I област. 1. Када је у колу сталне струје приказаном на слици 1 I g1. , укупна снага Џулових губитака је. Решење: a) P Juk
|
|
- Ιδουμα Ελευθερίου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 I област. Када је у колу сталне струје приказаном на слици I g = Ig = Ig, укупна снага Џулових губитака је P Juk = 5 W. Колика је укупна снага Џулових губитака у колу када је I g = Ig = Ig? Решење: a) P Juk = 6 W b) P Juk = W c) P Juk =8 W d) P Juk = 4 W Слика. I област. Дата је жичана мрежа у облику бесконачне тродимензионе решетке приказанe на слици. Отпорност сваког жичаног сегмената који спаја два суседна чвора је R. Одредити еквивалентну отпорност између тачака A и B. Решење: a) R AB = R b) R AB = R R c) R AB = R 4 d) R AB = R 6 A B Слика.
2 II област. За коло сталне струје са слике, сложена мрежа представљена правоугаоником састављена је од отпорника и генератора. Прекидачима П, П и П успостављају се различита стања. Када је прекидач П затворен, а прекидачи () П и П отворени, познати су струја I AB = 4 ma и напон између отворених прикључака и, U () = V. При () отвореним прекидачима П и П, а затвореном прекидачу П, познати су напони U AB =,6 V и U () =,8 V. Када се, при отвореном прекидачу П и затвореном прекидачу П, затвори и прекидач П, у коло се укључује пријемник отпорности R = 00 Ω и успостави се напон U (),45 V. Израчунати струју струјног генератора I g. Решење: а) I g = 0 ma b) I g = 4 ma c) I g = ma d) I g = ma = Слика. II област 4. За коло сталне струје приказано на слици 4 познато је I g = 60 ma, R = = 00 Ω, R = = 50 Ω, R 4 = R5 = R7 = 50 Ω, E = 0 V, E 4 = V, E 5 = 9 V и отпорност потенциометра R p = 400 Ω. Израчунати максималну снагу потенциометра. Решење: а) P p,max = 75 mw b) P p,max = 60 mw c) P p,max = 60 mw d) P p,max = 500 / mw + R 6 + R Слика 4.
3 III област 5. У колу сталне струје приказаном на слици 5 је R = kω, R = kω, R = kω, E =V и C = μf. Када је преклопник П у положају (0), оптерећеност кондензатора, према референтном смеру са слике, је Q преклопник П у положају (), познато је Q у положају (). () Решење: а) Q = 0 μc () b) Q = 0 μc () c) Q = 5 μc () () d) Q = 5 μc (0) = 45 μc. Када је = 5 μc. Израчунати оптерећеност кондензатора када је преклопник П Слика 5. III област 6. Веома дугачак шупаљ метални цилиндар, полупречника a и врло танког зида, расечен је на два дела по изводницама које су паралелне оси цилиндра, као што је приказано на слици 6. Подужна густина наелектрисања цилиндра је Q '. Околна средина је ваздух. Одредити подужну електростатичку силу на горњи део расеченог цилиндра ако је α = π/. Q' Решење: а) F = i y 4π ε a Q' b) F = i y 4π ε a Q' c) F = i y 8π ε a Q' d) F = i y 8πε0a Слика 6.
