ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών"

Transcript

1 ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων

2 ΣΥΛΛΟΓΙΣΜΟΣ-ΕΠΑΓΩΓΗ (DEDUCTION INDUCTION) Ο Αριστοτέλης δίδαξε ότι κάθε πεποίθηση προέρχεται είτε από συλλογισμό είτε από επαγωγή (Αναλυτικά Πρότερα, Βιβλίο 2, Κεφαλαίο 23) Η αποδάσωση προκαλεί αύξηση του συντελεστή απορροής Δεδομένο Μοντέλο Συλλογισμός Deduction Αναμενόμενα δεδομένα Η πλημμυρική απορροή αυξάνεται με την αποδάσωση Η πλημμυρική απορροή αυξάνεται με την αποδάσωση Επαγωγικό Μοντέλο Επαγωγή Induction Παρατηρημένα δεδομένα Έχει παρατηρηθεί ότι σε αποδασωμένες λεκάνες αυξάνεται η πλημμυρική απορροή ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ Δεδομένα (γεγονότα, φαινόμενα) Συλλογισμός Deduction Επαγωγή Induction Συλλογισμός Deduction Επαγωγή Induction Υπόθεση (εικασία, θεωρία, μοντέλο) ΠΡΟΣΔΙΟΡΙΣΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ

3 ΣΧΕΣΗ ΤΕΧΝΙΚΗΣ ΥΔΡΟΛΟΓΙΑΣ ΚΑΙ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ Οι περισσότερες μέθοδοι της τεχνικής υδρολογίας βασίζονται στη θεωρία πιθανοτήτων και τη στατιστική δεδομένου ότι: Η τύχη είναι άμεσα συνδεδεμένη με τα υδρολογικά φαινόμενα (πλημμύρες, ξηρασίες) με αποτέλεσμα να περιγράφονται σε μικρό ή μεγάλο βαθμό από τη θεωρία των πιθανοτήτων Η τεχνική υδρολογία στηρίζεται σε μετρήσεις φυσικών μεταβλητών που η επεξεργασία τους προϋποθέτει τη χρήση στατιστικών μεθόδων (έλεγχος των σφαλμάτων των μετρήσεων, συμπλήρωση ελλείψεων ιστορικών δειγμάτων και κυρίως επέκταση χρονοσειρών) Η λήψη αποφάσεων για το σχεδιασμό και τη βέλτιστη λειτουργία των υδραυλικών έργων και των υδατικών συστημάτων γενικότερα, γίνεται πάντοτε υπό καθεστώς αβεβαιότητας, η οποία μπορεί να ποσοτικοποιηθεί με την θεωρία των πιθανοτήτων Σημειώνεται ότι η χρήση των πιθανοτήτων δεν μπορεί να υποκαταστήσει την έλλειψη μετρήσεων των υδρολογικών μεταβλητών ή την έλλειψη αξιοπιστίας σε αυτές, χωρίς τις οποίες είναι αδύνατη η εφαρμογή οποιασδήποτε προσέγγισης.

4 Χρονική κλίμακα ΦΙΛΟΣΟΦΙΑ Προσδιοριστική - Στατιστική - Στοχαστική προσέγγιση Προσέγγιση της απορροής Προσδιοριστική Στατιστική Στοχαστική Χωρική κλίμακα Ικανοποιητική μοντελοποίηση Ανεπαρκής μοντελοποίηση

5 ΜΕΓΕΘΥΝΣΗ ΔΙΑΤΑΡΑΧΩΝ ΣΤΗ ΧΡΟΝΙΚΗ ΕΞΕΛΙΞΗ ΕΝΟΣ ΜΗ ΓΡΑΜΜΙΚΟΥ ΦΑΙΝΟΜΕΝΟΥ Προσδιοριστική - Στατιστική προσέγγιση Σύστημα που περιγράφεται μόνο από τη μεταβλητή X t από τη σχέση: X t =k*x t-1 *(1-x t-1 ) όπου t ο χρόνος Χρονική εξέλιξη Χ1 t, X2 t Με ελάχιστα διαφορετικές αρχικές συνθήκες X1 o =.661 X2 o =.66 και για k=3.7 Χρονική εξέλιξη Χ1 t -X2 t

6 ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΙΓΜΑΤΟΣ Σχήμα στατιστικών επεξεργασιών ΠΛΗΘΥΣΜΟΣ Ν Π Δειγματοληψία ΑΠΑΝΤΗΣΗ ΕΡΩΤΗΜΑΤΩΝ ΣΧΕΤΙΚΩΝ ΜΕ ΤΟΝ ΠΛΗΘΥΣΜΟ Τι πιθανότητα έχει να εμφανιστεί μια τιμή σε συγκεκριμένο διάστημα Σε τι τιμή αντιστοιχεί κάποια πιθανότητα ΔΕΙΓΜΑ (Ν Δ < Ν Π ) Συμπύκνωση πληροφορίας Εκτίμηση πιθανοτικών μεγεθών ΣΤΑΤΙΣΤΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΔΕΙΓΜΑΤΟΣ Μέση τιμή Τυπική απόκλιση Συντελεστής διασποράς Συντελεστής ασυμμετρίας Μοντελοποίηση ΠΡΟΣΑΡΜΟΓΗ ΘΕΩΡΗΤΙΚΩΝ ΚΑΤΑΝΟΜΩΝ Συναρτήσεις κατανομής και πυκνότητας πιθανότητας Επιλογή θεωρητικής κατανομής Στατιστικές δοκιμές καταλληλότητας

7 ΜΕΓΕΘΟΣ ΣΥΝΟΠΤΙΚΗ ΠΑΡΑΣΤΑΣΗ ΔΕΙΓΜΑΤΟΣ ΜΕΓΙΣΤΗ ΤΙΜΗ ΑΝΩ ΤΕΤΑΡΤΗΜΟΡΙΟ (Χ.75 ) ΔΙΑΤΕΤΑΡΤΗΜΟΡΙΑΚΟ ΕΥΡΟΣ (Χ.75 -Χ.25 ) ΔΙΑΜΕΣΟΣ ΤΙΜΗ (Χ.5 ) ΚΑΤΩ ΤΕΤΑΡΤΗΜΟΡΙΟ (Χ.25 ) 1.5*(Χ.75 -Χ.25 ) ΕΩΣ 3* (Χ.75 -Χ.25 ) ΕΛΑΧΙΣΤΗ ΤΙΜΗ Χ ΕΞΩΤΕΡΙΚΗ ΤΙΜΗ > 3* (Χ.75 -Χ.25 ) ΜΑΚΡΙΝΗ ΕΞΩΤΕΡΙΚΗ ΤΙΜΗ

8 ΣΤΑΤΙΣΤΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΔΕΙΓΜΑΤΟΣ ΠΕΡΙΓΡΑΦΗ ΣΥΜΒΟΛΙΣΜΟΣ - ΣΧΕΣΗ n Μέση τιμή (ροπή τάξης 1) X i i 1 x n Τυπική απόκλιση n ( Xi x) i 1 sx n 1 Διασπορά (κεντρική ροπή τάξης 2) 2 s x Συντελεστής διασποράς sx x Τρίτη ροπή Τέταρτη ροπή Συντελεστής ασυμμετρίας Συντελεστής κύρτωσης Μέγιστη τιμή Ελάχιστη τιμή C k x C s x n ( 3 ) i 1 x n ( 4 ) i 1 x ( X x) i n ( X x) i n ( 3 ) 2 x n ( 2 ) 3 / 2 ( ) ( n 1) ( n 2 ) x 3 ( 4 ) n * x ( n 1) * ( n 2 ) * ( n 3 ) * n M. T. max{ X 1, X 2 i 1 3 4,..., X E. T. min{ X, X,..., X } i n Χ1..Χn : Οι τιμές της μεταβλητής n : Αριθμός δεδομένων δείγματος n n } ( 2 ) x

9 Συχνότητα (%) Απόλυτη συχνότητα Αθροιστική συχνότητα (%) Παροχή (m3/s) Συχνότητα (%) Απόλυτη συχνότητα 4 ΣΤΑΤΙΣΤΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΔΕΙΓΜΑΤΟΣ ΧΡΟΝΙΚΗ ΕΞΕΛΙΞΗ 12 4 ΙΣΤΟΓΡΑΜΜΑ ΑΠΟΛΥΤΗΣ ΣΥΧΝΟΤΗΤΑΣ ΙΣΤΟΓΡΑΜΜΑ ΣΧΕΤΙΚΗΣ ΣΥΧΝΟΤΗΤΑΣ Χρόνος (έτη) 4 ΙΣΤΟΓΡΑΜΜΑ ΑΠΟΛΥΤΗΣ ΣΥΧΝΟΤΗΤΑΣ ΙΣΤΟΓΡΑΜΜΑ ΣΧΕΤΙΚΗΣ ΣΥΧΝΟΤΗΤΑΣ Ετήσια παροχή (m 3 /s) Ετήσια παροχή (m 3 /s) ΑΘΡΟΙΣΤΙΚΟ ΙΣΤΟΓΡΑΜΜΑ Ετήσια παροχή (m 3 /s) Ετήσια παροχή (m 3 /s) Ετήσια παροχή (m 3 /s)

10 Ετήσια παροχή (m 3 /s) Ετήσια παροχή (m 3 /s) Αθροιστική συχνότητα (%) Αθροιστική συχνότητα (%) 1 8 ΕΜΠΕΙΡΙΚΗ ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ ΕΜΠΕΙΡΙΚΗ ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ ΣΤΑΤΙΣΤΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΔΕΙΓΜΑΤΟΣ Ετήσια παροχή (m 3 /s) 3 35 Ετήσια παροχή (m 3 /s) ΠΡΟΣΑΡΜΟΓΗ ΣΥΝΑΡΤΗΣΗΣ ΠΥΚΝΟΤΗΤΑΣ ΠΡΟΣΑΡΜΟΓΗΠΙΘΑΝΟΤΗΤΑΣ ΣΥΝΑΡΤΗΣΗΣ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Ιστόγραμμα σχετικής συχνότητας ΠΡΟΣΑΡΜΟΓΗ ΣΥΝΑΡΤΗΣΗΣ ΚΑΤΑΝΟΜΗΣ ΠΡΟΣΑΡΜΟΓΗ Αθροιστικό ΣΥΝΑΡΤΗΣΗΣ ιστόγραμμα ΚΑΤΑΝΟΜΗΣ Αθροιστική συχνότητα (%) Αθροιστική συχνότητα (%)

11 ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ Χ τυχαία μεταβλήτη Συνάρτηση κατανομής (πιθανότητα μη υπέρβασης) H πιθανότητα η τυχαία μεταβλητή να είναι μικρότερη ή ίση της δεδομένης τιμής x F X ( x) F X ( P( X ) F x) X ( x) F X ( ) 1 Πιθανότητα υπέρβασης H πιθανότητα η τυχαία μεταβλητή να είναι μεγαλύτερη της δεδομένης τιμής x F 1X P( X x) 1 F X ( x) Συνάρτηση πυκνότητας πιθανότητας f X ( X ) dfx ( x) dx

12 ΥΨΟΣ ΒΡΟΧΗΣ (mm) ΥΨΟΣ ΒΡΟΧΗΣ (mm) ΕΜΠΕΙΡΙΚΗ ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ FX ( x) Ν: το σύνολο των στοιχείων του δείγματος n x : o αριθμός των τιμών του δείγματος που δεν υπερβαίνουν την τιμή χ n x N F x (8)=18/25=.72=72% F 1 (8)=7/25=.28=28% Όμως: F x (1)=25/25=1=1% F 1 (1)=/25==% F X ( x) Για αυτό: N n x 1

13 Συνάρτηση Πυκνότητας Πιθανότητας Συνάρτηση Πυκνότητας Πιθανότητας ΕΠΙΔΡΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΔΕΙΓΜΑΤΟΣ Συνάρτηση Πυκνότητας Πιθανότητας Συνάρτηση Πυκνότητας Πιθανότητας ΕΠΙΔΡΑΣΗ ΜΕΣΗΣ ΤΙΜΗΣ Μέση τιμή 1 < Μέση τιμή 2 Τυπική απόκλιση 1 = Τυπική αποκλιση 2 Συντελεστής ασυμμετρίας 1 = Συντελεστή ασυμμετρίας 2 = Συντελεστής κύρτωσης 1 = Συντελεστη κύρτωσης 2 ΕΠΙΔΡΑΣΗ ΤΥΠΙΚΗΣ ΑΠΟΚΛΙΣΗΣ Μέση τιμή 1 =Μέση τιμή 2 Τυπική απόκλιση 1 < Τυπική αποκλιση 2 Συντελεστής ασυμμετρίας 1 = Συντελεστή ασυμμετρίας 2 = Συντελεστής κύρτωσης 1 = Συντελεστη κύρτωσης 2 Τιμές μεταβλητής Τιμές μεταβλητής ΕΠΙΔΡΑΣΗ ΣΥΝΤΕΛΕΣΤΗ ΑΣΥΜΜΕΤΡΙΑΣ Μέση τιμή 1 = Μέση τιμή 2 Τυπική απόκλιση 1 = Τυπική αποκλιση 2 Συντελεστής ασυμμετρίας 1 = -Συντελεστή ασυμμετρίας 2 Συντελεστής κύρτωσης 1 = Συντελεστη κύρτωσης 2 ΕΠΙΔΡΑΣΗ ΣΥΝΤΕΛΕΣΤΗ ΚΥΡΤΩΣΗΣ Μ.Τ. 1 = Μ.Τ. 2 Τ.Α. 1 = Τ.Α. 2 Σ.Α. 1 = Σ.Α. = Συντελεστής κύρτωσης 5 Συντελεστής ασυμμετρίας > Συντελεστής ασυμμετρίας < Συντελεστής κύρτωσης 2 Συντελεστής κύρτωσης 3 Τιμές μεταβλητής Τιμές μεταβλητής

