a 0 + a 1 G ) G) ) + b 1 G ) G) ) 1. 10) Substituting Eq.10) into Eq.8), collecting the coefficients of G /G) i i = 0, 1,, 3,) and letting it be zero, we obtain the system a 0 β 1 + a 0β + a 1 b 1 β + a 3 0β 3 + 6a 0 a 1 b 1 β 3 + b 1 λ + a 1 λµ = 0, b 3 1β 3 + b 1 µ = 0, b 1β + 3a 0 b 1β 3 + 3b 1 λµ = 0, b 1 β 1 + a 0 b 1 β + 3a 0b 1 β 3 + 3a 1 b 1β 3 + b 1 λ + b 1 µ = 0, a 1 β 1 + a 0 a 1 β + 3a 0a 1 β 3 + 3b 1 a 1β 3 + a 1 λ + a 1 µ = 0, a 3 1β 3 + a 1 = 0, a 1β + 3a 0 a 1β 3 + 3a 1 λ = 0. 7) IJNS homepage:

3 184 International Journal of Nonlinear Science, Vol.15013), No., pp Solving this system by Mathematica, we obtain a 0 = β β 18β 3µ β, a 1 =, b 1 = 0, λ = 18β 3µ), 11) 3β 3 β 3 9β 3 a 0 = β + β 18β 3µ, a 1 = 0, 3β 3 b 1 = 1 [β β 3 β 1 µ)µ 9β β 3β 1 + µ) β 3 9β 1β β 3 ) β 18β 3µ], β3 9β 1 β 3 β + β β λ = 18β 3 µ) 3 β + β 18β 3µ)9β 1 β 3 β + β β 18β 3 µ) β β 3 β 1 µ) 9β β 3β 1 + µ) + β 3 9β 1β β 3 ) β 18β 3µ β3 3, 1) a 0 = β β 18β 3µ, a 1 = 0, 3β 3 b 1 = 1 [β β 3 β 1 µ)µ 9β β 3β 1 + µ) + β 3 9β 1β β 3 ) β 18β 3µ], β3 9β 1 β 3 β β β λ = 18β 3 µ) 3β + β 18β 3µ) 9β 1 β 3 + β + β β 18β 3 µ) β β 3 β 1 µ) 9β β 3β 1 + µ) + β 3 9β 1β β 3 ) β 18β 3µ β3 3, 13) a 0 = β3 9β 1 β β 3 36β β 3 µ 108β3 µ, a 1 =, β 3 b 1 = [β3 9β 1β β 3 ) 3888β 3 β 3β 1β 3 )µ µ3 ] β 7 3 µ4, λ = β3 + 9β 1 β β 3 54µ β 3, 14) a 0 = β 1β + 1β µ, a 1 =, 1β 3 µ β 3 b 1 = [β 1 β + 16β 1µ β + 9β 3µ) + 16µ 13β + 18β 3µ)] µ4, λ = β β 1 16µ) 6µ β 3, 15) where µ and c are arbitrary constants. By using Eq.11)-Eq.15), Eq.10) can be written as u) = β β 18β 3µ G ) ), 16) 3β 3 β 3 G) u) = β + β 18β 3µ 3β 3 1 [β β 3 β 1 µ)µ 9β β 3β 1 + µ) β 3 9β 1β β 3 ) β 18β 3µ] G ) G) ) 1, 17) IJNS for contribution: editor@nonlinearscience.org.uk