4 IV област 7. Унутрашњи проводник веома дугачког коаксијалног вода читавом дужином лежи на клинастом подметачу од линеарног, нехомогеног, чврстог диелектрика, као што је приказано на слици 7. Полупречници проводника вода су a и b ( b > a ), а изводне равни клинастог подметача секу се на оси вода и граде угао α = π/. Релативна пермитивност диелектрика је дата изразом εr ( ϕ) = + cosϕ, π/ 4 < ϕ < π/ 4 (ϕ је угао у односу на раван симетрије вода, као на слици 7). Напон између проводника вода је U. Одредити однос подужне електричне енергије у клинастом подметачу ( W d ) и подужне електричне енергије у остатку коаксијалног вода ( W 0 ). Решење: a) W W = ( π + ) /(π) d / 0 b) W W = ( π + ) /(π) d / 0 c) W W = + /( π) d / 0 d) W d / W 0 = ( π + ) /(π) O Слика 7. IV област 8. На слици 8 приказан је плочасти кондензатор укупне дебљине d, који је прикључен на константан напон U. ε У нелинеарном диелектрику постоји вектор поларизације који се при том напону може написати у облику P = 0 i z, U d d < z < d. У остатку кондензатора је ваздух. Одредити однос густине површинског везаног наелектрисања на доњој површи диелектрика ( ρ ps ) и густине површинског слободног наелектрисања на доњој електроди ( ρ s ). Занемарити ивичне ефекте. Решење: a) ρ ρ 0, 5 ps / s = b) ρ ρ 0, 5 ps / s = ps / ρs = c) ρ d) ρ ρ = ps / s + 4 ε 0 U P ps s Слика 8. z d d d O
5 V област 9. Центар кружне струјне контуре је у координатном почетку Декартовог система, а контура лежи у Oxy-равни, као што је приказано на слици 9. Контура је у вакууму. Позната је јачина сталне струје контуре, I. Тачка М се налази на z-оси, на познатој висини z M изнад Oxy-равни ( z M > 0 ).Одредити полупречник контуре, а, тако да интензитет магнетске индукције у тачки М буде максималан. Решење: a) a = z M / b) a = z M / c) a = zm d) a = z M Слика 9. V област 0. Лопта од феромагнетика, полупречника а, налази се у ваздуху (слика 0). Лопта је хомогено намагнетисана по својој запремини, а вектор магнетизације у лопти (М) је познат. Одредити вектор магнетске индукције коју ова лопта ствара у свом центру (у тачки О). μ Решење: a) 0 M B = b) B = μ 0M M c) B = M d) B = 5 Слика 0.
6 VI област. На слици приказана је веома дугачкa, праволинијскa жицa F, која лежи у вакууму на z-оси Декартовог координатног система. У близини те жице налази се правоугаона жичана контура С, страница а и b. Страница b постављена је паралелно z-оси на растојању c ( c > 0 ). Угао између странице а и x-осе је α ( 0 < α < π / ). Одредити израз за међусобну индуктивност праволинијске жице F и правоугаоне контуре C за референтне смерове приказане на слици. μ0 c Решење: a) L = bln π a + c accosα μ0 a + c + ac cosα b) L = b ln π c μ0 acosα + c c) L = bln π c μ0 acosα d) L = bln π acosα + c Слика. VI област. У танком торусном језгру од феромагнетског материјала постоји простопериодична магнетска индукција учестаности f =00 Hz и амплитуде B m = T. При томе је средња снага губитака у језгру услед хистерезиса једнака P h = W, а средња снага губитака услед вихорних струја је P v = 6 W. Израчунати укупну средњу снагу губитака у овом језгру при учестаности f = 50 Hz и амплитуди магнетске индукције B m = T. Решење: а) P = 7 W b) P =0 W c) P =W d) P = 4 W 6
7 VII област. У колу простопериодичне струје приказаном на слици је R = 60 Ω, R = 40 Ω и C = pf, а ефективна вредност емс генератора је константна и не зависи од учестаности. Израчунати капацитивност кондензатора C тако да снага отпорника R не зависи од учестаности. Решење: а) C =,5 pf b) C =,5 pf c) C = 4,5 pf d) C = 5,5 pf Слика. VII област 4. Идеалан калем индуктивности L везан је у коло простопериодичне струје кружне учестаности ω. Комплексни напон између прикључака калема је U = ( + j)v. Израчунати први тренутак ( t 0 ) у коме је магнетска енергија калема максимална. π Решење: а) t = 4 ω π b) t = ω 4π c) t = ω π d) t = 4 ω 7