14 ΠΕΡΙΟΔΟΣ ΕΠΑΝΑΦΟΡΑΣ - ΔΙΑΚΙΝΔΥΝΕΥΣΗ Περίοδος επαναφοράς,τ μιας δεδομένης τιμής x της τυχαίας μεταβλητής Χ είναι ο μέσος αριθμός χρονικών διαστημάτων (εν προκειμένω υδρολογικών ετών) που μεσολαβεί μεταξύ 2 διαδοχικών εμφανίσεων της τυχαίας μεταβλητής με μέγεθος μεγαλύτερο ή ίσο της δεδομένης τιμής x. Πιθανότητα υπέρβασης σε ένα έτος: Πιθανότητα μη υπέρβασης σε ένα έτος: Πιθανότητα μη υπέρβασης σε n έτη: F 1 =1/Τ F=1-F 1 =(1-1/Τ) (1-1/Τ) n Διακινδύνευση είναι η πιθανότητα R να πραγματοποιηθεί μέσα σε n έτη τιμή που αντιστοιχεί σε περίοδο επαναφοράς Τ. Πιθανότητα υπέρβασης σε n έτη (Διακινδύνευση): R=1-(1-1/Τ) n Παράδειγμα Τ=5 έτη, n=1 έτη R=1-(1-1/5) 1 =.18=18%

15 Ετήσια παροχή (m 3 /s) ΠΡΟΣΑΡΜΟΓΗ ΘΕΩΡΗΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΑΤΑΝΟΜΗΣ Αθροιστική πιθανότητα (%)

16 25 ΦΙΛΟΣΟΦΙΑ Φειδωλία (Parsimony) και Αποτελεσματικότητα (Efficiency) Παρατηρημένα δεδομένα Y Προσαρμογή Υ=f(X): 1. Συνάρτησης 5 ου βαθμου 2. Συνάρτησης 1 ου βαθμου X Υ=.38*Χ 5-4.2*Χ *Χ *Χ *Χ Υ=3.6*Χ+.8

17 ΦΙΛΟΣΟΦΙΑ Φειδωλία (Parsimony) και Αποτελεσματικότητα (Efficiency) Πρόβλεψη συνάρτησης 5 ου βαθμού Για Χ=1.5 Υ=2.43 Για Χ=4.5 Υ= Για Χ=5.5 Υ=55.6 Για Χ=6. Υ=

18 Συνάρτηση Πυκνότητας Πιθανότητας ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜH Συνάρτηση Κατανομής f ( x) 2 1 e x.5*( 2 ) F( x) 1 2 x 1 x 2 ( ) 2 e xdx x( x( ) ) max min x( x( ) ) z z (1 (1 )/ 2 )/ 2 S S T T Όρια εμπιστοσύνης S T ˆ 1 ( T) 2 2 K ( T) Z(1 1/ T ) S T η τυπική απόκλιση του x T Z (1+α)/2 η μεταβλητή της τυποποιημένης κανονικής κατανομής όταν το επίπεδο είναι α% ˆ N η τυπική απόκλιση του δείγματος ο αριθμός των παρατηρήσεων του δείγματος

19 Βήματα Προσαρμογής Κανονικής Κατανομής 1. Εύρεση στατιστικών χαρ/κών δείγματος (μέση τιμή, τυπική απόκλιση). 2. Κατάταξη δείγματος σε φθίνουσα σειρά και αρίθμηση των παρατηρήσεων. 3. Προσδιορισμός Περιόδου Επαναφοράς από τον τύπο του Weibull T=(N+1)/m. 4. Υπολογισμός πιθανότητας μη υπέρβασης F = 1-1/T (εμπειρική). 5. Εύρεση τυποποιημένης μεταβλητής Ζ από πίνακα για κάθε F. 6. Εκτίμηση τιμών μεταβλητής από τα Ζ. X x Z * 7. Σχεδίαση θεωρητικής κατανομής και δείγματος με τα Ζ στον οριζόντιο άξονα. 8. Έλεγχος x 2 για την καταλληλότητα της κατανομής. S x

20 ΑΠΟΣΠΑΣΜΑ ΠΙΝΑΚΑ ΚΑΝΟΝΙΚΗΣ ΚΑΤΑΝΟΜΗΣ

21 Αθροιστική συνάρτηση κατανομής F(x) (%) για Ζ 3.9

22 Αθροιστική συνάρτηση κατανομής F(x) (%) για -3.9 Ζ -.1

23 ΡΥΘΜΙΣΗ ΚΑΤΑΝΟΜΩΝ Κανονική κατανομή Σε δείγμα τιμών Χi με μέση τιμή μ και τυπική απόκλιση σ η παράμετρος z=(xi-μ)/σ ακολουθεί κανονική κατανομή με μ=, σ=1 (τυπική κανονική κατανομή) Δείγμα έχει μ=1, σ=5 και ακολουθεί κανονική κατανομή Ποια είναι η περίοδος επαναφοράς Τ της τιμής Χi=15 z=(15-1)/5=1 Ποια είναι η τιμή Χi που αντιστοιχεί σε περίοδο επαναφοράς Τ = 1.5 έτη F=1-(1/1.5)=,333 F=84,1% Πίνακας (,1) z=1, F=,8413 F=33.3% Πίνακας (,1) Για F= z=.43 Για F=.333 z=-.43 z=1 Τ=1/(1-,8413) 6 έτη z=-.43 (Xi-1)/5=-.43 άρα Xi=7.85

24 Ετήσια παροχή (m3/s) ΧΑΡΤΙ ΚΑΝΟΝΙΚΗΣ ΚΑΤΑΝΟΜΗΣ 4 Περίοδος επαναφοράς (έτη) Πιθανότητα υπέρβασης (%) 99.8% 97.7% 84% 5% 16% 2.3%.2% Ανηγμένη μεταβλητή Gauss.2% 2.3% 16% 5% 84% 97.7% 99.8% Συνάρτηση κατανομής (%)

25 Βήματα ελέγχου x 2 1. Υπολογίζονται οι παράμετροι της κατανομής που πρόκειται να προσαρμοστεί (για την κανονική κατανομή r=2, μ και σ). 2. Χωρίζεται το δείγμα των στοιχείων σε k ισοπίθανες κλάσεις (κριτήριο συνήθως να έχω τουλάχιστον 5 στοιχεία σε κάθε κλάση). 3. Υπολογίζεται ο βαθμός ελευθερίας της κατανομής ν= k-r Υπολογίζεται η πιθανότητα (p i ) μίας τυχαίας τιμής της κατανομής x 2 να ανήκει σε κάθε κλάση (γι αυτό χρειάζεται τουλάχιστον μία παρατήρηση σε κάθε κλάση). 5. Προσδιορίζεται το Z που αντιστοιχεί στην αθροιστική πιθανότητα κάθε κλάσης και τα όρια των κλάσεων. 6. Υπολογίζεται ο αναμενόμενος (θεωρητικός) αριθμός παρατηρήσεων για κάθε κλάση με τη συγκεκριμένη κατανομή, E i = n*p i (πολλαπλασιάζεται το p i με το μέγεθος του δείγματος n).