4 P. Guo et al: New Soliton and Periodic Solutions for Nonlinear Wave 185 u) = β β 18β 3µ 3β 3 1 [β β 3 β 1 µ)µ 9β β 3β 1 + µ) + β 3 9β 1β β 3 ) β 18β 3µ] G ) G) ) 1, 18) u) = β3 9β 1 β β 3 36β β 3 µ 108β3 µ u) = β 1β + 1β µ 1β 3 µ β 3 G ) G) ) [β3 9β 1β β 3 ) 3888β3 β 3β 1β 3 )µ + 338β3 3µ3 ] β3 7 G ) µ4 G) ) 1, 19) G ) β 3 G) ) [β 1 β + 16β 1µ β + 9β 3µ) + 16µ 13β + 18β 3µ)] 37348β3 3 G ) µ4 G) ) 1. 0) Substituting the general solutions of Eq.6) into Eq.16), we can obtain the travelling wave solutions of Eq.1) as follows: When λ 4µ > 0, u) = β β 18β 3µ λ 4µ [ c λ 4µ λ 4µ c 1 )cosh + c + c 1 )sinh ) λ ]. 1) 3β 3 β 3 λ 4µ λ 4µ c + c 1 )cosh + c c 1 )sinh When λ 4µ = 0, u) = β β 18β 3µ c 3β 3 β 3 c 1 + c λ ). ) When λ 4µ < 0, u) = β β 18β 3µ [ c 4µ λ 4µ λ cos c 1 sin ) λ ]. 3) 3β 3 β 3 4µ λ 4µ λ + c sin Substituting the general solutions of Eq.6) into Eq.17), we can obtain the travelling wave solutions of Eq.1) as follows: When λ 4µ > 0, u) = β + β 18β 3µ 1 [β 4 3β β 3 β 1 µ)µ 9β β 3β 1 + µ) β 3 9β 1β β 3 ) β 18β 3µ] [ When λ 4µ = 0, u) = β + β 18β 3µ 1 3β 3 9 When λ 4µ < 0, u) = β + β 18β 3µ 1 3β 3 9 λ 4µ c λ 4µ c 1 )cosh c + c 1 )cosh + c + c 1 )sinh λ 4µ + c c 1 )sinh λ 4µ λ 4µ ) λ ] 1. 4) [β β 3 β 1 µ)µ 9β β 3β 1 + µ) β 3 9β 1β β 3 ) β 18β 3µ] c c 1 + c λ ) 1. 5) [β β 3 β 1 µ)µ 9β β 3β 1 + µ) β 3 9β 1β β 3 ) β 18β 3µ] [ c 4µ λ cos c 1 sin 4µ λ + c sin 4µ λ 4µ λ ) λ ] 1. 6) IJNS homepage:

5 186 International Journal of Nonlinear Science, Vol.15013), No., pp Substituting the general solutions of Eq.6) into Eq.18), we can obtain the travelling wave solutions of Eq.1) as follows: When λ 4µ > 0, u) = β β 18β 3µ 1 [β 4 3β β 3 β 1 µ)µ 9β β 3β 1 + µ) + β 3 9β 1β β 3 ) β 18β 3µ] [ When λ 4µ = 0, u) = β β 18β 3µ 1 3β 3 9 When λ 4µ < 0, u) = β β 18β 3µ 1 3β 3 9 λ 4µ c λ 4µ c 1 )cosh c + c 1 )cosh + c + c 1 )sinh λ 4µ + c c 1 )sinh λ 4µ λ 4µ ) λ ] 1. 7) [β β 3 β 1 µ)µ 9β β 3β 1 + µ) + β 3 9β 1β β 3 ) β 18β 3µ] c c 1 + c λ ) 1. 8) [β β 3 β 1 µ)µ 9β β 3β 1 + µ) + β 3 9β 1β β 3 ) β 18β 3µ] [ c 4µ λ cos c 1 sin 4µ λ + c sin 4µ λ 4µ λ ) λ ] 1. 9) Substituting the general solutions of Eq.6) into Eq.19), we can obtain the travelling wave solutions of Eq.1) as follows: When λ 4µ > 0, u) = β3 9β 1 β β 3 36β β 3 µ λ 4µ 108β3 µ [ c λ 4µ λ 4µ c 1 )cosh + c + c 1 )sinh ) λ β 3 λ 4µ λ 4µ ] c + c 1 )cosh + c c 1 )sinh [β3 9β 1β β 3 ) 3888β3 β 3β 1β 3 )µ + 338β3 3µ3 ] β3 7µ4 When λ 4µ = 0, λ 4µ [ c c 1 )cosh c + c 1 )cosh λ 4µ + c + c 1 )sinh λ 4µ + c c 1 )sinh λ 4µ λ 4µ ) λ ] 1. 30) u) = β3 9β 1 β β 3 36β β 3 µ c 108β3 µ β 3 c 1 + c λ ) When λ 4µ < 0, [β3 9β 1β β 3 ) 3888β3 β 3β 1β 3 )µ + 338β3 3µ3 ] β3 7 µ4 c 1 + c λ ) 1. 31) u) = β3 9β 1 β β 3 36β β 3 µ 108β3 µ [ β 3 c 4µ λ cos c 1 sin 4µ λ + c sin 4µ λ 4µ λ [β3 9β 1β β 3 ) 3888β3 β 3β 1β 3 )µ + 338β3 3µ3 ] β3 7µ4 [ c 4µ λ cos c 1 sin 4µ λ + c sin c ) λ ] 4µ λ 4µ λ ) λ ] 1. 3) IJNS for contribution: editor@nonlinearscience.org.uk