8 VIII област 5. У колу простопериодичне струје са слике 5 познато је Z = ( + j)ω, Z = ( + j)ω, I g = ( + j)a и E = j8 V, а сложена мрежа представљена правоугаоником састављена је само од пасивних елемената. Када је прекидач Π затворен, познати су напони U = ( + j)v и U = j4 V. Израчунати напон U по отварању прекидача Π. Решење: a) U = ( + j8)v b) U = ( + j8)v c) U = ( + j)v d) U = ( j)v Слика 5. VIII област 6. У колу простопериодичне струје приказаном на слици 6 је Z p = ( + j4)ω и I g = A. Прикључци и чине напонске, а и 4 струјне прикључке ватметра W. Колика треба да буде импеданса генератора Z g да би идеални ватметар показивао максималну вредност? Решење: a) Z g = j5 4 Ω b) Z g = ( j4)ω c) Z g = ( 4 j)ω d) Z g Слика 6. 8
9 IX област 7. У колу приказаном на слици 7 познато је L = 0 nh, L = 50 nh, R > 0 и C = 0 pf, а генератор је простопериодичан, кружне учестаности 0 9 ω = s и ефективне вредности емс E = 00 V. Израчунати отпорност R тако да средња снага тог отпорника буде P = 400 W. Решење: а) R = 5 Ω b) R = 5 Ω c) R = 50 Ω d) R = 50 Ω R L C C R L E R Слика 7. IX област 8. Одредити однос комплексног напона U AB и комплексне електромоторне силе E у колу са слике 8 ако су познати ефективна вредност електромоторне силе E 0, кружна учестаност ω, индуктивност L и коефицијент индуктивне спреге k. Решење: а) U k AB = E + k U k b) AB = E k U k c) AB = E + k U k d) AB = E k 9 E k L k k Слика 8. L L A B
10 X област 9. У трофазном колу приказаном на слици 9 електромоторне силе чине директан симетричан систем. Почетна фаза електромоторне силе E је нула. Ефективна вредност линијског напона је U =kv, кружна учестаност је ω = 0 s, а импедансе грана потрошача су Z = Z = Z = kω. Одредити тренутни потенцијал чвора О. R L C π Решење: a) vo ( t ) = cos ω t + kv π b) v O ( t) = + cos ωt kv π c) vo ( t ) = + cos ω t + kv π d) v O ( t) = + sin ωt + kv E E E C L U R Слика 9. O X област 0. У колу са слике 0 електромоторне силе образују симетричан директан трофазни систем. Аргументи комплексних импеданси Z и Z су φ = π/ 6 и φ = π/, респективно. Када је прекидач П затворен, амперметар A показује ефективну вредност струје I = A, а амперметар A показује I = 6 A. Амперметри су идеални. Израчунати ефективну вредност струје I C при отвореном прекидачу П. Решење: a) I = 4 A C b) I = + A C c) I = 4 + A C d) I C = 4 + A Слика 0. 0
P = 32W. Колика је укупна снага Џулових губитака у овом колу када је I = I = 2Ig?
(1) I област 1. Када је у колу сталне струје приказаном на слици 1 I = I = Ig, укупна снага Џулових губитака је P = 3W. Колика је укупна снага Џулових губитака у овом колу када је I = I = Ig? () Решење:
. Одредити количник ако је U12 U34
област. У колу сталне струје са слике познато је = 3 = и =. Одредити количник λ = E/ E ако је U U34 =. Решење: а) λ = b) λ = c) λ = 3 / d) λ = g E 4 g 3 3 E Слика. област. Дата је жичана мрежа у облику
R 2. I област. 1. Реални напонски генератор електромоторне силе E. и реални напонски генератор непознате електромоторне силе E 2
I област. Реални напонски генератор електромоторне силе = 0 V и унутрашње отпорности = Ω и реални напонски генератор непознате електромоторне силе и унутрашње отпорности = 0, 5 Ω везани су у коло као на
Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ
Испит из предмета Електротехника са електроником 1. Шест тачкастих наелектрисања Q 1, Q, Q, Q, Q 5 и Q налазе се у теменима правилног шестоугла, као на слици. Познато је: Q1 = Q = Q = Q = Q5 = Q ; Q 1,
налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm
1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:
Теорија електричних кола
Др Милка Потребић, ванредни професор, Теорија електричних кола, предавања, Универзитет у Београду Електротехнички факултет, 07. Вишефазне електричне системе је патентирао српски истраживач Никола Тесла
Слика 1. Слика 1.2 Слика 1.1
За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика
Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика
Штампарске грешке у петом издању уџбеника Основи електротехнике део Страна пасус први ред треба да гласи У четвртом делу колима променљивих струја Штампарске грешке у четвртом издању уџбеника Основи електротехнике
L кплп (Калем у кплу прпстпперипдичне струје)
L кплп (Калем у кплу прпстпперипдичне струје) i L u=? За коло са слике кроз калем ппзнате позната простопериодична струја: индуктивности L претпоставићемо да протиче i=i m sin(ωt + ψ). Услед променљиве