26 Βήματα ελέγχου x 2 7. Γίνεται καταμέτρηση των πραγματικών παρατηρήσεων N i από το δείγμα που πέφτουν μέσα σε κάθε κλάση. 8. Υπολογίζεται η στατιστική παράμετρος, D (όταν η τιμής είναι πολύ μεγάλη, αναμένεται ότι η κατανομή δεν προσαρμόζεται καλά στη x 2 ). D = Σ[(N i -E i ) 2 / Ε i ] 7. Συγκρίνεται η τιμή της παραμέτρου D με την τιμή που προκύπτει από τους πίνακες x 2 για το συγκεκριμένο ν και συγκεκριμένες πιθανότητες - επίπεδα σημαντικότητας α x 2 α. 8. Η μηδενική υπόθεση (ότι το δείγμα ακολουθεί τη θεωρητική κατανομή στην οποία προσαρμόστηκε (π.χ. την κανονική)) γίνεται δεκτή σε κάποιο επίπεδο σημαντικότητας α, αν D< x 2 α.

27 Ετήσια παροχή (m 3 /s) ΔΟΚΙΜΗ x 2 για κανονική κατανομή Αριθμός κλάσεων (k): 5 Αριθμός παραμέτρων κανονικής κατανομής: 2 4 Βαθμοί ελευθερίας κατανομής χ 2 : Πιθανότητα κλάσης (p i ): 1/5=2% Θεωρητικός αριθμός σημείων κλάσης (Ν*p i ): 3*.2= Αριθμός σημείων ανά κλάση (Ν i ) Αθροιστική πιθανότητα (%) 5 Κλάση N i N*p i =Ε i (N i -Ε i ) 2 /Ε i,167,167 D =,33 2 % 2 % 2 % 2 % 2 %

28 Πιθανότητα (%) 1 ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΗΣ ΥΠΟΘΕΣΗΣ 1. Η μεταβλητή χ 2 ακολουθεί την κατανομή χ 2 με 2 βαθμούς ελευθερίας 2. Από τα δεδομένα του δείγματος υπολογίζεται η στατιστική παράμετρος D 3. Η μηδενική υπόθεση (Η ) ότι το δείγμα ακολουθεί κανονική κατανομή γίνεται δεκτή σε κάποιο επίπεδο σημαντικότητας α αν D<χ 2 α D =,33 Q.1 = 4.6 Q.5 = 6. Q.1 = Μεταβλητή χ2 Το D (.33) είναι μικρότερο από το χ 2 α για τα συνήθη επίπεδα σημαντικότητας 1% (9.2), 5% (6.), 1% (4.6). Άρα η μηδενική υπόθεση (Η ) ότι το δείγμα ακολουθεί κανονική κατανομή γίνεται δεκτή στα συνήθη επίπεδα σήμαντικότητας.

29 ΠΙΝΑΚΕΣ ΚΑΤΑΝΟΜΗΣ x 2 Μ.Α. Μιμίκου, Τεχνολογία υδατικών πόρων, Σελίδες

30 ΠΙΝΑΚΕΣ ΚΑΤΑΝΟΜΗΣ x 2

31 ΕΦΑΡΜΟΓΗ: Αποτελέσματα δοκιμής x 2 (5 κλάσεις) a=1% a=5% a=1% a Παράμετρος D Κανονική ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 11,5% 4,33 Κανονική (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 11,5% 4,33 Λογαριθμοκανονική ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 26,4% 2,67 Galton ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΑΠΟΡΡΙΨΗ 8,3% 3, Εκθετική ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 16,% 3,67 Εκθετικήl (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 13,5% 4, Γάμμα ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 31,1% 2,33 Pearson III ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΑΠΟΡΡΙΨΗ 8,3% 3, Log Pearson III ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 12,7% 2,33 ΑΤ1-Max (Gumbel) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 31,1% 2,33 ΑΤ2-Max ΔΕΝ ΑΠΟΡ. ΑΠΟΡΡΙΨΗ ΑΠΟΡΡΙΨΗ 1,6% 8,33 ΑΤ1-Min (Gumbel) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 11,5% 4,33 ΑΤ3-Min (Weibull) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 43,5% 1,67 ΓΑΤ-Max ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 12,7% 2,33 ΓΑΤ-Min ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 19,7% 1,67 Pareto ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 31,7% 1, ΓΑΤ-Max (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 12,7% 2,33 ΓΑΤ-Min (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 31,7% 1, ΑΤ1-Max (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 31,1% 2,33 ΑΤ2-Max (L-Ροπές) ΑΠΟΡΡΙΨΗ ΑΠΟΡΡΙΨΗ ΑΠΟΡΡΙΨΗ,9% 9,33 ΑΤ1-Min ( L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 11,5% 4,33 ΑΤ3-Min ( L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 43,5% 1,67 Pareto (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 12,7% 2,33 ΓΑΤ-Max (κ καθ.) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΑΠΟΡΡΙΨΗ 9,7% 4,67 ΓΑΤ-Min (κ καθ.) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 22,3% 3, ΓΑΤ-Max (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 26,4% 2,67 ΓΑΤ-Min (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 22,3% 3,

32 ΕΦΑΡΜΟΓΗ: Αποτελέσματα δοκιμής x 2 (6 κλάσεις) a=1% a=5% a=1% a Παράμετρος D Κανονική ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 57,2% 2, Κανονική (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 57,2% 2, Λογαριθμοκανονική ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΑΠΟΡΡΙΨΗ 5,5% 7,6 Galton ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 36,8% 2, Εκθετική ΔΕΝ ΑΠΟΡ. ΑΠΟΡΡΙΨΗ ΑΠΟΡΡΙΨΗ 4,6% 8, Εκθετικήl (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 13,3% 5,6 Γάμμα ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 15,8% 5,2 Pearson III ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 36,8% 2, Log Pearson III ΔΕΝ ΑΠΟΡ. ΑΠΟΡΡΙΨΗ ΑΠΟΡΡΙΨΗ 5,% 6, ΑΤ1-Max (Gumbel) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 15,8% 5,2 ΑΤ2-Max ΔΕΝ ΑΠΟΡ. ΑΠΟΡΡΙΨΗ ΑΠΟΡΡΙΨΗ 2,7% 9,2 ΑΤ1-Min (Gumbel) ΔΕΝ ΑΠΟΡ. ΑΠΟΡΡΙΨΗ ΑΠΟΡΡΙΨΗ 4,6% 8, ΑΤ3-Min (Weibull) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 84,9%,8 ΓΑΤ-Max ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 36,8% 2, ΓΑΤ-Min ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 67,%,8 Pareto ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 11,1% 4,4 ΓΑΤ-Max (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 11,1% 4,4 ΓΑΤ-Min (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 2,2% 3,2 ΑΤ1-Max (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 15,8% 5,2 ΑΤ2-Max (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΑΠΟΡΡΙΨΗ ΑΠΟΡΡΙΨΗ 3,8% 8,4 ΑΤ1-Min (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 15,8% 5,2 ΑΤ3-Min (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 84,9%,8 Pareto (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 11,1% 4,4 ΓΑΤ-Max (κ καθ.) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 11,2% 6, ΓΑΤ-Min (κ καθ.) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 42,3% 2,8 ΓΑΤ-Max (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 22,1% 4,4 ΓΑΤ-Min (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 57,2% 2,