6 P. Guo et al: New Soliton and Periodic Solutions for Nonlinear Wave 187 Substituting the general solutions of Eq.6) into Eq.0), we can obtain the travelling wave solutions of Eq.1) as follows: When λ 4µ > 0, u) = β 1β + 1β µ 1β 3 µ When λ 4µ = 0, u) = β 1β + 1β µ 1β 3 µ When λ 4µ < 0, u) = β 1β + 1β µ 1β 3 µ λ 4µ [ β 3 c λ 4µ c 1 )cosh c + c 1 )cosh + c + c 1 )sinh λ 4µ + c c 1 )sinh λ 4µ λ 4µ ) λ ] [β 1 β + 16β 1µ β + 9β 3µ) + 16µ 13β + 18β 3µ)] 37348β3 3µ4 λ 4µ [ c λ c 1 )cosh 4µ λ + c + c 1 )sinh 4µ ) λ λ 4µ λ 4µ ] 1. 33) c + c 1 )cosh + c c 1 )sinh c β 3 c 1 + c λ ) [β 1 β + 16β 1µ β + 9β 3µ) + 16µ 13β + 18β 3µ)] 37348β3 3 µ4 c 1 + c λ ) 1. 34) [ β 3 c 4µ λ cos c 1 sin 4µ λ + c sin 4µ λ 4µ λ ) λ ] [β 1 β + 16β 1µ β + 9β 3µ) + 16µ 13β + 18β 3µ)] 37348β3 3µ4 [ c 4µ λ 4µ λ cos c 1 sin ) λ 4µ λ 4µ λ ] 1. 35) + c sin 4 Soliton and periodic solutions for truncated nonlinear wave equation If Eq.1) is truncated in Ou 3 ), that is β 3 u 3 = 0 in Eq.8). Then Eq.8) reduce to u + β 1 u + β u = 0. 36) According to Step, we get m =. Therefore, we can write the solution of Eq.36) in the form u) = a 0 + a 1 G ) G) ) + b 1 G ) G) ) 1 + a G ) G) ) + b G ) G) ). 37) Substituting Eq.37) into Eq.36), collecting the coefficients of G /G) i i = 0, 1,, 3, 4,) and letting it be zero, we obtain the system b + a 0 β 1 + a 0β + a 1 b 1 β + a b β + b 1 λ + a 1 λµ + a µ = 0, b β + 6b µ = 0, b 1 b β + 10b λµ + b 1 µ = 0, bβ 1 + b 1β + a 0 b β + 4b λ + 8b µ + 3b 1 λµ = 0, b 1 β 1 + a 0 b 1 β + a 1 b β + 6b λ + b 1 λ + b 1 µ = 0, a 1 β 1 + a 0 a 1 β + a b 1 β + a 1 λ + a 1 µ + 6a λµ = 0, a β 1 + a 1β + a 0 a β + 3a 1 λ + 4a λ + 8a µ = 0, a 1 + a 1 a β + 10a λ = 0, 6a + a β = 0. c IJNS homepage:

7 188 International Journal of Nonlinear Science, Vol.15013), No., pp Solving this system by Mathematica, we obtain a 0 = β 1 6µ, a 1 = 6 β1 + 4µ, b 1 = 0, a = 6 β1, b = 0, λ = + 10β 1µ + 8µ, 38) β β β 5β µ a 0 = 6µ, a 1 = 6 4µ β1, b 1 = 0, a = 6 β1, b = 0, λ = + 10β 1µ + 8µ, 39) β β β 5β µ a 0 = 3β 1 44β 1 µ 156µ, a 1 = 0, b 1 = β 1 4µ)β 1 + 6µ) 3β 1 + 6µ) β 5β µ) β 5β µ), a = 0, b = 3β 1µ 44β 1 µ 156µ 3, λ = β 1 4µ), 40) β 5β µ) a 0 = β 1 6µ, a 1 = 0, b 1 = 6 µ β 1 + 4µ), β β a = 0, b = 6µ, β λ = µβ 1 4µ), 41) a 0 = 6µ, a 1 = 0, b 1 = 6 µ β 1 4µ), β β a = 0, b = 6µ, β λ = µβ 1 4µ), 4) a 0 = 0, a 1 = 0, b 1 = 7µ 3 β, a = 0, b = 6µ β, λ = µ, 43) where µ and c are arbitrary constants. By using Eq.38)-Eq.43), Eq.37) can be written as u) = β 1 6µ 6 β1 + 4µ G ) β β G) ) 6 G ) β G) ), 44) u) = 6µ 6 4µ β1 G ) β β G) ) 6 G ) β G) ), 45) u) = 3β 1 44β 1 µ 156µ β 5β µ) β 1 4µ)β 1 + 6µ) 3β 1 + 6µ) β 5β µ) G ) G) ) 1 + 3β 1µ 44β 1 µ 156µ 3 G ) β 5β µ) G) ), 46) u) = β 1 6µ 6 µ β 1 + 4µ) G ) β β G) ) 1 6µ G ) β G) ), 47) µ β 1 4µ) u) = 6µ β 6 u) = β 7µ 3 β G ) G) ) 1 6µ β G ) G) ), 48) G ) G) ) 1 6µ β G ) G) ). 49) Substituting the general solutions of Eq.6) into Eq.44), we can obtain the travelling wave solutions of Eq.36) as follows: When λ 4µ > 0, u) = β 1 6µ 6 β1 + 4µ λ 4µ [ c λ 4µ c 1 )cosh + c + c 1 )sinh β β λ 4µ c + c 1 )cosh + c c 1 )sinh 6 λ 4µ [ c c 1 )cosh β c + c 1 )cosh λ 4µ + c + c 1 )sinh λ 4µ + c c 1 )sinh λ 4µ λ 4µ λ 4µ λ 4µ ) λ ] ) λ ]. 50) IJNS for contribution: editor@nonlinearscience.org.uk