ОСНОВА ЕЛЕКТРОТЕНИКЕ
МИНИСТАРСТВО ПРОСВЕТЕ РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ЧЕТРНАЕСТО РЕГИОНАЛНО ТАКМИЧЕЊЕ ПИТАЊА И ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕНИКЕ ЗА УЧЕНИКЕ ДРУГОГ РАЗРЕДА број задатка 1
ДВАДЕСЕТПРВО РЕГИОНАЛНО ТАКМИЧЕЊЕ ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕХНИКЕ ЗА УЧЕНИКЕ ПРВОГ РАЗРЕДА
МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТПРВО РЕГИОНАЛНО ТАКМИЧЕЊЕ ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕХНИКЕ ЗА УЧЕНИКЕ ПРВОГ
предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА
Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем
ОСНОВА ЕЛЕКТРОТЕХНИКЕ
МИНИСТАРСТВО ПРОСВЕТЕ РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ПЕТНАЕСТО РЕГИОНАЛНО ТАКМИЧЕЊЕ ПИТАЊА И ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕХНИКЕ ЗА УЧЕНИКЕ ДРУГОГ РАЗРЕДА број задатка 3
Теорија електричних кола
др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,
Слика 1. Слика 1.1 Слика 1.2 Слика 1.3. Количина електрицитета која се налази на електродама кондензатора капацитивности C 3 је:
Три кондензатора познатих капацитивности 6 nf nf и nf везани су као на слици и прикључени на напон U Ако је позната количина наелектрисања на кондензатору капацитивности одредити: а) Напон на који је прикључена
РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 2004
РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 004 ТРАНСФОРМАТОРИ Tрофазни енергетски трансформатор 100 VA има напон и реактансу кратког споја u 4% и x % респективно При номиналном оптерећењу
Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.
VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне
Слика 1 Ако се са RFe отпорника, онда су ова два температурно зависна отпорника везана на ред, па је укупна отпорност,
Температурно стабилан отпорник састоји се од два једнака цилиндрична дела начињена од различитих материјала (гвожђе и графит) У ком односу стоје отпорности ова два дела отпорника ако се претпостави да
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016.
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ (3Е03ЕП) октобар 06.. Батерија напона B = 00 пуни се преко трофазног полууправљивог мосног исправљача, који је повезан на мрежу 3x380, 50 Hz преко трансформатора у спрези y, са преносним
Теорија електричних кола
Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,
TAЧКАСТА НАЕЛЕКТРИСАЊА
TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни
1.2. Сличност троуглова
математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)
ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА
МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ОДГОВОРИ И РЕШЕЊА ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ
ЈЕДНОСМЈЕРНИ ПРЕТВАРАЧИ ЧОПЕРИ (DC-DC претварачи)
ЈЕДНОСМЈЕРНИ ПРЕТВАРАЧИ ЧОПЕРИ (D-D претварачи) Задатак. Анализирати чопер са слике. Слика. Конфигурација елемената кола са слике одговара чоперу спуштачу напона. Таласни облици означених величина за континуални
Писмени испит из Метода коначних елемената
Београд,.0.07.. За приказани билинеарни коначни елемент (Q8) одредити вектор чворног оптерећења услед задатог линијског оптерећења p. Користити природни координатни систем (ξ,η).. На слици је приказан
6.5 Површина круга и његових делова
7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност
АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ
ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ У БЕОГРАДУ КАТЕДРА ЗА ЕЛЕКТРОНИКУ АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ВЕЖБА БРОЈ 2 ПОЈАЧАВАЧ СНАГЕ У КЛАСИ Б 1. 2. ИМЕ И ПРЕЗИМЕ БР. ИНДЕКСА ГРУПА ОЦЕНА ДАТУМ ВРЕМЕ ДЕЖУРНИ
Електромагнетика одабрана поглавља
Универзитет у Нишу Електронски факултет у Нишу Катедра за теоријску електротехнику Електромагнетика одабрана поглавља рачунске вежбе Предметни професор: др Небојша Раичевић e-mil: nebojsiceic@elfknics
b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:
Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног
Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.
Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2. За плочу
ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда
ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.
3. СТАЦИОНАРНО МАГНЕТСКО ПОЉЕ
Б Крстајић Збирка задатака из Електромагнетике - (007/008) СТАЦИОНАРНО МАГНЕТСКО ПОЉЕ Примјер Одредити магнетски вектор-потенцијал у и око праволинијског проводника кружног попречног пресјека полупречника
Ротационо симетрична деформација средње површи ротационе љуске
Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну
ОСНОВE ЕЛЕКТРОТЕХНИКЕ 1
ОСНОВ ЕЛЕКТРОТЕХНИКЕ 1 - примери испитних питања за завршни испит - Електростатика Временски константне струје Напомене: - ово су само примери, али не и потпуни списак питања, - на испиту се не морају
КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1
КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 2 ТРОФАЗНИ ПУНОУПРАВЉИВИ МОСТНИ ИСПРАВЉАЧ СА ТИРИСТОРИМА 1. ТЕОРИЈСКИ УВОД
ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (13Е013ЕНТ) колоквијум новембар 2016.
ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (1Е01ЕНТ) колоквијум новембар 016. Трофазни уљни трансформатор са номиналним подацима: S = 8000 kva, 1 / 0 = 5 / 6. kv, f = 50 Hz, спрега Yd5, испитан је у огледима празног хода
г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве
в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу
Колоквијум траје 150 минута. Дозвољено је поседовање само једне свеске за рад и концепт. Прецртати оно што није за преглед.
Универзитет у Београду, Електротехнички факултет, Катедра за енергетске претвараче и погоне ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (3Е3ЕНТ) Колоквијум децембар 8. Трофазни уљни енергетски трансформатор има следеће
C кплп (Кпндензатпр у кплу прпстпперипдичне струје)
C кплп (Кпндензатпр у кплу прпстпперипдичне струје) i u За кплп са слике на крајевима кпндензатпра ппзнате капацитивнпсти C претппставићемп да делује ппзнат прпстпперипдичан наппн: u=u m sin(ωt + ϴ). Услед
ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (13Е013ЕНТ) - септембар 2018
Универзитет у Београду Електротехнички факултет Катедра за енергетске претвараче и погоне ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (3Е03ЕНТ) - септембар 08 Трофазни уљни дистрибутивни индустријски трансформатор има номиналне
6.2. Симетрала дужи. Примена
6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права
брзина којом наелектрисања пролазе кроз попречни пресек проводника
Струја 1 Електрична струја Кад год се наелектрисања крећу, јавља се електрична струја Струја је брзина којом наелектрисања пролазе кроз попречни пресек проводника ΔQ I Δtt Јединица за струју у SI систему
ЕЛЕКТРОТЕХНИКA ПРИРУЧНИК ЗА ВЕЖБЕ НА РАЧУНАРУ ПРВО ИЗДАЊЕ
Мр Александра Гавриловић Ива Ђукић Дејан Тодоровић ЕЛЕКТРОТЕХНИКA ПРИРУЧНИК ЗА ВЕЖБЕ НА РАЧУНАРУ ПРВО ИЗДАЊЕ ВИСОКА ШКОЛА ЕЛЕКТРОТЕХНИКЕ И РАЧУНАРСТВА СТРУКОВНИХ СТУДИЈА БЕОГРАД, 0. Рецензенти: Др Петар
АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2
АНАЛИТИЧКА ГЕОМЕТРИЈА d AB x x y - удаљеност између двије тачке y x x x y s, y y s - координате средишта дужи x x y x, y y - подјела дужи у заданом односу x x x y y y xt, yt - координате тежишта троугла
ОСНОВИ ЕЛЕКТРОТЕХНИКЕ II
ОСНОВИ ЕЛЕКТРОТЕХНИКЕ Saranovac Gordana Jordanovska Olivera Jelinek oran 007/008. Основи електротехнике УВОД (час бр.). Основни параметри наизменичних величина (i,u,e) То су величине чије се промене интензитета
10.3. Запремина праве купе
0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка
2.9. Питања и задаци за самостални рад
9 Питања и задаци за самостални рад Дефиниција електромагнетског поља? Чиме се објашњава очување вриједности класичне теорије електромагнетизма и након открића Лоренца, Планка, Ајнштајна? 3 Шта сматрамо
Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.
Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,
КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1
КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 1 МОНОФАЗНИ ФАЗНИ РЕГУЛАТОР СА ОТПОРНИМ И ОТПОРНО-ИНДУКТИВНИМ ОПТЕРЕЋЕЊЕМ
2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА
. колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност
Разлика потенцијала није исто што и потенцијална енергија. V = V B V A = PE / q
Разлика потенцијала Разлика потенцијала између тачака A и B се дефинише као промена потенцијалне енергије (крајња минус почетна вредност) када се наелектрисање q помера из тачке A утачку B подељена са
Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.
Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. = 0.2 dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2.
Разорна пражњења у далеководима
Разорна пражњења у далеководима Диелектрична чврстоћа је онај напон који изолатор може да поднесе. Конвенциони напон опрема мора увек да издржи. Прескочни напон у ваздуху зависи од облика електрода, од
ТРОУГАО. права p садржи теме C и сече страницу. . Одредити највећи угао троугла ако је ABC
ТРОУГАО 1. У троуглу АВС израчунати оштар угао између: а)симетрале углова код А и В ако је угао код А 84 а код С 43 б)симетрале углова код А и В ако је угао код С 40 в)између симетрале угла код А и висине
Кондензатор је уређај који се користи
Kондензатори 1 Кондензатор Кондензатор је уређај који се користи у великом броју електричних кола Капацитет, C, кондензатора се дефинише као количник интензитета наелектрисања на његовим плочама и интернзитета
I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( )
Шт треба знати пре почетка решавања задатака? АНАЛИТИЧКА ГЕОМЕТРИЈА У РАВНИ I Тачка. Растојање две тачке:. Средина дужи + ( ) ( ) + S + S и. Деоба дужи у односу λ: 4. Површина троугла + λ + λ C + λ и P
2. ОСНОВЕ КОНСТРУКЦИЈЕ И ПРАЗАН ХОД ТРАНСФОРМАТОРА
Школска година 2017 / 2018 Припремио: Проф. Зоран Радаковић октобар 2017., материјал за део градива из поглавља 2. из књиге Ђ. Калић, Р. Радосављевић: Трансформатори, Завод за уџбенике и наставна средства,
Теорија линеарних антена
Теорија линеарних антена Антене су уређаји који претварају електричну енергију у електромагнетну (предајне антене) и обрнуто (пријемне антене) Према фреквентном опсегу, антене се деле на каналске (за узан
4. ГУБИЦИ СНАГЕ, СТЕПЕН ИСКОРИШЋЕЊА И ПРОМЕНА НАПОНА
Делове текста између маркера и прочитати информативно (из тог дела градива се неће постављати питања на испиту) 4. ГУБИЦИ СНАГЕ, СТЕПЕН ИСКОРИШЋЕЊА И ПРОМЕНА НАПОНА 4. 1. ГУБИЦИ У ГВОЖЂУ О губицима у гвожђу
РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА
РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 008 ТРАНСФОРМАТОРИ Једнофазни регулациони трансформатор направљен је као аутотрансформатор Примар је прикључен на напон 0 V Сви губици засићење
Флукс, електрична енергија, електрични потенцијал
Флукс, електрична енергија, електрични потенцијал 1 Електрични флукс Ако линије поља пролазе кроз површину A која је нормална на њих Производ EA је флукс, Φ Генерално: Φ E = E A cos θ 2 Електрични флукс,
Теоријаелектричнихкола наенергетскомодсеку
Др Дејан В. Тошић, редовни професор, Теорија електричних кола, предавања, Универзитет у Београду Електротехнички факултет, 6. Теоријаелектричнихкола наенергетскомодсеку Користите само материјале које вам
Катедра за електронику, Основи електронике
Лабораторијске вежбе из основа електронике, 13. 7. 215. Презиме, име и број индекса. Трајање испита: 12 минута Тест за лабораторијске вежбе 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 5 1 5 1 5 5 2 3 5 1
МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА
Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два
5.2. Имплицитни облик линеарне функције
математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.
Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:
Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине
КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.
КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг
Антене и простирање. Показна лабораторијска вежба - мерење карактеристика антена. 1. Антене - намена и својства
Антене и простирање Показна лабораторијска вежба - мерење карактеристика антена 1. Антене - намена и својства Антена је склоп који претвара вођени електромагнетски талас у електромагнетски талас у слободном
Елементи електроенергетских система
Универзитет у Београду Електротехнички факултет Елементи електроенергетских система рачунске вежбе СИНХРОНИ ГЕНЕРАТОРИ Жељко Ђуришић Београд, 004 ЗАДАТАК : Турбогенератор у ТЕ Морава има следеће параметре:
Теоријаелектричнихкола
Теоријаелектричнихкола Дејан Тошић Водови временски непроменљиви линеарни саустаљеним простопериодичним одзивом Штајевод? Вод је електромагнетски систем сачињен од проводника и диелектрика којим се преноси
УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ. Томсонов ефекат. семинарски рад. Нови Сад, 2010.
УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ Томсонов ефекат семинарски рад професор: Светлана Р. Лукић студент: Драгиња Прокић87/06 Нови Сад, 00. Термоелектричне
3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни
ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује
7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде
математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,
ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (13Е013ЕНТ) Септембар 2017.
Универзитет у Београду Електротехнички факултет Катедра за енергетске претвараче и погоне ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (ЕЕНТ) Септембар 7. Трофазни уљни дистрибутивни трансформатор има номиналне податке:
АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ
ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ У БЕОГРАДУ КАТЕДРА ЗА ЕЛЕКТРОНИКУ АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ВЕЖБА БРОЈ 3 ИСПРАВЉАЧИ И ФИЛТРИ.. ИМЕ И ПРЕЗИМЕ БР. ИНДЕКСА ГРУПА ОЦЕНА ДАТУМ ВРЕМЕ ДЕЖУРНИ У ЛАБОРАТОРИЈИ
Примена првог извода функције
Примена првог извода функције 1. Одреди дужине страница два квадрата тако да њихов збир буде 14 а збир површина тих квадрата минималан. Ре: x + y = 14, P(x, y) = x + y, P(x) = x + 14 x, P (x) = 4x 8 Први
ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група
ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ 21.11.2009. I група Име и презиме студента: Број индекса: Термин у ком студент ради вежбе: Напомена: Бира се и одговара ИСКЉУЧИВО на шест питања заокруживањем
Предмет: Задатак 4: Слика 1.0
Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +
ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце
РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез
6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре
0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских
ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА ОСНОВНИХ ШКОЛА ШКОЛСКЕ 2012/2013. ГОДИНЕ. која се троши на његово загревање након затварања прекидача.
ШКОЛСКЕ 0/03. ГОДИНЕ. Друштво физичара Србије VIII Министарство просвете, науке и технолошког РАЗРЕД развоја Републике Србије ЗАДАЦИ. Отпорности у струјном колу приказаном на слици износе R.8, R и R 3.
Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.
СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању
САМОПОБУДНИ АСИНХРОНИ ГЕНЕРАТОР SELF-EXCITED ASYNCHRONOUS GENERATOR
INFOTEH-JAHORINA Vol. 10, Ref. F-36, p. 1061-1065, March 2011. САМОПОБУДНИ АСИНХРОНИ ГЕНЕРАТОР SELF-EXCITED ASYNCHRONOUS GENERATOR Глуховић Владимир, Електротехнички факултет Источно Сарајево Садржај-У
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: МЕХАНИКА 1 студијски програми: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 3. 1 Садржај предавања: Статичка одређеност задатака
3. 5. ИЗРАЧУНАВАЊЕ РЕАКТАНСИ РАСИПАЊА
Школска година 2014 / 2015 Припремио: Проф. Зоран Радаковић октобар 2014., материјал за део градива из поглавља 3. и 4. из књиге Ђ. Калић, Р. Радосављевић: Трансформатори, Завод за уџбенике и наставна
(однос се одређује као однос броја навојака у секундару када је он изведен као сломљена звезда у односу на број навојака када је секундар изведен као
(однос се одређује као однос броја навојака у секундару када је он изведен као сломљена звезда у односу на број навојака када је секундар изведен као звезда, за исти напон на секундару) 7. 3. ПАРАЛЕЛАН
У к у п н о :
ГОДИШЊИ (ГЛОБАЛНИ) ПЛАН РАДА НАСТАВНИКА Наставни предмет: ФИЗИКА Разред: Осми Ред.број Н А С Т А В Н А Т Е М А / О Б Л А С Т Број часова по теми Број часова за остале обраду типове часова 1. ЕЛЕКТРИЧНО
Вежба 18 Транзистор као појачавач
Вежба 18 Транзистор као појачавач Увод Jедна од најчешћих примена транзистора јесте у појачавачким колима. Најчешће се користи веза транзистора са заједничким емитором. Да би транзистор радио као појачавач
РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА
РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 005 ТРАНСФОРМАТОРИ Tрофазни енергетски трансформатор има сљедеће податке: 50kVA 0 / 0kV / kv Yy6 релативна реактанса кратког споја је x %
Енергетски трансформатори рачунске вежбе
1. Jеднофазни транформатор примарног напона 4 V, фреквенције 5 Hz има једностепени крстасти попречни пресек магнетског кола чије су димензије a = 55mm и b = 35 mm. а) Израчунати површину пресека чистог
СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ
СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни
Осцилације система са једним степеном слободе кретања
03-ec-18 Осцилације система са једним степеном слободе кретања Опруга Принудна сила F(t) Вискозни пригушивач ( дампер ) 1 Принудна (пертурбациона) сила опруга Реституциона сила (сила еластичног отпора)
6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23
6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо
Реализована вежба на протоборду изгледа као на слици 1.
Вежбе из електронике Вежба 1. Kондензатор три диоде везане паралелно Циљ вежбе је да ученици повежу струјно коло са три диоде везане паралелно од којих свака има свој отпорник. Вежба је успешно реализована
= 0.6 m. У првом мору у брод се може утоварити максималан терет m. = 50 t, а у другом m
VIII РАЗРЕД ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА ОСНОВНИХ ШКОЛА ШКОЛСКЕ 0/04. ГОДИНЕ. Друштво физичара Србије Министарство просвете, науке и технолошког развоја Републике Србије ЗАДАЦИ - општа одељења ДРЖАВНИ НИВО.04.04..
ПРИЈЕМНИ ИСПИТ. Јун 2003.
Природно-математички факултет 7 ПРИЈЕМНИ ИСПИТ Јун 00.. Одредити све вредности параметра m за које су оба решења једначине x x + m( m 4) = 0 (a) реална; (b) реална и позитивна. Решење: (а) [ 5, + (б) [
Математика Тест 3 Кључ за оцењивање
Математика Тест 3 Кључ за оцењивање ОПШТЕ УПУТСТВО ЗА ОЦЕЊИВАЊЕ Кључ за оцењивање дефинише начин на који се оцењује сваки поједини задатак. У општим упутствима за оцењивање дефинисане су оне ситуације
УПУТСТВО ЗА ИЗРАДУ ВЕЖБИ
Алекса Вучићевић Ненад Стаменовић УПУТСТВО ЗА ИЗРАДУ ВЕЖБИ КОНСТРУКТОРСКО МОДЕЛОВАЊЕ Техничко и информатичко образовање за осми разред основне школе УВОД Oбјашњење рада на протоборду Протоборд служи за
КОМПЛЕКСНИ БРОЈЕВИ. Формуле: 1. Написати комплексне бројеве у тригонометријском облику. II. z i. II. z
КОМПЛЕКСНИ БРОЈЕВИ z ib, Re( z), b Im( z), z ib b b z r b,( ) : cos,si, tg z r(cos i si ) r r k k z r (cos i si ), z r (cos i si ) z r (cos i si ), z r (cos i si ) z z r r (cos( ) i si( )), z z r (cos(