33 ΔΟΚΙΜΗ Kolmogorov-Smirnov Βασίζεται στη διαφορά μεταξύ της αθροιστικής συνάρτησης κατανομής F x (x) και του παρατηρημένου αθροιστικού ιστογράμματος F*(x) F*(Χ (i) )=i/n όπου είναι η i μεγαλύτερη παρατηρημένη τιμή σε δείγμα με μέγεθος n Από τα δεδομένα του δείγματος υπολογίζεται η στατιστική παράμετρος D D max i n 1 F *( X ( i) ) Fx( X max Fx( X Η μηδενική υπόθεση (Η ) ότι το δείγμα ακολουθεί κανονική κατανομή γίνεται δεκτή σε κάποιο επίπεδο σημαντικότητας α αν D<c ( i) ) i n 1 i n ( i) ) ΤΙΜΕΣ ΠΑΡΑΜΕΤΡΟΥ c Μέγεθος α=.1 α=.5 α=.1 δείγματος >4 1.22/n 1/2 1.36/n 1/2 1.63/n 1/2

34 ΕΦΑΡΜΟΓΗ: Αποτελέσματα δοκιμής Kolmogorov-Smirnov a=1% a=5% a=1% a DMax Κανονικήl ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 96,9%,8 Κανονική (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 96,9%,8 Λογαριθμοκανονική ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 78,1%,11 Galton ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 99,%,7 Εκθετική ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 18,2%,19 Εκθετικήl (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 49,2%,14 Γάμμα ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 98,5%,8 Pearson III ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 99,4%,7 Log Pearson III ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 55,1%,14 ΑΤ1-Max (Gumbel) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 95,5%,9 ΑΤ2-Max ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΑΠΟΡΡΙΨΗ 5,%,24 ΑΤ1-Min (Gumbel) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 42,6%,15 ΑΤ3-Min (Weibull) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 1,%,6 ΓΑΤ-Max ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 99,%,7 ΓΑΤ-Min ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 1,%,6 Pareto ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 97,%,8 ΓΑΤ-Max (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 99,5%,7 ΓΑΤ-Min (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 99,2%,7 ΑΤ1-Max (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 99,2%,7 ΑΤ2-Max (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 2,5%,19 ΑΤ1-Min (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 42,6%,15 ΑΤ3-Min (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 99,9%,6 Pareto (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 97,5%,8 ΓΑΤ-Max (κ καθ.) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 54,7%,14 ΓΑΤ-Min (κ καθ.) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 76,2%,11 ΓΑΤ-Max (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 78,8%,11 ΓΑΤ-Min (L-Ροπές) ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. ΔΕΝ ΑΠΟΡ. 76,2%,11

35 99,95% 99,9% 99,8% 99,5% 99% 98% 95% 9% 8% 7% 6% 5% 4% 3% 2% 1% 5% 2% 1%,5%,2%,1%,5% ΕΦΑΡΜΟΓΗ Προσαρμογή κανονικής κατανομής Weibull Normal Δειγματικά όρια 95% Όρια διαστήματος εμπιστοσύνης ΚΑΝΟΝΙΚΗ 95% ΚΑΤΑΝΟΜΗ Πιθαν ότητα υπέρβασης (%) - κλίμακα: Καν ον ική καταν ομή

36 99,95% 99,9% 99,8% 99,5% ΜΕΣΕΣ ΕΤΗΣΙΕΣ ΠΑΡΟΧΕΣ Προσαρμογή 16 θεωρητικών κατανομών 99% 98% 95% 9% 8% 7% 6% 5% 4% 3% 2% 1% 5% 2% 1%,5%,2%,1%,5% Weibull Normal LogNormal Galton Exponential Gamma PearsonIII LogPearsonIII Gumbel Max EV2-Max Gumbel Min Weibull GEV Max GEV Min Pareto GEV-Max (k spec.) GEV-Min (k spec.) Πιθαν ότητα υπέρβασης (%) - κλίμακα: Καν ον ική καταν ομή Κανονική κατανομή (Gauss) Kατανομή Gumbel μεγίστων

37 x: τιμή της μεταβλητής μ: μέση τιμή σ: τυπική απόκλιση ΣΤΑΤΙΣΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΣΕ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Κανονική κατανομή NORMDIST(x ; μ ; σ ; TRUE) Επιστρέφει τη συνάρτηση κατανομής, F (από έως 1) x: τιμή της μεταβλητής μ: μέση τιμή σ: τυπική απόκλιση NORMDIST(x ; μ ; σ ; FALSE) Επιστρέφει τη συνάρτηση πυκνότητας πιθανότητας, f F: συνάρτηση κατανομής μ: μέση τιμή σ: τυπική απόκλιση NORMINV(F ; μ ; σ) Επιστρέφει την τιμή της μεταβλητής, x F: συνάρτηση κατανομής NORMSINV(F) Επιστρέφει την τιμή της τυποποιημένης μεταβλητής Z Z: τιμή της τυποποιημένης μεταβλητής NORMSDIST(Z) Επιστρέφει τη συνάρτηση κατανομής, F

38 ΣΤΑΤΙΣΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΣΕ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Κατανομή x 2 F 1 : πιθανότητα υπέρβασης n: βαθμοί ελευθερίας CHIINV(F 1 ; n) Επιστρέφει την τιμή της μεταβλητής x: τιμή της μεταβλητής n: βαθμοί ελευθερίας CHIDIST(x ; n) Επιστρέφει την πιθανότητα υπέρβασης (από έως 1)

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Δρ. Τακβόρ Σουκισιάν Κύριος Ερευνητής ΕΛΚΕΘΕ Forecasting is very dangerous, especially about the future --- Samuel Goldwyn 1 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 3-4 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 5] 3η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να φθάσουν

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΔΕΥΤΕΡΑ, 22 ΑΠΡΙΛΙΟΥ 201 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Περιγραφικοί παράµετροι ή περιγραφικά µέτρα Τα περιγραφικά µέτρα διακρίνονται σε: µέτρα θέσης των στατιστικών δεδο- µένων ή παράµετροι κεντρικής τάσης µέτρα διασποράς µέτρα ή συντελεστές

Διαβάστε περισσότερα

Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων

Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων ΣΗΜΕΙΩΣΕΙΣ Δ.Α.Π. Ν.Δ.Φ.Κ. ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ Τμηματικό e-mal : dap_ode@yahoo.gr www.dap-pape.gr

Διαβάστε περισσότερα

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή Η Κανονική Κατανομή H κανονική κατανομή (ormal dstrbuto) θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της, είναι βασικά δύο: ) Πολλές