8 P. Guo et al: New Soliton and Periodic Solutions for Nonlinear Wave 189 When λ 4µ = 0, When λ 4µ < 0, u) = β 1 6µ 6 β1 + 4µ c β β c 1 + c λ ) 6 c β c 1 + c λ ). 51) u) = β 1 6µ 6 β1 + 4µ [ c 4µ λ cos c 1 sin β β 4µ λ + c sin 6 [ c cos β 4µ λ 4µ λ 4µ λ ) λ ] c 1 sin 4µ λ 4µ λ 4µ λ ) λ ]. 5) + c sin Substituting the general solutions of Eq.6) into Eq.45), we can obtain the travelling wave solutions of Eq.36) as follows: When λ 4µ > 0, u) = 6µ 6 4µ β1 λ 4µ [ β β When λ 4µ = 0, c λ 4µ c 1 )cosh λ 4µ c + c 1 )cosh 6 λ 4µ [ c c 1 )cosh β c + c 1 )cosh + c + c 1 )sinh + c c 1 )sinh λ 4µ + c + c 1 )sinh λ 4µ + c c 1 )sinh λ 4µ ) λ λ 4µ ] λ 4µ λ 4µ ) λ ]. 53) u) = 6µ 6 4µ β1 c β β c 1 + c λ ) 6 c β c 1 + c λ ). 54) When λ 4µ < 0, u) = 6µ 6 4µ β1 [ c 4µ λ cos c 1 sin β β 4µ λ + c sin 6 [ c cos β 4µ λ 4µ λ 4µ λ ) λ ] c 1 sin 4µ λ 4µ λ 4µ λ ) λ ]. 55) + c sin Substituting the general solutions of Eq.6) into Eq.46), we can obtain the travelling wave solutions of Eq.36) as follows: When λ 4µ > 0, u) = 3β 1 44β 1 µ 156µ β 5β µ) [ λ 4µ + 3β 1µ 44β 1 µ 156µ 3 λ 4µ [ β 5β µ) When λ 4µ = 0, u) = 3β 1 44β 1 µ 156µ β 5β µ) β 1 4µ)β 1 + 6µ) 3β 1 + 6µ) β 5β µ) c λ 4µ c 1 )cosh λ c + c 1 )cosh 4µ + c + c 1 )sinh + c c 1 )sinh c c 1 )cosh c + c 1 )cosh λ 4µ λ 4µ λ 4µ + c + c 1 )sinh λ 4µ + c c 1 )sinh ) λ ] 1 β 1 4µ)β 1 + 6µ) 3β 1 + 6µ) β 5β µ) c 1 + c λ ) 1 c + 3β 1µ 44β 1 µ 156µ 3 β 5β µ) λ 4µ λ 4µ c ) λ ]. 56) c 1 + c λ ). 57) IJNS homepage:

9 190 International Journal of Nonlinear Science, Vol.15013), No., pp When λ 4µ < 0, u) = 3β 1 44β 1 µ 156µ β 1 4µ)β 1 + 6µ) 3β 1 + 6µ) β 5β µ) β 5β µ) [ c 4µ λ cos c 1 sin 4µ λ + c sin + 3β 1µ 44β 1 µ 156µ 3 [ c cos β 5β µ) 4µ λ 4µ λ 4µ λ ) λ ] 1 c 1 sin 4µ λ + c sin 4µ λ 4µ λ ) λ ]. 58) Substituting the general solutions of Eq.6) into Eq.47), we can obtain the travelling wave solutions of Eq.36) as follows: When λ 4µ > 0, u) = β 1 6µ 6 µ β 1 + 4µ) λ 4µ [ c λ c 1 )cosh 4µ + c + c 1 )sinh β β λ 4µ c + c 1 )cosh When λ 4µ = 0, When λ 4µ < 0, 6µ λ 4µ [ β c c 1 )cosh c + c 1 )cosh λ 4µ + c c 1 )sinh + c + c 1 )sinh λ 4µ + c c 1 )sinh λ 4µ λ 4µ λ 4µ λ 4µ ) λ ] 1 ) λ ]. 59) u) = β 1 6µ 6 µ β 1 + 4µ) c β β c 1 + c λ ) 1 6µ c β c 1 + c λ ). 60) 4µ λ u) = β 1 6µ 6 µ β 1 + 4µ) [ c 4µ λ cos c 1 sin ) λ β β 4µ λ 4µ λ ] 1 + c sin 6µ [ c 4µ λ cos c 1 sin β 4µ λ + c sin 4µ λ 4µ λ ) λ ]. 61) Substituting the general solutions of Eq.6) into Eq.48), we can obtain the travelling wave solutions of Eq.36) as follows: When λ 4µ > 0, u) = 6µ 6 µ β 1 4µ) λ 4µ [ c λ c 1 )cosh 4µ + c + c 1 )sinh β β λ 4µ c + c 1 )cosh When λ 4µ = 0, 6µ λ 4µ [ β c c 1 )cosh c + c 1 )cosh λ 4µ + c c 1 )sinh + c + c 1 )sinh λ 4µ + c c 1 )sinh λ 4µ λ 4µ λ 4µ λ 4µ ) λ ] 1 ) λ ]. 6) u) = 6µ 6 µ β 1 4µ) c β β c 1 + c λ ) 1 6µ c β c 1 + c λ ). 63) IJNS for contribution: editor@nonlinearscience.org.uk