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 2008 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 29.9.2008

Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 2008 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 29.9.2008 Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 8 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 9.9.8. [] Μια βιομηχανία τροφίμων προμηθεύεται νωπά κοτόπουλα από τρεις διαφορετικούς παραγωγούς Α, Β, Γ. Το % των κοτόπουλων

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑ 1 ο Τα δεδομένα της στήλης Grade (Αρχείο Excel, Φύλλο Ask1) αναφέρονται στη βαθμολογία 63 φοιτητών που έλαβαν μέρος σε

Διαβάστε περισσότερα

Κατανομές Απώλειας. Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος

Κατανομές Απώλειας. Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Κατανομές Απώλειας Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Απαγορεύεται η αναδημοσίευση, η αναπαραγωγή, ολική ή περιληπτική του περιεχομένου αυτού με οποιονδήποτε τρόπο χωρίς προηγούμενη γραπτή άδεια του

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α Πότε λέμε ότι η συνάρτηση είναι παραγωγίσιμη στο σημείο 0 του πεδίου ορισμού της; Α Αν οι συναρτήσεις και g είναι παραγωγίσιμες στο

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 2 Στην έξοδο λεκάνης απορροής µετρήθηκε το παρακάτω καθαρό πληµµυρογράφηµα (έχει αφαιρεθεί η βασική ροή):

ΑΣΚΗΣΗ 2 Στην έξοδο λεκάνης απορροής µετρήθηκε το παρακάτω καθαρό πληµµυρογράφηµα (έχει αφαιρεθεί η βασική ροή): ΑΣΚΗΣΗ 1 Αρδευτικός ταµιευτήρας τροφοδοτείται κυρίως από την απορροή ποταµού που µε βάση δεδοµένα 30 ετών έχει µέση τιµή 10 m 3 /s και τυπική απόκλιση 4 m 3 /s. Ο ταµιευτήρας στην αρχή του υδρολογικού

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

Υ ΡΟΛΟΓΙΚΗ ΜΕΛΕΤΗ ΛΕΚΑΝΗΣ ΞΗΡΙΑ ΜΑΓΝΗΣΙΑΣ

Υ ΡΟΛΟΓΙΚΗ ΜΕΛΕΤΗ ΛΕΚΑΝΗΣ ΞΗΡΙΑ ΜΑΓΝΗΣΙΑΣ Υ ΡΟΛΟΓΙΚΗ ΜΕΛΕΤΗ ΛΕΚΑΝΗΣ ΞΗΡΙΑ ΜΑΓΝΗΣΙΑΣ ΠΕΡΙΕΧΟΜΕΝΑ 1 Εισαγωγή 1 1.1 Αντικείµενο και διάρθρωση της µελέτης...1 1.2 Περιοχή µελέτης...1 1.2.1 Φυσιογραφικά χαρακτηριστικά...1 1.2.2 Γεωλογικά χαρακτηριστικά...1

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους;

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους; ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΖΗΤΗΜ Α 1 Ο Α1. Τι είναι το ραβδόγραµµα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα

Διαβάστε περισσότερα

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 4 Κανονική Κατανομή Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 4-4-1 Εισαγωγή Όσο το n αυξάνει, η διωνυμική κατανομή προσεγγίζει... n = 6 n = 1 n = 14 Binomial Distribution:

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ Υ ΡΟΛΟΓΙΑ. Κατακρηµνίσεις (2 η Άσκηση)

ΤΕΧΝΙΚΗ Υ ΡΟΛΟΓΙΑ. Κατακρηµνίσεις (2 η Άσκηση) ΤΕΧΝΙΚΗ Υ ΡΟΛΟΓΙΑ Κατακρηµνίσεις ( η Άσκηση) Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων ιάρθρωση ου Μαθήµατος Ασκήσεων Έλεγχος οµοιογένειας

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ Άσκηση 1 Οι βαθμοί 5 φοιτητών που πέρασαν το μάθημα της Στατιστικής ήταν: 6 5 7 5 9 5 6 6 8 10 8 5 6 7 5 6 5 7 8 9 5 6 7 5 8 i. Να κάνετε πίνακα κατανομής

Διαβάστε περισσότερα

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός 0 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παραπάνω φυλλάδιο φτιάχτηκε για να προσφέρει βοήθεια κυρίως στους μαθητές

Διαβάστε περισσότερα

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Περίληψη ιδακτορικής ιατριβής Τριχακης Ιωάννης Εργαστήριο

Διαβάστε περισσότερα

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη:

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη: 4. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ ΥΠΟ ΑΒΕΒΑΙΑ ΖΗΤΗΣΗ Στις περισσότερες περιπτώσεις η ζήτηση είναι αβέβαια. Οι περιπτώσεις αυτές διαφέρουν ως προς το μέγεθος της αβεβαιότητας. Δηλαδή εάν η αβεβαιότητα είναι περιορισμένη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2013 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2010-11 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεμάτων

Διαβάστε περισσότερα

Εισαγωγή στις Ηλεκτρικές Μετρήσεις

Εισαγωγή στις Ηλεκτρικές Μετρήσεις Εισαγωγή στις Ηλεκτρικές Μετρήσεις Σφάλματα Μετρήσεων Συμβατικά όργανα μετρήσεων Χαρακτηριστικά μεγέθη οργάνων Παλμογράφος Λέκτορας Σοφία Τσεκερίδου 1 Σφάλματα μετρήσεων Επιτυχημένη μέτρηση Σωστή εκλογή

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πιθανοτική Συλλογιστική Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Αβεβαιότητα πεποιθήσεων πράκτορας θεωρίας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ- ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Εργασία για το σεµινάριο «Στατιστική περιγραφική εφαρµοσµένη στην ψυχοπαιδαγωγική(β06σ03)» ΤΙΤΛΟΣ: «ΜΕΛΕΤΗ ΠΕΡΙΓΡΑΦΙΚΗΣ

Διαβάστε περισσότερα

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις. Μια μηχανή εμφιάλωσης κρασιού γεμίζει φιάλες του μισού κιλού με ποσότητα κρασιού η οποία είναι κανονική τυχαία μεταβλητή

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 2. Περιγραφική Στατιστική Βασικά είδη στατιστικής ανάλυσης 1. Περιγραφική στατιστική: περιγραφή του συνόλου των δεδοµένων (δείγµατος) 2. Συµπερασµατολογία: Παραγωγή συµπερασµάτων για τα

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΟΔΟΠΟΙΙΑΣ

ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΟΔΟΠΟΙΙΑΣ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΟΔΟΠΟΙΙΑΣ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΟΔΟΠΟΙΙΑΣ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΟΔΟΠΟΙΙΑΣ Τάφροι Οχετοί Δίκτυα ομβρίων Στραγγιστικά δίκτυα Ρείθρα Διευθετήσεις ποταμών και χειμάρρων ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΟΔΟΠΟΙΙΑΣ :ΟΧΕΤΟΙ ΥΔΡΑΥΛΙΚΑ

Διαβάστε περισσότερα

1. ΥΔΡΟΛΟΓΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Εξάμηνο: Κωδικός μαθήματος:

1. ΥΔΡΟΛΟΓΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Εξάμηνο: Κωδικός μαθήματος: ΕΞΑΜΗΝΟ Δ 1. ΥΔΡΟΛΟΓΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Εξάμηνο: 4 Κωδικός μαθήματος: ΖTΠO-4011 Επίπεδο μαθήματος: Υποχρεωτικό Ώρες ανά εβδομάδα Θεωρία Εργαστήριο Συνολικός αριθμός ωρών: 5 3 2 Διδακτικές Μονάδες

Διαβάστε περισσότερα

ιάρθρωση παρουσίασης 1. Ιστορικό διαχείρισης της λίµνης Πλαστήρα 2. Συλλογή και επεξεργασία δεδοµένων 3. Μεθοδολογική προσέγγιση

ιάρθρωση παρουσίασης 1. Ιστορικό διαχείρισης της λίµνης Πλαστήρα 2. Συλλογή και επεξεργασία δεδοµένων 3. Μεθοδολογική προσέγγιση Ανδρέας Ευστρατιάδης, υποψήφιος διδάκτορας Εθνικό Μετσόβιο Πολυτεχνείο Τοµέας Υδατικών πόρων Ποσοτική και ποιοτική θεώρηση της λειτουργίας του ταµιευτήρα Πλαστήρα Περιβαλλοντικές Επιπτώσεις από Υδραυλικά

Διαβάστε περισσότερα

2013-14 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΘΕΜΑΤΑ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΘΕΜΑΤΑ. http://cutemaths.wordpress.

2013-14 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΘΕΜΑΤΑ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΘΕΜΑΤΑ. http://cutemaths.wordpress. 3-4 ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΘΕΜΑΤΑ Βαγγέλης Α Νικολακάκης Μαθηματικός ttp://cutemats.wordpress.com/ ΛΙΓΑ ΛΟΓΙΑ Η παρούσα εργασία

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Αν το αποτέλεσμα ενός τυχαίου πειράματος είναι - ένας αριθμός R, τότε μπορεί να εκφραστεί με μία τ.μ. Χ R - αριθμοί R τότε μπορεί να εκφραστεί με ένα τ.δ. Χ

Διαβάστε περισσότερα

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE)

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE) ΔΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE) ΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE). Εισαγωγή Οι στατιστικές δοκιμασίες που μελετήσαμε μέχρι τώρα ονομάζονται παραμετρικές (paramtrc) διότι χαρακτηρίζονται από υποθέσεις σχετικές είτε για

Διαβάστε περισσότερα

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ Α Α Σχολικό βιβλίο σελ Α Σχολικό βιβλίο σελ 6 Α Σχολικό βιβλίο σελ 9 Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ // - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Περιεχόμενα Μαθήματος Εισαγωγή στο Πρόβλημα. Monte Carlo Εκτιμητές. Προσομοίωση. Αλυσίδες Markov. Αλγόριθμοι MCMC (Metropolis Hastings & Gibbs Sampling).

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΕΠΕΝΔΥΣΕΩΝ

ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΕΠΕΝΔΥΣΕΩΝ ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΕΠΕΝΔΥΣΕΩΝ Υπό ΘΕΟΔΩΡΟΥ ΑΡΤΙΚΗ, ΑΝΑΣΤΑΣΙΟΥ ΣΟΥΓΙΑΝΝΗ ΚΑΙ ΓΕΩΡΓΙΟΥ ΑΡΤ1ΚΗ Ανωτάτη Βιομηχανική Σχολή Πειραιά 1. ΕΙΣΑΓΩΓΗ Τα συνήθη κριτήρια αξιολόγησης επενδύσεων βασίζονται

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΕΞΕΤΑΣΤΙΚΗ ΣΕΠΤΕΜΒΡΙΟΥ (5-9-2005) ΟΜΑΔΑ Α ( 40% ) ΛΥΣΗ: ( 2 ) μόνο για αυτή την τιμή ισχύει

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΕΞΕΤΑΣΤΙΚΗ ΣΕΠΤΕΜΒΡΙΟΥ (5-9-2005) ΟΜΑΔΑ Α ( 40% ) ΛΥΣΗ: ( 2 ) μόνο για αυτή την τιμή ισχύει ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΕΞΕΤΑΣΤΙΚΗ ΣΕΠΤΕΜΒΡΙΟΥ 5-9-5 ΟΜΑΔΑ Α 4% Αν τα ενδεχόμενα Α, Β, Γ ενός δειγματικού χώρου Ω είναι ανεξάρτητα μπορούμε να πούμε το ίδιο για τα α A B, Γ β Α,Β Γ

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2006-07 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

ιαχείριση και επεξεργασία χρονοσειρών

ιαχείριση και επεξεργασία χρονοσειρών ΕΞΑΡΧΟΥ ΝΙΚΟΛΟΠΟΥΛΟΣ ΜΠΕΝΣΑΣΣΩΝ ΣΥΜΒΟΥΛΟΙ ΜΗΧΑΝΙΚΟΙ Ε.Π.Ε. ΛΑΖΑΡΙ ΗΣ & ΣΥΝΕΡΓΑΤΕΣ ΑΝΩΝΥΜΗ ΤΕΧΝΙΚΗ ΕΤΑΙΡΕΙΑ ΜΕΛΕΤΩΝ Α.Ε. ΓΕΩΘΕΣΙΑ ΣΥΜΒΟΥΛΟΙ ΑΝΑΠΤΥΞΗΣ Ε.Π.Ε. ιαχείριση και επεξεργασία χρονοσειρών Ι. Μαρκόνης

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των εφαρμοσμένων

Διαβάστε περισσότερα

ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes)

ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) Πολλά ΧΠ δεν µπορούν να αναπαρασταθούν αριθµητικά. Τα ΧΠ χαρακτηρίζονται συµµορφούµενα και µη-συµµορφούµενα. Τα ΧΠ τέτοιου είδους ονοµάζονται

Διαβάστε περισσότερα

1-3 10 1-3 6 3-5 40 3-5 30 5-7 20 5-7 20 7-9 20 7-9 30 9-11 8 9-11 10 11-13 2 11-13 4 Σύνολο 100 Σύνολο 100

1-3 10 1-3 6 3-5 40 3-5 30 5-7 20 5-7 20 7-9 20 7-9 30 9-11 8 9-11 10 11-13 2 11-13 4 Σύνολο 100 Σύνολο 100 1. (Εξεταστ. Φεβ. 2004) Μια µεγάλη εταιρία θέλει να εξετάσει εάν το εκπαιδευτικό πρόγραµµα που ακολουθήσανε οι 100 πωλητές της ήταν αποτελεσµατικό (δηλαδή εάν αυξήθηκαν οι πωλήσεις). Οι δύο παρακάτω πίνακες