10 P. Guo et al: New Soliton and Periodic Solutions for Nonlinear Wave 191 When λ 4µ < 0, u) = 6µ 6 µ β 1 4µ) [ c 4µ λ cos c 1 sin β β 4µ λ 6µ [ β + c sin c cos 4µ λ 4µ λ 4µ λ ) λ ] 1 c 1 sin 4µ λ + c sin 4µ λ 4µ λ ) λ ]. 64) Substituting the general solutions of Eq.6) into Eq.49), we can obtain the travelling wave solutions of Eq.36) as follows: When λ 4µ > 0, u) = 7µ 3 λ 4µ [ c λ 4µ c 1 )cosh β λ 4µ c + c 1 )cosh 6µ λ 4µ [ c c 1 )cosh β When λ 4µ = 0, When λ 4µ < 0, + c + c 1 )sinh + c c 1 )sinh c + c 1 )cosh λ 4µ λ 4µ λ 4µ ) λ ] 1 + c + c 1 )sinh λ 4µ + c c 1 )sinh λ 4µ λ 4µ ) λ ]. 65) 7µ 3 c u) = β c 1 + c λ ) 1 6µ c β c 1 + c λ ). 66) u) = 7µ 3 [ c 4µ λ cos β 4µ λ 4µ λ c 1 sin ) λ 4µ λ ] 1 + c sin 6µ [ c 4µ λ cos c 1 sin β 4µ λ + c sin 4µ λ 4µ λ ) λ ]. 67) 5 Conclusions In this article, the G /G)-expansion method has been successfully implemented to find new traveling wave solutions for nonlinear wave equation in finite deformation elastic rod. We obtain some new traveling wave solutions include hyperbolic function solutions, trigonometric function solutions, rational solutions. The results show that the proposed method is reliable and effective and gives more solutions. This method can be also applied to other kinds of NLEEs. Acknowledgments This work was supported by the National Natural Science Foundation of China under Grant no and the Natural Science Foundation of Gansu Province of China under Grant no. 1014RJZA046. IJNS homepage:

11 19 International Journal of Nonlinear Science, Vol.15013), No., pp References [1] Z.T. Fu, S.K. Liu, S.D. Liu, Q. Zhao, New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations, Phys. Lett. A, 90001):7-76. [] J.H. He, X.H. Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30006): [3] D.J. Huang, H.Q. Zhang, Extended hyperbolic function method and new exact solitary wave solutions of Zakharov equations, Acta Phys. Sin, 53004): [4] A.M. Wazwaz, The extended tanh method for new soliton solutions for many forms of the fifth-order KdV equations, Appl. Math. Comput, ): [5] E.G. Fan, H.H. Dai, A direct approach with computerized symbolic computation for finding a series of traveling waves to nonlinear equations, Comput. Phys. Commun, ): [6] J.B. Li, J.H. Wu, H.P. Zhu, Travelling waves for an integrable higher order KdV type wave equations, Int. J. Bifurc. Chaos, 16006): [7] Y.D. Shang, Y. Huang, W.J. Yuan, The extended hyperbolic functions method and new exact solutions to the Zakharov equations, Appl. Math. Comput, 00008): [8] Y.R. Shi, P. Guo, K.P. Lü, W.S. Duan, Expansion method for modified Jacobi elliptic function and its application, Acta Phys. Sin, 53004): [9] M.L. Wang, X.Z. Li, J.L. Zhang, The G /G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 37008): [10] S. Zhang, W. Wang, J.L. Tong, A generalized G /G)-expansion method and its application to the +1)-dimensional Broer-Kaup equations. Appl. Math. Comput, 09009): [11] J. Pang, C.Q. Bian, L. Chao, A new auxiliary equation method for finding travelling wave solutions to KdV equation, Appl. Math. Mech, 31010): [1] Z.F. Liu, S.Y. Zhang, Solitary waves in finite deform ation elastic circular rod, Appl. Math. Mech, 7006): [13] Z.F. Liu, S.Y. Zhang, Nonlinear waves and periodic solution in finite deformation elastic rod, Acta Mech. Solida Sin, 19006):1-8. [14] Z.F. Liu, S.Y. Zhang, A nonlinear wave equation and exact periodic solutions in circular rod waveguide, Acta Phys. Sin, 55006): [15] Z.F. Liu, T.F. Wang, S.Y. Zhang, Study on propagation of nonlinear flexural waves in the beams, Chin. J. Theor. Appl. Mech, 3007): [16] S.Y. Zhang, Z.F. Liu, Three kinds of nonlinear-dispersive waves in finite deformation elastic rods, Appl. Math. Mech, 9008): IJNS for contribution: editor@nonlinearscience.org.uk

Envelope Periodic Solutions to Coupled Nonlinear Equations

Envelope Periodic Solutions to Coupled Nonlinear Equations Commun. Theor. Phys. (Beijing, China) 39 (2003) pp. 167 172 c International Academic Publishers Vol. 39, No. 2, February 15, 2003 Envelope Periodic Solutions to Coupled Nonlinear Equations LIU Shi-Da,

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

New Exact Solutions of Two Nonlinear Physical Models

New Exact Solutions of Two Nonlinear Physical Models Commun. Theor. Phys. Beijing China 53 00 pp. 596 60 c Chinese Physical Society and IOP Publishing Ltd Vol. 53 No. April 5 00 New Exact Solutions of Two Nonlinear Physical Models M.M. Hassan Mathematics

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Exact Two Waves Solutions with Variable Amplitude to the KdV Equation 1

Exact Two Waves Solutions with Variable Amplitude to the KdV Equation 1 International Mathematical Forum, Vol. 9, 2014, no. 3, 137-144 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.312238 Exact Two Waves Solutions with Variable Amplitude to the KdV Equation

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

New Applications of an Improved (G /G)-expansion Method to Construct the Exact Solutions of Nonlinear PDEs

New Applications of an Improved (G /G)-expansion Method to Construct the Exact Solutions of Nonlinear PDEs Freund Publishing House Ltd. International Journal of Nonlinear Sciences & Numerical Simulation (4): 7-8 00 New Applications of an Improved (G /G)-epansion Method to Construct the Eact Solutions of Nonlinear

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)

(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012) Acta Phys. Sin. Vol. 6, No. 5 () 553 (II) * (, 543 ) ( 3 ; 5 ),,,,,,,, :,,, PACS: 5.45. a, 45..Hj 3,, 5., /,,, 3 3 :,,, ;, (memory hereditary),,, ( ) 6 9 ( ) 3 ( ) 6 3.,, Deng 4,5,,,,, * ( : 758,936),

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Empirical best prediction under area-level Poisson mixed models

Empirical best prediction under area-level Poisson mixed models Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

New Soliton-like Solutions and Multi-soliton Structures for Broer Kaup System with Variable Coefficients

New Soliton-like Solutions and Multi-soliton Structures for Broer Kaup System with Variable Coefficients Commun. Theor. Phys. (Beijing, China) 44 (005) pp. 80 806 c International Academic Publishers Vol. 44, No. 5, November 15, 005 New Soliton-like Solutions and Multi-soliton Structures for Broer Kaup System

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Tutorial problem set 6,

Tutorial problem set 6, GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant

Διαβάστε περισσότερα

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

Symmetry Reduction of (2+1)-Dimensional Lax Kadomtsev Petviashvili Equation

Symmetry Reduction of (2+1)-Dimensional Lax Kadomtsev Petviashvili Equation Commun. Theor. Phys. 63 (2015) 136 140 Vol. 63, No. 2, February 1, 2015 Symmetry Reduction of (2+1)-Dimensional Lax Kadomtsev Petviashvili Equation HU Heng-Chun ( ), 1, WANG Jing-Bo ( ), 1 and ZHU Hai-Dong

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices Lanzos and iorthogonalization methods for eigenvalues and eigenvetors of matries rolem formulation Many prolems are redued to solving the following system: x x where is an unknown numer А a matrix n n

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

High order interpolation function for surface contact problem

High order interpolation function for surface contact problem 3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300

Διαβάστε περισσότερα