Διαβάστε περισσότερα

ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ

ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ ΤΩΝ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ Επιλογή κειμένων των καθηγητών: Μ. GRAWITZ Καθηγήτρια Κοινωνιολογίας

Διαβάστε περισσότερα

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2 ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου Επααληπτικό Διαγώισμα Μαθηματικώ Γεικής Παιδείας Γ Λυκείου Θέμα A Α.α) Τι οομάζουμε συάρτηση και τι οομάζουμε πραγματική συάρτηση πραγματικής μεταβλητής; β) Τι λέγεται τιμή μιας συάρτησης f στο χ ; γ)

Διαβάστε περισσότερα

1.1. Η Χρησιμότητα της Στατιστικής

1.1. Η Χρησιμότητα της Στατιστικής ε ν ό τ η τ α 1 1.1. Η Χρησιμότητα της Στατιστικής Οι εφαρμογές των μεθόδων της στατιστικής είναι ευρείες. Πριν την αναφορά μας για τη χρησιμότητα της στατιστικής, είναι σκόπιμο να παραθέσουμε τους παρακάτω

Διαβάστε περισσότερα

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Γεσθημανή Μηντζιώρη MD, MSc, PhD Μονάδα Ενδοκρινολογίας της Αναπαραγωγής, Α Μαιευτική και Γυναικολογική

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΤΣΑΚΛΑΝΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ( ΕΠΑΛ Α )

ΦΡΟΝΤΙΣΤΗΡΙΟ ΤΣΑΚΛΑΝΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ( ΕΠΑΛ Α ) ΦΡΟΝΤΙΣΤΗΡΙΟ ΤΣΑΚΛΑΝΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ( ΕΠΑΛ Α ) ΘΕΜΑ Εξετάζουµε τις αθµολογίες ενός δείγµατος φοιτητών σε κάποιο διαγώνισµα και πήραµε τον πίνακα Χ i (αθ.) ν i f i % N i F i % 4

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεµάτων

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ .Φουσκάκης- Περιγραφική Στατιστική ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Οι µεταβλητές µιας στατιστικής έρευνας αποτελούνται συνήθως από ένα µεγάλο πλήθος στοιχείων που αφορούν τον πληθυσµό που µας ενδιαφέρει. Για να

Διαβάστε περισσότερα

Μετρήσεις Αβεβαιότητες Μετρήσεων

Μετρήσεις Αβεβαιότητες Μετρήσεων Μετρήσεις Αβεβαιότητες Μετρήσεων 1. Σκοπός Σκοπός του μαθήματος είναι να εξοικειωθούν οι σπουδαστές με τις βασικές έννοιες που σχετίζονται με τη θεωρία Σφαλμάτων, όπως το σφάλμα, την αβεβαιότητα της μέτρησης

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΣΗ ΣΤΗΝ ΥΔΡΟΛΟΓΙΑ ΚΑΙ ΣΤΗ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

ΕΚΠΑΙΔΕΥΣΗ ΣΤΗΝ ΥΔΡΟΛΟΓΙΑ ΚΑΙ ΣΤΗ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΠΑΝΕΠΙΣΤΗΜΙΑΚΟ ΔΙΚΤΥΟ ΕΚΠΑΙΔΕΥΣΗΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΣΤΗΝ ΥΔΡΟΛΟΓΙΑ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΕΚΠΑΙΔΕΥΣΗ ΣΤΗΝ ΥΔΡΟΛΟΓΙΑ ΚΑΙ ΣΤΗ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Αθανάσιος Λουκάς Αναπληρωτής

Διαβάστε περισσότερα

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj ΥΛΗ ΕΞΕΤΑΣΕΩΝ klzxcvλοπbnαmqwertyuiopasdfghjklz ΕΑΡΙΝΟΥ ΕΞΑΜΗΝΟΥ xcvbnmσγqwφertyuioσδφpγρaηsόρ

Διαβάστε περισσότερα

Κεφάλαιο 17. Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2.

Κεφάλαιο 17. Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2. Κεφάλαιο 17 Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2. ΕΙΣΑΓΩΓΗ 17.3. ΤΟ χ 2 ΓΙΑ ΜΙΑ ΠΟΙΟΤΙΚΗ ΜΕΤΑΒΛΗΤΗ 17.3.1. Ένα ερευνητικό παράδειγμα

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Στατιστικοί έλεγχοι για διακριτά δεδομένα

Στατιστικοί έλεγχοι για διακριτά δεδομένα Στατιστικοί έλεγχοι για διακριτά δεδομένα Διαστρωμάτωση Mantel-Haenszel test Γεωργία Σαλαντή Λέκτορας επιδημιολογίας Λεπτοσπείρωση Πιο πολλά κρούσματα στις αγροτικές περιοχές; Πόσο επί τις εκατό του πληθυσμού

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας Επικοινωνία: Πτέρυγα 4, Τοµέας Κοινωνικής Ιατρικής Εργαστήριο Βιοστατιστικής Τηλ. 4613 e-mail: biostats@med.uoc.gr thalegak@med.uoc.gr

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΕΦΑΛΑΙΟ 19 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Όταν ενδιαφερόμαστε να συγκρίνουμε δύο πληθυσμούς, η φυσιολογική προσέγγιση είναι να προσπαθήσουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Η καταληκτική ημερομηνία για την παραλαβή

Διαβάστε περισσότερα

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες.

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 3 ου ΚΕΦΑΛΑΙΟΥ Άσκηση (Προτάθηκε από pito ) Για ένα φάρμακο σε πειραματικό στάδιο αποδείχθηκε ότι δημιουργεί δύο ειδών παρενέργειες. Η πιθανότητα να δημιουργήσει

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Οργάνωση εδομένων Κεφάλαιο 11ο ομές εδομένων

Εισαγωγή στην επιστήμη των υπολογιστών. Οργάνωση εδομένων Κεφάλαιο 11ο ομές εδομένων Εισαγωγή στην επιστήμη των υπολογιστών Οργάνωση εδομένων Κεφάλαιο 11ο ομές εδομένων 1 ομή εδομένων Μια δομή δεδομένων (data structure) χρησιμοποιεί μια συλλογή από σχετικές μεταξύ τους μεταβλητές, οι οποίες

Διαβάστε περισσότερα

Ανεμογενείς Κυματισμοί

Ανεμογενείς Κυματισμοί Ανεμογενείς Κυματισμοί Γένεση Ανεμογενών Κυματισμών: Μεταφορά ενέργειας από τα κινούμενα κατώτερα ατμοσφαιρικά στρώματα στις επιφανειακές θαλάσσιες μάζες. Η ενέργεια αρχικά περνά από την ατμόσφαιρα στην

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

Σημειώσεις Στατιστικής

Σημειώσεις Στατιστικής + εφαρμογή με το LibreOffice Calc και το R Project Επαμεινώνδας Διαμαντόπουλος Νοέμβριος 0, Ξάνθη. Επικοινωνία : epdiamantopoulos@yahoo.gr Ιστοσελίδα : http://users.sch.gr/epdiaman/! Κατάλογος περιεχομένων

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A

Διαβάστε περισσότερα